
  259

2022
Berichte zur Erdsystemforschung
Reports on Earth System Science

Earth Sytem Model-based Predictability of 
Land Carbon Fluxes

István Dunkl
Hamburg 2022

FÜR METEOROLOGIE



Hinweis

Die Berichte zur Erdsystemforschung werden 
vom Max-Planck-Institut für Meteorologie in 
Hamburg in unregelmäßiger Abfolge heraus-
gegeben.

Sie enthalten wissenschaftliche und technische 
Beiträge, inklusive Dissertationen.

Die Beiträge geben nicht notwendigerweise die 
Auffassung des Instituts wieder.

Die "Berichte zur Erdsystemforschung" führen 
die vorherigen Reihen "Reports" und "Examens-
arbeiten" weiter.

Anschrift / Address

Max-Planck-Institut für Meteorologie
Bundesstrasse 53
20146 Hamburg
Deutschland

Tel./Phone: +49 (0)40 4 11 73 - 0
Fax:              +49 (0)40 4 11 73 - 298  

name.surname@mpimet.mpg.de
www.mpimet.mpg.de

Notice

The Reports on Earth System Science are 
published by the Max Planck Institute for 
Meteorology in Hamburg. They appear in 
irregular intervals.

They contain scientific and technical contribu-
tions, including PhD theses.

The Reports do not necessarily reflect the 
opinion of the Institute.

The "Reports on Earth System Science" continue 
the former "Reports" and "Examensarbeiten" of 
the Max Planck Institute.

Layout

Bettina Diallo and Norbert P. Noreiks
Communication

Copyright

Photos below: ©MPI-M
Photos on the back from left to right:
Christian Klepp, Jochem Marotzke,
Christian Klepp, Clotilde Dubois,
Christian Klepp, Katsumasa Tanaka



Berichte zur Erdsystemforschung / Max-Planck-Institut für Meteorologie                             259
Reports on Earth System Science / Max Planck Institute for Meteorology                              2022

ISSN 1614-1199 - doi: 10.17617/2.3477022

István Dunkl
Budapest, Hungary

Max-Planck-Institut für Meteorologie
The International Max Planck Research School on Earth System Modelling 
(IMPRS-ESM)
Bundesstrasse 53
20146 Hamburg

Tag der Disputation: 2. November 2022

Folgende Gutachter empfehlen die Annahme der Dissertation:
Prof. Dr. Victor Brovkin
Dr. Tatiana Ilyina

Vorsitzender des Promotionsausschusses:
Prof. Dr. Hermann Held

Dekan der MIN-Fakultät:
Prof. Dr.-Ing. Norbert Ritter

Titelgrafik von István Dunkl:
The increasing spread among the simulation members indicates the decline in
predictive capability



Earth Sytem Model-based Predictability of 
Land Carbon Fluxes

István Dunkl

Hamburg 2022



István Dunkl
Earth Sytem Model-based Predictability of Land Carbon Fluxes





A B S T R A C T

The skilful prediction of the terrestrial carbon cycle is necessary
to provide near-term estimations of atmospheric CO2 concen-
trations. In this dissertation, I study the processes allowing
us to predict terrestrial carbon fluxes and identify the current
limitations of Earth system models (ESMs) to produce these
predictions.

Earlier studies describe the predictability of carbon fluxes as
highly variable in space and time, but the patterns of predictabil-
ity are not well understood. I develop a conceptual framework
to study carbon flux predictability based on the predictability
of environmental drivers. These drivers explain the spatial and
seasonal changes in predictability, as well as the difference in
predictability between carbon fluxes.

The spatial variability of predictability implies that there are
regional differences in the contribution to atmospheric CO2

predictability. This regional contribution depends on the interan-
nual variability (IAV) of carbon fluxes, and how much of the IAV
is predictable. I analyse six ESMs to determine the uncertainty
in these two factors. ESMs are similar in the fraction of IAV they
can predict. However, large differences in their IAV patterns are
limiting their predictive performance. This discrepancy in IAV
results from differences in the role of environmental drivers.

The greatest driving force of IAV patterns in the earth sys-
tem is arguably El Niño Southern Oscillation (ENSO). ENSO-
related teleconnections create a patchwork of predictable cli-
matic anomalies that drive the global carbon cycle. However,
differences in the representation of ENSO-related anomalies are
restraining the predictive potential of ENSO. The ENSO-related
anomalies in gross primary production (GPP) are highest in
Southeast Asia and Northern South America. However, the com-
bined anomaly of these two regions ranges between 26% and
75% of global GPP anomalies among the ESMs. I identify the
mechanisms leading to these uncertainties and provide informa-
tion that can be used to reduce model biases.

The potential of ESMs to predict the terrestrial carbon cycle is
not yet limited by the chaotic nature of weather and climate, but
by the ability to reproduce the IAV of carbon fluxes. Improving
our understanding on the sensitivity of carbon fluxes to envi-
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ronmental drivers will allow to further expand the predictive
potential.

Z U S A M M E N FA S S U N G

Die Vorhersage des terrestrischen Kohlenstoffkreislaufs ist not-
wendig, um kurzfristige Schätzungen der atmosphärischen CO2-
Konzentrationen zu erhalten. In dieser Dissertation untersuche
ich die Prozesse, die es uns ermöglichen, die terrestrischen Koh-
lenstoffflüsse vorherzusagen, und zeige die derzeitigen Grenzen
der Erdsystemmodelle (ESM) auf, um diese Vorhersagen zu
erstellen.

Frühere Studien beschreiben die Vorhersagbarkeit von Koh-
lenstoffflüssen als sehr variabel in Raum und Zeit, aber die
Muster der Vorhersagbarkeit sind nicht gut verstanden. Ich ent-
wickle einen konzeptionellen Rahmen zur Untersuchung der
Vorhersagbarkeit von Kohlenstoffflüssen auf der Grundlage der
Vorhersagbarkeit von Umweltfaktoren. Diese Faktoren erklären
die räumlichen und saisonalen Veränderungen in der Vorhersag-
barkeit sowie die Unterschiede in der Vorhersagbarkeit zwischen
den Kohlenstoffflüssen.

Die räumliche Variabilität der Vorhersagbarkeit impliziert,
dass es regionale Unterschiede im Beitrag zur atmosphärischen
CO2-Vorhersagbarkeit gibt. Dieser regionale Beitrag hängt von
der interannualen Variabilität (IAV) der Kohlenstoffflüsse ab und
davon, wie viel von der IAV vorhersagbar ist. Ich habe sechs
ESM analysiert, um die Unsicherheit in diesen beiden Faktoren
zu bestimmen. Die ESM ähneln sich hinsichtlich des Anteils
der IAV, den sie vorhersagen können. Große Unterschiede in
ihren IAV-Mustern schränken jedoch ihre Vorhersageleistung
ein. Diese Diskrepanz bei der IAV resultiert aus Unterschieden
in der Rolle der Umweltfaktoren.

Die größte treibende Kraft der IAV-Muster im Erdsystem ist
wohl die El Niño Southern Oscillation (ENSO). ENSO-bezogene
Telekonnektionen schaffen ein Flickwerk vorhersehbarer klima-
tischer Anomalien, die den globalen Kohlenstoffkreislauf antrei-
ben. Unterschiede in der Darstellung von ENSO-bezogenen An-
omalien schränken jedoch das Vorhersagepotenzial von ENSO
ein. Die ENSO-bedingten Anomalien der Bruttoprimärprodukti-
on (GPP) sind in Südostasien und im nördlichen Südamerika
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am höchsten. Die kombinierte Anomalie dieser beiden Regio-
nen liegt jedoch zwischen 26% und 75% der globalen GPP-
Anomalien in den ESMs. Ich identifiziere die Mechanismen,
die zu diesen Unsicherheiten führen, und liefere Informationen,
die zur Verringerung von Modellverzerrungen genutzt werden
können.

Das Potenzial von ESMs zur Vorhersage des terrestrischen
Kohlenstoffkreislaufs ist noch nicht durch die chaotische Natur
von Wetter und Klima begrenzt, sondern durch die Fähigkeit,
die IAV der Kohlenstoffflüsse zu reproduzieren. Das Potenzial
von ESM zur Vorhersage des terrestrischen Kohlenstoffkreis-
laufs ist durch die Reproduktion der IAV der Kohlenstoffflüsse
begrenzt. Ein besseres Verständnis der Empfindlichkeit der Koh-
lenstoffflüsse gegenüber Umweltfaktoren wird es ermöglichen,
das Vorhersagepotenzial weiter auszubauen.

v





P U B L I C AT I O N S A N D P R E - P U B L I C AT I O N S
R E L AT E D T O T H I S D I S S E RTAT I O N

appendix A:

Dunkl, I., A. Spring, P. Friedlingstein, and V. Brovkin (2021).
“Process-based analysis of terrestrial carbon flux predictabil-
ity.” Earth System Dynamics 12.4, pp. 1413–1426.

appendix B:

Dunkl, István, Nicole Lovenduski, Alessio Collalti, Vivek K.
Arora, Tatiana Ilyina, and Victor Brovkin. “GPP and
the predictability of CO2: more uncertainty in what we pre-
dict than how well we predict it.” Prepared for submission to
Biogeosciences.

vii





C O N T E N T S

Unifying Essay
1 Introduction 3

1.1 Predicting Atmospheric CO2 Concentrations 3

1.2 The Global Carbon Cycle 4

1.3 ESM-based Prediction Systems 7

1.4 Measuring Predictability 10

2 Paper I: Mechanisms of Predictability 13

3 Paper II: Drivers of Variability 19

4 ENSO-induced Variability Patterns 25

5 Summary and Conclusions 31

Appendix
a Process-based analysis of terrestrial carbon flux pre-

dictability 39

a.1 Introduction 42

a.2 Methods 44

a.2.1 Earth system model 44

a.2.2 Predictability metrics 45

a.2.3 Decomposition of predictability 46

a.3 Results and discussion 47

a.3.1 Potential predictability 48

a.3.2 Composition of predictability 51

a.4 Conclusions 60

b GPP and the predictability of CO2: more uncertainty
in what we predict than how well we predict it 63

b.1 Introduction 66

b.2 Methods 68

b.2.1 Data sources 68

b.2.2 Model descriptions 69

b.2.3 Statistical approach 72

b.3 Results and Discussion 75

b.3.1 GPP variability 75

b.3.2 Drivers of GPP variability 80

b.3.3 Predictability of GPP 82

b.4 Conclusions 85

b.5 Supplements 86

c ENSO-induced Patterns of Gross Primary Production 89

c.1 Methods 90

ix



x contents

Bibliography 93



L I S T O F F I G U R E S
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content of the 11 ensemble members for
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year one. The predictable component (pc)
is the absolute predictable IAV, and is
useful to assess the predictability of at-
mospheric CO2. pc is generally higher in
regions with high IAV. p f is pc scaled by
IAV and allows assessing the memory of
an ecosystem. 20

Figure 3.2 The area responsible for the top 20th per-
centile of GPP variability in MODIS, FLUX-
COM and six ESMs. The frequency dis-
tribution of the number of overlapping
grid cells is shown in the bar chart. More
than half of the top 20th percentile grid
cells are unique to one model and do not
have any overlap. 22

Figure 4.1 ENSO strength and sensitivity of global
GPP to ENSO in 17 ESMs and FLUX-
COM. A correlation between ENSO am-
plitude (x axis) and GPP sensitivity to
ENSO (y axis) is balancing some of the
differences between ESMs. 27
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Figure 4.2 GPP anomalies of an El Niño event in the
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Figure 4.3 Biases of 17 ESMs in their reproduction
of the ENSO-GPP relationship. The x
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mate anomalies to ENSO and the y axis
the scaled sensitivity of GPP to climate
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1
I N T R O D U C T I O N

1.1 predicting atmospheric co2 concentrations

In the effort to limit global heating to below 2
◦C, nations have

pledged their climate actions in the Paris Agreement in the form
of Nationally Determined Contributions (NDCs, Paris Agree-
ment 2015). To keep track of the NDCs and validate their effects,
policymakers rely on an accurate estimation of greenhouse gas
emissions. This is achieved in a bottom-up approach by national The need for CO2

predictionsinventories in the global stocktake. However, this stocktaking
approach relies on the emission declarations of all countries
and is only executed every five years. Although stocktaking
provides a retrospective evaluation of the efforts of the past
years, its large time steps do not allow a continuous and real-
time evaluation of climate mitigation. This could be achieved
through the prediction of near-term atmospheric CO2 concen-
trations. These predictions would allow policymakers to assess
whether proposed climate mitigation will limit atmospheric CO2

concentrations under a certain threshold, and give them tools
for emission budgeting (Friedlingstein et al., 2020).

Changes in atmospheric CO2 concentrations are resulting
from anthropogenic emissions and the amount of carbon ab-
sorbed by the land and ocean sinks. It is, however, the land
carbon sink that dominates the interannual variability (IAV)
of atmospheric CO2 concentrations (Piao et al., 2020). The pre-
diction of atmospheric CO2 concentrations therefore requires a
skilful prediction of the land carbon sink. One way to achieve
this is through simulations with an Earth system model (ESM),
which combines a physical climate model with biogeochemical
processes of the land surface.

The work presented in this thesis is directed towards exploring
the ability of ESMs to predict the terrestrial carbon cycle on a sea-
sonal to interannual timescale. I begin with introducing the key Exploring our

ability to predict the
land carbon sink

elements of the terrestrial carbon cycle and identify the relevant
processes for predictability. Then, I analyse the contribution of
these processes to the predictability of different carbon fluxes.
Lastly, I compare the predictability of carbon fluxes between
different ESMs to identify the sources of uncertainty and make

3



4 introduction

suggestions on how to overcome these limitations and improve
our ability to predict terrestrial carbon fluxes.

1.2 the global carbon cycle

Changes in the concentration of atmospheric CO2 are caused
by human activities and through changes in the natural carbon
reservoirs. Anthropogenic emissions include the use of fossil
fuels and land-use change. Around 25% of these emissions are
absorbed by the ocean sink and around 30% by the land sink
(Peters et al., 2017). While the ocean carbon sink can be estimatedWhere do

anthropogenic
emissions go?

well, the terrestrial carbon sink is the least constrained part of
the global carbon cycle (Friedlingstein et al., 2020; Luo, Keenan,
and Smith, 2015). Its size is inferred indirectly, by deducting the
other carbon sources and sinks from atmospheric measurements.

The ocean and land sink also differ in their dynamics and
contribution to the IAV of atmospheric CO2. Ocean carbon up-
take takes place in the form of CO2 solubility and biological
productivity. These processes are driven by ocean circulation
and the ventilation of the deep ocean (McKinley et al., 2017).
Compared to conditions on the land surface, these processes are
relatively slow and lead to the ocean carbon cycle undergoing
a low-frequency variability. While the ocean carbon sink has a
comparably low IAV between 0.11 and 0.25 PgC yr−1, the IAV of
the land carbon sink is 2 PgC and thus drives atmospheric CO2

variability (Friedlingstein et al., 2020). Since there is no need
for predictions without variability, the first step towards finding
the mechanisms of predictability is understanding the origins
of variability.

One way to gain insight into the terrestrial carbon sink is
through the lens of its drivers. Terrestrial carbon fluxes are
driven by environmental variables such as temperature, mois-
ture, or radiation. However, it is not only the variability ofA conceptual model

for carbon flux
predictability

carbon fluxes that is determined by its drivers – but also their
predictability. Every environmental driver undergoes different
temporal dynamics in the earth system. For instance, solar ra-
diation can change on an hourly scale, while anomalies in soil
moisture can persist for years (Chikamoto et al., 2017). These
differences in temporal dynamics determine the persistence of
anomalies and influence how well each of these environmental
drivers can be predicted. As a result, carbon flux anomalies
which are driven by soil moisture have a generally higher pre-
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dictability than anomalies driven by radiation. However, it does
not matter how predictable an environmental driver is if it has
a low variability, or the carbon flux is not very sensitive to it.
Based on this conceptual framework, the major elements which
determine carbon flux predictability are: a) which environmen-
tal variables drive the carbon flux, b) how sensitive is the carbon
flux to the drivers, c) how strong is the variability of these
drivers, and d) how much of the variability of the drivers is
predictable. Quantifying the role of environmental drivers on
the land carbon sink is the key to a process-based understanding
of its predictability. However, the land carbon sink is not the
result of a single process. Rather, it is the sum of several carbon
fluxes. Each of these fluxes has a different set of drivers, as well
as spatially and temporally varying sensitivities to those drivers.

The main fluxes contributing to the land carbon sink are gross
primary production (GPP), which is the carbon entering ecosys-
tems through photosynthesis; autotrophic and heterotrophic
respiration (Ra and Rh), which is the carbon returned to the
atmosphere through plants and microbial decomposition; and
disturbances like fire. GPP is driven by the availability of energy Carbon fluxes and

their driversin the form of temperature and radiation, plus the necessary
resources: water, CO2, and nutrients like nitrogen (Anav et al.,
2015). Depending on the environmental conditions, any of these
drivers can be the limiting factor of GPP – but not all of them
create enough variability. For example, although plant growth
is limited by CO2 in dry regions (Donohue et al., 2013), the IAV
of CO2 does not significantly contribute to GPP IAV (Lee et al.,
2018). Most of GPP IAV is caused by soil moisture, temperature
and radiation (Anav et al., 2015). GPP increases with tempera-
ture in mid- to high-latitudes due to higher chemical reaction
rates, but the relationship reverses as high temperatures damage
enzyme structure and reduce the leaf-to-air vapour pressure
difference necessary for photosynthesis (Aubry-Kientz et al.,
2015). Therefore, GPP is negatively correlated with temperature
across most of the tropics (O’Sullivan et al., 2020). GPP is pos-
itively correlated to soil moisture in most parts of the globe,
but the strongest relationship is in the semi-arid tropics (Anav
et al., 2015; O’Sullivan et al., 2020). Because plants respire some
fixated carbon back to the atmosphere, we can quantify the net
carbon fixated by plants as net primary production (NPP) by
subtracting Ra from GPP. Ra is most sensitive to temperature
(Piao et al., 2010), but since the amount of carbon available for
Ra depends on the photosynthetic rate, GPP, Ra and NPP covary
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(Van Oijen, Schapendonk, and Höglind, 2010). The main drivers
of Rh variability are temperature, soil moisture and substrate
availability (Chen et al., 2010; Reichstein et al., 2003). As tem-
perature regulates the rate of chemical reactions, Rh increases
with temperature as long as it does not lead to the limitation of
other environmental factors (Wei, Weile, and Shaopeng, 2010).
The relationship of Rh to moisture availability depends on the
prevailing climatic conditions and ranges from strongly posi-
tive under water limitation, to negative when water saturation
creates anaerobic conditions (Reichstein et al., 2003).

The IAV of the land carbon sink is mostly driven by the IAV
of GPP and Rh, while fire emissions only play a minor role
(Niu et al., 2017; Piao et al., 2020; Wang, Zeng, and Wang, 2016).
Because of its high sensitivity to climate, GPP is considered toIAV of carbon fluxes
drive 56% to 90% of the terrestrial carbon sink IAV (Baldocchi,
Chu, and Reichstein, 2018; Piao et al., 2020). However, there
are some regions where Rh IAV drives the terrestrial carbon
sink IAV. This is the case for the high latitudes, Australia and
possibly parts of the Amazon basin (Jung et al., 2011; Piao et al.,
2020; Schömann et al., 2022).

Because GPP and Rh share similar environmental drivers,
their individual variabilities can covary, leading to an amplifica-
tion or dampening of net variability. For most parts of the world,Covariability of

fluxes the high GPP variability is dampened by the positively corre-
lated Rh because both fluxes are favoured by similar climatic
conditions (Baldocchi, Chu, and Reichstein, 2018). However, this
relationship can be reversed in the tropics, where extreme cli-
matic conditions amplify the carbon sink by the covariability of
GPP and Rh (Qian, Joseph, and Zeng, 2008). This occurs in the
Amazon basin, where high temperatures can induce droughts,
which lower plant productivity while increasing Rh.

The spatial patterns of carbon flux IAV are highly heteroge-
neous, with small portions of the land surface driving global
IAV (Poulter et al., 2014). The majority of the terrestrial carbon
sink IAV can be attributed to tropical GPP. To be more specific,Uncertainties of flux

estimates IAV peaks in warm, but water-limited ecosystems like the semi-
arid tropics (Ahlström et al., 2015; Jung et al., 2011). However,
there are large uncertainties in carbon flux IAV patterns among
ESMs (O’Sullivan et al., 2020; Poulter et al., 2014). These errors
originate from our limited understanding of the role of envi-
ronmental drivers on carbon fluxes (Piao et al., 2020). For some
regions, studies find opposing effects of water availability on
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the carbon cycle, and the global sensitivity of carbon fluxes to
environmental drivers are poorly constrained (Piao et al., 2010).

One of the reasons for the high uncertainties in the terrestrial
carbon cycle is the difficulty to measure carbon fluxes (Berkel-
hammer et al., 2014). The measurements of individual carbon Observational

productsfluxes, like GPP and NPP, rely on costly procedures like biomass
inventories, sap flow methods, or leaf level measurement of
photosynthesis (Baldocchi et al., 1996). Flux tower stations have
eased this process by providing continuous measurements of
high temporal resolution at hundreds of locations (Walther et al.,
2022). However, they come with the caveat of measuring net
land-atmosphere carbon fluxes and rely on statistical approaches
to separate the total flux into individual carbon fluxes. Another
limitation of flux towers is their sparse and uneven distribution,
which leaves large parts of the tropics unsampled (Zhang and
Ye, 2021). One source of spatially continuous maps are based on
remote sensing data, most notably MODIS (Running, Qiaozhen,
and Zhao, 2019). These products estimate GPP through the light
use efficiency concept, which utilizes the fraction of absorbed
photosynthetic active radiation by plants (O’Sullivan et al., 2020).
A shortcoming of these methods is their low sensitivity in areas
of high GPP values (Zhang and Ye, 2021). Another source of
spatially continuous GPP data is produced by using remote
sensing and climate data to upscale flux tower measurements
(Jung et al., 2011). This product is widely verified and frequently
serves reference for mean GPP values (Zhang and Ye, 2021).
However, these products underestimate GPP IAV (Anav et al.,
2015; O’Sullivan et al., 2020). It is recommended to scale the data
so that the IAV of its integrated fluxes resemble observations
(Jung et al., 2019).

1.3 esm-based prediction systems

Modelling atmospheric CO2 dynamics requires simulating sev-
eral interacting realms. The necessary elements are combined
in ESMs, which simulate the physical, chemical and biological ESM predictions as

decision aidsprocesses of the atmosphere, oceans and land surface. Adding
the biosphere to a physical climate model allows ESMs to simu-
late not just weather and climate, but also droughts, agricultural
and fishery yields, habitat loss, resource availability, and more
(Bonan and Doney, 2018; Flato, 2011; Merryfield et al., 2020).
This makes ESMs a valuable tool to provide decision-makers
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with predictions on topics with high social, economic, and envi-
ronmental impact (Merryfield et al., 2020).

To generate predictions, an ensemble of ESM simulations is
initialized from observations. Each member is initialized from
slightly altered conditions, and as the inherent chaotic nature of
climate develops, the ensemble members are driven apart. In a
system with little predictive capability, the ensemble members
will soon represent the natural variability of the system. How-Predictability in the

earth system from... ever, there are certain processes which provide predictability
by delaying this convergence to the climatic variability. These
sources of predictability originate from the atmosphere, the
oceans or the land surface, and operate on different temporal
scales.

The atmosphere, for example, plays a large role for weather
predictability, but anomalies do not persist longer than a few...the atmosphere...
months (Merryfield et al., 2020). Notable drivers of atmospheric
predictability are climate modes with low-frequency oscillations
such as the Madden–Julian oscillation, the North Atlantic Oscil-
lation or the quasi-biennial oscillation (Merryfield et al., 2020;
Scaife et al., 2014).

Due to their large heat capacity, oceans are the dominant
driver of seasonal to decadal climate variability (Bellucci et al.,...the oceans...
2015; Merryfield et al., 2020). The most prominent source of
predictability in the oceans is the El Niño–Southern Oscillation
(ENSO, Zeng et al. 2008). ENSO describes the periodic fluc-
tuations of tropical Pacific sea surface temperature (SST) and
their coupling with the atmosphere (Zhang et al., 2019). Every
two to seven years, warm SST anomalies in the tropical Pacific
lead to anomalies in radiation, temperature and precipitation
ranging from Alaska to Australia, influencing 48% of vegetated
land area (Zhang et al., 2019). Not only does ENSO drive global
climate variability, its events are also predictable up to one, and
sometimes two years in advance (Barnston et al., 2019; DiNezio
et al., 2017). Therefore, ENSO is considered the main driver of
seasonal to annual climate predictability (Chen and Dool, 1997;
Manzanas et al., 2014).

The land surface contributes to predictability by prolong-
ing or intensifying climatic anomalies. An important source...the land surface.
of predictability on the land surface is soil moisture memory
(Bellucci et al., 2015). Its initialization plays a crucial role in
temperature predictability (Ardilouze et al., 2017). Through
its properties as a porous medium, soils act as a water reser-
voir that can prolong precipitation anomalies for up to 10-45
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months (Chikamoto et al., 2017). These anomalies directly im-
pact plant growth through water availability and regulate the
water and energy exchange at the land-atmosphere interface.
This process is known as land-atmosphere coupling and drives
surface temperatures and precipitation through evapotranspira-
tion. Land-atmosphere coupling contributes to the maintenance
and intensity of droughts (Bellucci et al., 2015). Vegetation can
have a similar memory function as soil moisture. Although
initializing of vegetation contributes little to temperature pre-
dictability, it improves the simulation of the hydrological cycle
(Weiss et al., 2014). Nevertheless, the initialization of vegetation
might be a more important source of predictability for carbon
fluxes because it determines the leaf area available for carbon
fixation as well as the amount of carbon available for decom-
position. But vegetation might have more potential to provide
long-lasting memory through less studied mechanisms like the
drought legacy effect (Kaisermann et al., 2017; Lozano et al.,
2022).

There are a variety of approaches to initialize ESMs (Carrassi
et al., 2018). The main differences between the approaches lie
in the fields that are initialized, the spatial extent of the initial-
ization, and the method used to bring the model closer towards
observations. The most frequently initialized variables for sea-
sonal to decadal predictions are ocean temperature, salinity, and
sea-ice (Ilyina et al., 2021). Atmospheric fields such as tempera- Ensemble

initialization
methods

ture, wind components or humidity can be initialized, but they
play a smaller role on these timescales as their anomalies do not
persist long (Kataoka et al., 2020; Magnusson et al., 2013; Smith,
Scaife, and Kirtman, 2012). The two main approaches in initial-
ization techniques are (a) full-field initialization, in which model
fields are replaced by the best estimates of the real state, and (b)
anomaly initialization, where the observed climatic anomalies
are translated to anomalies according to the model climatology
(Smith, Scaife, and Kirtman, 2012). Although both methods have
their advantages and shortcomings, they suffer from some de-
gree of initialization shock. This occurs because forcing models
out of their free run towards the observations removes them
from their internal equilibrium, leading to a climate drift.

There are no observations to provide the initial conditions
of the necessary land surface variables at the required reso-
lution. Instead, the initial conditions are estimated indirectly
through assimilation runs, but this method is restraining the full
predictability potential (Spring et al., 2021).



10 introduction

1.4 measuring predictability

The ensemble simulations used to assess predictability can ei-
ther be run as forecasts, initialized with present conditions, or
as retrospective forecasts (hindcasts), which are initialized from
past conditions. The fore- and hindcast are verified against ob-
servations to obtain the prediction skill, which quantifies the
suitability of the model to predict the real world (Kumar, Peng,
and Chen, 2014). However, forecast verification is difficult ifFrom predictive skill

to potential
predictability

observations are unavailable or have high uncertainty, which is
the case with terrestrial carbon fluxes. The proposed solution
to overcome a lack of observations is to assess the potential pre-
dictability (Séférian, Berthet, and Chevallier, 2018). This method
tests how well the models can predict themselves instead of
observations. The requirements for this approach are the perfect
reproduction of the observed variability and the implementa-
tion of all predictability-providing processes (Séférian, Berthet,
and Chevallier, 2018). Because there are no spatially continu-
ous and reliable observations of terrestrial carbon fluxes, only
potential predictabilities are assessed in the following sections.
All references to carbon flux predictability refer to potential
predictability unless declared otherwise.

A variety of metrics are proposed to quantify predictability
from ensemble simulations (Brady and Spring, 2021). One type
of metric compares the ensemble mean to observations or an
anticipated value. These metrics could measure the distance or
the correlation between prediction and observations. Another
type of metric focuses on the variance between the ensemble
members. Comparing the ensemble variance with a reference
variance quantifies how much the prediction is able to restrict
the possibility of outcomes.

The role of terrestrial carbon flux predictability on the pre-
dictability of atmospheric CO2 is a multifaceted problem that
can not be fully analysed by using a single predictability metric.Carbon flux

predictability metric
dilemma

For instance, one interesting question is to assess the memory
retention potential of ecosystems. In other words, how long does
it take until the effects of initialization are undistinguishable
from internal variability? To analyse the differences in memory
retention, we need to use a metric that is independent of the ab-
solute magnitude of variability. This applies to correlation-based
metrics, or to metrics that are scaled by the local variability.
Although these metrics allow us to evaluate the regional role
of the sources of predictability, the regions with high memory
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retention might not be the ones contributing to the predictability
of atmospheric CO2. This can be seen by very high values of the
temporal autocorrelation of soil moisture in very wet and very
dry regions (Dirmeyer, Halder, and Bombardi, 2018; Hagemann
and Stacke, 2015). Despite being regions with above-average
memory retention, these regions are characterized by a very
small IAV of carbon fluxes and contribute little to the IAV of
the global carbon sink (Piao et al., 2020). Therefore, assessing
the regional contribution to the predictability of atmospheric
CO2 requires a metric which considers absolute flux IAV: The
tropics may not have the best memory retention, but because of
their high carbon flux IAV, they matter for the predictability of
atmospheric CO2.

So where do we stand with the use of ESMs to predict the
terrestrial carbon cycle? An early study shows that it is possible
to predict terrestrial carbon fluxes beyond nine months, and The use of ESMs for

terrestrial carbon
flux predictability

that predictability originates from the dynamical coupling of the
land surface and climate that allows predictions of carbon fluxes
beyond climate predictability (Zeng et al., 2008). Subsequent
studies estimated the predictability of terrestrial carbon fluxes
to be around two years (Ilyina et al., 2021; Li et al., 2022; Loven-
duski et al., 2019; Spring and Ilyina, 2020; Séférian, Berthet,
and Chevallier, 2018). The results showed that carbon flux pre-
dictability is distributed unevenly across the land surface. Most
of the regions with high predictability are in the tropics, but
there are deviations among the ESMs on the location of these
regions. These patterns broadly resemble the ENSO-induced cli-
mate anomalies (Zeng et al., 2008), but no other explanation for
these patterns is offered yet. Some of the listed studies address
the question of predictability mechanisms by comparing simula-
tions with and without initialized land surface. They find that
the predictability of carbon fluxes increases with the initializa-
tion of soil moisture, vegetation, snow cover, as well as carbon
and nitrogen pools (Lovenduski et al., 2019; Spring et al., 2021;
Zeng et al., 2008). However, these studies assess the combined
effect of several land surface variables that does not allow the
attribution of predictability to single processes.

Although we understand the general importance of these land
surface processes, we still know little about the mechanisms of Knowledge gaps
terrestrial carbon flux predictability. Why do some areas have
higher predictability than others? Is predictability continuously
decreasing with time, or does it change with the seasons? How
does the uncertainty in the parameterization of carbon fluxes
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affect predictability, and what are the current limitations in
predictability? In the following chapters, I provide answers
to these questions and guidance for future improvements of
terrestrial carbon flux predictability.
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The predictability of terrestrial carbon fluxes is estimated to be
around two years in several ESMs (Ilyina et al., 2021; Loven-
duski et al., 2019; Spring and Ilyina, 2020; Séférian, Berthet, and
Chevallier, 2018), but there is considerable spatial and temporal
variability in these values. ESMs show that carbon flux pre- Mechanisms of

predictability largely
unknown

dictability has a heterogeneous distribution within the tropics,
leading to areas of high and low predictability. The estimates
for globally aggregated carbon flux predictability also show a
large IAV (Spring and Ilyina, 2020; Séférian, Berthet, and Cheval-
lier, 2018). This could indicate that predictability is better in
some years than others. As far as understanding the mecha-
nisms of carbon flux predictability goes, most publications have
focused on the effect of land surface initialization on carbon
flux predictability on a global and annual scale (Lovenduski
et al., 2019; Spring and Ilyina, 2020; Zeng et al., 2008). However,
carbon fluxes are driven by several variables, and we know little
about the role of the individual drivers in creating the observed
patterns of carbon flux predictability.

This work focuses on understanding the mechanisms leading
to carbon flux predictability and its variability by studying the
relationship between carbon fluxes and their drivers. I use the Research questions
assumption that the predictability of carbon fluxes is related
to the predictability of its drivers. Within this framework, I
analyse the contribution of environmental drivers to the regional
patterns of carbon flux predictability at a monthly timescale to
answer the following questions:

1. How do the environmental drivers of carbon fluxes con-
tribute to the patterns of carbon flux predictability?

2. What mechanisms explain the seasonal variability and
IAV of carbon flux predictability?

Because the net land-atmosphere carbon flux is a composite of
different fluxes, each with its own sensitivity to its drivers, we Methods
focus on two carbon fluxes contributing to a majority of the
variability (Wang, Zeng, and Wang, 2016). NPP quantifies the
amount of carbon fixated into the ecosystems by vegetation and
is driven by soil moisture, temperature and radiation. Rh is the

13
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largest flux of ecosystem carbon back to the atmosphere, and is
driven by precipitation, temperature and substrate availability.

The data for this analysis is based on 35 ensemble simula-
tions initialized along an unforced control run with the Max
Planck Institute Earth System Model (MPI-ESM) version 1.2
(Mauritsen et al., 2019). Because this work aims to study the
IAV of predictability, the starting points for the 35 initializations
are selected to cover a wide range of ENSO conditions. The
ensembles start in January, have 11 members, run for two years,
and are initialized by small atmospheric perturbations to create
divergence. Predictability is measured by comparing ensemble
variance with climatological variance. I calculate the comple-
ment of the normalized ensemble variance (Griffies and Bryan,
1997):

Vc(t) = 1 − σ2(t)Ensemble

σ2
Climatology

, (2.1)

where σ2(t)Ensemble is the ensemble variance at lead time t, and
σ2

Climatology the climatological variance for that given month of
the year. A Vc of one means there is zero spread in the ensem-
ble, and values under zero mean that the variance within the
ensemble is larger than the climatological variance. In the next
step, I use regression analysis to determine what is driving
the predictability of NPP and Rh. For every grid cell and lead
time, a multiple linear regression model is fitted. The regres-
sion models determine the contribution of the predictability of
environmental drivers to NPP and Rh predictability.

The analysis allows us to identify the main drivers of carbon
flux predictability. Global NPP predictability is driven to 62%,Drivers of global

predictability 30%, and 8% by the predictability of soil moisture, tempera-
ture, and radiation, respectively. Rh predictability is driven to
52%, 27%, and 21% by the predictability of substrate availability,
temperature, and precipitation. The drivers are not distributed
evenly across the globe but form distinct spatial patterns, which
makes it possible to attribute hotspots of carbon flux predictabil-
ity to individual drivers. There is also a difference in the per-
sistence of NPP and Rh predictability. While most of the NPP
predictability decays during lead year 1, there are still large
areas with high Rh predictability in lead year 2. This can be
explained by differences in the predictability of the drivers. Rh
is driven to 52% by substrate availability, which has a very high
predictability due to slow changes in its stocks.
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Both NPP predictability and Rh predictability show a strong
seasonality, and some regions even lose their predictability
before it returns the next year. Curiously, the seasonality of Seasonal variability

of predictabilityNPP and Rh predictability have opposite phases, with NPP pre-
dictability peaking in the dry, and Rh predictability in the wet
season. Nevertheless, I discovered that in both cases, the season-
ality is caused by the same mechanism. The seasonal patterns of
predictability are due to the seasonally changing environmental
drivers of the fluxes, and the differences in the predictability of
these drivers. On the one hand, we have substrate availability
and soil moisture, which have very good predictability because
they are the result of slowly varying processes. Radiation and
precipitation, on the other hand, have a much lower predictabil-
ity on the scale of days to weeks. NPP is limited by radiation
in the wet season, meaning that NPP variability is caused by
a poorly predictable driver. With the progression into the dry
season, NPP becomes limited by water availability and NPP
“inherits” the high predictability of soil moisture. Rh is lim-
ited by poorly predictable precipitation in the dry season, but
its predictability increases as it becomes limited by substrate
availability. The seasonally changing limiting factors especially
contribute to the lengthening of Rh predictability. This happens
as the dry season halts the decomposition and preserves the
anomalies in substrate availability until the start of the wet
season in the next year.

Within the analysed ensemble simulations, NPP predictabil-
ity showed a high IAV. There are several grid cells where the IAV of predictability
standard deviation of NPP predictability exceeds the mean. I
found that interannual differences in NPP predictability can be
explained by hydrological conditions. The two regions where
NPP predictability is the most impacted by this relationship are
the Amazon Basin, where NPP predictability is higher in wet
years, and northwestern Australia, where NPP predictability is
higher in dry years. Although the direction of the relationship
differs, it is the same phenomenon that creates the differences in
predictability between years. In the case of the Amazon Basin,
the variability of precipitation does not differ between wet and
dry years, but years with above-average precipitation lead to
the saturation of soils (Fig. 2.1). With sufficient precipitation,
more and more ensemble members are “synchronized” in the
saturated state, causing reduced variability of soil moisture.
This decreases the ensemble variability of NPP through (a) less
variability in water availability, and (b) reduced variability of
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temperature due to reduced variability of latent and sensible
heat flux. In the case of Australia, NPP predictability increases in
dry years due to the higher predictability of soil moisture and ra-
diation. Here, the ensemble members are synchronized because
drought pushes the ensemble members against the depleted end
of the spectrum. While there is some variability of cloud cover
in wet years, variability of radiation decreases in dry years as
the chance for cloud free days increases. For both the Amazon
and Australia, the interannual differences in predictability are
caused by years when the environmental conditions are pushed
against the physical boundaries of the system, which leads to a
synchronization of ensemble members.

Figure 2.1: Soil water dynamics of dry and wet years in the Ama-
zon basin at 8

◦S, 54
◦W. a) Relationship between February

precipitation and change in soil moisture from February
to March. While the variability in precipitation is similar
in dry and wet years, there is only little change in soil
moisture in the wet years. b) Soil water content of the 11

ensemble members for a single dry and wet year.

The majority of carbon flux predictability can be explained by
the predictability of land surface variables such as soil moisture
and substrate availability. The leading role of soil moisture isKey findings and

conclusions pointed out by other publications, stressing the importance of
land surface initialization (Spring et al., 2021; Zeng et al., 2008).
However, soil moisture monitoring is costly, and initial condi-
tions have to be estimated indirectly through assimilation runs.
This work shows that there are key hotspots of predictability
which are driven by soil moisture. The identification of these
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regions allows a targeted expansion of soil moisture monitoring
at locations that maximize their impact on predictability.

The different predictabilities of environmental drivers explain
the difference between NPP and Rh predictability, as well as
variations in the seasonality of predictability. The IAV of carbon
flux predictability is caused by environmental conditions ap-
proaching the physical boundaries of the system. This implies
that the patterns of carbon flux predictability are highly depen-
dent on model structure and the parameterization of ecosystem
processes. Differences in the representation of processes like
evapotranspiration, phenology, or climate variability can alter
resource availability. This may cause changes in the limiting
factors of carbon fluxes which determine their predictability.

I identify mechanisms responsible for the variability of pre-
dictability which are based on well understood processes. These
mechanisms should be present in other ESMs, but it is difficult
to conclude whether the spatio-temporal patterns of carbon flux
predictability are specific to MPI-ESM or resemble the patterns
found in other ESMs.





3
PA P E R I I : D R I V E R S O F VA R I A B I L I T Y

How much a region contributes to the predictability of CO2

depends on two factors: How high is the IAV of carbon fluxes,
and how much of this IAV can we predict. In Chapter 2, we dis-
cussed the latter, but we have not yet considered the differences
in IAV. Despite the ongoing efforts of field scientists and model The role of IAV

patterns on
predictability

developers, several of the processes controlling the variability of
GPP remain poorly constrained (Luo, Keenan, and Smith, 2015;
Piao et al., 2020). There are large differences in the way ESMs re-
produce the sensitivity of GPP to climate (Piao et al., 2013, 2020),
phenology (Song et al., 2021), biome boundaries (Hu et al., 2022),
or hydrology (Qiao, Zuo, and Xiao, 2022; Wu, Lo, and Scanlon,
2021). All of these uncertainties are likely to lead to different
patterns of GPP IAV, which is the main driver of atmospheric
CO2 (Piao et al., 2020). This raises the question of how much
these differences in GPP IAV will affect the predictability pat-
terns among the ESMs. Are the earlier discovered predictability
patterns specific to MPI-ESM or can they be generalized? In a
multi-model analysis, I take a look at the role of environmental
drivers in GPP IAV and predictability in six ESMs. The aim of
this work is to identify the factors leading to the differences in
carbon flux predictability between the ESMs. To investigate this
topic, I ask:

1. What drives the differences in carbon flux predictability
among ESMs?

2. How it is possible that the predictive skill of atmospheric
CO2 is similar among ESMs (Ilyina et al., 2021), while
there are large uncertainties in the key processes control-
ling terrestrial carbon flux IAV?

I analyse six ESMs to find out how environmental drivers are
affecting the IAV and predictability of GPP. I use regression Role of

environmental
drivers on IAV and
predictability

analysis to determine the sensitivity of GPP to soil moisture,
temperature and radiation. The regression model is applied to
hindcast simulations to determine (a) the IAV of GPP caused by
each driver and (b) the variability of GPP between the ensemble
members in lead year one (caused by each driver). Predictability
is calculated from the relationship of ensemble variability to

19
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IAV. In Figure 3.1, I use a high- and a low-productivity site to
exemplify how I calculate predictability and why one metric
is not enough. The predictive component (pc) is the difference
between IAV and ensemble variability in lead year one. Because
pc is an absolute measure that factors in the size of anomalies,
it allows quantifying the regional contribution to atmospheric
CO2 predictability. However, pc is strongly related to the overall
magnitude of GPP IAV and does not give us an insight into
how well memory is stored in the system. This is demonstrated
with the example of the dry shrubland in Figure 3.1. The dry
shrubland has a relatively small pc compared with the tropical
forest, but a much larger predictable fraction (p f ), which is the
ratio of pc to IAV. p f allows us to assess how well memory is
stored in the system. The IAV patterns of GPP are compared
with observations from MODIS (Running, Qiaozhen, and Zhao,
2019) and FLUXCOM (version RS + METEO, Jung et al. 2019).
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Predictable component (pc):

pc = σGPPIAV - σGPPLY1
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Tropical forest         Dry shrubland

 pc                    2                             0.8 

 pf                  0.4                             0.8 

Predictable fraction (pf):

pf = pc / σGPPIAV

Figure 3.1: Calculating the predictability metrics for a tropical forest
and dry shrubland. The green bars show the IAV of GPP
and the red bars the ensemble variability in lead year one.
The predictable component (pc) is the absolute predictable
IAV, and is useful to assess the predictability of atmospheric
CO2. pc is generally higher in regions with high IAV. p f is
pc scaled by IAV and allows assessing the memory of an
ecosystem.

The six ESMs are fairly similar in their ability to retain memory
(p f ). The p f of GPP is between 19% and 24% in four out ofResults
six ESMs. However, it is not just the total p f which is similar
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among the ESMs, there is also high consistency in the role
of the environmental drivers in providing the memory to the
system. While around 26% of the IAV caused by soil moisture ESMs have similar

memory retentionis predictable, it is only 9% for the IAV caused by radiation.
This reveals the key role of moisture availability: Predictability
is highly sensitive to soil moisture regime and increases sharply
from an energy-limited to water-limited evapotranspiration. This
mechanism is likely to cause the overall low p f of GPP in MPI-
ESM-LR. The GPP IAV caused by radiation is 20% higher in
MPI-ESM-LR than in other ESMs, leading to a high fraction of
poorly predictable IAV.

The ESMs have substantial differences in their patterns of
GPP IAV. Several ESMs have unique hotspots responsible for
a large fraction of their GPP IAV, which are not present in
other ESMs. To quantify this disagreement, I define the top 20th Spatial mismatch in

IAV patternspercentile of GPP IAV grid cells as high variability areas. These
high variability areas are shown in Figure 3.2 for the six ESMs
and two observational products. Half of the high variability
grid cells can only be found in one of the products. There is a
large disagreement on the role of Australia, South Africa, and
central South America. Besides the spatial mismatch, there is
disagreement in the drivers of IAV. The main driver of global
GPP IAV is temperature in some ESMs and soil moisture in
others. Likely reasons for the differences in IAV patterns are
differences in meteorological variability, the sensitivity of carbon
fluxes to climate, and phenology (Anav et al., 2015; Peano et al.,
2021; Piao et al., 2020).

Patterns of meteorological variability can be very specific
to ESMs (Zhu and Yang, 2021). I examined the sensitivity of
GPP to soil moisture IAV in Australia and Southern Africa, the
regions with the highest uncertainty of GPP IAV. The ESMs
with the highest GPP IAV in these regions do not necessarily
have high IAV of soil moisture. From this, I conclude that the
above-average GPP IAV in Australia and Southern Africa is not
caused by a high variability of meteorological input, but by a
high sensitivity of GPP to soil moisture variability.

Due to the differences in IAV patterns, the areas that con-
tribute to the predictability of CO2 (pc) also differ among ESMs. Differences in IAV

limit predictabilityFrom these high predictability grid cells (top 20th percentile of
pc), 74% are unique to only one ESM, and less than 8% of high
predictability grid cells occur in three or more ESMs.

So why is the predictive skill of atmospheric CO2 compa-
rable among ESMs, despite these fundamental differences in



22 paper ii : drivers of variability

Figure 3.2: The area responsible for the top 20th percentile of GPP
variability in MODIS, FLUXCOM and six ESMs. The fre-
quency distribution of the number of overlapping grid cells
is shown in the bar chart. More than half of the top 20th
percentile grid cells are unique to one model and do not
have any overlap.

GPP IAV? For one, although the locations of IAV hotspots dif-
fer, the predictable fraction of IAV is similar across the ESMs.
This means that anomalies already present at the start of the
simulation will have a similar predictability. Another reason
for the similar predictive skill of atmospheric CO2 is ENSO.ENSO – the great

equalizer The ENSO-related climate patterns are often simulated with
differences among ESMs (Beobide-Arsuaga et al., 2021; Tedeschi
and Collins, 2016). These ENSO-related climate patterns con-
tribute to the observed deviations in GPP IAV. From the CO2

perspective, however, it does not matter where the ENSO-related
GPP patterns are: An El Niño year will create predominantly
warm and dry conditions somewhere in the tropics – leading to
reduced global GPP. As long as the SST patterns of ENSO are
predicted sufficiently, the anomaly of accumulated carbon fluxes
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will be similar among ESMs, even if the anomalies originate
from different regions.

The ESMs are similar in their ability to predict themselves,
suggesting that the processes which provide memory are rep-
resented similarly in all ESMs. However, several land surface Conclusions
processes which control GPP remain poorly constrained. As a
result, there are large differences in the spatial patterns of GPP
IAV among ESMs that drive differences in the predictability
patterns. The differences in IAV are driven by differences in the
limiting factors of GPP and how sensitive GPP is to these factors.
From the atmospheric perspective, the implication is that the
ups and downs in CO2 are caused by different regions and for
different reasons. The inability of ESMs to reproduce the IAV
of GPP also reveals that there are regions where potential pre-
dictability does not resemble the actual predictive skill. Further
work on improving the predictability of the terrestrial carbon
cycle ought therefore rather to focus on the processes creating
variability, than on the processes providing predictability.





4
E N S O - I N D U C E D VA R I A B I L I T Y PAT T E R N S

The relationship between ENSO and atmospheric CO2 obser-
vations at Mauna Loa was first discovered by Bacastow (1976). ENSO as a driver of

global GPPAltered atmospheric circulation patterns during El Niño events
cause warm and dry conditions across the tropics, leading to a
reduction of GPP (Qian, Joseph, and Zeng, 2008). ENSO has a
significant impact on the GPP of 32% of the vegetated land area
and can explain up to 26% of interannual variation of global
GPP (Zhang et al., 2019). El Niño events can be severe enough
to turn the Amazon Basin, a carbon sink of global importance,
into a net source of carbon (Tian et al., 1998).

But not only does ENSO play a large role in the terrestrial car-
bon cycle, it is also the main source of predictability (Manzanas ENSO as a chance

for predictabilityet al., 2014; Zeng et al., 2008). Global carbon fluxes lag behind
ENSO by around five months (Qian, Joseph, and Zeng, 2008),
meaning that even without further knowledge on the evolution
of ENSO, we are able to restrict GPP variability based on present
observations. On top of this lag effect, simulations starting in
winter can predict ENSO for around one year (Barnston et al.,
2019).

Further memory is added to the system by the land sur-
face, which prolongs the ENSO-induced climatic anomalies.
The larger the climatic anomaly, the longer it will take for soil
moisture conditions to return to normality – and ENSO years
are described as “spectacular” or “catastrophic” and can be
among the most extreme years of variability (Holmgren et al.,
2001). Large anomalies also increase the chances of increased
predictability due to the synchronization of ensemble members
at the saturated or depleted state.

Even longer predictability mechanisms might be triggered
through vegetation dynamics (Holmgren et al., 2001). This can
happen in dry years through the lasting impact of defoliation
and tree mortality (Santos et al., 2018; Wigneron et al., 2020),
or through wildfire, which requires decades of recovery (Silva
et al., 2018). Wet events, on the other hand, can cause excess
plant growth that exhausts the carrying capacity of ecosystems,
leading to lasting degradation (Zhang, Keenan, and Zhou, 2021).
Not yet implemented in ESMs, but with a great potential for

25
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long-term predictability, is plant recruitment in semi-arid ecosys-
tems (Holmgren et al., 2001). Extreme events play a crucial role
in the vegetation dynamics of these ecosystems, where the es-
tablishment of trees and shrubs needs sustained wet conditions
(Holmgren et al., 2001).

I showed in Chapter 3 that the limiting factor of GPP pre-
dictability is in the uncertainty of IAV patterns. Now we have to
ask how ENSO – one of the largest drivers of carbon flux IAV –
contributes to these uncertainties. The teleconnections of ENSOENSO

intercomparison create a patchwork of diverse climatic anomalies, with most con-
tinents having regions of increased and decreased plant growth
during a single event (Holmgren et al., 2001; Zhang et al., 2019).
As ENSO provides a unique chance of predictability, it is partic-
ularly important that these spatial patterns of ENSO-induced
GPP anomalies are reproduced well by ESMs (Manzanas et al.,
2014).

With this work, I want to quantify the deviations in ENSO-
induced GPP anomalies among ESMs and determine the causing
factors of these deviations:

1. How much do the ENSO-induced GPP anomalies differ
among ESMs?

2. Are the differences due to climate forcing or due to the
sensitivity of GPP to climate?

To study the relationship between ENSO, soil moisture and
GPP, I use unforced control simulations of 17 CMIP6 (CoupledUsing control

simulations for large
ENSO sample size

Model Intercomparison Project Phase 6) ESMs. The ESMs are
compared with results from upscaled flux tower measurements
(FLUXCOM version RS + METEO, Jung et al. 2019) and SST
reanalysis data (HadISST, Rayner et al. 2003).

The sensitivity of global GPP to a 1
◦C SST anomaly in the

Niño3.4 region is between -0.7 and -2.4 PgC yr−1 in the ESMsENSO and global
GPP (Fig. 4.1). However, some of the differences in GPP sensitivity

among the ESMs are balanced by differences in ENSO amplitude.
The IAV of Niño3.4 SST tends to be higher for the models with a
low sensitivity, leading to larger events in these ESMs. The mean
IAV of Niño3.4 SST is close to the observed standard deviation
of 0.75

◦C, while the FLUXCOM GPP sensitivity of -0.2 PgC yr−1

is below the ESM mean. However, this is in accordance with
the underestimation of GPP IAV by FLUXCOM, as described in
chapter 1.2.
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Figure 4.1: ENSO strength and sensitivity of global GPP to ENSO in
17 ESMs and FLUXCOM. A correlation between ENSO
amplitude (x axis) and GPP sensitivity to ENSO (y axis) is
balancing some of the differences between ESMs.

The large overall differences in the effect of ENSO on GPP
make it difficult to compare the differences in spatial patterns.
To make this comparison feasible, I create a composite of El ESMs disagree on

the role of the two
major ENSO
regions

Niño events for all ESMs and FLUXCOM, and scaled the results
to the same total GPP anomaly. I use the IPCC climate reference
regions to quantify the spatial differences (Iturbide et al., 2020).
Figure 4.2 shows the GPP anomalies of the scaled El Niño events
in the six reference regions with the largest deviations among
the ESMs. The largest GPP anomalies and deviations between
the models are in Southeast Asia (SEA) and Northern South
America (NSA). These two regions are responsible for 58% of the
global GPP anomalies, but the values of individual ESMs range
between 26% and 75%. GPP anomalies in both regions have
large deviations among the ESMs, with a standard deviation of
around 50% of the mean anomalies. Although the mean ESM
anomaly of SEA is 42% larger than the mean anomaly in NSA,
five of the 17 ESMs have larger anomalies in NSA than SEA.

What is causing these large deviations in the ENSO-induced
GPP anomalies? To answer this question, I examine the two con- ENSO drives

climate – climate
drives GPP

secutive processes that determine the size of the GPP anomalies:
How large are the ENSO-induced climate anomalies, and how
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Figure 4.2: GPP anomalies of an El Niño event in the six regions with
the highest deviations among ESMs. All events are scaled
to a total of -1 PgC. The boundaries of the regions are
shown on the map.

sensitive is GPP to climatic anomalies. Soil moisture anomalies
are used here to substitute climatic anomalies because they cor-
relate well with precipitation and temperature. I use regression
analysis to calculate the soil moisture anomalies caused by a
1
◦C warming in the Niño3.4 region and the GPP sensitivity to a

1 kg soil moisture anomaly.
Although there are small regional differences, both processes

contribute equally to the variations in ENSO-induced GPP
anomalies. On the global average, ENSO-induced climate anoma-Causes of spatial

mismatch lies and GPP sensitivity have similar variations among the ESMs.
To determine the biases of individual ESMs in these two pro-
cesses, I scale the results by regions, so that the sensitivities
are not dominated by the region with the strongest anomalies.
Figure 4.3 shows the scaled biases of ENSO-induced climate
anomalies and GPP sensitivity among the ESMs (this Figure
shows absolute scales – high values mean a strong reaction in ei-
ther direction). The balancing effect is also present here, as there
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is a negative correlation between ENSO climatic anomalies and
GPP sensitivity. In the extremes, we find UKESM1-0-LL, which
has both strong ENSO climate anomalies and GPP sensitivity,
and E3SM-1-1, which is on the low end of the spectra.

Figure 4.3: Biases of 17 ESMs in their reproduction of the ENSO-GPP
relationship. The x axis shows the scaled sensitivity of
climate anomalies to ENSO and the y axis the scaled sensi-
tivity of GPP to climate anomalies.

All tested ESMs are capable to predict globally accumulated
ENSO-related GPP anomalies, given the predominantly warm
and dry (cold and wet) conditions that prevail during El Niño
(La Niña). There is, however, a substantial disagreement in the
regions contributing to these anomalies. Large uncertainties are Why ENSO

patterns matter for
predictability

on the role of SAE and NSA, which are caused by model biases
in the strength of ENSO-induced climate anomalies and the
sensitivity of GPP to climate. The advantage of fully coupled
ESM simulations is the integration of initial conditions and the
interaction between the land and the atmosphere. However, the
interaction of ENSO with initial conditions becomes misleading,
if the ENSO-induced anomalies are not where they are supposed
to be. In the worst case, this makes ESMs no better than statis-
tical models in predicting atmospheric CO2. Statistical models
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have much lower resource requirements than ESMs, and predict
atmospheric CO2 by using an ENSO forecast and the observed
relationship between ENSO and atmospheric CO2 (Betts et al.,
2016).

Another problem with the mismatch of ENSO patterns is
the different response mechanisms of the affected ecosystems.
Most of the ENSO anomalies are in the tropics but fall in a wide
range of moisture regimes. The key ENSO regions analysed hereBroader implications

of differing ENSO
patterns

have tropical rainforest, tropical savanna, steppe, and desert
(Iturbide et al., 2020). Because these biomes differ in the factors
which limit GPP, they also differ in the immediate reaction
to the anomalies. But more importantly, the long-term effects
of the ENSO anomalies are also determined by the biomes
under their influence. El Niño events in SEA are more likely
to cause disturbance by wildfire than in NSA (Le Page et al.,
2008; Liu et al., 2017), leading to long recovery times in the
affected regions. Similarly, the duration of ENSO anomalies is
determined by the water-holding capacity and soil moisture
memory of the regions receiving the anomalies. This effect can
cause a discrepancy between potential predictability and actual
predictive skill. Potential predictability is artificially inflated if
the ENSO anomalies fall into regions with a naturally high soil
moisture memory, or vice versa.

To summarize, there are differences in the patterns of ENSO-
induced GPP anomalies, and these differences have large impli-
cations on the predictability of the terrestrial carbon cycle. How-The benchmark

potential of ENSO ever, these differences can be seen as an untapped potential to
benchmark and constrain the terrestrial carbon cycle. While we
still lack observations that reproduce the IAV of the global car-
bon cycle, quantifying the large-scale patterns of ENSO-induced
carbon fluxes is a more achievable goal. The data presented here
provide information on the model biases that are hindering the
reproduction of these large-scale ENSO-induced GPP patterns.
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In this chapter, I summarize the research questions and key
findings of my work. Afterwards, we take a step back, to look at
the overall picture and identify the challenges and opportunities
in the field.

mechanisms of predictability 1st research topic

Previous studies identified that carbon flux predictability has
spatial and temporal variability. Carbon fluxes are controlled
by a variety of environmental drivers, but we do not yet under-
stand the role of the individual drivers in providing carbon flux
predictability and the variability of predictability. To analyse the
mechanisms explaining the variations in predictability, I ask:

1. How do the environmental drivers of carbon fluxes con-
tribute to the patterns of carbon flux predictability?

Spatial patterns of carbon flux predictability can often be at-
tributed to one or two drivers. There are hotspots of carbon flux
predictability, which are exclusively driven by the predictability
of soil moisture or temperature.

2. What mechanisms explain the seasonal variability and
IAV of carbon flux predictability?

I found that seasonal patterns of carbon flux predictability are
caused by the changing limiting factors of carbon fluxes and
because the environmental drivers differ in their predictability.
The driver that limits a carbon flux passes on its predictability
to the carbon flux. This establishes the idea that carbon flux
predictability depends on the sensitivity of carbon fluxes to
their drivers.

The IAV of carbon flux predictability is caused by hydro-
logical conditions. Extreme climate conditions will lead to the
synchronization of ensemble members in the saturated or de-
pleted state. This reduces ensemble variability and increases
carbon flux predictability.

31



32 summary and conclusions

drivers of variability2nd research
topic

How much a region contributes to the predictability of CO2

depends on the IAV of carbon fluxes, and how much of this
IAV is predictable. In Chapter 2 we discussed how much of the
carbon flux IAV can be predicted, but we have not considered
the differences in IAV patterns yet. The IAV of GPP is poorly
constrained, which raises the question of how much this affects
predictability patterns. I analyse six ESMs to ask:

1. What drives the differences in carbon flux predictability
among ESMs?

The studied ESMs are similar in the fraction of GPP IAV they can
predict. Yet, there are differences in the regions which contribute
to the predictability of CO2. This is caused by differences in the
spatial patterns of GPP IAV. The mismatch of IAV patterns is due
to the different sensitivities of GPP to environmental drivers.

2. How it is possible that the predictive skill of atmospheric
CO2 is similar among ESMs (Ilyina et al., 2021), while
there are large uncertainties in the key processes control-
ling terrestrial carbon flux IAV?

Although the ESMs differ in the regions contributing to CO2

predictability, they can agree on what fraction of GPP IAV is
predictable. This allows them to produce similar predictions
due to two reasons:

• The anomalies in the initial conditions lead to similar
predictabilities.

• The ESMs can predict global climate modes like ENSO.
These climate modes produce global climate anomalies.
The ENSO-induced climate patterns do not have to be
similar among the ESMs to produce a coherent signal in
atmospheric CO2.

enso-induced variability patterns3nd research
topic

ENSO is an integral part of the terrestrial carbon cycle. It drives
the IAV of the global carbon cycle and offers multiple opportuni-
ties for predictability. However, the ability of ESMs to reproduce
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ENSO teleconnections is limiting the predictive potential. I com-
pare the role of ENSO on GPP in 17 CMIP6 ESMs to find out:

1. How much do the ENSO-induced GPP anomalies differ
among ESMs?

There is a substantial difference in the ENSO-induced GPP
patterns. The largest GPP anomalies are in Southeast Asia and
northern South America. However, the total anomalies of these
two regions range between 26% and 75% of global ENSO-related
GPP anomalies among the 17 ESMs. There is also no unanimity
on which region has the largest anomalies.

2. Are the differences due to climate forcing or due to the
sensitivity of GPP to climate?

I simplify the cause of ENSO-related GPP anomalies as a two-
step process: ENSO creates climatic anomalies, and GPP reacts to
climatic anomalies. Both of these processes contribute equally to
the uncertainty in the ENSO-related GPP patterns. The resulting
data provides information on ESM biases.

conclusions

With this work, I tested the ability of ESMs to predict the terres-
trial carbon cycle. The two major topics I addressed are what
mechanisms provide the memory, and how well is IAV of carbon
fluxes is reproduced.

Memory

The two sources of memory in the system are climate predictabil-
ity and land surface processes that prolong anomalies. Although Focusing on the key

regionsthe climate system is largely chaotic, there are certain regions
with established predictability. These are the regions with ENSO
teleconnections, northern South America, Australia, and some
other parts of the tropics (Manzanas et al., 2014). The predictabil-
ity from land surface processes is also not spread evenly. Aus-
tralia and Southern Africa are hotspots of soil moisture driven
predictability. To utilize the predictive performance of the earth
system, these key regions ought to be in the focus of model
parameterization.

Another land surface process with the potential to increase
memory are long-term vegetation dynamics. Specifically, the Utilizing vegetation

dynamics
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large and structural changes like mortality and recruitment.
These processes only occur in extreme years and cause shifts in
ecosystem states with long-lasting effects. Implementing these
processes accurately in ESMs would allow ESMs to reproduce
the low-frequency IAV of vegetation dynamics, thereby extend-
ing predictability.

Variability

I showed that carbon flux predictability is limited by the repro-
duction of carbon flux IAV. The largest differences appear in
the semi-arid tropics. The role of semi-arid ecosystems in theConstraining

semi-arid regions global carbon cycle was known since the early 2000s (Knapp
and Smith, 2001). But it was not until 2015 that the spotlight
of the land carbon community was put on this topic with the
pivotal publication by Anders Ahlström and colleagues:

Semi-arid regions have been the subject of relatively few targeted
studies that place their importance in a global context. Our

findings indicate that semiarid regions and their ecosystems merit
increased attention as a key to understanding and predicting
interannual to decadal variations in the global carbon cycle.

— Ahlström et al. (2015)

Although semi-arid ecosystems have started to receive more
attention, they remain the least constrained ecosystems (Chen
et al., 2017). A likely cause for these mismatches is the low
number of flux towers in the semi-arid tropics (Zhang and
Ye, 2021). Most measurements are based in non-water-limited
(mesic) ecosystems. The discrepancies are created by applying
the mechanisms studied in mesic environments to semi-arid
ecosystems (Grünzweig et al., 2022). However, semi-arid ecosys-
tems are governed by several dryland mechanisms that are not
present in mesic ecosystems (Grünzweig et al., 2022). Conse-
quently, we need a better quantification of semi-arid carbon
fluxes and the implementation of necessary dryland mecha-
nisms.

But improving our understanding of semi-arid ecosystems
is not only important because of their high IAV. As semi-aridPredictability in a

changing climate ecosystems are spreading under climate change (Denissen et al.,
2022), dryland mechanisms will become relevant in regions cur-
rently not limited by water (Grünzweig et al., 2022). How all of
these changes will affect the predictability of the carbon cycle
is yet unknown. On the one hand, we observe a widespread
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shift from energy-limited to water-limited evapotranspiration
(Denissen et al., 2022). This can increase predictability by shifting
carbon flux sensitivity away from the less predictable radiation
towards more predictable soil moisture. On the other hand, cli-
mate change increases the frequency of unpredictable extreme
events (Harris et al., 2018). Extreme events have a dispropor-
tionally large role on the global carbon cycle, with few extreme
events driving the global anomalies (Zscheischler et al., 2014).

The final limitation to predicting atmospheric CO2 is the chaotic
nature of weather and climate. Once this limitation is reached,
further advancements will be infinitesimal. But currently, we are
limited by the variability of terrestrial carbon fluxes. However
large these uncertainties may be, we already have the tools
to constrain them. This indicates that the potential to predict
atmospheric CO2 is not exploited yet.
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Abstract

Despite efforts to decrease the discrepancy between simulated
and observed terrestrial carbon fluxes, the uncertainty in trends
and patterns of the land carbon fluxes remains high. This dif-
ficulty raises the question of the extent to which the terrestrial
carbon cycle is predictable and which processes explain the pre-
dictability. Here, the perfect model approach is used to assess
the potential predictability of net primary production (NPPpred)
and heterotrophic respiration (Rhpred) by using ensemble simu-
lations conducted with the Max Planck Institute Earth system
model. In order to assess the role of local carbon flux predictabil-
ity (CFpred) in the predictability of the global carbon cycle, we
suggest a new predictability metric weighted by the amplitude
of the flux anomalies. Regression analysis is used to determine
the contribution of the predictability of different environmental
drivers to NPPpred and Rhpred (soil moisture, air temperature,
and radiation for NPP, and soil organic carbon, air temperature,
and precipitation for Rh). Global NPPpred is driven to 62 %
and 30 % by the predictability of soil moisture and temperature,
respectively. Global Rhpred is driven to 52 % and 27 % by the pre-
dictability of soil organic carbon and temperature, respectively.
The decomposition of predictability shows that the relatively
high Rhpred compared to NPPpred is due to the generally high
predictability of soil organic carbon. The seasonality in NPPpred
and Rhpred patterns can be explained by the change in limiting
factors over the wet and dry months. Consequently, CFpred
is controlled by the predictability of the currently limiting en-
vironmental factor. Differences in CFpred between ensemble
simulations can be attributed to the occurrence of wet and dry
years, which influences the predictability of soil moisture and
temperature. This variability of predictability is caused by the
state dependency of ecosystem processes. Our results reveal the
crucial regions and ecosystem processes to be considered when
initializing a carbon prediction system.
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a.1 introduction

As a net sink for atmospheric CO2, terrestrial ecosystems absorb
around one-third of the anthropogenic emissions (Friedling-
stein et al., 2020). Carbon fluxes between the land–atmosphere
interface have a high interannual variability with a standard
deviation (SD) of 0.7 PgC yr−1 (Sitch et al., 2015) and cause the
majority of the atmospheric CO2 fluctuations (Ciais et al., 2013;
Spring, Ilyina, and Marotzke, 2020). The high variability of ter-
restrial carbon fluxes can be attributed to the sensitivity of land
surface processes to climatic drivers; however, the relative impor-
tance of temperature and precipitation are still debated (Bastos
et al., 2018; Beer et al., 2010; Bloom et al., 2016; Fang et al., 2017;
Jones et al., 2001; Jung et al., 2017). In accordance with the lim-
ited understanding of carbon flux variability, models are not
able to fully reproduce the spatiotemporal patterns of the terres-
trial carbon cycle. This is reflected in the poor representation of
soil organic carbon (SOC) in Earth system models (ESMs), the
inability to adequately model gross primary production (GPP)
from eddy covariance flux tower sites (Luo, Keenan, and Smith,
2015), and the difficulty to detect the efforts taken in emission
reduction due to internal variability of atmospheric CO2 vari-
ability (Spring, Ilyina, and Marotzke, 2020). In order to produce
more realistic predictions, efforts in model development have
been directed towards using observations to constrain model
parameters (Bloom et al., 2016; Chadburn et al., 2017; Mystakidis
et al., 2016; Tziolas et al., 2020; Zeng et al., 2014) and to refine
model structure to incorporate more processes and interactions
(Krull, Baldock, and Skjemstad, 2003; Luo et al., 2016; Stockmann
et al., 2013; Xu et al., 2014). While efforts in model development
are continuing to narrow the gap between the simulated and
observed carbon cycle, the lack of progress in improving the
predictive ability of the models raises the question of the extent
to which the terrestrial carbon cycle is predictable at all (Luo,
Keenan, and Smith, 2015).

The potential predictability of a system can be estimated by
using the perfect model framework. Ensemble simulations are
initialized along a control run with each member of the ensem-
ble having slightly perturbed initial conditions. The upper limits
of predictability are then derived by analysing the divergence
of the ensemble simulations. This method assumes (a) perfect
model physics which are able to reproduce the full spectrum of
natural variability and (b) perfect knowledge of the modelled
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system and a model whose representation of the real world is
“perfect enough” (Boer, Kharin, and Merryfield, 2013). Séférian,
Berthet, and Chevallier (2018) used the perfect model framework
to assess the potential predictability of terrestrial carbon fluxes
(CFpred) at annual time steps. They estimated the predictive
horizon of terrestrial carbon fluxes to be two years globally
and up to three years in northern latitudes. The high variabil-
ity of predictability among different initializations suggests a
state dependence of CFpred, but no further mechanisms of pre-
dictability were investigated therein. Multiple processes can be
regarded as the sources of CFpred. Due to the high sensitivity
of the terrestrial carbon cycle to climate, climate predictability
provides carbon fluxes with a basic prediction horizon. The
main contributor to climate predictability is El Niño–Southern
Oscillation (ENSO), which explains over 40 % of the variability
in global net primary production (NPP) (Bastos et al., 2013) and
a large fraction of CFpred (Zeng et al., 2008). El Niño events
are associated with high temperatures and low precipitation in
the tropics which cause a reduction of the land carbon sink of
1.8 PgC yr−1 per 1

◦C sea surface temperature (SST) anomaly in
the Niño 3 region (Jones et al., 2001). This strong relationship
between SST and the carbon cycle was used by Betts et al. (2016)
to predict annual CO2 growth. Their statistical model uses the
annual average SST in the Niño 3.4 region to successfully predict
the CO2 rise with a precision of 0.53 ppm yr−1. Furthermore,
Spring and Ilyina (2020) showed that ESM-based initialized pre-
dictions can predict atmospheric CO2 variations up to three
years in advance.

However, CFpred is extended beyond the predictability of
climate by slowly varying land surface processes that filter out
the high-frequency noise of the climate signal. As the most
prominent process, soil moisture memory is known to increase
the predictability of temperature (TEMPpred) and precipitation
(PRECIPpred) by several months (Chikamoto et al., 2015), but
memory can also be attributed to phenology (Weiss et al., 2014)
and SOC (Lovenduski et al., 2019). Besides the slowly changing
land state variables, the memory is further extended through
land–atmosphere coupling which propagates soil anomalies
back to the atmosphere by energy and water fluxes (Bellucci
et al., 2015).

Previous studies that focus on the mechanisms of CFpred
investigated the role of various land processes and how they
contribute to the overall CFpred. Weiss et al. (2014) found in-
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creased predictability of evaporation and to some extent tem-
perature due to a dynamic simulation of leaf area index (LAI),
which would also extend CFpred. The role of land surface ini-
tialization in CFpred was studied by Zeng et al. (2008) and
Lovenduski et al. (2019). Zeng et al. (2008) isolated the fraction
of CFpred which is based solely on initial conditions and com-
pare fully coupled dynamic simulations with statistical models.
Lovenduski et al. (2019) quantified the degree to which CFpred
improves when the land surface is initialized. They also assessed
the relative importance of the individual land surface processes
for the variability of terrestrial carbon fluxes and found that CF-
pred depends on the correct initialization of vegetation carbon
biomass and soil moisture rather than temperature. These stud-
ies have shown the significant advantage of dynamic forecasting
systems, suggesting CFpred extends beyond the predictability
of the forcing variables due to land surface processes. However,
these studies were not focused on the contributions of individual
drivers of carbon fluxes to CFpred or on processes responsible
for maintaining CFpred.

Here, we use perfect model simulations conducted with an
ESM to investigate the structure and mechanisms of the CFpred.
Initialized ensemble simulations are created from a range of
ENSO states. Analysed are the carbon fluxes with the highest
contribution to the interannual variability of the land–atmosphere
CO2 exchange. These are NPP with an interannual SD of 0.99

PgC yr−1 and heterotrophic respiration (Rh) with an SD of 0.29

PgC yr−1 (Wang, Zeng, and Wang, 2016). The potential pre-
dictability of NPP (NPPpred) and Rh (Rhpred) is derived from
the rate of divergence within the ensemble members. We eval-
uate the predictability data to find how NPPpred and Rhpred
differ in their spatiotemporal patterns and variability. Lastly, we
identify the key drivers of NPP and Rh and determine their
contribution to NPPpred and Rhpred. We use this framework
to explain the attained spatiotemporal patterns of CFpred and
identify the underlying land system processes producing these
patterns.

a.2 methods

a.2.1 Earth system model

This study is based on the output of the MPI-ESM version 1.2
developed for the Coupled Model Intercomparison Project 6
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(Mauritsen et al., 2019). The model runs fully coupled in the LR
configuration that uses the atmospheric component ECHAM
6.3.05 with a T63 spatial truncation and 47 atmospheric layers.
The atmospheric model is directly coupled with the land model
JSBACH 3.20 and uses an interactive carbon cycle, which means
atmospheric CO2 reacts to land and ocean carbon fluxes.

a.2.2 Predictability metrics

The control simulation used in this study is a 1000-year un-
forced simulation with a preindustrial CO2 concentration of
285 ppm. A total of thirty-five 10-member ensemble simulations
are initialized, each starting in January with a run time of two
years. The unperturbed simulation of the control run is added
to the ensembles as the 11th member. Initialization dates are
selected manually in order to attain a diversity of ENSO states.
The selected dates are grouped into three categories: El Niño,
La Niña, or ENSO-neutral.

The potential predictability is assessed by using a correlation-
based and a distance-based metric. The anomaly correlation
coefficient (ACC) is a commonly used metric to measure fore-
cast skill (Jolliffe and Stephenson, 2012) which calculates the
correlation between predicted and observed anomalies as

ACCj,t =
cov( f , o)

σf · σo
, (A.1)

where j and t are grid cell and lead time, cov is the covariance,
and f and o are the forecast and validation anomalies. Similar
to Collins and Sinha (2003) and Becker, Dool, and Peña (2013),
the noise in the ACC is reduced by averaging over several ACC
values. This is achieved by taking all 11 ensemble members
as the validation in turn, while the mean of the remaining en-
semble members serves as the forecast. Although the ACC is
an intuitive metric which is calculated from all initializations
and thus provides a robust estimation of the predictability, it
does not allow us to investigate the variability of predictability
between initializations. The comparison of predictabilities be-
tween initialization is achieved by the use of a distance-based
metric which is computed for all initializations individually. The
distance-based metric used here is the normalized ensemble
variance (V(t)) based on the method proposed by Griffies and



46 process-based analysis of terrestrial carbon flux predictability

Bryan (1997). Predictability is defined as the ensemble variance
normalized by the variance of the climatology as

V(t) =
1
M ∑M

i=1
[
Xi(t)− X(t)

]2

σ2 , (A.2)

where t is lead time, M the number of ensemble members, Xi
the ith member, X the ensemble mean, and σ2 the variance of
the control simulation. In this study, the complement of the
normalized ensemble variance is used as Vc(t) = 1 − V(t). The
resulting metric indicates perfect predictability at a value of 1

and an ensemble spread that exceeds the climatological variance
for values below zero.

While ACC and Vc allow the estimation of regional predictabil-
ity, these metrics are not suitable to evaluate the impact of local
predictabilities on the predictability of the global carbon cycle.
This is due to the disregard of the flux amplitude in the calcula-
tion of the metrics. Both of the metrics are prone to producing
above-average predictabilities in regions where carbon fluxes are
generally low or even close to zero, such as subtropical deserts.
Here we propose a weighted predictability metric that allows us
to assess local predictabilities with regard to their impact on the
predictability of the global carbon cycle. Vc is weighted by us-
ing an approach similar to risk assessment, which is calculated
as the product of likelihood and impact. Here a weighted pre-
dictability wVc is calculated by multiplying Vc with the absolute
carbon flux anomaly of the ensemble mean:

wVc(t) = Vc(t)× |∆FLUX(t)|. (A.3)

a.2.3 Decomposition of predictability

In order to investigate the drivers of CFpred, the Vc of NPP
and Rh are decomposed into components contributing to the
predictability of these fluxes similar to an approach used by
Jung et al. (2017). They used regression analysis to determine
the contribution of environmental variables to the anomalies in
GPP and ecosystem respiration. Here the assumptions of Jung
et al. (2017) are extended from carbon flux anomalies to CFpred:
a high CFpred needs to be caused by a high predictability of
one or more of its driving environmental variables. Using this
assumption, NPPpred and Rhpred are modelled as the response
to the predictability of the individual environmental drivers.
Regression analysis is used to determine the contribution of the
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predictability of the environmental variables to NPPpred and Rh-
pred. The drivers of NPPpred are selected following the drivers
of GPP in Jung et al. (2017) as two layers of soil moisture (mid-
SOILpred for 19–78 cm depth and deepSOILpred for 79–268 cm
depth), air temperature (TEMPpred), and photosynthetically ac-
tive radiation (PARpred). The drivers of Rhpred are based on the
rate-modifying factors used in JSBACH to calculate Rh, which
are TEMPpred, PRECIPpred, and SOCpred. Although precip-
itation has no direct relationship with Rh, the Rh submodel
used in JSBACH is parameterized using precipitation because
of its strong relationship with moisture in the uppermost soil
layer where most of the respiration takes place. Instead of SOC,
the content of the aboveground acid-hydrolysable carbon pool
(here referred to as SOC) is used as a surrogate variable. The
contribution of the predictability of the environmental drivers
to the CFpred is calculated as

VcFLUXj,t,i = ∑
k

[
aDRIk

j,t × VcDRIk,j,t,i
]
+ ϵj,t,i, (A.4)

with VcFLUX being the complementary normalized ensemble
variance of NPP or Rh, aDRIk the coefficient of the kth driver
(for example TEMPpred), Vc DRI the predictability of the kth
driver, and ϵ the residual error term. Grid cell, lead time, and
initialization are denoted by the indices j, t, and i. The regression
coefficients are calculated by using non-negative least squares
(Mullen and Stokkum, 2012) for every grid cell and lead time by
using the data from all initializations. After fitting the regression
model to the data, the individual components of CFpred are
calculated as

VcFLUXDRIk
i,t,s = aDRIk

i,t × VcDRIk,i,t,s, (A.5)

where VcFLUXDRI describes the amount of predictability of
FLUX that can be attributed to the driver k.

a.3 results and discussion

Out of the 35 ensemble simulations initialized along the control
run, 7 simulations are part of the El Niño and 8 simulations are
part of the La Niña group (Fig. A.1). The El Niño simulations
peak between September before initialization and January with
peak values between 2.2 and 3.6◦C (3-month running mean Niño
3.4 SST anomaly). They show a fast decline in the anomaly with
most models having a negative anomaly in December of the
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Figure A.1: Three-month running mean SST anomaly in the Niño
3.4 region of (a) seven El Niño and (b) eight La Niña
simulations. Simulations are initialized at lead time 0 and
run for 24 months. Lines show the Niño 3.4 SST of the
control simulation.

first year and evolving into a La Niña event in the second year.
Peaks of the La Niña simulations fall between September and
June and, while their relative peak anomalies are smaller (−1.6
to 3.0◦C), the negative anomaly can be sustained well into the
second year.

a.3.1 Potential predictability

The 35 perfect model simulations are used to assess potential
NPPpred and Rhpred. Zonal means of the ACC are shown in
Fig. A.2 (zonal plots of predictability are limited to 30

◦S to
30

◦N to highlight the areas of high predictability). NPPpred and
Rhpred are highest in the tropics between 20

◦N and S, where
carbon fluxes are at their global maximum. However, apart from
the generally high predictability in the tropics, the patterns of
NPPpred and Rhpred differ in several aspects. While the ACC
of NPP has a slower temporal decline with values above 0.8 for
2 to 3 months around the Equator, the ACC of Rh drops below
0.5 within the first 2 months for most latitudes. However, Rh
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Figure A.2: Zonal means of ACC derived from 35 ensemble simula-
tions starting in January for (a) NPP and (b) Rh. Contour
lines indicate correlations above the 95 % confidence level.

shows much higher long-term predictability, especially in the
second year of the simulation where Rhpred is much higher
than NPPpred.

While both predictability patterns show signs of a seasonal
cycle, they are out of phase, with Rhpred distinctly following the
wet season and NPPpred appearing to be higher in the dry sea-
sons of the first year. This has a large role in the comparability of
NPPpred and Rhpred, since high NPPpred occurs at the time of
the seasonal low of NPP fluxes, while high Rhpred is associated
with the seasonal high. Another characteristic of the seasonal
cycles is their continuity. Rhpred migrates continuously across
the zones, while NPPpred demonstrates a sporadic behaviour
with a high predictability at around 15

◦N in January to March
and another one at 10

◦S from July to September.
The spatial patterns of ACC are shown in Fig. A.3 for March,

June, and September of the first year and September of the sec-
ond year. Rhpred shows a very coherent pattern with a band
of high predictability migrating from south to north across
all continents. The patterns of NPPpred appear to be less con-
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Figure A.3: ACC of NPP and Rh. The colour scale is cropped at zero.
Only values above the 95 % confidence interval are shown.

strained by latitude. Although March predictability is dominated
by the northern tropics and subtropics, there are other high-
predictability regions based on initial memory, especially at high
latitudes. As opposed to Rhpred, there is no high-predictability
band moving across the zones. Instead, NPPpred is re-emerging
south of the Equator in September in the southern Amazon
Basin, southern Africa, and Southeast Asia. An aberration from
the seasonal pattern is in the Sahel, which has a relatively high
NPPpred throughout both years, except in June and July (not
shown).

A large portion of the high NPPpred areas can be attributed to
predictability gained by ENSO. These high-predictability areas
are concurring with the carbon flux anomalies caused by ENSO-
related climate variability (Bastos et al., 2013; Hashimoto et al.,
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2004). A specific example of this is the disparity in NPPpred
between the tropical rainforests of the Amazon and the Congo
basins. It shows that the high NPPpred of the tropics is not
an intrinsic property of these ecosystems. A reason for the
relatively low NPPpred within the Congo Basin could be because
it is not strongly impacted by ENSO (Holmgren et al., 2001).
These findings highlight the importance of correctly simulating
the ENSO process. Especially the localization of ENSO-related
rainfall patterns is crucial since they provide a sustained and
predictable anomaly in water availability.

Many of the identified spatial patterns of CFpred can be
discovered in similar studies. Most models agree on the Amazon
Basin as the global hotspot of CFpred (Ilyina et al., 2021; Zeng
et al., 2008), and some reflect the increased predictability in
Southeast Asia and southern Africa (Zeng et al., 2008), but the
comparison of predictability horizons remain difficult due to
the use of different predictability metrics.

The results reveal different areas in which an operational NPP
forecast can be used to increase food security. The high NPPpred
of the Sahel and Kalahari savanna ecosystems (Fig. A.3) could
be used to plan stocking rates in order to avoid grassland degra-
dation due to overgrazing in dry years (Tews et al., 2006). Other
promising regions are northeast and central Brazil. The high
NPPpred in these areas could be used to select crop varieties
which are more or less drought tolerant depending on the given
forecast.

a.3.2 Composition of predictability

CFpred is sufficiently captured by the regression models (Eq. A.4)
with a correlation of 0.71 and 0.75 for NPP and Rh, respectively
(averaged correlation between the Vc derived from the ensemble
simulations and the Vc of the regression model for each grid cell
and lead time, not shown). The contributors of CFpred show
strong spatiotemporal heterogeneity with drivers alternating
across seasons and regions. The temporally averaged contri-
butions to weighted predictability are shown in Fig. A.4. The
drivers of NPPpred are SOILpred (sum of midSOILpred and
deepSOILpred) and TEMPpred, which explain 62 % and 30 %
of the globally averaged NPPpred, respectively. PARpred only
contributes 8 % to the NPPpred, most of it in the first month
of the simulations. The NPPpred patterns of Vc explained by
SOILpred and TEMPpred are similar to the patterns of ACC,
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Figure A.4: Contributing components to the weighted predictability
(wVc) of NPP and Rh. The contributors to NPP predictabil-
ity are the predictability of soil moisture (SOIL), tem-
perature (TEMP), and photosynthetically active radiation
(PAR). Contributors to Rh predictability are the predictabil-
ity of soil organic carbon (SOC), TEMP, and precipita-
tion (PRECIP). The averaged predictability of the first 12

months lead time weighted by carbon flux anomaly of the
ensemble means. The sum of all components of a flux type
gives the modelled total predictability of that flux.

although areas with low carbon flux densities are excluded
through weighting by absolute flux anomaly. While the NPP-
pred explained by SOILpred has a spatial extent that broadly
covers all regions of high NPPpred, TEMPpred is concentrated
in certain areas. TEMPpred is high in a band extending from the
Amazon Basin to northern South America, southern Africa, and
Southeast Asia. The largest contributor to Rhpred is SOCpred
(52 %) followed by TEMPpred (27 %). Similar to NPPpred, the
temperature component is highest in the Amazon Basin, south-
ern Africa, and Southeast Asia.

In order to facilitate a system for operational NPP prediction,
a network of sensors could be installed to gather data on the
initial condition of the land surface. The patterns of the role
of soil moisture in predicting NPP (Fig. A.4) reveal the areas
on which the efforts in establishing such a network should be
focused to maximize the impact.

There are more variables that are regarded as key drivers of
NPP variability and could have been regarded as predictors
in the regression models. Most importantly, LAI and humidity
play an important role in NPP variability (Schaefer et al., 2002).
Several studies show the role of a dynamical simulation of LAI
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Figure A.5: Zonal means of contributing components to the weighted
NPP predictability (wVc). The contributing components
are the predictability of soil moisture at 19–78 and 79–
268 cm depth (midSOIL and deepSOIL), air temperature
(TEMP), and photosynthetically active radiation (PAR).

in extending the predictability of land surface processes (Wang,
Sun, and Mei, 2011; Wang et al., 2010; Weiss et al., 2012, 2014;
Zeng et al., 1999). Here, the inclusion of LAI as a predictor is
rejected because of the susceptibility of regression models to cor-
related predictors. The changing concentration of atmospheric
CO2 is causing trends in NPP as global atmospheric levels are
rising (Winkler et al., 2021); however, we assumed that the in-
terannual variability of CO2 fertilization is below a meaningful
contribution to overall variability. Although clay content plays a
major role in carbon turnover rates in soil (Coleman et al., 1997),
it is not considered in the JSBACH Rh submodel (Tuomi et al.,
2009) and was not included in this study.

a.3.2.1 Seasonality

The seasonal patterns of NPPpred revealed in the ACC data
(Figs. A.2 and A.3) are reproducible by the decomposed pre-
dictability metric Vc (Fig. A.5). They show the re-emergence of
predictability in the dry season at various locations and reveal
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Figure A.6: Zonal means of contributing components to the weighted
Rh predictability (wVc). The contributing components are
the predictability of soil organic matter (SOC), air temper-
ature (TEMP), and precipitation (PRECIP).

that this phenomenon cannot be attributed to a single factor.
The largest pattern is a re-emergence in July to November at
1 to 4

◦S, and this can be associated with the high NPPpred
in the southern Amazon (Fig. A.3, NPP September first year).
This pattern is due to increased TEMPpred throughout the dry
season, which is extended by high deepSOILpred in September,
and even reoccurs in the second year of the simulation. Another
pattern explains the high NPPpred in southern Africa between
August and October, which is due to deepSOILpred.

These cases of high dry-season NPPpred in the tropics are
most likely due to the seasonally changing limitations of NPP.
During the productive wet season, plant growth is limited by
incoming radiation (Wang et al., 2010), which has little vari-
ability and poor predictability. Instead, most of the interannual
variability of NPP can be explained by dry-season variability.
One study found over 80 % of western Amazon NPP variability
took place between July and September (Wang, Sun, and Mei,
2011). The water limitation of NPP during the dry season (Tian
et al., 2000) not only introduces higher variability as compared
with the energy-limited wet season, but the coupling of NPP
to soil moisture also lends NPP the high predictability of soil
moisture.

Although the seasonality of Rhpred shows a reverse tendency
to NPPpred with higher predictability in the wet season, the
mechanisms explaining the seasonality are similar. The season-
ally varying Rhpred can be explained by the inherently different
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predictability of the seasonally dominant limiting factor of Rh
(Fig. A.6). During the dry season, the limiting factor of Rh is pre-
cipitation, which has a generally low predictability. The absence
of precipitation for several weeks will inhibit soil respiration
completely. There is a sharp increase in Rh variability in the
dry–wet transition because the onset of precipitation is difficult
to predict. As precipitation increases, the moisture constraint
is asymptotically lifted and approaches zero. At this point, Rh
becomes limited by substrate availability, which has a much
higher predictability than climatic variables. The high SOCpred
is due to the persistence of SOC anomalies because of the low
decomposition rates and the pause of decomposition during
dry seasons. Although TEMPpred is higher than PRECIPpred,
it only plays a minor role in tropical Rhpred because tropical
Rh has relatively low-temperature sensitivity (Meir et al., 2008).

These pronounced seasonal patterns of Rhpred hinge on the
implementation of the precipitation sensibility function in MPI-
ESM. The shape and parameterization of the rate-modifying
function of decomposition to moisture sets Rh to be more sensi-
ble to precipitation in the dry than in the wet season. However,
the relationship between Rh and moisture in the tropics is the
highly debated subject of various studies coming to different
conclusions. These studies suggest a parabolic or no relationship
with soil moisture (Meir et al., 2008) or a linear increase with
precipitation (Tian et al., 2000).

a.3.2.2 Interannual variability

Using the distance-based predictability metric Vc also allows
us to evaluate the variability of predictability between different
initializations. Among the regions with the highest interannual
variability of NPPpred are the southern Amazon Basin (box
in Fig. A.7), with a mean Vc of 0.24 and an SD of 0.32, and
northwestern Australia, with a mean of 0.16 and an SD of 0.60

(23
◦S, 122

◦W). Figure A.7 shows how the interannual variability
of NPPpred is affected by initial soil moisture. The majority of
regions with a high NPPpred (Figs. A.3 and A.4) have a higher
predictability in years initiated from wet states. Exceptions to
this trend are India and northwestern Australia, where NPPpred
is higher in dry years. The strongest difference in NPPpred is
in the Amazon Basin, where overall NPPpred and interannual
variability of predictability are also at the global maximum.
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Figure A.7: Difference in NPP predictability (Vc) based on the initial
soil moisture. The mean NPP predictability of the first
year from the 20 % driest initializations are subtracted
from the 20 % wettest initializations for every grid cell.
Red colour means higher NPP predictability in wet years
and blue colour a higher predictability in dry years. Soil
moisture from 19–78 cm depth is used to determine initial
conditions. A large fraction of years included in the ini-
tializations are ENSO years, where the initial anomaly is
further extended through persisting oceanic forcing. The
black box and yellow triangle stand for regions examined
in the main text.

To determine the mechanisms responsible for this difference
in predictability we focus on the composition of the NPPpred in
the southern Amazon Basin (box in Fig. A.7). To represent wet
and dry years, a composite analysis is used based on the ENSO
states. (The El Niño years are the driest extremes at initialization,
while soils are often saturated at the beginning of La Niña years.)

The different composition of NPPpred within the southern
Amazon Basin is shown in Fig. A.8. La Niña years have an over-
all higher NPPpred, which even lasts throughout the second
year of the simulations. However, the drivers causing the differ-
ence in increased La Niña predictability are changing over time.
At the start of the growing season, which is between December
and July, midSOILpred contributes largely to the increased La
Niña predictability, while deepSOILpred gains in importance
around June, when topsoils begin to dry out. An increase in
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Figure A.8: The composition of NPP predictability (Vc) in the Ama-
zon Basin by ENSO state. The contributing components
are the predictability of soil moisture at 19–78 and 79–
268 cm depth (midSOIL and deepSOIL), air temperature
(TEMP), and photosynthetically active radiation (PAR). La
Niña years have an overall higher predictability. Negative
values mean an ensemble variance that is exceeding the
climatological variance.

TEMPpred explains a large fraction of increased La Niña pre-
dictability throughout the first year.

The increase in midSOILpred during the growing season can
be explained by the relationship between precipitation and the
change in soil moisture in spring (Fig. A.9a). Although the
variability of precipitation is comparable between the ENSO
states, there is little change in soil moisture in the La Niña years,
while the relationship between precipitation and soil moisture
change is more pronounced in the El Niño years. The difference
in this covariance between the ENSO states is linked to the initial
water content (Fig. A.9b). The El Niño year is initialized at a
depleted state, and precipitation is used to recharge midSOIL.
This leads to the translation of the variability in precipitation
to a variability in midSOIL. Since midSOIL is saturated at the
initialization of the La Niña year, it is hardly affected by the
variability of precipitation and the excess water leaves the system
as runoff or drainage.

The same mechanism is responsible for the difference in deep-
SOILpred. As midSOIL dries out during the summer months,
NPP is increasingly coupled to deepSOIL. Every ensemble mem-
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Figure A.9: Soil water dynamics of different ENSO states in the Ama-
zon Basin at 8

◦S, 54
◦W. (a) Relationship between February

precipitation and change in soil moisture from February
to March. (b) Soil water content of the 11-member ensem-
ble simulation for one specific El Niño and La Niña year
(midSOIL and deepSOIL are the moisture content at 19–78

and 79–268 cm, respectively).

ber of the La Niña simulation receives enough precipitation to
saturate deepSOIL, thereby reducing its variability, while none
of the members in the El Niño year can recharge the soil water
deficit.

Increased NPPpred in wet years due to TEMPpred can have
multiple reasons which are difficult to disentangle. As soil mois-
ture and surface temperature are coupled through evapotranspi-
ration, a reduced variability in soil moisture suggests a reduced
variability in temperature as well. Contributing to this effect is
the nonlinear mechanism controlling evaporation. At the wet
end of the spectrum, evaporation is not limited by soil moisture,
meaning that a small variability in soil moisture of a wet soil
does not affect evaporation. A counteractive process that might
increase predictability in dry years is described by Koster et al.
(2011). They suggested that in ecosystems which are generally
at the wet end of the spectrum (which is the case for the Ama-
zon Basin) land–atmosphere coupling is stronger in dry years
when evaporation is limited by soil moisture. This increased
coupling can extend TEMPpred by linking it to soil moisture.
However, their study was conducted in North America, where
land–atmosphere coupling is generally stronger than in tropical
rainforests (Guo and Dirmeyer, 2013).
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Figure A.10: Difference in standard deviation (∆σ = σ El Niño – σ

La Niña) of different components of the surface energy
balance in the Amazon Basin. The latent and sensible
heat fluxes are pooled because of their strong negative
correlation.

To investigate processes behind the difference in temperature
variability per ENSO state, we analysed the key elements of the
surface energy balance. Almost all processes have a continuously
higher variability in the El Niño years (Fig. A.10). The strongest
difference in variability is in net longwave radiation, but this
is most likely an effect of increased variability of surface tem-
perature and not the cause. The SD of net shortwave radiation
and ground heat flux are evenly increased by around 0.4 W m−2

across the first year. Except for some winter and spring months,
the latent and sensible heat fluxes have an increased variability
in the El Niño years. At the peak, the difference in variability in
August is mostly due to increased variability in the latent heat
flux.

As mentioned above, there are also certain regions with an
inverse relationship between wetness and NPPpred. These are
predominantly in arid regions like northwestern Australia, In-
dia, northern Caucasus, and the western US (Fig. A.7). The
mechanisms explaining the increased NPPpred in dry years are
exemplified using two initializations from the dry and wet spec-
trum in northwestern Australia at 23

◦S, 122
◦E (yellow triangle

in Fig. A.7).
This higher NPPpred can be attributed to less variability in

deepSOIL and PAR (Fig. A.11). The predictability-providing
mechanism of deepSOIL is comparable with the process in
the Amazon Basin. With soil moisture dynamics frequently
operating at extreme ends of the water-holding capacity, the
variance can be minimized by all ensemble members being
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Figure A.11: Difference in ensemble member spread in northwestern
Australia between a wet and a dry year for (a) deepSOIL
and (b) PAR.

pushed against the boundaries of the system. As opposed to
the Amazon Basin, in northwestern Australia the ensemble
members are clustered at the dry end of the water-holding
capacity (Fig. A.11a, dry years), while any introduction of soil
moisture will increase the variability.

Another difference in NPPpred is caused by a differing vari-
ability of PAR (Fig. A.11b). Most dry years have little cloud cover
and no restriction of incoming radiation. However, in wet years
it is difficult to predict the extent of precipitation and cloud
cover, which increases the variability of PAR.

The relationship between initial soil moisture and climate
predictability is noted by others. Koster et al. (2011) have de-
termined that, depending on the region, the direction of this
relationship can go either way. This asymmetry of predictabil-
ity is present in areas of high land–atmosphere coupling and is
caused by the nonlinear relationship of evaporative fraction with
soil moisture. Another study has investigated the predictability
of European summer heat and found different weather regime
frequencies in initially dry and wet conditions (Quesada et al.,
2012). This study adds to the view that predictability is not a
mere function of location but depends on the state of the system,
and predictability, therefore, has a strong temporal variability.

a.4 conclusions

In this study, we take a closer look at spatiotemporal patterns of
terrestrial CFpred and identify the climatic and environmental
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sources of predictability and the feedback mechanisms prolong-
ing the memory of the system. We propose a metric of CFpred
weighted by the amplitude of carbon flux anomalies. This metric
allows us to evaluate the role of different regions and processes
to the predictability of the global carbon cycle.

We find that the spatiotemporal patterns of NPPpred and
Rhpred are determined by (a) the predictability of the carbon
flux drivers, (b) the climatic anomalies caused by low-frequency
climate modes such as ENSO, (c) the seasonal change in limiting
factors, and (d) threshold processes and the nonlinearity of
ecosystem responses.

On the global average, NPPpred is explained by SOILpred
to 62 % and by TEMPpred to 30 %. Rhpred is explained by
SOCpred and TEMPpred (50 % and 27 %) predictability. Decom-
posing the predictability signal shows there is a high spatiotem-
poral variability in the drivers of predictability. SOILpred and
SOCpred are distributed across all areas of high CFpred, while
TEMPpred is mostly to be found in the northern Amazon Basin
for CFpred and southern Africa, North America, and South-
east Asia for NPPpred. Rhpred can outlast NPP predictability
because SOC, its main driver, has a much higher anomaly per-
sistence than the drivers of NPP. On the other hand, NPP is
more directly affected by climatic drivers and is therefore able to
benefit from the predictability of persisting climatic anomalies
like the effects of ENSO. Intra-annual variability of CFpred is
controlled by the seasonally specific limiting factor of NPP and
Rh. This leads to NPP gaining predictability in the dry season
when soil moisture replaces PAR as the limiting factor, while
Rhpred has its peak in the wet season when SOC drives the
carbon fluxes instead of precipitation in the dry season. This
change in limiting factors is due to the nonlinear relationships
of transpiration to soil moisture and Rh to precipitation. Both
of these relationships describe a saturation point, at which the
variability of moisture (precipitation) becomes insignificant to
carbon fluxes. Lastly, interannual variability of NPPpred reveals
an asymmetry of predictability driven by initial soil moisture
and subsequent precipitation. This effect is caused by ecosys-
tems operating at the boundary conditions of the soil moisture
regime. The ensemble members of predominantly wet ecosys-
tems are harmonized in wet years when precipitation exceeds
the water-holding capacity and excess water is removed through
runoff and drainage. The reverse effect applies to ecosystems op-
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erating at the dry end of the spectrum. These processes reduce
the covariance between precipitation and NPP.

Our results highlight the sources of CFpred and can be used
for model development to improve the representation of the ter-
restrial carbon cycle. Further research could be directed towards
the simulation of the ENSO imprint in climate models and the
relationship between soil moisture and terrestrial carbon fluxes.
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Abstract

The prediction of atmospheric CO2 concentrations is limited
by the high interannual variability of gross primary production
(GPP). Although Earth system models (ESMs) have a compara-
ble prediction skill of land-atmosphere CO2 fluxes, the spatial
patterns and drivers of GPP variability show profound differ-
ences. This raises the question to what extent these predictions
of CO2 fluxes can be compared. Here, we dissect the role of GPP
in the predictability of atmospheric CO2 in six ESMs by viewing
the GPP predictions within the context of the model specific
variability. We analyse the spatial patterns of GPP variability
using regression analysis to determine the role of the environ-
mental drivers soil moisture, temperature and radiation, and
assess the general ability of the ESMs to retain memory in hind-
cast systems. Lastly, we determine the origin of the predictable
GPP variability that contributes to the prediction of atmospheric
CO2. The ESMs are similar in the share of GPP they can predict
from their overall GPP variability. Between 13% and 24% of
the GPP variability can be predicted one year in advance on a
global average, with four out of six models between 19% and
24%. There is also conformity on the contribution of environ-
mental drivers to the predictive performance. Up to 32% of the
variability induced by soil moisture is predictable, while only
7% to 13% of the radiation-induced variability. However, there
is less agreement on the spatial distribution of GPP variability.
Although all ESMs agree on the high variability in the semi-arid
tropics, several ESMs have unique hotspots responsible for a
large fraction of their GPP variability. The main driver of GPP
variability is temperature in the ESMs using the Community
Land Model, and soil moisture in IPSL-CM6A-LR and MPI-
ESM-LR, revealing underlying differences in the source of GPP
variability among the models. The results show that while ESMs
are fairly similar in their ability to predict themselves, their
predicted contribution to the atmospheric CO2 variability origi-
nates from different regions and is caused by different drivers.
A higher coherence in atmospheric CO2 predictability could be
achieved by reducing uncertainties of GPP sensitivity to soil
moisture, and by accurate observational products for GPP vari-
ability, which can be used during the model parameterization
process.
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b.1 introduction

Year-to-year variations in land-atmosphere carbon fluxes gener-
ate substantial variability in the atmospheric CO2 concentration,
challenging our ability to quantify changes in fossil fuel-based
emissions, including those stemming from carbon reduction
policies (Friedlingstein et al., 2020; Peters et al., 2017). Seasonal-
to-decadal (S2D) predictions of land-atmosphere CO2 fluxes,
specifically gross primary productivity (GPP), therefore, have
the potential to accelerate the evaluation of carbon reduction
policies (Piao et al., 2020).

The predictability of GPP can be assessed by using forecasts
of the past (hindcast simulations), where an ensemble of sim-
ulations with an Earth system model (ESM) is initialized from
quasi-identical conditions. In a system with little predictability,
the spread across the ensemble will increase quickly until it
reaches the climatological variability. However, certain processes
have the ability to retain memory and provide predictability
by hindering this divergence of the ensemble members. For
example, the El Niño-Southern Oscillation (ENSO), produces
a low-frequency variability of the global climate that leads to
sustained GPP anomalies (Betts et al., 2016; Zeng et al., 2008).
Other processes provide predictability by maintaining the initial
conditions of the simulation. For example, soil hydrology acts as
a buffer between the atmosphere and the vegetation by storing
initial moisture anomalies (Bellucci et al., 2015). Soil moisture
anomalies can be further extended through land-atmosphere
coupling, by creating a feedback loop that enhances the persis-
tence of these anomalies (Kumar et al., 2020). A similar phe-
nomenon can arise through the lagged response of plant biomass
growth to climatic conditions. The slowly reacting vegetation can
cause precipitation anomalies or prolonged drought (Alessandri
and Navarra, 2008; Zhang, Keenan, and Zhou, 2021).

As initialized ESMs are capable of making reliable predictions
of climatic variables like global temperature anomalies or ENSO
on S2D time scales (Meehl et al., 2021), these models should
also be able to predict land-atmosphere carbon fluxes with suffi-
cient skill. In fact, a multi-model analysis of land-atmosphere
predictability found comparable predictability horizons of two
years among many ESM prediction systems (Ilyina et al., 2021).
However, several ecosystem processes that have a large impact
on the carbon cycle are simulated differently across different
model structures. This leads to substantial differences in the
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reproduction GPP variability among the models. One of these
deviations is in the extent of ecosystem boundaries and the
related spatial distribution of plant productivity. The Amazon
rainforest, for instance, is a hotspot of land-atmosphere carbon
fluxes and provides a large contribution to the predictability
of atmospheric CO2 (Ilyina et al., 2021; Séférian, Berthet, and
Chevallier, 2018; Zeng et al., 2008). However, the transition zone
between the wet and semi-arid tropics within the Amazon basin
varies among the models due to differences in their represen-
tation of land cover (Collier et al., 2018; Hu et al., 2022). Such
differences in biome boundaries can also modify the impact
of ENSO on the variability of land-atmosphere carbon fluxes.
ENSO produces a distinct spatial pattern of climatic anomalies
which significantly influences the GPP on 32% of the vegetated
land area (Zhang et al., 2019). These ENSO-related climate pat-
terns will have a different impact on GPP depending on the type
of biomes under their influence.

In addition to the spatial variability, many ESMs struggle to
reproduce the temporal variability of carbon fluxes, which can
be seen in the various representations of phenology (Song et al.,
2021). Several ESMs overestimate the seasonal amplitude of leaf
area index (LAI) in the tropics, and mismatch the timing of LAI
maxima and minima (Peano et al., 2019).

Further uncertainties in GPP predictability arise from the
modelled sensitivity of ecosystem processes to environmental
variables (Ahlström et al., 2015; Beer et al., 2010; Collalti et al.,
2020; Jung et al., 2017; Piao et al., 2020). For example, global GPP
increases with positive temperature anomalies in some models
and decreases in others (Piao et al., 2013).

The different sensitivities of GPP to water availability across
different models can be further exacerbated by the large dis-
agreement in water storage anomalies (Wu, Lo, and Scanlon,
2021). The simulated annual cycle of water storage anomalies
of major river basins is between 0.1 and 2 times that of the
observed variability. These large deviations in hydrological vari-
ability between models are likely to cause similar deviations in
the variability of GPP, especially in semi-arid watersheds.

All of these aspects of possible disagreement between ESMs
lead to the assumption that the individual models are creating
their very own version of GPP variability. With this in mind, we
aimed to extend our view of GPP predictability by investigating
not only how well ESMs are able to predict GPP, but also by
comparing what these ESMs are predicting in the first place.



68 gpp and the predictability of co2

We compare the spatio-temporal patterns of GPP variability
among six ESMs, and use regression analysis to identify the
portions of the variability driven by soil moisture, temperature
and radiation. The ESM’s ability to retain memory is assessed
by calculating the fraction of variability in the GPP predictions
to overall GPP variability. Lastly, we determine the origin of the
predictable GPP variability that contributes to the prediction of
atmospheric CO2. Thus, the aim of this work is to reveal the
origin of differences in GPP predictions across models and to
identify the areas of large discrepancies and determine factors
contributing to the attached uncertainties.

b.2 methods

b.2.1 Data sources

We analyse model output from the Decadal Climate Prediction
Project (DCPP, Boer et al. 2016). This protocol-driven multi-
model approach aims at studying the decadal predictability of
the earth system with hindcasts, quasi-real-time forecasts, and
case studies on predictability mechanisms. The hindcasts are
initialized annually from 1960 to 2017 or 2019 with the starting
dates between November and January and at least 10 ensemble
members. Simulations are driven by CMIP5 or CMIP6 historical
forcing and extended by RCP4.5 or SSP2-4.5 afterwards. The
DCPP framework does not prescribe any specific initialization or
data assimilation methods and leaves these details to be decided
by the respective modelling centres.

The CESM2 model output originates not from the DCPP, but
rather from the Seasonal-to-Multiyear Large Ensemble (SMYLE)
prediction system (Yeager et al., 2022). The SMYLE hindcasts
ensembles are initialized four times per year with 20 ensemble
members between 1970 and 2019. In this study, the November
initializations are used to achieve the highest comparability with
the DCPP hindcasts.

We compared the GPP of the ESMs against the GPP prod-
ucts from the Moderate Resolution Imaging Spectroradiometer
(MODIS, MOD17A2H: (Running, Qiaozhen, and Zhao, 2019)).
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b.2.2 Model descriptions

b.2.2.1 CanESM5

The Canadian Earth System Model version 5 (CanESM5; Swart et
al. 2019) consists of the Canadian Land Surface Scheme (CLASS)
and Canadian Terrestrial Ecosystem model (CTEM) with a T63

grid with an approximate resolution of 2.8◦. The atmosphere
is realized with the Canadian Atmospheric Model (CanAM5)
with 49 vertical levels. Ocean physics are simulated with Can-
NEMO, on a tripolar grid with a resolution of 1

◦ to 1/3
◦ and 45

vertical levels, and ocean biogeochemistry is represented by the
Canadian Model of Ocean Carbon (CMOC).

The CanESM5 hindcast simulations are part of the DCPP
project and are initialized every January with 20 members be-
tween 1960 and 2017. 3D potential temperature and salinity of
the global oceans are nudged toward monthly Ocean Reanalysis
System 5 (ORAS5; Zuo et al. 2019). Sea surface temperatures are
nudged to Extended Reconstructed Sea Surface Temperature
(ERSSTv3; Xue, Smith, and Reynolds 2003; Smith et al. 2008)
until 1981 and to the data from Optimum Interpolation Sea
Surface Temperature (OISST; Banzon et al. 2016) afterwards.
Sea ice concentration is nudged to the Hadley Centre Sea Ice
and Sea Surface Temperature data set (HadISST.2; Titchner and
Rayner 2014), and sea ice thickness to monthly climatology until
1988 and to the SMv3 statistical model of Dirkson, Merryfield,
and Monahan (2017) afterwards. For the atmosphere, temper-
ature, horizontal wind components and specific humidity are
nudged to ERA40 (Uppala et al., 2005) until 1978 and to 6-hourly
ERA-Interim data (Dee et al., 2011) afterwards.

b.2.2.2 CESM1-CAM5

The Community Earth System Model (CESM) version 1.1 (Hur-
rell et al., 2013) is used to produce 40-member simulations in
the Decadal Prediction Large Ensemble (DPLE) project (Yeager
et al., 2018). The model components are the Community Land
Model version 4 (CLM4; Lawrence et al. 2011) with a 1

◦ resolu-
tion, Community Atmosphere Model Version 5 (CAM5) with
30 vertical levels, the Parallel Ocean Program (POP2) with 60

vertical levels and sea ice with Community Ice Code (CICE4).
The CESM1-CAM5 hindcasts are initialized every November.

There is no direct assimilation of observations to produce the
initial conditions, instead ocean and sea ice are obtained from
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simulation runs forced by historic atmospheric surface fields
(Yeager et al., 2018). Initial conditions for the land and atmo-
sphere components are obtained from ensemble member #34 of
the CESM Large Ensemble (Kay et al., 2015; Lovenduski et al.,
2019).

b.2.2.3 CESM2

CESM version 2 (Danabasoglu et al., 2020) is using a 1
◦ horizon-

tal resolution of all components. The atmosphere is simulated by
the Community Atmosphere Model Version 6 (CAM6) with 32

vertical levels. The ocean model is Parallel Ocean Program ver-
sion 2 (POP2) with 60 vertical levels, with the biogeochemistry
from the Marine Biogeochemistry Library and sea ice by CICE
version 5.1.2 (CICE5) with 8 vertical layers. The land component
is simulated by the Community Land Model version 5 (CLM5;
Lawrence et al. 2019), which has several updates to its predeces-
sor CLM4 and CLM4.5, leading to a better representation of the
global carbon cycle in benchmarks (Bonan et al., 2019).

Hindcasts are initialized on the 1st of every November, Febru-
ary, May and August, and run for 24 months. Only the Novem-
ber initializations are used in this analysis to increase compa-
rability with the DCPP simulations. Initial conditions for the
atmosphere, ocean and sea-ice stem from the Japanese 55-year
Reanalysis (JRA-55; Kobayashi et al. 2015, and JRA55do; Tsujino
et al. 2018). The land surface and biogeochemistry are initialized
from forced CLM5 simulations.

b.2.2.4 CMCC-CM2-SR5

The Euro-Mediterranean Centre on Climate Change coupled
climate model (CMCC-CM2, Cherchi et al. 2019, Lovato et al.
2022) is based on CESM and consists of the Community Land
Model (CLM4.5) with a 1

◦ resolution, the atmospheric model
CAM5.3 with 30 vertical levels. The distinguishing element of
CMCC-CM is the ocean, which is simulated by NEMO3.6 while
sea ice is modelled by CICE4.

The 10-member hindcast simulations are initialized every
November. Initial conditions of ocean and sea ice states are
derived from an assimilation run using the same method as the
CESM1-CAM5 hindcast.

Because the CMCC-CM2-SR5 fields containing land-atmosphere
carbon fluxes are not exported for the DCPP runs, historical
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simulations have been used to infer the relationship between
environmental drivers and carbon fluxes.

b.2.2.5 IPSL-CM6A-LR

The Earth System Model developed by the Institute Pierre Simon
Laplace (IPSL; Boucher et al. 2020) uses the ORCHIDEE v2.0
(Cheruy et al., 2020) land surface model (LSM) with an average
resolution of 157 km. The atmosphere is simulated at the same
resolution by LMDZ6 with 79 vertical levels, the ocean with
NEMO-OPA with a 1

◦ resolution and 75 vertical levels and
ocean biogeochemistry with PISCESv2.

The hindcast simulations of IPSL-CM6A-LR come from the
DCPP project. The 10-member ensembles start annually in Jan-
uary between 1960 and 2016. The hindcasts are initiated from an
assimilation run with EN4 sea surface temperatures (Good, Mar-
tin, and Rayner, 2013) and Atlantic sea surface salinity (Estella-
Perez et al., 2020). Subsurface ocean, sea ice and atmosphere are
not assimilated.

b.2.2.6 MPI-ESM-LR

MPI-ESM-LR is the Max Planck Earth System Model (MPI-
ESM1.1; Giorgetta et al. 2013) used in a low-resolution con-
figuration. The land is simulated by JSBACH with dynamic
vegetation (Reick et al., 2013). The ocean component is MPIOM
with a horizontal resolution of about 150 km and 40 vertical
levels. The atmosphere is simulated by ECHAM at a T63 res-
olution with 47 vertical layers, and ocean biogeochemistry is
represented by HAMOCC.

The utilized hindcast simulations of MPI-ESM-LR are con-
ducted within the MiKlip project (Marotzke et al., 2016). The
decadal prediction system are 10-member ensembles starting
every January between 1961 and 2014. Ocean temperature and
salinity are initialized from the Ocean Reanalysis System 4

(ORAS4; Balmaseda, Mogensen, and Weaver 2013) and the at-
mosphere by ERA-40 (Uppala et al., 2005) from 1960 to 1998 and
ERA-Interim (Dee et al., 2011) from 1990 to 2014.
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Figure B.1: Workflow of the statistical analysis: a) Structure of the
hindcast simulations. The predictability is derived by com-
paring the variability within the ensemble members of lead
year 1 with the variability derived from lead years 5 to 10.
b) The climatology is calculated for every year based on a
rolling window within lead years 5 to 10 (all simulations
within the green block). c) The anomalies of all lead years
5 to 10 are calculated by subtracting the monthly mean
climatology. d) A segmented regression model is trained
for every grid cell and month of the year. e) The fitted
models are applied to the anomalies of the lead years 5

to 10 and to the anomalies of the first lead year to cal-
culate the multi-year standard deviation (SD) σGPP(clim)

and the SD within the ensemble members of the first lead
year σGPP(y=1). f) The predictable component is assessed
through the difference between multi-year SD and the first
year SD.

b.2.3 Statistical approach

b.2.3.1 Overview

An overview of the statistical analysis is shown in Figure B.1.
Every hindcast simulation is initialized with >10 simulation
members from quasi-identical conditions. With the increasing
lead-time, the variability within the hindcast ensemble (spread
across the ensemble members for a given time, σ) increases too,
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until it reaches the climatic variability (Fig. B.8). Based on this
assumption, the hindcast simulations are split into two groups
by lead-time (lead year one and lead years five to ten). For the
lead years five to ten, the effects of initialization are assumed
to be negligible. These years are used to calculate the monthly
mean climatology, which is removed from both groups to obtain
the anomalies. The anomalies of the lead years five to ten are
used in a regression analysis to derive the sensitivity of GPP to
the environmental variables i.e. soil moisture, temperature and
radiation. The regression model is applied to the anomalies of
both groups to calculate the amount of GPP variability caused
by each environmental driver. We derive the predictability of
GPP by comparing the ensemble variability of the first lead year
with the variability in lead years five to ten.

b.2.3.2 Climatology and sensitivity

The monthly mean climatologies are calculated from the lead
years five to ten, with a moving window approach for every
calendar year (Fig. B.1 b). Because the moving window method
is not applicable for the first decade of hindcast initializations,
the monthly climatology for the 1960s (1970s for CESM2) is
calculated based on all lead time years 5 to 10 within the 1960s
(or 1970s). Anomalies of all input fields are calculated by sub-
tracting the monthly climatologies from the hindcast data. The
obtained anomalies of lead years 5 to 10 make up a data set of
n simulation years:

n = 6 hindcast years × No. ensemble members × No. initializations.
(B.1)

With 10 to 40 ensemble members and 56 to 58 initializations
resulting in sample sizes of 3330 to 13680. Because the hindcast
length is only two years in the SMYLE framework, a different
approach is used in the case of CESM2. Instead of lead years five
to ten, only the second lead year is selected and only five random
ensemble members are used from every hindcast, to reduce the
number of simulations with the same initial conditions. To offset
the reduced number of data points, five random simulations
are added from the hindcast simulations initialized in February,
May, and August as well.

The resulting data set of anomalies is used to derive the
sensitivity of GPP to the environmental variables (ENV: soil
moisture, temperature and radiation) by fitting a regression
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model for every grid cell and month of the year (Fig. B.1 d).
The relationship between GPP and the environmental drivers
is frequently non-linear, sometimes due to specific break points
in the functional representation of GPP (Fig. B.9). For this rea-
son, segmented linear regression (SLR) is used to model GPP
from the environmental variables (Muggeo, 2008). In addition
to ordinary regression models, SLR finds breakpoints in the
predictor space, splitting it into multiple ranges and fitting an
individual regression model to each of the data ranges. Here, a
single breakpoint is determined for each of the three predictor
variables.

Because environmental drivers have some degree of collinear-
ity, the regression analysis will not be able to fully attribute the
GPP anomalies to their specific causes. Therefore, the resulting
sensitivities should be taken as a “contributive”, and not a “true”
effect of the environmental drivers (Wang, Zeng, and Wang,
2016).

b.2.3.3 Variability and predictability

With the relationship between environmental variables and GPP
established, the SLR is now applied to the individual simula-
tions. We use it to determine the component of the GPP anomaly
that is attributed to each of the environmental variables (for ev-
ery grid cell and month of the year):

∆GPP ≈ ∆GPPSoil moisture + ∆GPPTemerature + ∆GPPRadiation.
(B.2)

The three components of GPP anomalies (∆GPPENV) are calcu-
lated for every simulation with the hindcast lead time five to ten.
From the results, we calculate the interannual variability (IAV)
of the components (σGPPENV

(clim), Fig. B.1 e). Similarly, the SLR is
applied to the anomalies of all ensemble members of the first
hindcast years, to calculate the standard deviation within every
hindcast simulation. Averaging over the standard deviations
of every first hindcast year returns the variability of the first
hindcast year (σGPPENV

(y=1)).
The predictability is assessed by comparing the variability of

the first hindcast year to the IAV (Fig. B.1 f). A high predictability
of an input field means, that its variability is restricted for some
time after the hindcast initialization, and does not reach the IAV
immediately. Because the hindcast simulations are not evaluated
against observations, the calculated metrics reflect the potential
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predictability. Here, we refer to them as predictability for the
ease of reading.

In order to take different aspects of predictability into account,
we calculate a relative and an absolute predictability metric.

As the absolute metric, we calculate the predictable compo-
nent ∆σGPP. It is the difference between IAV and ensemble
variability (Fig. B.2):

∆σGPPENV
(y=1) = σGPPENV

(clim) − σGPPENV
(y=1). (B.3)

The predictable component can be interpreted as the amount
of variability that is predictable. It allows quantifying the re-
gional contribution to atmospheric CO2 predictability. However,
∆σGPP is strongly related to the overall magnitude of interan-
nual GPP variability and does not give us an insight on how
well memory is stored in the system. Therefore, the predictable
fraction (p f GPP) is calculated as the fraction of ∆σGPP to IAV:

p f GPPENV
(y=1) =

∆σGPPENV
(y=1)

σGPPENV
(clim)

. (B.4)

This is a relative metric and allows assessing how well memory
is retained in the system.

b.3 results and discussion

b.3.1 GPP variability

In order to understand the base from which the models are
predicting, we start with analysing the patterns of GPP vari-
ability. We find agreement in the large-scale patterns of GPP
variability, while there are local differences and differences in
the overall magnitude of variability (Fig. B.3), with CanESM5,
CMCC-CM2-SR5, and IPSL-CM6A-LR at the lower, and CESM2

and MPI-ESM-LR at the higher end of the variability spectrum.
Factors that could explain some of the differences in the overall
magnitude of variability are the relatively weak ENSO telecon-
nection in CanESM5 (Swart et al., 2019), or the low total GPP in
CMCC-CM2-SR5 (Lovato et al., 2022). The models agree well on
the seasonality of variability in the Northern Hemisphere, with
variability peaking between June and July. Variability peaks in
the Southern Hemisphere in December (CMCC-CM2-SR5), Jan-
uary (MODIS, CESM1-CAM5, CESM2), February (IPSL-CM6A-
LR, MPI-ESM-LR) and March (CanESM5). Most of the GPP
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Figure B.2: The exemplary composition of GPP variability of MPI-
ESM-LR in the Amazon Basin in April. The interannual
GPP variability is calculated as the standard deviation
from the model output from the lead years 5 to 10 of the
hindcast simulations and split into the contribution of en-
vironmental drivers (σGPP(clim), green bars). The red bars
show the standard deviation of the ensemble members
in lead year 1 (σGPP(y=1)). The predictable component
(∆σGPP(y=1)) results from the difference between interan-
nual and ensemble variability. The predictable fraction is
the ratio of predictable component to interannual variabil-
ity. In this region, most of the variability is caused by soil
moisture and radiation, while GPP is not restricted by tem-
perature. Predictability is exclusively provided through
soil moisture.

variability of ESMs is in the semi-arid tropics of South America,
Africa, South Asia, and Australia, but also in southern North
America. The variability in MODIS is located in the wet tropics,
eastern Asia and central South America. MODIS IAV is gener-
ally much lower than the GPP variability of ESMs (Anav et al.,
2015; Zhang and Ye, 2022) and not fully capable of capturing
tropical variability due to its algorithm (Chen et al., 2017).

A closer examination of the GPP variability patterns reveals
that the models have little agreement in the regions that con-
tribute most to the variability, especially in the semi-arid tropics.
For a better quantification of this disagreement, we isolated
the land area responsible for the top 20% of GPP variability
(Fig. B.4). More than half of the grid cells within these high
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Figure B.3: Mean monthly standard deviation of GPP, averaged over
seasons in MODIS and six ESMs, and the IAV of GPP.

variability regions can only be found in one model, while there
is not a single grid cell that is in the high variability area of
all models. Some models have large patches of high variability
regions which are unique to them. Most of the variability in
CanESM5 comes from two patches in India and western Africa,
In CESM2, high variability occurs in central South America,
in IPSL-CM6A-LR the high variability regions are in the Horn
of Africa and Southern Africa, while MPI-ESM-LR and IPSL-
CM6A-LR are the only models that have large fractions of their
variability originating in Australia. We find more agreement on
the high contribution of the northeastern coast of South Amer-
ica, which is a high variability region in MODIS, CESM1-CAM5,
CMCC-CM2-SR5, IPSL-CM6A-LR, and MPI-ESM-LR.

The spatial patterns of GPP variability revealed here corre-
spond with that reported in the literature, which suggests that
the semi-arid tropics, tropical forests, grasslands and croplands
are the main drivers of global GPP IAV (Ahlström et al., 2015;
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Figure B.4: The area responsible for the top 20% of GPP variability in
MODIS and six ESMs. The frequency distribution of the
number of overlapping grid cells is shown in the bar chart.
More than half of the top 20% grid cells are unique to one
model and don’t have any overlap.

O’Sullivan et al., 2020; Piao et al., 2020). However, the literature
also reflects the large uncertainty in the contribution of the indi-
vidual semi-arid regions to GPP IAV between the models, and
in particular the uncertain role of Australia. In an ensemble of
eight LSMs, Australia contributed 39%, semi-arid tropical Africa
32%, and Southeast Asia 10% to global GPP IAV, while tem-
perate South America only contributed 2% (Chen et al., 2017).
Although Australia has the highest mean model IAV, the vari-
ability of IAV between the models is also the largest, with the
standard deviations of GPP ranging between 0.26 and 1.01 Pg
C yr−1. ESMs are likely to underestimate the role of tropical
forests in GPP IAV, due to a misrepresentation of photosyn-
thesis (O’Sullivan et al., 2020). In this study, this is especially
evident for CESM2, where GPP IAV increases abruptly outside
the boundaries of tropical forests.

The wide divergence in GPP variability across different model
structures is caused by three factors: the sensitivity of carbon
fluxes to climatic drivers (Piao et al., 2020) (discussed in section
3.2), phenology (Chen et al., 2017; Peano et al., 2019; Peano et al.,
2021), and meteorological input (Anav et al., 2015). The role of
phenology is crucial because the amount and quality of leaves
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determine the exchange of water, CO2 and energy between the
land and the atmosphere (Peano et al., 2021). Most LSMs tend
to have a better representation of the growing season type, and
growing season boundaries in the wet than in the semi-arid trop-
ics. Peano et al. (2021) analysed the start- and ending months of
growing seasons (GSS and GSE) in eight LSMs under the same
climate forcing and found several regions with a wide range of
growing season boundaries, mostly in semi-arid environments.
GSS ranges from February to October in Australia, and from
March to October in Southern Africa, while GSE ranged from
March to September in Africa between 0 and 15

◦N. The veg-
etation types with the largest uncertainty in growing season
timing are broadleaf deciduous shrubs, which are mostly lo-
cated in Northern Australia, Southern Hemisphere crops, and
broadleaf evergreen trees and grasses. The better-performing
models have a high number of plant functional types, or more
complex phenology schemes, while the difficulties in semi-arid
regions originate from the response of photosynthesis to soil
moisture. Although evergreen tropical forests are generally bet-
ter represented than the semi-arid tropics, the area of the ever-
green tropics is underestimated in JSBACH. A reason for this
might be caused by an overestimation of the seasonality in the
tropics, as it becomes visible in the strong seasonal cycle of
Northern Hemisphere tropical LAI in MPI-ESM-LR (Song et al.,
2021). This amplification of the equatorial dry season might lead
to the high GPP IAV in the Northern Amazon and contribute
to the overall high IAV in MPI-ESM-LR (Wang, Sun, and Mei,
2011).

To examine the role of climate forcing in driving the differ-
ences in GPP variability across different model structures, we
compare soil moisture IAV (Figure B.5) with GPP IAV. Notable
is the relationship between soil moisture and GPP variability in
Australia and Southern Africa. MPI-ESL-LR and IPSL-CM6A-LR
which have the highest GPP IAV in Australia, have low soil mois-
ture IAV compared to the CLM family. We see similar results
for Southern Africa, where all models but CMCC-CM2-SR5 and
IPSL-CM6A-LR have relatively high soil moisture IAV, however,
GPP IAV is low in the CLM family and high in IPSL-CM6A-LR.
This disagreement between the variability of GPP and its forcing
is in accordance with the findings of Peano et al. (2021), support-
ing the assumption that the response of GPP to soil moisture
is not well constrained in semi-arid ecosystems. In CESM2, the
high soil moisture variability in Australia and Southern Africa
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despite low GPP IAV results from its low climate sensitivity
(Wieder et al., 2021).

Figure B.5: Interannual variability of soil moisture in 6 ESMs. Note
that CESM2 calculates soil moisture over a deeper soil
column, hence the variability of CESM2 is scaled to a
similar range as the other models.

b.3.2 Drivers of GPP variability

We analysed the sensitivity of GPP to environmental drivers by
using regression analysis. The globally averaged contribution
of the drivers to GPP variability is shown as the bars in Figure
B.6. The CLM family and CanESM5 show similar patterns, with
temperature dominating, or being on par with soil moisture.
IPSL-CM6A-LR and MPI-EMS-LR show a distinctly different
pattern, where soil moisture dominates variability and radia-
tion contributes equally or more than temperature. A reason
for the large contribution of soil moisture to GPP IAV in IPSL-
CM6A-LR and MPI-ESM-LR could be that both ESMs are at
the high end of soil moisture IAV for deep soil layers in the
Southern Hemisphere (Qiao, Zuo, and Xiao, 2022), where many
of the water-limited semi-arid ecosystems are located that con-
tribute most to GPP IAV. Another explanation could be that
from eleven CMIP6 models, IPSL-CM6A-LR and MPI-ESM-LR
have the lowest warm-season soil moisture (Padrón et al., 2022).
This increase in dryness can lead to a larger extent of semi-arid
ecosystems with a generally higher GPP variability. Another



B.3 results and discussion 81

effect of the reduced warm-season soil moisture can be an in-
crease in land-atmosphere coupling strength (Santanello et al.,
2018). This would explain the higher correlation between soil
moisture and temperature in these models (Padrón et al., 2022),
and make the regression coefficients shift towards the stronger
predictor – soil moisture.

Figure B.6: The contribution of environmental variables to GPP vari-
ability (σGPPENV

(clim)). Colour intensity stands for higher GPP
variability. The data is scaled to every model in order to
highlight regional differences and not the absolute differ-
ences. Bars represent the mean contribution of environ-
mental variables to global GPP variability (kg C s−1 m−2

10
−13).

The spatial drivers of GPP variability show agreements in
equatorial and arid tropics, while there is less consistency in
the transition zones. In many models, the variability in the
wet tropics, and eastern China is induced by radiation, while
soil moisture becomes more prevalent along the aridity gra-
dient, and is driving variability in Southern Africa, Southern
South America, and Australia (Fig. B.6). Variability on the re-
maining land surface is driven predominantly by soil moisture
in IPSL-CM6A-LR and MPI-ESM-LR and by a combination of
temperature and soil moisture in the remaining models.

Multi models averages and observations of GPP sensitivity
agree with the larger role of temperature in tropical forests, radi-
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ation in western Amazonia, and the importance of precipitation
in the semi-arid tropics (Anav et al., 2015; O’Sullivan et al., 2020).
However, the role of water on carbon fluxes increases when soil
moisture is used instead of precipitation in sensitivity studies
(Piao et al., 2020). This can be observed in the sensitivity of
net biome productivity (NBP), showing a more balanced contri-
bution of soil moisture and temperature in the tropical forests
(Padrón et al., 2022; Piao et al., 2020). Although the comparison
of GPP and NBP imposes limitations, GPP explains the majority
of tropical NBP (Ahlström et al., 2015). This suggests, that the
low water sensitivity of tropical GPP might explain the lower
than expected GPP variability of tropical forests.

b.3.3 Predictability of GPP

To analyse the role of GPP in the predictability of atmospheric
CO2, we assessed GPP predictability using two metrics. The pre-
dictable fraction (p f GPP) is the ratio of predictable variability to
IAV and illustrates how well information from the initialization
is retained. Although this metric can be used to compare the
predictive performance of different biomes, for example, it is
not suitable to assess the predictability of cumulative carbon
fluxes, since the atmospheric variability of CO2 is determined
by a few regions with high variability. Biomes like deserts, for
example, have a very high predictable fraction, however, their
carbon fluxes contribute little to the variability of atmospheric
CO2. To assess the predictability of cumulative GPP fluxes, the
predictable component (∆σGPP) is used. Calculated as the dif-
ference between ensemble variability and IAV, it provides a
measure of absolute predictable variability.

There is relatively high consistency among the p f GPP of the
environmental drivers across the models (p f GPPSoil moisture >
p f GPPTemperature > p f GPPRadiation, numbers above the bars in
Fig. B.7). This pattern reflects the anticipated differences in pre-
dictability among the drivers. Atmospheric anomalies have a low
persistence, leading to a low predictability of two weeks for most
regions (Zeng et al., 2008). Soil hydrology, on the other hand,
acts as a low-pass filter which removes the unpredictable high-
frequency variability of precipitation and allows a predictability
of soil moisture of around two years (Chikamoto et al., 2017).
Temperature gains most of its predictability through sea surface
temperature (SST) forcing in the equatorial regions (Feng, Del-
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Figure B.7: The contribution of environmental variables to the pre-
dictable component of GPP (∆σGPPENV

(y=1)). The contribu-
tion is calculated as the difference between the climatologi-
cal variability and the variability within the first year of the
hindcast experiments. Values are scaled for each model.
Bars represent the mean contribution of environmental
variables to the predictable component (∆σ GPP in kg C
s−1 m−2

10
−13). Numbers on top of the bars show the pre-

dictable fraction (p f ), which is the share of the predictable
component to overall variability. The correlation between
GPP variability and the predictable component is shown
at the bottom of the plots.

Sole, and Houser, 2011), and land-atmosphere coupling in the
semi-arid tropics (Seo et al., 2019).

The overall p f GPP of CESM2, CMCC-CM2-SR5 and IPSL-
CM6A-LR falls into a narrow window of 0.19 to 0.21. With a
value of 0.24, CESM1-CAM5 has the highest p f GPP among the
models. It is likely that this increased share of predictable vari-
ance is not due to differences in model structure, but due to
the large number of 40 ensemble members. Most other models
in this study have only ten ensemble members, which is not
enough to capture the difference in variability between hindcast
and model climatology, so that an increase in ensemble mem-
bers leads to an increase in prediction skill (Meehl et al., 2021).
However, despite having 20 ensemble members, CanESM5 has
the lowest p f GPP among the models. A possible explanation
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could be its poor representation of soil moisture (Qiao, Zuo,
and Xiao, 2022). In particular, the low variability of deep soil
moisture in CanESM5 could hinder the persistence of the ini-
tial climatic conditions. On the other hand, a high variability
of soil moisture does not guarantee a high p f GPP, as seen by
the example of MPI-ESM-LR. Another strong controller of over-
all p f GPP is the sensitivity of GPP to radiation. Because only
7% to 12% of the radiation-induced variability is predictable,
a high share of σGPPRadiation reduces the predictability of GPP.
This phenomenon explains the low p f GPP in MPI-ESM-LR, in
which the share of σGPPRadiation is 20% higher than in the other
models.

We find a high overlap in the regions contributing to cumula-
tive GPP predictability and GPP variability. The correlation be-
tween predictable component and variability exceeds 0.79 in all
models but CanESM5. Indeed, these high correlations between
predictability and variability align with our understanding. Un-
der a constant predictable fraction, the predictable component
would grow linearly with an increasing variability, leading to a
perfect correlation. However, these high correlations show that
the predictability of atmospheric CO2 is determined more by
the differences in GPP variability than the differences in the
predictable fraction of GPP. While the p f GPP values show that
the different ESMs have a similar degree of memory retention,
there are few overlaps in the spatial distribution of the predic-
tive component. To quantify the disagreement in predictability
patterns, we separated the top 20% of grid cells contributing to
the predictable component of GPP, as we did with variability
in section 3.1. With 74% of high-predictability grid cells unique
to only one model, overlap in high-predictability areas is even
lower than the overlap of high-variability areas.

Although the spatial patterns of the predictable component
broadly resemble the patterns of GPP variability, there are some
slight differences between these fields. The predictable compo-
nent is relatively high along the northeastern coast of South
America in most ESMs. This could be due to the high climate
predictability caused by slowly evolving Atlantic SST patterns
(Dirmeyer, Halder, and Bombardi, 2018). Other systematic differ-
ences can be explained by the differing predictable components
of the environmental drivers. The most evident is the difference
between variability and predictability in regions where GPP
variability is driven by radiation. This leads to relatively low
predictability in the tropical rainforests of the western Amazon
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basin and the Congo basin. An exception is the predictability
provided through radiation on the Southeast Asian islands in
IPSL-CM6A-LR and CESM1-CAM5. A plausible explanation
is the proximity to the ENSO region. Strong and predictable
SST anomalies in the tropical Pacific that surround the islands
could have a direct influence on the cloud cover over land as
well. The predictable component is also higher over areas where
variability is driven by soil moisture rather than temperature. In
many ESMs, this leads to a high predictable component in the
semiarid regions of South America, Africa and India.

b.4 conclusions

As the dominating driver of atmospheric CO2 variability, the
accurate representation of terrestrial GPP and its predictability
are conducive to a variety of applications concerning the IAV of
atmospheric CO2 concentrations. Differences in GPP predictions
produced by ESMs can not only be caused by how well the
models are able to retain memory, but also by what these models
are predicting in the first place. Indeed, the fraction of GPP
variability which can be predicted is relatively consistent among
models. Between 13% and 24% of the GPP variability can be
predicted one year in advance on a global average among the
models, with four out of six models between 19% and 24%. The
predictable fraction is up to 32% for the GPP variability caused
by soil moisture, while only 7% to 12% of the variability caused
by radiation is predictable.

However, there is less agreement in the spatial distribution
and the drivers of GPP variability. Although in all ESMs the
semi-arid tropics are causing most GPP variability, the models
have their own high-variability regions with little overlap. We
find large disparities in the role of Australia, Southern Africa
and central South America on GPP variability. Consequentially,
when ESMs are used to predict the atmospheric growth rate
of CO2, their predictions are originating from different parts
of the globe. The leading cause of the uncertainties in GPP
variability are differences in the response to soil moisture. These
differences materialize through the direct effect of soil moisture
on photosynthesis and through the role of soil moisture on
phenology.

While the distribution of mean GPP has long been used to pa-
rameterize ESMs, future efforts should also be directed towards
tuning the variability of GPP in order to increase the predictive
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performance of ESMs. A missing piece towards this goal, how-
ever, is a robust and independent product that quantifies global
GPP variability.

b.5 supplements

Figure B.8: Exemplary GPP hindcast from CESM1-CAM5 in India; a re-
gion with high predictability. The lines show the temporal
evolution of 40 ensemble members. The ensemble variabil-
ity at every lead years is shown as the boxes (Monthly
standard deviation of ensemble averaged over every lead
year. Axis on the right.). Even in regions with good pre-
dictability, the ensemble variability reaches the plateau
after three to four years. In this analysis, the model cli-
matology is calculated from the lead years 5 to 10 of the
hindcast simulations (On the right of the black vertical
line).
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Figure B.9: Examples of a non-linear relationship of GPP with environ-
mental drivers in IPSL-CM6A-LR. The examples are from
the GPP in June in a) northern Canada, where plant growth
can be halted by subzero temperatures, b) Venezuela and
c) Indonesia where GPP has a nonlinear relationship with
soil moisture. All axis show anomalies.





C
E N S O - I N D U C E D PAT T E R N S O F G R O S S
P R I M A RY P R O D U C T I O N

The work in this appendix describes the methods used for the
results of chapter 4.
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ENSO-induced Patterns of Gross Primary
Production

c.1 methods

I compare the role of El Niño Southern Oscillation (ENSO) on
gross primary production (GPP) in different Earth system mod-
els (ESMs). In order to have a large sample size of ENSO events,
I use unforced piControl simulations. The list of ESMs and vari-
ant labels are listed in Table C.1. The ESMs are compared with
results from upscaled flux tower measurements (FLUXCOM ver-
sion: RS_METEO.FP-ALL.MLM-ALL.METEO-ERA5, Jung et al.
2019), and SST reanalysis data (HadISST, Rayner et al. 2003)

Some of the piControl simulations showed spin-up effects or
strong decadal variability. To remove this unwanted variability,
I calculated the 30-year running mean of all input fields. The
FLUXCOM and HadISST data are linearly detrended. To quan-
tify the strength of ENSO, I calculated the mean annual surface
temperature in the Niño3.4 region.

I use linear regression to calculate the sensitivity of globally
accumulated GPP to 1

◦C SST anomaly in the Niño3.4 region.
For all ESMs, I create a composite El Niño event, by averaging

all years that I classified as an El Niño year. I did not use a
temperature threshold for El Niño classification, because of the
different SST ranges between the ESMs. Instead, I select all years,
in which the Niño3.4 SST anomaly falls in the top 10% quantile.
Because the interest of this analysis is on regional differences
rather than absolute differences, all composites are scaled to a
global GPP anomaly of -1 PgC. I use the IPCC climate reference
regions to quantify the spatial differences (Iturbide et al., 2020)
and select the six regions with the largest standard deviation
among the ESMs for the remaining analysis.

To calculate the ENSO-induced changes in soil moisture, and
the sensitivity of GPP to soil moisture, I calculate the annual
anomalies of all fields by subtracting the climatology. Then, I use
regression analysis with zero intercept to calculate the change
in soil moisture to 1

◦C SST anomaly in the Niño3.4 region and
the change in GPP to 1 kg soil moisture anomaly. I average the
resulting sensitivities for every ESM and region. To calculate
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their relative contribution to the uncertainties, I compare the
coefficient of variation for both sensitivities in all regions.
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Table C.1: The ESMs and their experiment IDs used in this study.

ESM Variant label Reference

ACCESS-ESM1-5 r1i1p1f1 Ziehn et al. (2020)
AWI-ESM-1-1-LR r1i1p1f1 Shi et al. (2020)
BCC-CSM2-MR r1i1p1f1 Wu et al. (2019)
CanESM5 r1i1p1f1 Swart et al. (2019)
CESM2 b.e21.B1850.f09_g17 Danabasoglu et al. (2020)

CMIP6-piControl.001

CMCC-ESM2 r1i1p1f1 Cherchi et al. (2019)
CNRM-ESM2-1 r1i1p1f2 Séférian et al. (2019)
E3SM-1-1 r1i1p1f1 Golaz et al. (2019)
GISS-E2-2-G r1i1p1f1 Orbe et al. (2020)
ICON-ESM-LR r1i1p1f1 Jungclaus et al. (2022)
IPSL-CM6A-LR r1i1p1f1 Boucher et al. (2020)
MPI-ESM1-2-HR r1i1p1f1 Müller et al. (2018)
MPI-ESM1-2-LR r1i1p1f1 Mauritsen et al. (2019)
MRI-ESM2-0 r1i2p1f1 Yukimoto et al. (2019)
NorESM2-LM r1i1p1f1 Seland et al. (2020)
NorESM2-MM r1i1p1f1 Seland et al. (2020)
UKESM1-0-LL r1i1p1f2 Sellar et al. (2019)



B I B L I O G R A P H Y

Ahlström, A., M. R. Raupach, G. Schurgers, B. Smith, A. Ar-
neth, M. Jung, M. Reichstein, J. G. Canadell, P. Friedlingstein,
A. K. Jain, E. Kato, B. Poulter, S. Sitch, B. D. Stocker, N. Viovy,
Y. P. Wang, A. Wiltshire, S. Zaehle, and N. Zeng (2015). “The
dominant role of semi-arid ecosystems in the trend and vari-
ability of the land CO2 sink.” Science. doi: 10.1126/science.
aaa1668.

Alessandri, A. and A. Navarra (2008). “On the coupling between
vegetation and rainfall inter-annual anomalies: Possible con-
tributions to seasonal rainfall predictability over land areas.”
Geophysical Research Letters 35.2. doi: https://doi.org/10.
1029/2007GL032415.

Anav, A., P. Friedlingstein, C. Beer, P. Ciais, A. Harper, C. Jones,
G. Murray-Tortarolo, D. Papale, N. C. Parazoo, P. Peylin, S.
Piao, S. Sitch, N. Viovy, A. Wiltshire, and M. Zhao (2015).
“Spatiotemporal patterns of terrestrial gross primary produc-
tion: A review.” Reviews of Geophysics 53.3, pp. 785–818. doi:
https://doi.org/10.1002/2015RG000483.

Ardilouze, C., L. Batté, F. Bunzel, D. Decremer, M. Déqué,
F. J. Doblas-Reyes, H. Douville, D. Fereday, V. Guemas, C.
MacLachlan, W. Müller, and C. Prodhomme (2017). “Multi-
model assessment of the impact of soil moisture initializa-
tion on mid-latitude summer predictability.” Climate Dynamics
49.11, pp. 3959–3974. doi: 10.1007/s00382-017-3555-7.

Aubry-Kientz, M., V. Rossi, F. Wagner, and B. Hérault (2015).
“Identifying climatic drivers of tropical forest dynamics.” Bio-
geosciences 12.19, pp. 5583–5596. doi: 10.5194/bg-12-5583-
2015.

Bacastow, R. B. (1976). “Modulation of atmospheric carbon diox-
ide by the Southern Oscillation.” Nature 261.5556, pp. 116–118.
doi: 10.1038/261116a0.

Baldocchi, D., H. Chu, and M. Reichstein (2018). “Inter-annual
variability of net and gross ecosystem carbon fluxes: A re-
view.” Agricultural and Forest Meteorology 249, pp. 520–533.
doi: 10.1016/j.agrformet.2017.05.015.

Baldocchi, D., R. Valentini, S. Running, W. Oechel, and R. Dahlman
(1996). “Strategies for measuring and modelling carbon diox-
ide and water vapour fluxes over terrestrial ecosystems.”

93

https://doi.org/10.1126/science.aaa1668
https://doi.org/10.1126/science.aaa1668
https://doi.org/https://doi.org/10.1029/2007GL032415
https://doi.org/https://doi.org/10.1029/2007GL032415
https://doi.org/https://doi.org/10.1002/2015RG000483
https://doi.org/10.1007/s00382-017-3555-7
https://doi.org/10.5194/bg-12-5583-2015
https://doi.org/10.5194/bg-12-5583-2015
https://doi.org/10.1038/261116a0
https://doi.org/10.1016/j.agrformet.2017.05.015


94 bibliography

Global Change Biology 2.3, pp. 159–168. doi: https://doi.org/
10.1111/j.1365-2486.1996.tb00069.x.

Balmaseda, M. A., K. Mogensen, and A. T. Weaver (2013). “Eval-
uation of the ECMWF ocean reanalysis system ORAS4.” Quar-
terly Journal of the Royal Meteorological Society 139.674, pp. 1132–
1161. doi: https://doi.org/10.1002/qj.2063.

Banzon, V., T. M. Smith, T. M. Chin, C. Liu, and W. Hankins
(2016). “A long-term record of blended satellite and in situ
sea-surface temperature for climate monitoring, modeling and
environmental studies.” Earth System Science Data 8.1, pp. 165–
176. doi: 10.5194/essd-8-165-2016.

Barnston, A. G., M. K. Tippett, M. Ranganathan, and M. L.
L’Heureux (2019). “Deterministic skill of ENSO predictions
from the North American Multimodel Ensemble.” Climate
Dynamics 53.12, pp. 7215–7234. doi: 10.1007/s00382-017-
3603-3.

Bastos, A., S. W. Running, C. Gouveia, and R. M. Trigo (2013).
“The global NPP dependence on ENSO: La Niña and the
extraordinary year of 2011.” Journal of Geophysical Research:
Biogeosciences 118.3, pp. 1247–1255. doi: https://doi.org/10.
1002/jgrg.20100.

Bastos, A., P. Friedlingstein, S. Sitch, C. Chen, A. Mialon, J.-P.
Wigneron, V. K. Arora, P. R. Briggs, J. G. Canadell, P. Ciais,
F. Chevallier, L. Cheng, C. Delire, V. Haverd, A. K. Jain, F.
Joos, E. Kato, S. Lienert, D. Lombardozzi, J. R. Melton, R.
Myneni, J. E. M. S. Nabel, J. Pongratz, B. Poulter, C. Röden-
beck, R. Séférian, H. Tian, C. van Eck, N. Viovy, N. Vuichard,
A. P. Walker, A. Wiltshire, J. Yang, S. Zaehle, N. Zeng, and
D. Zhu (2018). “Impact of the 2015/2016 El Niño on the ter-
restrial carbon cycle constrained by bottom-up and top-down
approaches.” Philosophical Transactions of the Royal Society B:
Biological Sciences 373.1760, p. 20170304. doi: 10.1098/rstb.
2017.0304.

Becker, E. J., H. van den Dool, and M. Peña (2013). “Short-
Term Climate Extremes: Prediction Skill and Predictability.”
Journal of Climate 26.2, pp. 512–531. doi: 10.1175/JCLI-D-12-
00177.1.

Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Car-
valhais, C. Rödenbeck, M. A. Arain, D. Baldocchi, G. B. Bo-
nan, A. Bondeau, A. Cescatti, G. Lasslop, A. Lindroth, M.
Lomas, S. Luyssaert, H. Margolis, K. W. Oleson, O. Roupsard,
E. Veenendaal, N. Viovy, C. Williams, F. I. Woodward, and
D. Papale (2010). “Terrestrial Gross Carbon Dioxide Uptake:

https://doi.org/https://doi.org/10.1111/j.1365-2486.1996.tb00069.x
https://doi.org/https://doi.org/10.1111/j.1365-2486.1996.tb00069.x
https://doi.org/https://doi.org/10.1002/qj.2063
https://doi.org/10.5194/essd-8-165-2016
https://doi.org/10.1007/s00382-017-3603-3
https://doi.org/10.1007/s00382-017-3603-3
https://doi.org/https://doi.org/10.1002/jgrg.20100
https://doi.org/https://doi.org/10.1002/jgrg.20100
https://doi.org/10.1098/rstb.2017.0304
https://doi.org/10.1098/rstb.2017.0304
https://doi.org/10.1175/JCLI-D-12-00177.1
https://doi.org/10.1175/JCLI-D-12-00177.1


bibliography 95

Global Distribution and Covariation with Climate.” Science.
doi: 10.1126/science.1184984.

Bellucci, A., R. Haarsma, N. Bellouin, B. Booth, C. Cagnazzo,
B. v. d. Hurk, N. Keenlyside, T. Koenigk, F. Massonnet, S.
Materia, and M. Weiss (2015). “Advancements in decadal
climate predictability: The role of nonoceanic drivers.” Reviews
of Geophysics 53.2, pp. 165–202. doi: https://doi.org/10.
1002/2014RG000473.

Beobide-Arsuaga, G., T. Bayr, A. Reintges, and M. Latif (2021).
“Uncertainty of ENSO-amplitude projections in CMIP5 and
CMIP6 models.” Climate Dynamics 56.11, pp. 3875–3888. doi:
10.1007/s00382-021-05673-4.

Berkelhammer, M., D. Asaf, C. Still, S. Montzka, D. Noone, M.
Gupta, R. Provencal, H. Chen, and D. Yakir (2014). “Con-
straining surface carbon fluxes using in situ measurements
of carbonyl sulfide and carbon dioxide.” Global Biogeochemical
Cycles 28.2, pp. 161–179. doi: https://doi.org/10.1002/
2013GB004644.

Betts, R. A., C. D. Jones, J. R. Knight, R. F. Keeling, and J. J.
Kennedy (2016). “El Niño and a record CO2 rise.” Nature
Climate Change 6.9, pp. 806–810. doi: 10.1038/nclimate3063.

Bloom, A. A., J.-F. Exbrayat, I. R. van der Velde, L. Feng, and M.
Williams (2016). “The decadal state of the terrestrial carbon
cycle: Global retrievals of terrestrial carbon allocation, pools,
and residence times.” Proceedings of the National Academy of
Sciences of the United States of America 113.5, pp. 1285–1290.
doi: 10.1073/pnas.1515160113.

Boer, G. J., V. V. Kharin, and W. J. Merryfield (2013). “Decadal
predictability and forecast skill.” Climate Dynamics 41.7-8,
pp. 1817–1833. doi: 10.1007/s00382-013-1705-0.

Boer, G. J., D. M. Smith, C. Cassou, F. Doblas-Reyes, G. Dan-
abasoglu, B. Kirtman, Y. Kushnir, M. Kimoto, G. A. Meehl,
R. Msadek, W. A. Mueller, K. E. Taylor, F. Zwiers, M. Rixen,
Y. Ruprich-Robert, and R. Eade (2016). “The Decadal Climate
Prediction Project (DCPP) contribution to CMIP6.” Geoscien-
tific Model Development 9.10, pp. 3751–3777. doi: 10.5194/gmd-
9-3751-2016.

Bonan, G. B. and S. C. Doney (2018). “Climate, ecosystems, and
planetary futures: The challenge to predict life in Earth system
models.” Science. doi: 10.1126/science.aam8328.

Bonan, G. B., D. L. Lombardozzi, W. R. Wieder, K. W. Ole-
son, D. M. Lawrence, F. M. Hoffman, and N. Collier (2019).
“Model Structure and Climate Data Uncertainty in Histori-

https://doi.org/10.1126/science.1184984
https://doi.org/https://doi.org/10.1002/2014RG000473
https://doi.org/https://doi.org/10.1002/2014RG000473
https://doi.org/10.1007/s00382-021-05673-4
https://doi.org/https://doi.org/10.1002/2013GB004644
https://doi.org/https://doi.org/10.1002/2013GB004644
https://doi.org/10.1038/nclimate3063
https://doi.org/10.1073/pnas.1515160113
https://doi.org/10.1007/s00382-013-1705-0
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.5194/gmd-9-3751-2016
https://doi.org/10.1126/science.aam8328


96 bibliography

cal Simulations of the Terrestrial Carbon Cycle (1850–2014).”
Global Biogeochemical Cycles 33.10, pp. 1310–1326. doi: https:
//doi.org/10.1029/2019GB006175.

Boucher, O., J. Servonnat, A. L. Albright, O. Aumont, Y. Balka-
nski, V. Bastrikov, S. Bekki, R. Bonnet, S. Bony, L. Bopp, P.
Braconnot, P. Brockmann, P. Cadule, A. Caubel, F. Cheruy,
F. Codron, A. Cozic, D. Cugnet, F. D’Andrea, P. Davini, C. d.
Lavergne, S. Denvil, J. Deshayes, M. Devilliers, A. Ducharne,
J.-L. Dufresne, E. Dupont, C. Éthé, L. Fairhead, L. Falletti,
S. Flavoni, M.-A. Foujols, S. Gardoll, G. Gastineau, J. Ghat-
tas, J.-Y. Grandpeix, B. Guenet, L. Guez E., E. Guilyardi, M.
Guimberteau, D. Hauglustaine, F. Hourdin, A. Idelkadi, S.
Joussaume, M. Kageyama, M. Khodri, G. Krinner, N. Lebas,
G. Levavasseur, C. Lévy, L. Li, F. Lott, T. Lurton, S. Luys-
saert, G. Madec, J.-B. Madeleine, F. Maignan, M. Marchand,
O. Marti, L. Mellul, Y. Meurdesoif, J. Mignot, I. Musat, C.
Ottlé, P. Peylin, Y. Planton, J. Polcher, C. Rio, N. Rochetin,
C. Rousset, P. Sepulchre, A. Sima, D. Swingedouw, R. Thiéble-
mont, A. K. Traore, M. Vancoppenolle, J. Vial, J. Vialard, N.
Viovy, and N. Vuichard (2020). “Presentation and Evaluation
of the IPSL-CM6A-LR Climate Model.” Journal of Advances
in Modeling Earth Systems 12.7, e2019MS002010. doi: https:
//doi.org/10.1029/2019MS002010.

Brady, R. and A. Spring (2021). “climpred: Verification of weather
and climate forecasts.” Journal of Open Source Software 6.59,
p. 2781. doi: 10.21105/joss.02781.

Carrassi, A., M. Bocquet, L. Bertino, and G. Evensen (2018).
“Data assimilation in the geosciences: An overview of methods,
issues, and perspectives.” WIREs Climate Change 9.5, e535. doi:
https://doi.org/10.1002/wcc.535.

Chadburn, S. E., E. J. Burke, P. M. Cox, P. Friedlingstein, G.
Hugelius, and S. Westermann (2017). “An observation-based
constraint on permafrost loss as a function of global warm-
ing.” Nature Climate Change 7.5, pp. 340–344. doi: 10.1038/
nclimate3262.

Chen, M., R. Rafique, G. R. Asrar, B. Bond-Lamberty, P. Ciais,
F. Zhao, C. P. O. Reyer, S. Ostberg, J. Chang, A. Ito, J. Yang, N.
Zeng, E. Kalnay, T. West, G. Leng, L. Francois, G. Munhoven,
A. Henrot, H. Tian, S. Pan, K. Nishina, N. Viovy, C. Mor-
fopoulos, R. Betts, S. Schaphoff, J. Steinkamp, and T. Hickler
(2017). “Regional contribution to variability and trends of
global gross primary productivity.” Environmental Research
Letters 12.10, p. 105005. doi: 10.1088/1748-9326/aa8978.

https://doi.org/https://doi.org/10.1029/2019GB006175
https://doi.org/https://doi.org/10.1029/2019GB006175
https://doi.org/https://doi.org/10.1029/2019MS002010
https://doi.org/https://doi.org/10.1029/2019MS002010
https://doi.org/10.21105/joss.02781
https://doi.org/https://doi.org/10.1002/wcc.535
https://doi.org/10.1038/nclimate3262
https://doi.org/10.1038/nclimate3262
https://doi.org/10.1088/1748-9326/aa8978


bibliography 97

Chen, S., Y. Huang, J. Zou, Q. Shen, Z. Hu, Y. Qin, H. Chen,
and G. Pan (2010). “Modeling interannual variability of global
soil respiration from climate and soil properties.” Agricultural
and Forest Meteorology 150.4, pp. 590–605. doi: 10.1016/j.
agrformet.2010.02.004.

Chen, W. Y. and H. M. V. d. Dool (1997). “Atmospheric Pre-
dictability of Seasonal, Annual, and Decadal Climate Means
and the Role of the ENSO Cycle: A Model Study.” Journal of
Climate 10.6, pp. 1236–1254. doi: 10.1175/1520-0442(1997)
010<1236:APOSAA>2.0.CO;2.

Cherchi, A., P. G. Fogli, T. Lovato, D. Peano, D. Iovino, S. Gualdi,
S. Masina, E. Scoccimarro, S. Materia, A. Bellucci, and A.
Navarra (2019). “Global Mean Climate and Main Patterns
of Variability in the CMCC-CM2 Coupled Model.” Journal
of Advances in Modeling Earth Systems 11.1, pp. 185–209. doi:
https://doi.org/10.1029/2018MS001369.

Cheruy, F., A. Ducharne, F. Hourdin, I. Musat, Vignon, G. Gastineau,
V. Bastrikov, N. Vuichard, B. Diallo, J.-L. Dufresne, J. Ghat-
tas, J.-Y. Grandpeix, A. Idelkadi, L. Mellul, F. Maignan, M.
Ménégoz, C. Ottlé, P. Peylin, J. Servonnat, F. Wang, and Y.
Zhao (2020). “Improved Near-Surface Continental Climate
in IPSL-CM6A-LR by Combined Evolutions of Atmospheric
and Land Surface Physics.” Journal of Advances in Modeling
Earth Systems 12.10, e2019MS002005. doi: https://doi.org/
10.1029/2019MS002005.

Chikamoto, Y., A. Timmermann, S. Stevenson, P. DiNezio, and
S. Langford (2015). “Decadal predictability of soil water, vege-
tation, and wildfire frequency over North America.” Climate
Dynamics 45.7, pp. 2213–2235. doi: 10.1007/s00382- 015-
2469-5.

Chikamoto, Y., A. Timmermann, M. J. Widlansky, M. A. Bal-
maseda, and L. Stott (2017). “Multi-year predictability of cli-
mate, drought, and wildfire in southwestern North America.”
Scientific Reports 7.1, p. 6568. doi: 10.1038/s41598-017-06869-
7.

Ciais, P. et al. (2013). Carbon and Other Biogeochemical Cycles.
Cambridge University Press. isbn: 978-1-107-05799-9.

Coleman, K., D. S. Jenkinson, G. J. Crocker, P. R. Grace, J. Klír, M.
Körschens, P. R. Poulton, and D. D. Richter (1997). “Simulating
trends in soil organic carbon in long-term experiments using
RothC-26.3.” Geoderma. Evaluation and Comparison of Soil
Organic Matter Models 81.1, pp. 29–44. doi: 10.1016/S0016-
7061(97)00079-7.

https://doi.org/10.1016/j.agrformet.2010.02.004
https://doi.org/10.1016/j.agrformet.2010.02.004
https://doi.org/10.1175/1520-0442(1997)010<1236:APOSAA>2.0.CO;2
https://doi.org/10.1175/1520-0442(1997)010<1236:APOSAA>2.0.CO;2
https://doi.org/https://doi.org/10.1029/2018MS001369
https://doi.org/https://doi.org/10.1029/2019MS002005
https://doi.org/https://doi.org/10.1029/2019MS002005
https://doi.org/10.1007/s00382-015-2469-5
https://doi.org/10.1007/s00382-015-2469-5
https://doi.org/10.1038/s41598-017-06869-7
https://doi.org/10.1038/s41598-017-06869-7
https://doi.org/10.1016/S0016-7061(97)00079-7
https://doi.org/10.1016/S0016-7061(97)00079-7


98 bibliography

Collalti, A., A. Ibrom, A. Stockmarr, A. Cescatti, R. Alkama, M.
Fernández-Martínez, G. Matteucci, S. Sitch, P. Friedlingstein,
P. Ciais, D. S. Goll, J. E. M. S. Nabel, J. Pongratz, A. Arneth, V.
Haverd, and I. C. Prentice (2020). “Forest production efficiency
increases with growth temperature.” Nature Communications
11.1, p. 5322. doi: 10.1038/s41467-020-19187-w.

Collier, N., F. M. Hoffman, D. M. Lawrence, G. Keppel-Aleks,
C. D. Koven, W. J. Riley, M. Mu, and J. T. Randerson (2018).
“The International Land Model Benchmarking (ILAMB) Sys-
tem: Design, Theory, and Implementation.” Journal of Advances
in Modeling Earth Systems 10.11, pp. 2731–2754. doi: https:
//doi.org/10.1029/2018MS001354.

Collins, M. and B. Sinha (2003). “Predictability of decadal varia-
tions in the thermohaline circulation and climate.” Geophys-
ical Research Letters 30.6. doi: https://doi.org/10.1029/
2002GL016504.

Danabasoglu, G., J.-F. Lamarque, J. Bacmeister, D. A. Bailey, A. K.
DuVivier, J. Edwards, L. K. Emmons, J. Fasullo, R. Garcia, A.
Gettelman, C. Hannay, M. M. Holland, W. G. Large, P. H.
Lauritzen, D. M. Lawrence, J. T. M. Lenaerts, K. Lindsay,
W. H. Lipscomb, M. J. Mills, R. Neale, K. W. Oleson, B. Otto-
Bliesner, A. S. Phillips, W. Sacks, S. Tilmes, L. v. Kampenhout,
M. Vertenstein, A. Bertini, J. Dennis, C. Deser, C. Fischer,
B. Fox-Kemper, J. E. Kay, D. Kinnison, P. J. Kushner, V. E.
Larson, M. C. Long, S. Mickelson, J. K. Moore, E. Nienhouse, L.
Polvani, P. J. Rasch, and W. G. Strand (2020). “The Community
Earth System Model Version 2 (CESM2).” Journal of Advances
in Modeling Earth Systems 12.2, e2019MS001916. doi: https:
//doi.org/10.1029/2019MS001916.

Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli,
S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P.
Bauer, P. Bechtold, A. C. M. Beljaars, L. v. d. Berg, J. Bidlot,
N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer,
L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hólm, L. Isak-
sen, P. Kållberg, M. Köhler, M. Matricardi, A. P. McNally,
B. M. Monge-Sanz, J.-J. Morcrette, B.-K. Park, C. Peubey, P. d.
Rosnay, C. Tavolato, J.-N. Thépaut, and F. Vitart (2011). “The
ERA-Interim reanalysis: configuration and performance of
the data assimilation system.” Quarterly Journal of the Royal
Meteorological Society 137.656, pp. 553–597. doi: https://doi.
org/10.1002/qj.828.

Denissen, J. M. C., A. J. Teuling, A. J. Pitman, S. Koirala, M.
Migliavacca, W. Li, M. Reichstein, A. J. Winkler, C. Zhan, and

https://doi.org/10.1038/s41467-020-19187-w
https://doi.org/https://doi.org/10.1029/2018MS001354
https://doi.org/https://doi.org/10.1029/2018MS001354
https://doi.org/https://doi.org/10.1029/2002GL016504
https://doi.org/https://doi.org/10.1029/2002GL016504
https://doi.org/https://doi.org/10.1029/2019MS001916
https://doi.org/https://doi.org/10.1029/2019MS001916
https://doi.org/https://doi.org/10.1002/qj.828
https://doi.org/https://doi.org/10.1002/qj.828


bibliography 99

R. Orth (2022). “Widespread shift from ecosystem energy to
water limitation with climate change.” Nature Climate Change
12.7, pp. 677–684. doi: 10.1038/s41558-022-01403-8.

DiNezio, P. N., C. Deser, A. Karspeck, S. Yeager, Y. Okumura,
G. Danabasoglu, N. Rosenbloom, J. Caron, and G. A. Meehl
(2017). “A 2 Year Forecast for a 60–80% Chance of La Niña
in 2017–2018.” Geophysical Research Letters 44.22, pp. 11,624–
11,635. doi: https://doi.org/10.1002/2017GL074904.

Dirkson, A., W. J. Merryfield, and A. Monahan (2017). “Impacts
of Sea Ice Thickness Initialization on Seasonal Arctic Sea
Ice Predictions.” Journal of Climate 30.3, pp. 1001–1017. doi:
10.1175/JCLI-D-16-0437.1.

Dirmeyer, P. A., S. Halder, and R. Bombardi (2018). “On the
Harvest of Predictability From Land States in a Global Fore-
cast Model.” Journal of Geophysical Research: Atmospheres 123.23,
pp. 13,111–13,127. doi: https://doi.org/10.1029/2018JD029103.

Donohue, R. J., M. L. Roderick, T. R. McVicar, and G. D. Farquhar
(2013). “Impact of CO2 fertilization on maximum foliage cover
across the globe’s warm, arid environments.” Geophysical Re-
search Letters 40.12, pp. 3031–3035. doi: https://doi.org/10.
1002/grl.50563.

Estella-Perez, V., J. Mignot, E. Guilyardi, D. Swingedouw, and
G. Reverdin (2020). “Advances in reconstructing the AMOC
using sea surface observations of salinity.” Climate Dynamics
55.3, pp. 975–992. doi: 10.1007/s00382-020-05304-4.

Fang, Y., A. M. Michalak, C. R. Schwalm, D. N. Huntzinger,
J. A. Berry, P. Ciais, S. Piao, B. Poulter, J. B. Fisher, R. B. Cook,
D. Hayes, M. Huang, A. Ito, A. Jain, H. Lei, C. Lu, J. Mao,
N. C. Parazoo, S. Peng, D. M. Ricciuto, X. Shi, B. Tao, H. Tian,
W. Wang, Y. Wei, and J. Yang (2017). “Global land carbon
sink response to temperature and precipitation varies with
ENSO phase.” Environmental Research Letters 12.6, p. 064007.
doi: 10.1088/1748-9326/aa6e8e.

Feng, X., T. DelSole, and P. Houser (2011). “Bootstrap estimated
seasonal potential predictability of global temperature and
precipitation.” Geophysical Research Letters 38.7. doi: https:
//doi.org/10.1029/2010GL046511.

Flato, G. M. (2011). “Earth system models: an overview.” WIREs
Climate Change 2.6, pp. 783–800. doi: https://doi.org/10.
1002/wcc.148.

Friedlingstein, P., M. O’Sullivan, M. W. Jones, R. M. Andrew,
J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch,
C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin,

https://doi.org/10.1038/s41558-022-01403-8
https://doi.org/https://doi.org/10.1002/2017GL074904
https://doi.org/10.1175/JCLI-D-16-0437.1
https://doi.org/https://doi.org/10.1029/2018JD029103
https://doi.org/https://doi.org/10.1002/grl.50563
https://doi.org/https://doi.org/10.1002/grl.50563
https://doi.org/10.1007/s00382-020-05304-4
https://doi.org/10.1088/1748-9326/aa6e8e
https://doi.org/https://doi.org/10.1029/2010GL046511
https://doi.org/https://doi.org/10.1029/2010GL046511
https://doi.org/https://doi.org/10.1002/wcc.148
https://doi.org/https://doi.org/10.1002/wcc.148


100 bibliography

L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker,
A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra,
F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster,
T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N.
Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T.
Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I.
Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert,
Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro,
J. E. M. S. Nabel, S.-I. Nakaoka, Y. Niwa, K. O’Brien, T. Ono,
P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson,
C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P.
Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook,
G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof,
A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, and
S. Zaehle (2020). “Global Carbon Budget 2020.” Earth System
Science Data 12.4, pp. 3269–3340. doi: 10.5194/essd-12-3269-
2020.

Giorgetta, M. A., J. Jungclaus, C. H. Reick, S. Legutke, J. Bader,
M. Böttinger, V. Brovkin, T. Crueger, M. Esch, K. Fieg, K.
Glushak, V. Gayler, H. Haak, H.-D. Hollweg, T. Ilyina, S.
Kinne, L. Kornblueh, D. Matei, T. Mauritsen, U. Mikolajewicz,
W. Mueller, D. Notz, F. Pithan, T. Raddatz, S. Rast, R. Redler,
E. Roeckner, H. Schmidt, R. Schnur, J. Segschneider, K. D.
Six, M. Stockhause, C. Timmreck, J. Wegner, H. Widmann,
K.-H. Wieners, M. Claussen, J. Marotzke, and B. Stevens (2013).
“Climate and carbon cycle changes from 1850 to 2100 in MPI-
ESM simulations for the Coupled Model Intercomparison
Project phase 5.” Journal of Advances in Modeling Earth Systems
5.3, pp. 572–597. doi: https://doi.org/10.1002/jame.20038.

Golaz, J.-C., P. M. Caldwell, L. P. V. Roekel, M. R. Petersen, Q.
Tang, J. D. Wolfe, G. Abeshu, V. Anantharaj, X. S. Asay-Davis,
D. C. Bader, S. A. Baldwin, G. Bisht, P. A. Bogenschutz, M.
Branstetter, M. A. Brunke, S. R. Brus, S. M. Burrows, P. J.
Cameron-Smith, A. S. Donahue, M. Deakin, R. C. Easter, K. J.
Evans, Y. Feng, M. Flanner, J. G. Foucar, J. G. Fyke, B. M.
Griffin, C. Hannay, B. E. Harrop, M. J. Hoffman, E. C. Hunke,
R. L. Jacob, D. W. Jacobsen, N. Jeffery, P. W. Jones, N. D.
Keen, S. A. Klein, V. E. Larson, L. R. Leung, H.-Y. Li, W.
Lin, W. H. Lipscomb, P.-L. Ma, S. Mahajan, M. E. Maltrud,
A. Mametjanov, J. L. McClean, R. B. McCoy, R. B. Neale,
S. F. Price, Y. Qian, P. J. Rasch, J. E. J. R. Eyre, W. J. Riley,
T. D. Ringler, A. F. Roberts, E. L. Roesler, A. G. Salinger, Z.
Shaheen, X. Shi, B. Singh, J. Tang, M. A. Taylor, P. E. Thornton,

https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/10.5194/essd-12-3269-2020
https://doi.org/https://doi.org/10.1002/jame.20038


bibliography 101

A. K. Turner, M. Veneziani, H. Wan, H. Wang, S. Wang, D. N.
Williams, P. J. Wolfram, P. H. Worley, S. Xie, Y. Yang, J.-H. Yoon,
M. D. Zelinka, C. S. Zender, X. Zeng, C. Zhang, K. Zhang,
Y. Zhang, X. Zheng, T. Zhou, and Q. Zhu (2019). “The DOE
E3SM Coupled Model Version 1: Overview and Evaluation
at Standard Resolution.” Journal of Advances in Modeling Earth
Systems 11.7, pp. 2089–2129. doi: https://doi.org/10.1029/
2018MS001603.

Good, S. A., M. J. Martin, and N. A. Rayner (2013). “EN4: Qual-
ity controlled ocean temperature and salinity profiles and
monthly objective analyses with uncertainty estimates.” Jour-
nal of Geophysical Research: Oceans 118.12, pp. 6704–6716. doi:
https://doi.org/10.1002/2013JC009067.

Griffies, S. M. and K. Bryan (1997). “A predictability study of
simulated North Atlantic multidecadal variability.” Climate
Dynamics 13.7-8, pp. 459–487. doi: 10.1007/s003820050177.

Grünzweig, J. M., H. J. De Boeck, A. Rey, M. J. Santos, O. Adam,
M. Bahn, J. Belnap, G. Deckmyn, S. C. Dekker, O. Flores,
D. Gliksman, D. Helman, K. R. Hultine, L. Liu, E. Meron,
Y. Michael, E. Sheffer, H. L. Throop, O. Tzuk, and D. Yakir
(2022). “Dryland mechanisms could widely control ecosystem
functioning in a drier and warmer world.” Nature Ecology
& Evolution 6.8, pp. 1064–1076. doi: 10.1038/s41559-022-
01779-y.

Guo, Z. and P. A. Dirmeyer (2013). “Interannual Variability of
Land–Atmosphere Coupling Strength.” Journal of Hydrometeo-
rology 14.5, pp. 1636–1646. doi: 10.1175/JHM-D-12-0171.1.

Hagemann, S. and T. Stacke (2015). “Impact of the soil hydrology
scheme on simulated soil moisture memory.” Climate Dynam-
ics 44.7, pp. 1731–1750. doi: 10.1007/s00382-014-2221-6.

Harris, R. M. B., L. J. Beaumont, T. R. Vance, C. R. Tozer, T. A.
Remenyi, S. E. Perkins-Kirkpatrick, P. J. Mitchell, A. B. Nico-
tra, S. McGregor, N. R. Andrew, M. Letnic, M. R. Kearney,
T. Wernberg, L. B. Hutley, L. E. Chambers, M.-S. Fletcher,
M. R. Keatley, C. A. Woodward, G. Williamson, N. C. Duke,
and D. M. J. S. Bowman (2018). “Biological responses to the
press and pulse of climate trends and extreme events.” Nature
Climate Change 8.7, pp. 579–587. doi: 10.1038/s41558-018-
0187-9.

Hashimoto, H., R. R. Nemani, M. A. White, W. M. Jolly, S. C.
Piper, C. D. Keeling, R. B. Myneni, and S. W. Running (2004).
“El Niño–Southern Oscillation–induced variability in terres-

https://doi.org/https://doi.org/10.1029/2018MS001603
https://doi.org/https://doi.org/10.1029/2018MS001603
https://doi.org/https://doi.org/10.1002/2013JC009067
https://doi.org/10.1007/s003820050177
https://doi.org/10.1038/s41559-022-01779-y
https://doi.org/10.1038/s41559-022-01779-y
https://doi.org/10.1175/JHM-D-12-0171.1
https://doi.org/10.1007/s00382-014-2221-6
https://doi.org/10.1038/s41558-018-0187-9
https://doi.org/10.1038/s41558-018-0187-9


102 bibliography

trial carbon cycling.” Journal of Geophysical Research: Atmo-
spheres 109.D23. doi: 10.1029/2004JD004959.

Holmgren, M., M. Scheffer, E. Ezcurra, J. R. Gutiérrez, and
G. M. J. Mohren (2001). “El Niño effects on the dynamics
of terrestrial ecosystems.” Trends in Ecology & Evolution 16.2,
pp. 89–94. doi: 10.1016/S0169-5347(00)02052-8.

Hu, Q., T. Li, X. Deng, T. Wu, P. Zhai, D. Huang, X. Fan, Y. Zhu,
Y. Lin, X. Xiao, X. Chen, X. Zhao, L. Wang, and Z. Qin (2022).
“Intercomparison of global terrestrial carbon fluxes estimated
by MODIS and Earth system models.” Science of The Total
Environment 810, p. 152231. doi: 10.1016/j.scitotenv.2021.
152231.

Hurrell, J. W., M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, P. J.
Kushner, J.-F. Lamarque, W. G. Large, D. Lawrence, K. Lind-
say, W. H. Lipscomb, M. C. Long, N. Mahowald, D. R. Marsh,
R. B. Neale, P. Rasch, S. Vavrus, M. Vertenstein, D. Bader,
W. D. Collins, J. J. Hack, J. Kiehl, and S. Marshall (2013). “The
Community Earth System Model: A Framework for Collabo-
rative Research.” Bulletin of the American Meteorological Society
94.9, pp. 1339–1360. doi: 10.1175/BAMS-D-12-00121.1.

Ilyina, T., H. Li, A. Spring, W. A. Müller, L. Bopp, M. O. Chikamoto,
G. Danabasoglu, M. Dobrynin, J. Dunne, F. Fransner, P. Friedling-
stein, W. Lee, N. S. Lovenduski, W. J. Merryfield, J. Mignot,
J. Y. Park, R. Séférian, R. Sospedra-Alfonso, M. Watanabe,
and S. Yeager (2021). “Predictable Variations of the Carbon
Sinks and Atmospheric CO2 Growth in a Multi-Model Frame-
work.” Geophysical Research Letters 48.6, e2020GL090695. doi:
https://doi.org/10.1029/2020GL090695.

Iturbide, M., J. M. Gutiérrez, L. M. Alves, J. Bedia, R. Cerezo-
Mota, E. Cimadevilla, A. S. Cofiño, A. Di Luca, S. H. Faria,
I. V. Gorodetskaya, M. Hauser, S. Herrera, K. Hennessy, H. T.
Hewitt, R. G. Jones, S. Krakovska, R. Manzanas, D. Martínez-
Castro, G. T. Narisma, I. S. Nurhati, I. Pinto, S. I. Seneviratne,
B. van den Hurk, and C. S. Vera (2020). “An update of IPCC
climate reference regions for subcontinental analysis of cli-
mate model data: definition and aggregated datasets.” Earth
System Science Data 12.4, pp. 2959–2970. doi: 10.5194/essd-
12-2959-2020.

Jolliffe, I. T. and D. B. Stephenson (2012). Forecast Verification:
A Practitioner’s Guide in Atmospheric Science. 2nd. Chichester:
John Wiley & Sons. isbn: 978-1-119-96107-9.

Jones, C. D., M. Collins, P. M. Cox, and S. A. Spall (2001). “The
Carbon Cycle Response to ENSO: A Coupled Climate–Carbon

https://doi.org/10.1029/2004JD004959
https://doi.org/10.1016/S0169-5347(00)02052-8
https://doi.org/10.1016/j.scitotenv.2021.152231
https://doi.org/10.1016/j.scitotenv.2021.152231
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/https://doi.org/10.1029/2020GL090695
https://doi.org/10.5194/essd-12-2959-2020
https://doi.org/10.5194/essd-12-2959-2020


bibliography 103

Cycle Model Study.” Journal of Climate 14.21, pp. 4113–4129.
doi: 10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2.

Jung, M., S. Koirala, U. Weber, K. Ichii, F. Gans, G. Camps-Valls,
D. Papale, C. Schwalm, G. Tramontana, and M. Reichstein
(2019). “The FLUXCOM ensemble of global land-atmosphere
energy fluxes.” Scientific Data 6.1, p. 74. doi: 10.1038/s41597-
019-0076-8.

Jung, M., M. Reichstein, H. A. Margolis, A. Cescatti, A. D.
Richardson, M. A. Arain, A. Arneth, C. Bernhofer, D. Bonal,
J. Chen, D. Gianelle, N. Gobron, G. Kiely, W. Kutsch, G. Lass-
lop, B. E. Law, A. Lindroth, L. Merbold, L. Montagnani, E. J.
Moors, D. Papale, M. Sottocornola, F. Vaccari, and C. Williams
(2011). “Global patterns of land-atmosphere fluxes of carbon
dioxide, latent heat, and sensible heat derived from eddy
covariance, satellite, and meteorological observations.” Jour-
nal of Geophysical Research: Biogeosciences 116.G3. doi: https:
//doi.org/10.1029/2010JG001566.

Jung, M., M. Reichstein, C. R. Schwalm, C. Huntingford, S.
Sitch, A. Ahlström, A. Arneth, G. Camps-Valls, P. Ciais, P.
Friedlingstein, F. Gans, K. Ichii, A. K. Jain, E. Kato, D. Pa-
pale, B. Poulter, B. Raduly, C. Rödenbeck, G. Tramontana, N.
Viovy, Y.-P. Wang, U. Weber, S. Zaehle, and N. Zeng (2017).
“Compensatory water effects link yearly global land CO2 sink
changes to temperature.” Nature 541.7638, pp. 516–520. doi:
10.1038/nature20780.

Jungclaus, J. H., S. J. Lorenz, H. Schmidt, V. Brovkin, N. Brügge-
mann, F. Chegini, T. Crüger, P. De-Vrese, V. Gayler, M. A.
Giorgetta, O. Gutjahr, H. Haak, S. Hagemann, M. Hanke,
T. Ilyina, P. Korn, J. Kröger, L. Linardakis, C. Mehlmann,
U. Mikolajewicz, W. A. Müller, J. E. M. S. Nabel, D. Notz,
H. Pohlmann, D. A. Putrasahan, T. Raddatz, L. Ramme, R.
Redler, C. H. Reick, T. Riddick, T. Sam, R. Schneck, R. Schnur,
M. Schupfner, J.-S. v. Storch, F. Wachsmann, K.-H. Wieners,
F. Ziemen, B. Stevens, J. Marotzke, and M. Claussen (2022).
“The ICON Earth System Model Version 1.0.” Journal of Ad-
vances in Modeling Earth Systems 14.4, e2021MS002813. doi:
https://doi.org/10.1029/2021MS002813.

Kaisermann, A., F. T. d. Vries, R. I. Griffiths, and R. D. Bardgett
(2017). “Legacy effects of drought on plant–soil feedbacks and
plant–plant interactions.” New Phytologist 215.4, pp. 1413–1424.
doi: https://doi.org/10.1111/nph.14661.

Kataoka, T., H. Tatebe, H. Koyama, T. Mochizuki, K. Ogochi,
H. Naoe, Y. Imada, H. Shiogama, M. Kimoto, and M. Watan-

https://doi.org/10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/10.1038/s41597-019-0076-8
https://doi.org/https://doi.org/10.1029/2010JG001566
https://doi.org/https://doi.org/10.1029/2010JG001566
https://doi.org/10.1038/nature20780
https://doi.org/https://doi.org/10.1029/2021MS002813
https://doi.org/https://doi.org/10.1111/nph.14661


104 bibliography

abe (2020). “Seasonal to Decadal Predictions With MIROC6:
Description and Basic Evaluation.” Journal of Advances in Mod-
eling Earth Systems 12.12, e2019MS002035. doi: https://doi.
org/10.1029/2019MS002035.

Kay, J. E., C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand,
J. M. Arblaster, S. C. Bates, G. Danabasoglu, J. Edwards, M.
Holland, P. Kushner, J.-F. Lamarque, D. Lawrence, K. Lindsay,
A. Middleton, E. Munoz, R. Neale, K. Oleson, L. Polvani, and
M. Vertenstein (2015). “The Community Earth System Model
(CESM) Large Ensemble Project: A Community Resource for
Studying Climate Change in the Presence of Internal Climate
Variability.” Bulletin of the American Meteorological Society 96.8,
pp. 1333–1349. doi: 10.1175/BAMS-D-13-00255.1.

Knapp, A. K. and M. D. Smith (2001). “Variation Among Biomes
in Temporal Dynamics of Aboveground Primary Production.”
Science. doi: 10.1126/science.291.5503.481.

Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda,
K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka,
and K. Takahashi (2015). “The JRA-55 Reanalysis: General
Specifications and Basic Characteristics.” Journal of the Mete-
orological Society of Japan. Ser. II 93.1, pp. 5–48. doi: 10.2151/
jmsj.2015-001.

Koster, R. D., S. P. P. Mahanama, T. J. Yamada, G. Balsamo,
A. A. Berg, M. Boisserie, P. A. Dirmeyer, F. J. Doblas-Reyes,
G. Drewitt, C. T. Gordon, Z. Guo, J.-H. Jeong, W.-S. Lee, Z.
Li, L. Luo, S. Malyshev, W. J. Merryfield, S. I. Seneviratne,
T. Stanelle, B. J. J. M. van den Hurk, F. Vitart, and E. F. Wood
(2011). “The Second Phase of the Global Land–Atmosphere
Coupling Experiment: Soil Moisture Contributions to Subsea-
sonal Forecast Skill.” Journal of Hydrometeorology 12.5, pp. 805–
822. doi: 10.1175/2011JHM1365.1.

Krull, E. S., J. A. Baldock, and J. O. Skjemstad (2003). “Impor-
tance of mechanisms and processes of the stabilisation of soil
organic matter for modelling carbon turnover.” Functional
Plant Biology 30.2, pp. 207–222. doi: 10.1071/fp02085.

Kumar, A., P. Peng, and M. Chen (2014). “Is There a Relationship
between Potential and Actual Skill?” Monthly Weather Review
142.6, pp. 2220–2227. doi: 10.1175/MWR-D-13-00287.1.

Kumar, S., M. Newman, D. M. Lawrence, M.-H. Lo, S. Akula,
C.-W. Lan, B. Livneh, and D. Lombardozzi (2020). “The GLACE-
Hydrology Experiment: Effects of Land–Atmosphere Cou-
pling on Soil Moisture Variability and Predictability.” Journal

https://doi.org/https://doi.org/10.1029/2019MS002035
https://doi.org/https://doi.org/10.1029/2019MS002035
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1126/science.291.5503.481
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1175/2011JHM1365.1
https://doi.org/10.1071/fp02085
https://doi.org/10.1175/MWR-D-13-00287.1


bibliography 105

of Climate 33.15, pp. 6511–6529. doi: 10.1175/JCLI-D-19-
0598.1.

Lawrence, D. M., R. A. Fisher, C. D. Koven, K. W. Oleson, S. C.
Swenson, G. Bonan, N. Collier, B. Ghimire, L. v. Kampen-
hout, D. Kennedy, E. Kluzek, P. J. Lawrence, F. Li, H. Li,
D. Lombardozzi, W. J. Riley, W. J. Sacks, M. Shi, M. Verten-
stein, W. R. Wieder, C. Xu, A. A. Ali, A. M. Badger, G. Bisht,
M. v. d. Broeke, M. A. Brunke, S. P. Burns, J. Buzan, M. Clark,
A. Craig, K. Dahlin, B. Drewniak, J. B. Fisher, M. Flanner,
A. M. Fox, P. Gentine, F. Hoffman, G. Keppel-Aleks, R. Knox,
S. Kumar, J. Lenaerts, L. R. Leung, W. H. Lipscomb, Y. Lu,
A. Pandey, J. D. Pelletier, J. Perket, J. T. Randerson, D. M.
Ricciuto, B. M. Sanderson, A. Slater, Z. M. Subin, J. Tang,
R. Q. Thomas, M. V. Martin, and X. Zeng (2019). “The Com-
munity Land Model Version 5: Description of New Features,
Benchmarking, and Impact of Forcing Uncertainty.” Journal of
Advances in Modeling Earth Systems 11.12, pp. 4245–4287. doi:
https://doi.org/10.1029/2018MS001583.

Lawrence, D. M., K. W. Oleson, M. G. Flanner, P. E. Thorn-
ton, S. C. Swenson, P. J. Lawrence, X. Zeng, Z.-L. Yang, S.
Levis, K. Sakaguchi, G. B. Bonan, and A. G. Slater (2011).
“Parameterization improvements and functional and struc-
tural advances in Version 4 of the Community Land Model.”
Journal of Advances in Modeling Earth Systems 3.1. doi: https:
//doi.org/10.1029/2011MS00045.

Le Page, Y., J. M. C. Pereira, R. Trigo, C. da Camara, D. Oom, and
B. Mota (2008). “Global fire activity patterns (1996–2006) and
climatic influence: an analysis using the World Fire Atlas.”
Atmospheric Chemistry and Physics 8.7, pp. 1911–1924. doi: 10.
5194/acp-8-1911-2008.

Lee, E., F.-W. Zeng, R. D. Koster, B. Weir, L. E. Ott, and B.
Poulter (2018). “The impact of spatiotemporal variability in
atmospheric CO2 concentration on global terrestrial carbon
fluxes.” Biogeosciences 15.18, pp. 5635–5652. doi: 10.5194/bg-
15-5635-2018.

Li, H., T. Ilyina, T. Loughran, A. Spring, and J. Pongratz (2022).
“Reconstructions and predictions of the global carbon budget
with an emission-driven Earth System Model.” Earth System
Dynamics Discussions, pp. 1–26. doi: 10.5194/esd-2022-37.

Liu, J., K. W. Bowman, D. S. Schimel, N. C. Parazoo, Z. Jiang,
M. Lee, A. A. Bloom, D. Wunch, C. Frankenberg, Y. Sun, C. W.
O’Dell, K. R. Gurney, D. Menemenlis, M. Gierach, D. Crisp,
and A. Eldering (2017). “Contrasting carbon cycle responses

https://doi.org/10.1175/JCLI-D-19-0598.1
https://doi.org/10.1175/JCLI-D-19-0598.1
https://doi.org/https://doi.org/10.1029/2018MS001583
https://doi.org/https://doi.org/10.1029/2011MS00045
https://doi.org/https://doi.org/10.1029/2011MS00045
https://doi.org/10.5194/acp-8-1911-2008
https://doi.org/10.5194/acp-8-1911-2008
https://doi.org/10.5194/bg-15-5635-2018
https://doi.org/10.5194/bg-15-5635-2018
https://doi.org/10.5194/esd-2022-37


106 bibliography

of the tropical continents to the 2015–2016 El Niño.” Science.
doi: 10.1126/science.aam5690.

Lovato, T., D. Peano, M. Butenschön, S. Materia, D. Iovino, E.
Scoccimarro, P. G. Fogli, A. Cherchi, A. Bellucci, S. Gualdi,
S. Masina, and A. Navarra (2022). “CMIP6 Simulations With
the CMCC Earth System Model (CMCC-ESM2).” Journal of
Advances in Modeling Earth Systems 14.3, e2021MS002814. doi:
https://doi.org/10.1029/2021MS002814.

Lovenduski, N. S., G. B. Bonan, S. G. Yeager, K. Lindsay, and
D. L. Lombardozzi (2019). “High predictability of terrestrial
carbon fluxes from an initialized decadal prediction system.”
Environmental Research Letters 14.12, p. 124074. doi: 10.1088/
1748-9326/ab5c55.

Lozano, Y. M., C. A. Aguilar-Trigueros, J. M. Ospina, and M. C.
Rillig (2022). “Drought legacy effects on root morphological
traits and plant biomass via soil biota feedback.” New Phytolo-
gist. doi: https://doi.org/10.1111/nph.18327.

Luo, Y., A. Ahlström, S. D. Allison, N. H. Batjes, V. Brovkin, N.
Carvalhais, A. Chappell, P. Ciais, E. A. Davidson, A. Finzi, K.
Georgiou, B. Guenet, O. Hararuk, J. W. Harden, Y. He, F. Hop-
kins, L. Jiang, C. Koven, R. B. Jackson, C. D. Jones, M. J. Lara,
J. Liang, A. D. McGuire, W. Parton, C. Peng, J. T. Randerson,
A. Salazar, C. A. Sierra, M. J. Smith, H. Tian, K. E. O. Todd-
Brown, M. Torn, K. J. v. Groenigen, Y. P. Wang, T. O. West,
Y. Wei, W. R. Wieder, J. Xia, X. Xu, X. Xu, and T. Zhou (2016).
“Toward more realistic projections of soil carbon dynamics
by Earth system models.” Global Biogeochemical Cycles 30.1,
pp. 40–56. doi: https://doi.org/10.1002/2015GB005239.

Luo, Y., T. F. Keenan, and M. Smith (2015). “Predictability of the
terrestrial carbon cycle.” Global Change Biology 21.5, pp. 1737–
1751. doi: https://doi.org/10.1111/gcb.12766.

Magnusson, L., M. Alonso-Balmaseda, S. Corti, F. Molteni, and
T. Stockdale (2013). “Evaluation of forecast strategies for sea-
sonal and decadal forecasts in presence of systematic model
errors.” Climate Dynamics 41.9, pp. 2393–2409. doi: 10.1007/
s00382-012-1599-2.

Manzanas, R., M. D. Frías, A. S. Cofiño, and J. M. Gutiérrez
(2014). “Validation of 40 year multimodel seasonal precipita-
tion forecasts: The role of ENSO on the global skill.” Journal
of Geophysical Research: Atmospheres 119.4, pp. 1708–1719. doi:
https://doi.org/10.1002/2013JD020680.

Marotzke, J., W. A. Müller, F. S. E. Vamborg, P. Becker, U.
Cubasch, H. Feldmann, F. Kaspar, C. Kottmeier, C. Marini,

https://doi.org/10.1126/science.aam5690
https://doi.org/https://doi.org/10.1029/2021MS002814
https://doi.org/10.1088/1748-9326/ab5c55
https://doi.org/10.1088/1748-9326/ab5c55
https://doi.org/https://doi.org/10.1111/nph.18327
https://doi.org/https://doi.org/10.1002/2015GB005239
https://doi.org/https://doi.org/10.1111/gcb.12766
https://doi.org/10.1007/s00382-012-1599-2
https://doi.org/10.1007/s00382-012-1599-2
https://doi.org/https://doi.org/10.1002/2013JD020680


bibliography 107

I. Polkova, K. Prömmel, H. W. Rust, D. Stammer, U. Ulbrich,
C. Kadow, A. Köhl, J. Kröger, T. Kruschke, J. G. Pinto, H.
Pohlmann, M. Reyers, M. Schröder, F. Sienz, C. Timmreck,
and M. Ziese (2016). “MiKlip: A National Research Project on
Decadal Climate Prediction.” Bulletin of the American Meteoro-
logical Society 97.12, pp. 2379–2394. doi: 10.1175/BAMS-D-15-
00184.1.

Mauritsen, T., J. Bader, T. Becker, J. Behrens, M. Bittner, R.
Brokopf, V. Brovkin, M. Claussen, T. Crueger, M. Esch, I.
Fast, S. Fiedler, D. Fläschner, V. Gayler, M. Giorgetta, D. S.
Goll, H. Haak, S. Hagemann, C. Hedemann, C. Hoheneg-
ger, T. Ilyina, T. Jahns, D. Jimenéz-de-la-Cuesta, J. Jungclaus,
T. Kleinen, S. Kloster, D. Kracher, S. Kinne, D. Kleberg, G.
Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner, U.
Mikolajewicz, K. Modali, B. Möbis, W. A. Müller, J. E. M. S.
Nabel, C. C. W. Nam, D. Notz, S.-S. Nyawira, H. Paulsen, K.
Peters, R. Pincus, H. Pohlmann, J. Pongratz, M. Popp, T. J.
Raddatz, S. Rast, R. Redler, C. H. Reick, T. Rohrschneider,
V. Schemann, H. Schmidt, R. Schnur, U. Schulzweida, K. D.
Six, L. Stein, I. Stemmler, B. Stevens, J.-S. v. Storch, F. Tian,
A. Voigt, P. Vrese, K.-H. Wieners, S. Wilkenskjeld, A. Winkler,
and E. Roeckner (2019). “Developments in the MPI-M Earth
System Model version 1.2 (MPI-ESM1.2) and Its Response to
Increasing CO2.” Journal of Advances in Modeling Earth Systems
11.4, pp. 998–1038. doi: 10.1029/2018MS001400.

McKinley, G. A., A. R. Fay, N. S. Lovenduski, and D. J. Pilcher
(2017). “Natural Variability and Anthropogenic Trends in the
Ocean Carbon Sink.” Annual Review of Marine Science 9.1,
pp. 125–150. doi: 10.1146/annurev-marine-010816-060529.

Meehl, G. A., J. H. Richter, H. Teng, A. Capotondi, K. Cobb,
F. Doblas-Reyes, M. G. Donat, M. H. England, J. C. Fyfe, W.
Han, H. Kim, B. P. Kirtman, Y. Kushnir, N. S. Lovenduski,
M. E. Mann, W. J. Merryfield, V. Nieves, K. Pegion, N. Rosen-
bloom, S. C. Sanchez, A. A. Scaife, D. Smith, A. C. Subrama-
nian, L. Sun, D. Thompson, C. C. Ummenhofer, and S.-P. Xie
(2021). “Initialized Earth System prediction from subseasonal
to decadal timescales.” Nature Reviews Earth & Environment
2.5, pp. 340–357. doi: 10.1038/s43017-021-00155-x.

Meir, P, D. Metcalfe, A. Costa, and R. Fisher (2008). “The fate
of assimilated carbon during drought: impacts on respiration
in Amazon rainforests.” Philosophical Transactions of the Royal
Society B: Biological Sciences 363.1498, pp. 1849–1855. doi: 10.
1098/rstb.2007.0021.

https://doi.org/10.1175/BAMS-D-15-00184.1
https://doi.org/10.1175/BAMS-D-15-00184.1
https://doi.org/10.1029/2018MS001400
https://doi.org/10.1146/annurev-marine-010816-060529
https://doi.org/10.1038/s43017-021-00155-x
https://doi.org/10.1098/rstb.2007.0021
https://doi.org/10.1098/rstb.2007.0021


108 bibliography

Merryfield, W. J., J. Baehr, L. Batté, E. J. Becker, A. H. Butler,
C. A. S. Coelho, G. Danabasoglu, P. A. Dirmeyer, F. J. Doblas-
Reyes, D. I. V. Domeisen, L. Ferranti, T. Ilynia, A. Kumar, W. A.
Müller, M. Rixen, A. W. Robertson, D. M. Smith, Y. Takaya,
M. Tuma, F. Vitart, C. J. White, M. S. Alvarez, C. Ardilouze,
H. Attard, C. Baggett, M. A. Balmaseda, A. F. Beraki, P. S.
Bhattacharjee, R. Bilbao, F. M. d. Andrade, M. J. DeFlorio, L. B.
Díaz, M. A. Ehsan, G. Fragkoulidis, S. Grainger, B. W. Green,
M. C. Hell, J. M. Infanti, K. Isensee, T. Kataoka, B. P. Kirtman,
N. P. Klingaman, J.-Y. Lee, K. Mayer, R. McKay, J. V. Mecking,
D. E. Miller, N. Neddermann, C. H. J. Ng, A. Ossó, K. Pankatz,
S. Peatman, K. Pegion, J. Perlwitz, G. C. Recalde-Coronel, A.
Reintges, C. Renkl, B. Solaraju-Murali, A. Spring, C. Stan, Y. Q.
Sun, C. R. Tozer, N. Vigaud, S. Woolnough, and S. Yeager
(2020). “Current and Emerging Developments in Subseasonal
to Decadal Prediction.” Bulletin of the American Meteorological
Society 101.6, E869–E896. doi: 10.1175/BAMS-D-19-0037.1.

Muggeo, V. (2008). “Segmented: An R Package to Fit Regression
Models With Broken-Line Relationships.” R News 8, pp. 20–25.

Mullen, K. M. and I. H. M. van Stokkum (2012). The Lawson-
Hanson algorithm for non-negative least squares (NNLS). https://cran.r-
project.org/web/packages/nnls/index.html.

Mystakidis, S., E. L. Davin, N. Gruber, and S. I. Seneviratne
(2016). “Constraining future terrestrial carbon cycle projec-
tions using observation-based water and carbon flux esti-
mates.” Global Change Biology 22.6, pp. 2198–2215. doi: 10.
1111/gcb.13217.

Müller, W. A., J. H. Jungclaus, T. Mauritsen, J. Baehr, M. Bittner,
R. Budich, F. Bunzel, M. Esch, R. Ghosh, H. Haak, T. Ilyina, T.
Kleine, L. Kornblueh, H. Li, K. Modali, D. Notz, H. Pohlmann,
E. Roeckner, I. Stemmler, F. Tian, and J. Marotzke (2018).
“A Higher-resolution Version of the Max Planck Institute
Earth System Model (MPI-ESM1.2-HR).” Journal of Advances
in Modeling Earth Systems 10.7, pp. 1383–1413. doi: https:
//doi.org/10.1029/2017MS001217.

Niu, S., Z. Fu, Y. Luo, P. C. Stoy, T. F. Keenan, B. Poulter, L.
Zhang, S. Piao, X. Zhou, H. Zheng, J. Han, Q. Wang, and
G. Yu (2017). “Interannual variability of ecosystem carbon
exchange: From observation to prediction.” Global Ecology and
Biogeography 26.11, pp. 1225–1237. doi: https://doi.org/10.
1111/geb.12633.

O’Sullivan, M., W. K. Smith, S. Sitch, P. Friedlingstein, V. K.
Arora, V. Haverd, A. K. Jain, E. Kato, M. Kautz, D. Lombar-

https://doi.org/10.1175/BAMS-D-19-0037.1
https://doi.org/10.1111/gcb.13217
https://doi.org/10.1111/gcb.13217
https://doi.org/https://doi.org/10.1029/2017MS001217
https://doi.org/https://doi.org/10.1029/2017MS001217
https://doi.org/https://doi.org/10.1111/geb.12633
https://doi.org/https://doi.org/10.1111/geb.12633


bibliography 109

dozzi, J. E. M. S. Nabel, H. Tian, N. Vuichard, A. Wiltshire,
D. Zhu, and W. Buermann (2020). “Climate-Driven Variabil-
ity and Trends in Plant Productivity Over Recent Decades
Based on Three Global Products.” Global Biogeochemical Cy-
cles 34.12, e2020GB006613. doi: https://doi.org/10.1029/
2020GB006613.

Orbe, C., D. Rind, J. Jonas, L. Nazarenko, G. Faluvegi, L. T. Mur-
ray, D. T. Shindell, K. Tsigaridis, T. Zhou, M. Kelley, and G. A.
Schmidt (2020). “GISS Model E2.2: A Climate Model Opti-
mized for the Middle Atmosphere—2. Validation of Large-
Scale Transport and Evaluation of Climate Response.” Journal
of Geophysical Research: Atmospheres 125.24, e2020JD033151. doi:
https://doi.org/10.1029/2020JD033151.

Padrón, R. S., L. Gudmundsson, L. Liu, V. Humphrey, and S. I.
Seneviratne (2022). “Controls of intermodel uncertainty in
land carbon sink projections.” Biogeosciences Discussions, pp. 1–
20. doi: 10.5194/bg-2022-92.

Paris Agreement (2015). United Nations Treaty Collection, Chapter
XXVII 7. d.

Peano, D., S. Materia, A. Collalti, A. Alessandri, A. Anav, A.
Bombelli, and S. Gualdi (2019). “Global Variability of Simu-
lated and Observed Vegetation Growing Season.” Journal of
Geophysical Research: Biogeosciences 124.11, pp. 3569–3587. doi:
https://doi.org/10.1029/2018JG004881.

Peano, D., D. Hemming, S. Materia, C. Delire, Y. Fan, E. Joetzjer,
H. Lee, J. E. M. S. Nabel, T. Park, P. Peylin, D. Wårlind, A.
Wiltshire, and S. Zaehle (2021). “Plant phenology evaluation
of CRESCENDO land surface models – Part 1: Start and end
of the growing season.” Biogeosciences 18.7, pp. 2405–2428. doi:
10.5194/bg-18-2405-2021.

Peters, G. P., C. Le Quéré, R. M. Andrew, J. G. Canadell, P.
Friedlingstein, T. Ilyina, R. B. Jackson, F. Joos, J. I. Korsbakken,
G. A. McKinley, S. Sitch, and P. Tans (2017). “Towards real-
time verification of CO2 emissions.” Nature Climate Change
7.12, pp. 848–850. doi: 10.1038/s41558-017-0013-9.

Piao, S., S. Luyssaert, P. Ciais, I. A. Janssens, A. Chen, C. Cao,
J. Fang, P. Friedlingstein, Y. Luo, and S. Wang (2010). “Forest
annual carbon cost: a global-scale analysis of autotrophic
respiration.” Ecology 91.3, pp. 652–661. doi: https://doi.
org/10.1890/08-2176.1.

Piao, S., S. Sitch, P. Ciais, P. Friedlingstein, P. Peylin, X. Wang, A.
Ahlström, A. Anav, J. G. Canadell, N. Cong, C. Huntingford,
M. Jung, S. Levis, P. E. Levy, J. Li, X. Lin, M. R. Lomas, M. Lu,

https://doi.org/https://doi.org/10.1029/2020GB006613
https://doi.org/https://doi.org/10.1029/2020GB006613
https://doi.org/https://doi.org/10.1029/2020JD033151
https://doi.org/10.5194/bg-2022-92
https://doi.org/https://doi.org/10.1029/2018JG004881
https://doi.org/10.5194/bg-18-2405-2021
https://doi.org/10.1038/s41558-017-0013-9
https://doi.org/https://doi.org/10.1890/08-2176.1
https://doi.org/https://doi.org/10.1890/08-2176.1


110 bibliography

Y. Luo, Y. Ma, R. B. Myneni, B. Poulter, Z. Sun, T. Wang, N.
Viovy, S. Zaehle, and N. Zeng (2013). “Evaluation of terrestrial
carbon cycle models for their response to climate variability
and to CO2 trends.” Global Change Biology 19.7, pp. 2117–2132.
doi: https://doi.org/10.1111/gcb.12187.

Piao, S., X. Wang, K. Wang, X. Li, A. Bastos, J. G. Canadell,
P. Ciais, P. Friedlingstein, and S. Sitch (2020). “Interannual
variation of terrestrial carbon cycle: Issues and perspectives.”
Global Change Biology 26.1, pp. 300–318. doi: https://doi.
org/10.1111/gcb.14884.

Poulter, B., D. Frank, P. Ciais, R. B. Myneni, N. Andela, J. Bi, G.
Broquet, J. G. Canadell, F. Chevallier, Y. Y. Liu, S. W. Running,
S. Sitch, and G. R. van der Werf (2014). “Contribution of
semi-arid ecosystems to interannual variability of the global
carbon cycle.” Nature 509.7502, pp. 600–603. doi: 10.1038/
nature13376.

Qian, H., R. Joseph, and N. Zeng (2008). “Response of the terres-
trial carbon cycle to the El Niño-Southern Oscillation.” Tellus
B: Chemical and Physical Meteorology 60.4, pp. 537–550. doi:
10.1111/j.1600-0889.2008.00360.x.

Qiao, L., Z. Zuo, and D. Xiao (2022). “Evaluation of Soil Moisture
in CMIP6 Simulations.” Journal of Climate 35.2, pp. 779–800.
doi: 10.1175/JCLI-D-20-0827.1.

Quesada, B., R. Vautard, P. Yiou, M. Hirschi, and S. I. Seneviratne
(2012). “Asymmetric European summer heat predictability
from wet and dry southern winters and springs.” Nature
Climate Change 2.10, pp. 736–741. doi: 10.1038/nclimate1536.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V.
Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan (2003).
“Global analyses of sea surface temperature, sea ice, and night
marine air temperature since the late nineteenth century.” Jour-
nal of Geophysical Research: Atmospheres 108.D14. doi: https:
//doi.org/10.1029/2002JD002670.

Reichstein, M., A. Rey, A. Freibauer, J. Tenhunen, R. Valentini,
J. Banza, P. Casals, Y. Cheng, J. M. Grünzweig, J. Irvine, R.
Joffre, B. E. Law, D. Loustau, F. Miglietta, W. Oechel, J.-M.
Ourcival, J. S. Pereira, A. Peressotti, F. Ponti, Y. Qi, S. Rambal,
M. Rayment, J. Romanya, F. Rossi, V. Tedeschi, G. Tirone,
M. Xu, and D. Yakir (2003). “Modeling temporal and large-
scale spatial variability of soil respiration from soil water
availability, temperature and vegetation productivity indices.”
Global Biogeochemical Cycles 17.4. doi: https://doi.org/10.
1029/2003GB002035.

https://doi.org/https://doi.org/10.1111/gcb.12187
https://doi.org/https://doi.org/10.1111/gcb.14884
https://doi.org/https://doi.org/10.1111/gcb.14884
https://doi.org/10.1038/nature13376
https://doi.org/10.1038/nature13376
https://doi.org/10.1111/j.1600-0889.2008.00360.x
https://doi.org/10.1175/JCLI-D-20-0827.1
https://doi.org/10.1038/nclimate1536
https://doi.org/https://doi.org/10.1029/2002JD002670
https://doi.org/https://doi.org/10.1029/2002JD002670
https://doi.org/https://doi.org/10.1029/2003GB002035
https://doi.org/https://doi.org/10.1029/2003GB002035


bibliography 111

Reick, C. H., T. Raddatz, V. Brovkin, and V. Gayler (2013). “Rep-
resentation of natural and anthropogenic land cover change
in MPI-ESM.” Journal of Advances in Modeling Earth Systems 5.3,
pp. 459–482. doi: https://doi.org/10.1002/jame.20022.

Running, S., M. Qiaozhen, and M. Zhao (2019). “MOD17A2H
MODIS/Terra Gross Primary Productivity 8-Day L4 Global
500m SIN Grid V006. NASA EOSDIS Land Processes DAAC.”
doi: doi.org/10.5067/MODIS/MOD17A2H.006.

Santanello, J. A., P. A. Dirmeyer, C. R. Ferguson, K. L. Find-
ell, A. B. Tawfik, A. Berg, M. Ek, P. Gentine, B. P. Guillod,
C. v. Heerwaarden, J. Roundy, and V. Wulfmeyer (2018).
“Land–Atmosphere Interactions: The LoCo Perspective.” Bul-
letin of the American Meteorological Society 99.6, pp. 1253–1272.
doi: 10.1175/BAMS-D-17-0001.1.

Santos, V. A. H. F. d., M. J. Ferreira, J. V. F. C. Rodrigues, M. N.
Garcia, J. V. B. Ceron, B. W. Nelson, and S. R. Saleska (2018).
“Causes of reduced leaf-level photosynthesis during strong
El Niño drought in a Central Amazon forest.” Global Change
Biology 24.9, pp. 4266–4279. doi: https://doi.org/10.1111/
gcb.14293.

Scaife, A. A., A. Arribas, E. Blockley, A. Brookshaw, R. T. Clark,
N. Dunstone, R. Eade, D. Fereday, C. K. Folland, M. Gordon,
L. Hermanson, J. R. Knight, D. J. Lea, C. MacLachlan, A.
Maidens, M. Martin, A. K. Peterson, D. Smith, M. Vellinga,
E. Wallace, J. Waters, and A. Williams (2014). “Skillful long-
range prediction of European and North American winters.”
Geophysical Research Letters 41.7, pp. 2514–2519. doi: https:
//doi.org/10.1002/2014GL059637.

Schaefer, K., A. S. Denning, N. Suits, J. Kaduk, I. Baker, S. Los,
and L. Prihodko (2002). “Effect of climate on interannual
variability of terrestrial CO2 fluxes.” Global Biogeochemical
Cycles 16.4, pp. 49–1–49–12. doi: 10.1029/2002GB001928.

Schömann, E.-M., S. N. Vardag, S. Basu, M. Jung, B. Ahrens, T.
El-Madany, S. Sitch, V. K. Arora, P. R. Briggs, P. Friedlingstein,
D. S. Goll, A. K. Jain, E. Kato, D. Lombardozzi, J. E. M. S.
Nabel, B. Poulter, R. Séférian, H. Tian, A. Wiltshire, W. Yuan,
X. Yue, S. Zaehle, N. M. Deutscher, D. W. T. Griffith, and
A. Butz (2022). “Respiration driven CO2 pulses dominate
Australia’s flux variability.” arXiv:2207.06869 [physics].

Seland, M. Bentsen, D. Olivié, T. Toniazzo, A. Gjermundsen, L. S.
Graff, J. B. Debernard, A. K. Gupta, Y.-C. He, A. Kirkevåg, J.
Schwinger, J. Tjiputra, K. S. Aas, I. Bethke, Y. Fan, J. Griesfeller,
A. Grini, C. Guo, M. Ilicak, I. H. H. Karset, O. Landgren,

https://doi.org/https://doi.org/10.1002/jame.20022
https://doi.org/doi.org/10.5067/MODIS/MOD17A2H.006
https://doi.org/10.1175/BAMS-D-17-0001.1
https://doi.org/https://doi.org/10.1111/gcb.14293
https://doi.org/https://doi.org/10.1111/gcb.14293
https://doi.org/https://doi.org/10.1002/2014GL059637
https://doi.org/https://doi.org/10.1002/2014GL059637
https://doi.org/10.1029/2002GB001928


112 bibliography

J. Liakka, K. O. Moseid, A. Nummelin, C. Spensberger, H.
Tang, Z. Zhang, C. Heinze, T. Iversen, and M. Schulz (2020).
“Overview of the Norwegian Earth System Model (NorESM2)
and key climate response of CMIP6 DECK, historical, and
scenario simulations.” Geoscientific Model Development 13.12,
pp. 6165–6200. doi: 10.5194/gmd-13-6165-2020.

Sellar, A. A., C. G. Jones, J. P. Mulcahy, Y. Tang, A. Yool, A.
Wiltshire, F. M. O’Connor, M. Stringer, R. Hill, J. Palmieri,
S. Woodward, L. d. Mora, T. Kuhlbrodt, S. T. Rumbold, D. I.
Kelley, R. Ellis, C. E. Johnson, J. Walton, N. L. Abraham, M. B.
Andrews, T. Andrews, A. T. Archibald, S. Berthou, E. Burke,
E. Blockley, K. Carslaw, M. Dalvi, J. Edwards, G. A. Folberth,
N. Gedney, P. T. Griffiths, A. B. Harper, M. A. Hendry, A. J.
Hewitt, B. Johnson, A. Jones, C. D. Jones, J. Keeble, S. Liddi-
coat, O. Morgenstern, R. J. Parker, V. Predoi, E. Robertson,
A. Siahaan, R. S. Smith, R. Swaminathan, M. T. Woodhouse,
G. Zeng, and M. Zerroukat (2019). “UKESM1: Description
and Evaluation of the U.K. Earth System Model.” Journal of
Advances in Modeling Earth Systems 11.12, pp. 4513–4558. doi:
https://doi.org/10.1029/2019MS001739.

Seo, E., M.-I. Lee, J.-H. Jeong, R. D. Koster, S. D. Schubert, H.-M.
Kim, D. Kim, H.-S. Kang, H.-K. Kim, C. MacLachlan, and
A. A. Scaife (2019). “Impact of soil moisture initialization on
boreal summer subseasonal forecasts: mid-latitude surface air
temperature and heat wave events.” Climate Dynamics 52.3,
pp. 1695–1709. doi: 10.1007/s00382-018-4221-4.

Shi, X., G. Lohmann, D. Sidorenko, and H. Yang (2020). “Early-
Holocene simulations using different forcings and resolutions
in AWI-ESM.” The Holocene 30.7, pp. 996–1015. doi: 10.1177/
0959683620908634.

Silva, C. V. J., L. E. O. C. Aragão, J. Barlow, F. Espirito-Santo, P. J.
Young, L. O. Anderson, E. Berenguer, I. Brasil, I. Foster Brown,
B. Castro, R. Farias, J. Ferreira, F. França, P. M. L. A. Graça, L.
Kirsten, A. P. Lopes, C. Salimon, M. A. Scaranello, M. Seixas,
F. C. Souza, and H. A. M. Xaud (2018). “Drought-induced
Amazonian wildfires instigate a decadal-scale disruption of
forest carbon dynamics.” Philosophical Transactions of the Royal
Society B: Biological Sciences 373.1760, p. 20180043. doi: 10.
1098/rstb.2018.0043.

Sitch, S., P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-
Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze,
C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N.
Viovy, S. Zaehle, N. Zeng, A. Arneth, G. Bonan, L. Bopp, J. G.

https://doi.org/10.5194/gmd-13-6165-2020
https://doi.org/https://doi.org/10.1029/2019MS001739
https://doi.org/10.1007/s00382-018-4221-4
https://doi.org/10.1177/0959683620908634
https://doi.org/10.1177/0959683620908634
https://doi.org/10.1098/rstb.2018.0043
https://doi.org/10.1098/rstb.2018.0043


bibliography 113

Canadell, F. Chevallier, P. Ciais, R. Ellis, M. Gloor, P. Peylin,
S. L. Piao, C. Le Quéré, B. Smith, Z. Zhu, and R. Myneni
(2015). “Recent trends and drivers of regional sources and
sinks of carbon dioxide.” Biogeosciences 12.3, pp. 653–679. doi:
10.5194/bg-12-653-2015.

Smith, D. M., A. A. Scaife, and B. P. Kirtman (2012). “What is the
current state of scientific knowledge with regard to seasonal
and decadal forecasting?” Environmental Research Letters 7.1,
p. 015602. doi: 10.1088/1748-9326/7/1/015602.

Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore
(2008). “Improvements to NOAA’s Historical Merged Land–Ocean
Surface Temperature Analysis (1880–2006).” Journal of Climate
21.10, pp. 2283–2296. doi: 10.1175/2007JCLI2100.1.

Song, X., D.-Y. Wang, F. Li, and X.-D. Zeng (2021). “Evaluating
the performance of CMIP6 Earth system models in simulat-
ing global vegetation structure and distribution.” Advances in
Climate Change Research. Special Issue on Arctic Rapid Change
12.4, pp. 584–595. doi: 10.1016/j.accre.2021.06.008.

Spring, A., I. Dunkl, H. Li, V. Brovkin, and T. Ilyina (2021).
“Trivial improvements in predictive skill due to direct recon-
struction of the global carbon cycle.” Earth System Dynamics
12.4, pp. 1139–1167. doi: 10.5194/esd-12-1139-2021.

Spring, A. and T. Ilyina (2020). “Predictability Horizons in the
Global Carbon Cycle Inferred From a Perfect-Model Frame-
work.” Geophysical Research Letters 47.9, e2019GL085311. doi:
https://doi.org/10.1029/2019GL085311.

Spring, A., T. Ilyina, and J. Marotzke (2020). “Inherent un-
certainty disguises attribution of reduced atmospheric CO2

growth to CO2 emission reductions for up to a decade.” En-
viron. Res. Lett. 15.11, p. 114058. doi: 10.1088/1748-9326/
abc443.

Stockmann, U., M. A. Adams, J. W. Crawford, D. J. Field, N.
Henakaarchchi, M. Jenkins, B. Minasny, A. B. McBratney,
V. d. R. d. Courcelles, K. Singh, I. Wheeler, L. Abbott, D. A.
Angers, J. Baldock, M. Bird, P. C. Brookes, C. Chenu, J. D.
Jastrow, R. Lal, J. Lehmann, A. G. O’Donnell, W. J. Parton,
D. Whitehead, and M. Zimmermann (2013). “The knowns,
known unknowns and unknowns of sequestration of soil
organic carbon.” Agriculture, Ecosystems & Environment 164,
pp. 80–99. doi: 10.1016/j.agee.2012.10.001.

Swart, N. C., J. N. S. Cole, V. V. Kharin, M. Lazare, J. F. Scinocca,
N. P. Gillett, J. Anstey, V. Arora, J. R. Christian, S. Hanna, Y.
Jiao, W. G. Lee, F. Majaess, O. A. Saenko, C. Seiler, C. Seinen,

https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.1088/1748-9326/7/1/015602
https://doi.org/10.1175/2007JCLI2100.1
https://doi.org/10.1016/j.accre.2021.06.008
https://doi.org/10.5194/esd-12-1139-2021
https://doi.org/https://doi.org/10.1029/2019GL085311
https://doi.org/10.1088/1748-9326/abc443
https://doi.org/10.1088/1748-9326/abc443
https://doi.org/10.1016/j.agee.2012.10.001


114 bibliography

A. Shao, M. Sigmond, L. Solheim, K. von Salzen, D. Yang,
and B. Winter (2019). “The Canadian Earth System Model ver-
sion 5 (CanESM5.0.3).” Geoscientific Model Development 12.11,
pp. 4823–4873. doi: 10.5194/gmd-12-4823-2019.

Séférian, R., S. Berthet, and M. Chevallier (2018). “Assessing the
Decadal Predictability of Land and Ocean Carbon Uptake.”
Geophysical Research Letters 45.5, pp. 2455–2466. doi: https:
//doi.org/10.1002/2017GL076092.

Séférian, R., P. Nabat, M. Michou, D. Saint-Martin, A. Voldoire,
J. Colin, B. Decharme, C. Delire, S. Berthet, M. Chevallier,
S. Sénési, L. Franchisteguy, J. Vial, M. Mallet, E. Joetzjer, O.
Geoffroy, J.-F. Guérémy, M.-P. Moine, R. Msadek, A. Ribes,
M. Rocher, R. Roehrig, D. Salas-y Mélia, E. Sanchez, L. Ter-
ray, S. Valcke, R. Waldman, O. Aumont, L. Bopp, J. Deshayes,
C. Éthé, and G. Madec (2019). “Evaluation of CNRM Earth
System Model, CNRM-ESM2-1: Role of Earth System Pro-
cesses in Present-Day and Future Climate.” Journal of Advances
in Modeling Earth Systems 11.12, pp. 4182–4227. doi: https:
//doi.org/10.1029/2019MS001791.

Tedeschi, R. G. and M. Collins (2016). “The influence of ENSO
on South American precipitation during austral summer and
autumn in observations and models.” International Journal of
Climatology 36.2, pp. 618–635. doi: https://doi.org/10.1002/
joc.4371.

Tews, J., A. Esther, S. J. Milton, and F. Jeltsch (2006). “Linking
a population model with an ecosystem model: Assessing the
impact of land use and climate change on savanna shrub
cover dynamics.” Ecological Modelling 195.3, pp. 219–228. doi:
10.1016/j.ecolmodel.2005.11.025.

Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, J. H. Iii,
B. M. Iii, and C. J. Vörösmarty (2000). “Climatic and biotic
controls on annual carbon storage in Amazonian ecosystems.”
Global Ecology and Biogeography 9.4, pp. 315–335. doi: 10.1046/
j.1365-2699.2000.00198.x.

Tian, H., J. M. Melillo, D. W. Kicklighter, A. D. McGuire, J. V. K.
Helfrich, B. Moore, and C. J. Vörösmarty (1998). “Effect of
interannual climate variability on carbon storage in Amazo-
nian ecosystems.” Nature 396.6712, pp. 664–667. doi: 10.1038/
25328.

Titchner, H. A. and N. A. Rayner (2014). “The Met Office Hadley
Centre sea ice and sea surface temperature data set, version
2: 1. Sea ice concentrations.” Journal of Geophysical Research:

https://doi.org/10.5194/gmd-12-4823-2019
https://doi.org/https://doi.org/10.1002/2017GL076092
https://doi.org/https://doi.org/10.1002/2017GL076092
https://doi.org/https://doi.org/10.1029/2019MS001791
https://doi.org/https://doi.org/10.1029/2019MS001791
https://doi.org/https://doi.org/10.1002/joc.4371
https://doi.org/https://doi.org/10.1002/joc.4371
https://doi.org/10.1016/j.ecolmodel.2005.11.025
https://doi.org/10.1046/j.1365-2699.2000.00198.x
https://doi.org/10.1046/j.1365-2699.2000.00198.x
https://doi.org/10.1038/25328
https://doi.org/10.1038/25328


bibliography 115

Atmospheres 119.6, pp. 2864–2889. doi: https://doi.org/10.
1002/2013JD020316.

Tsujino, H., S. Urakawa, H. Nakano, R. J. Small, W. M. Kim, S. G.
Yeager, G. Danabasoglu, T. Suzuki, J. L. Bamber, M. Bentsen,
C. W. Böning, A. Bozec, E. P. Chassignet, E. Curchitser, F.
Boeira Dias, P. J. Durack, S. M. Griffies, Y. Harada, M. Ilicak,
S. A. Josey, C. Kobayashi, S. Kobayashi, Y. Komuro, W. G.
Large, J. Le Sommer, S. J. Marsland, S. Masina, M. Scheinert,
H. Tomita, M. Valdivieso, and D. Yamazaki (2018). “JRA-55

based surface dataset for driving ocean–sea-ice models (JRA55-
do).” Ocean Modelling 130, pp. 79–139. doi: 10.1016/j.ocemod.
2018.07.002.

Tuomi, M., T. Thum, H. Järvinen, S. Fronzek, B. Berg, M. Har-
mon, J. A. Trofymow, S. Sevanto, and J. Liski (2009). “Leaf
litter decomposition—Estimates of global variability based
on Yasso07 model.” Ecological Modelling 220.23, pp. 3362–3371.
doi: 10.1016/j.ecolmodel.2009.05.016.

Tziolas, N., N. Tsakiridis, Y. Ogen, E. Kalopesa, E. Ben-Dor, J.
Theocharis, and G. Zalidis (2020). “An integrated methodol-
ogy using open soil spectral libraries and Earth Observation
data for soil organic carbon estimations in support of soil-
related SDGs.” Remote Sensing of Environment 244, p. 111793.
doi: 10.1016/j.rse.2020.111793.

Uppala, S. M., P. W. KÅllberg, A. J. Simmons, U. Andrae, V. D. C.
Bechtold, M. Fiorino, J. K. Gibson, J. Haseler, A. Hernandez,
G. A. Kelly, X. Li, K. Onogi, S. Saarinen, N. Sokka, R. P. Allan,
E. Andersson, K. Arpe, M. A. Balmaseda, A. C. M. Beljaars,
L. V. D. Berg, J. Bidlot, N. Bormann, S. Caires, F. Chevallier, A.
Dethof, M. Dragosavac, M. Fisher, M. Fuentes, S. Hagemann,
E. Hólm, B. J. Hoskins, L. Isaksen, P. a. E. M. Janssen, R. Jenne,
A. P. Mcnally, J.-F. Mahfouf, J.-J. Morcrette, N. A. Rayner,
R. W. Saunders, P. Simon, A. Sterl, K. E. Trenberth, A. Untch,
D. Vasiljevic, P. Viterbo, and J. Woollen (2005). “The ERA-40

re-analysis.” Quarterly Journal of the Royal Meteorological Society
131.612, pp. 2961–3012. doi: https://doi.org/10.1256/qj.
04.176.

Van Oijen, M., A. Schapendonk, and M. Höglind (2010). “On the
relative magnitudes of photosynthesis, respiration, growth
and carbon storage in vegetation.” Annals of Botany 105.5,
pp. 793–797. doi: 10.1093/aob/mcq039.

Walther, S., S. Besnard, J. A. Nelson, T. S. El-Madany, M. Migli-
avacca, U. Weber, N. Carvalhais, S. L. Ermida, C. Brümmer,
F. Schrader, A. S. Prokushkin, A. V. Panov, and M. Jung (2022).

https://doi.org/https://doi.org/10.1002/2013JD020316
https://doi.org/https://doi.org/10.1002/2013JD020316
https://doi.org/10.1016/j.ocemod.2018.07.002
https://doi.org/10.1016/j.ocemod.2018.07.002
https://doi.org/10.1016/j.ecolmodel.2009.05.016
https://doi.org/10.1016/j.rse.2020.111793
https://doi.org/https://doi.org/10.1256/qj.04.176
https://doi.org/https://doi.org/10.1256/qj.04.176
https://doi.org/10.1093/aob/mcq039


116 bibliography

“Technical note: A view from space on global flux towers by
MODIS and Landsat: the FluxnetEO data set.” Biogeosciences
19.11, pp. 2805–2840. doi: 10.5194/bg-19-2805-2022.

Wang, G., S. Sun, and R. Mei (2011). “Vegetation dynamics
contributes to the multi-decadal variability of precipitation in
the Amazon region.” Geophysical Research Letters 38.19. doi:
10.1029/2011GL049017.

Wang, J., N. Zeng, and M. Wang (2016). “Interannual variability
of the atmospheric CO2 growth rate: roles of precipitation
and temperature.” Biogeosciences 13.8, pp. 2339–2352. doi: 10.
5194/bg-13-2339-2016.

Wang, Y., P. Zhao, R. Yu, and G. Rasul (2010). “Inter-decadal
variability of Tibetan spring vegetation and its associations
with eastern China spring rainfall.” International Journal of
Climatology 30.6, pp. 856–865. doi: 10.1002/joc.1939.

Wei, W., C. Weile, and W. Shaopeng (2010). “Forest soil res-
piration and its heterotrophic and autotrophic components:
Global patterns and responses to temperature and precipita-
tion.” Soil Biology and Biochemistry 42.8, pp. 1236–1244. doi:
10.1016/j.soilbio.2010.04.013.

Weiss, M., B. van den Hurk, R. Haarsma, and W. Hazeleger
(2012). “Impact of vegetation variability on potential pre-
dictability and skill of EC-Earth simulations.” Climate Dy-
namics 39.11, pp. 2733–2746. doi: 10.1007/s00382-012-1572-
0.

Weiss, M., P. A. Miller, B. J. J. M. van den Hurk, T. van Noije,
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