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Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting solar
radiation. The response of trade cumulus clouds to climate change is a key uncertainty
in climate projections' ™. Trade cumulus feedbacks in climate models are governed by
changesin cloud fraction near cloud base>®, with high-climate-sensitivity models

suggesting astrong decrease in cloud-base cloudiness owing to increased lower-
tropospheric mixing®>”. Here we show that new observations from the EUREC*A
(Elucidating the role of cloud-circulation coupling in climate) field campaign®’ refute
this mixing-desiccation hypothesis. We find the dynamical increase of cloudiness
through mixing to overwhelm the thermodynamic control through humidity.
Because mesoscale motions and the entrainment rate contribute equally to variability
in mixing but have opposing effects on humidity, mixing does not desiccate clouds.
The magnitude, variability and coupling of mixing and cloudiness differ markedly
among climate models and with the EUREC*A observations. Models with large trade
cumulus feedbacks tend to exaggerate the dependence of cloudiness on relative
humidity as opposed to mixing and also exaggerate variability in cloudiness. Our
observational analyses render models with large positive feedbacks implausible and
both support and explain at the process scale aweak trade cumulus feedback. Our

findings thus refute animportant line of evidence for a high climate sensitivity

10,11

Earth’s climate strongly depends on the abundance and behaviour of
its smallest clouds. Shallow trade-wind cumulus clouds are rooted in
the turbulent sub-cloud layer and form when thermals rise above the
lifting condensation level?. They may grow only afew hundred metres
highindry environments or become positively buoyantandrise up to
thetrade-windinversion, where they detrain condensate into stratiform
cloud layers. Trade cumuli populate most of the subtropical oceans
and cool the planet by reflecting the incoming solar radiation. Owing
to their large geographical extent, small errors in predicting the way
trade cumulirespond to warming can have alarge effect on the global
radiative budget. This explains why shallow cumuliin the trades are a
mainsource of spread in the estimates of climate sensitivity of climate
models'™.

Cloudiness near the base of the cumulus layer makes up two-thirds
of the total cloud cover in the trades® and its change with warming
governs the strength of the trade cumulus cloud feedback in climate
models*¢. Reductions in cloud-base cloudiness in climate models are
tightly coupled withincreases in lower-tropospheric mixing owing to
convective and large-scale circulations®”. On the basis of this strong
negative coupling between mixing and cloudiness, the hypothesis
emerged that enhanced convective mixing might desiccate the lower
cloudlayerandreduce cloudinessinthe trades’. This mixing-desiccation
hypothesis suggests that the moisture transported by convection from
thesub-cloud layer tothe tradeinversionis compensated by downward
mixing of drier air and evaporation of clouds near cloud base.

The mechanism—whichis expected to become more pronounced with
warming owing to the nonlinear Clausius—-Clapeyron relationship—is
consistent with idealized high-resolution simulations of nonprecipitat-
ing trade cumuli** and with the behaviour of climate models that have
a strongly positive trade cumulus feedback®”". However, the
mixing-desiccation hypothesis has never been tested with observa-
tions. Using the convective mass flux at cloud base, M, as a proxy for
lower-tropospheric convective mixing, the hypothesis can be tested
by analysing the relationship between M and the mean relative humid-
ity (R) and cloud fraction (C) at cloud base in observations, with
C <R« MP and < 0 suggesting the mixing-desiccation mechanism
tobe presentin nature (Fig. 1a).

The mixing-desiccation mechanismis based on several assumptions
that might not be operating in nature. Mis commonly defined as the
productofthe cloud fraction and the in-cloud vertical velocity, and its
variability is mostly governed by the area coverage of active clouds™®",
defined as saturated and buoyant updrafts that ventilate the sub-cloud
layer. If variability in the in-cloud vertical velocity near cloud base is
small, a positive relationship between C and M is expected (8> 0;
Fig.1b). This was demonstrated for nonprecipitating trade cumuli
using Doppler radar data’® and seems at odds with the mixing-
desiccation hypothesis. Yet active clouds represent only half of the
total C (refs.*?°) and the lifetime and variability of passive clouds, such
as the detritus of decaying clouds, might be more sensitive to R and
mixing-induced drying of their environment than to M.
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Fig.1|Illustration of two mechanisms for the coupling of mixing and
cloudiness. a, The mixing-desiccation mechanism contends that £increases
inresponsetoanincreasein M, whichleadstoareductionin® and cloud-base

The sub-cloud-layer mass budget provides a theoretical basis for
interpreting the mixing-desiccation mechanism. It can be expressed
as abudget of the sub-cloud-layer height A,

%+Vh~Vh:E+W—M, (1)

inwhich the entrainment rate, £, representing the mass source owing
tothe entrainment of dry and warm cloud layer air, and the mesoscale
vertical velocity, W, are balanced by the mass export owingto the con-
vective mass flux, M (ref. 2°). Note that we define M as the (mass) specific
mass flux, which has units of velocity (see Methods). Eis the only term
directly affecting the sub-cloud-layer moisture and heat budgets**.
Ifanincrease in Mis mostly balanced by anincrease in £, a drying and
warming of the sub-cloud layer and areductionin R and Cis expected
(Fig.1a). The trades, however, exhibit strong mesoscale convective
organization, whichis linked to the presence of mesoscale circulations
and substantial variability in W (refs. 2°2*%), This variability in W could
contribute to variability in Mwithout directly affecting R (Fig. 1b). An
increase in M could also produce increased inversion cloudiness and
thus increased total cloud cover, compensating the radiative effects
of apotential decrease in C. The diversity of cloud types and the large
variability in Win the trades thus call into question the mixing-
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Fig.2|Timeseries of mixingand cloudiness during EUREC*A. a-d, Measurements
ofM(a), Eand W (b), C(c) and R (d), with filled symbols representing the 3-h
scaleand open symbols representing the 1-h scale. The vertical barsina-cshow
the estimation uncertainty at the 3-h scale (see Methods section ‘Uncertainty
estimation’). The Rind is shown for both the HALO (blue) and ATR (green)
aircraft, with the ‘X’ markers representing the data points that are excluded inthe
correlations owing toinconsistent sampling of the mesoscale cloud patterns
between the twoaircraft. The campaign mean + 1gis shown ontheleftside of
each panel.
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cloudiness C,and arelationship C= R « MP with 8<0.b, The mesoscale motion
control of cloudinessinstead suggests that Mis equally controlled by both £
and W, suchthat Mis uncorrelated toR and > 0.

desiccation mechanism as the dominant control of Cand trade cumu-
lus feedbacks.

The EUREC*A field campaign was conceived to test the mixing-
desiccation hypothesis®®. EUREC*A took place inJanuary and February
2020 near Barbados, aregion selected as a source of data because
cloudsinitsvicinity are representative for the entire trade-wind belt®.
During EUREC*A, we made measurements designed to quantify the
magnitude and (co-)variability of M, C and R over one month, which
was characterized by substantial variability in the mesoscale convective
organization” and the large-scale circulation® (see Methods). With the
help of these measurements, we are able to test the mixing-desiccation
hypothesis with observations for the first time.

Observations of M, Cand R co-variations

During EUREC*A, we dropped more than 800 dropsondes from
the HALO aircraft flying at about 10 km altitude along 1-h circles of
220 km diameter?®*%, We use the dropsonde data to estimate M at the
sub-cloud-layer top as a residual of the mass budget (equation (1)) on
the3-hscale of three consecutive circles (see Methods). Figure 2a shows
alarge day-to-day variability of M, with higher values at the beginning
and end of the campaign, and a campaign mean of 17.4 + 7.5 mms™!
(mean + standard deviation o). M shows a pronounced diurnal cycle
(Extended Data Fig. 1), with larger values around sunrise and smaller
values in the afternoon (consistent with refs. 2>*°). The mass budget
estimates are robust to changes in the estimation procedure and con-
sistent with independent data (Methods and Extended Data Fig. 2).

The entrainment rate £ is computed as the ratio of the scaled sur-
face buoyancy flux and the buoyancy jump across A (equation (2)
and Extended Data Fig. 3). E averages to 18.3 + 6.4 mm s across the
campaign (Fig. 2b) and also shows a pronounced diurnal variability
(Extended Data Fig.1). Eis mostly controlled by variability in the surface
buoyancy flux (Extended Data Fig. 4b). Itis the strengthening of winds
and surface fluxes that contributes most to theincreasein Fand Min the
second half of EUREC*A. Wis, with-0.9 + 6.7 mm s, on average nearly
zero. Variability in W, however, is substantial and contributes slightly
more to variability in M compared with E (Extended Data Fig. 4a). So
although M = Fholds on average, consistent with the mixing-desiccation
hypothesis (Fig. 1a), variability in Mis controlled by both Eand W.

Figure 2c shows the new measurements of the cloud-base cloud
fraction Cfrom combined horizontally staring lidar and radar on board
the ATR aircraft flying near cloud base®. Cis, with 5.4 + 3.1%, both small
and highly variable. The variability of Con the 3-h scaleis substantially
larger than variability on synoptic and longer timescales®. The robust-
ness of Cis demonstrated by the internal consistency among comple-
mentary and independent measurements in terms of measurement
techniques and spatial sampling®. The R at cloud base is robustly
around 86% (Fig. 2d), except for afew outliers. Three data points with
muchlower R for ATR compared with HALO (marked with ‘X" in Fig. 2d)
areexcludedinthe following analyses, as these situations were associ-
ated with air masses that were sampled differently by the two aircraft
(see Methods and Fig. A2 inref. ).
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Fig.3|RelationshipsamongM, R and C. a-d, Therelationshipsbetween the
observed Cand the reconstructed € from the regression C= ap+ auM + azR (a),
Mand R (b), Mand C(c)and R and C(d) areshown at the 3-hscale. Theerrorbars
represent the estimation uncertainty for Mand Cand the sampling uncertainty
for R (see Methods). Thedottedlineinaisthel:1line. Thesize of the markersinb

Despite being fundamental quantities to understand climate sen-
sitivity, the challenging nature of observing M and Cso far prevented
an observational analysis of the relationship between mixing and
cloud-base cloudiness. With the EUREC*A observations presented
here, we are now able to test the mixing-desiccation hypothesis with
data.

Datarefute mixing-desiccation hypothesis

The cloud-base cloud fraction is suggested to be controlled both
dynamically through M and thermodynamically through R.We can
therefore express Casamultiplelinear regression C=ay+ aMM +agR,
inwhich () represents standardized values (for example, M = M/ay,).
Figure 3a shows that the observed Cand the reconstructed € agree
very well (r=0.83[0.80, 0.91], with values in the square brackets rep-
resenting the 25th and 75th quartiles of bootstrapped correlations,
respectively), demonstrating that M and R dominate variability in C.
The mixing-desiccation mechanism contends that, as Mincreases, £
increases and leads to areductionin R. The anticorrelation of FEand R
isconfirmedby the observations (r; , =—0.47 [-0.62, -0.32]; Extended
Data Fig. 4d). But Wis also correlated to R (r;y, = 0.48 [0.29, 0.62];
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represents C. The shadingin crepresentsthe scaling for C < 2M/w* using the
mean + 2o ofthevelocity scale w* The grey ‘X’ markers represent data thatare
excludedinthe correlations owing to inconsistent sampling between the two
aircraft (see Fig.2d and Methods).

Extended Data Fig. 4e). Wdoes not directly affect the thermodynamic
properties of the sub-cloud layer?, asit transports mass with the same
properties of the well-mixed sub-cloud layer. The positive correlation
between Wand R is thus probably connected to aself-aggregation feed-
backleadingto anet convergence of moistureinto areas thatare already
moist®*>*, The opposing correlations of Eand Wwith R lead to a neg-
ligible anticorrelation of Mand R (r=-0.08 [-0.26, 0.10]; Fig. 3b).
Although this makes Mand R independent predictors of C, it contrasts
with the expected desiccation effect of increased mixing. The basic
premise of the mixing-desiccation hypothesis thus breaks downin the
presence of strong variability in W.

Figure 3c further shows a pronounced positive correlation between
CandM (r=0.72[0.64, 0.81]), demonstrating that Mexplains more than
50% ofvariability in C. The EUREC*A dataare thereforeinline withamore
directrelation C< M#anda B> 0 (Fig. 1b). The tight connection between
Cand Mis also consistent with physical understanding represented in
thescalingC=2Cy,e =< 2M /w”,inwhich C, . is the areafraction of active
cloud cores and w*is the Deardorff vertical velocity scale (see Methods
and ref.?*). The correlation of Cwith R is weaker (r=0.36 [0.16, 0.56];
Fig.3d). These conclusions arerobust to changesin the estimation pro-
cedure of Mand to independent estimates of C (Extended DataFig. 5).
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Fig.4|Relationshipsin climate models and link to trade cumulus feedback.
a,Mean + 0/2of Mand C.b, Correlation coefficients rbetween Mand C(ry, ) and
Rand C(ry ¢). ¢, Ratio of the standardized multiple linear regression
coefficients ay/a and the thermodynamic component of the trade cumulus
radiative feedback. The models are coloured in bins of feedback strength.
Opensymbolsrefer to models with frequent stratocumulus (defined as having

The relationships exposed by the EUREC*A data are thus in opposi-
tion to the mixing-desiccation hypothesis, which contends thatincreas-
ing mixing (larger M) leads to a desiccation of the lower cloud layer
(smaller R) and a reduction in cloud-base cloudiness (smaller C). We
also find a positive relationship between C and another indicator of
lower-tropospheric mixing (Extended Data Fig. 4f) and aweak positive
correlation between M and the total projected cloud cover (Extended
DataFig. 6). Hence, the EUREC*A dataemphasizes dynamic factors—the
convective mass flux M and the mesoscale vertical velocity W—as
dominant controls of C, rather than thermodynamic factorsrelated to
the mixing-desiccation mechanism.

Models underestimate strong cloud-circulation
coupling

How consistent is the present generation of climate models with our
observations? To assess how climate models represent the relationship
between mixing and cloudiness, we use ten models from the Cloud
Feedback Model Intercomparison Project (CFMIP)* that provide the
necessary pointwise M, Cand R output at high temporal resolution
near the EUREC*A domain (see Methods). In contrast to the consistency
among many independent EUREC*A observations, Fig. 4a shows that
the models strongly differ in their magnitude and variability of M and
C. Although some models predict unrealistically low M (CanAM4,
MIROC6 and MPI-ESM), the IPSL-CM6A has afive times larger mean M
compared with the EUREC*A observations. Except for IPSL-CM6A, all
models strongly overestimate variability in C (see also ref. >%) and 8 of
10 models also overestimate the magnitude of C. This is partly owing
to the tendency of models to produce stratocumulus clouds in this
shallow cumulus regime®** (evident in the strongincreasesin C (up to
50-100%) above a critical R of about 94%; see Extended Data Fig. 7).
By contrast, the observations indicate no occurrence of C>13% or
R >94%.The models that produce such more stratocumulus-like con-
ditions with R >94% more than15% of the time (Extended Data Fig. 8a)
are labelled with open symbolsin Fig. 4.

Only the BCC-CSM2 model represents the pronounced positive cor-
relation between Cand M observed during EUREC*A at the 3-h scale
(Fig.4b).Six of the other models have a correlation coefficient r < 0.05,
of which three models even show a negative correlation. Most models
thus strongly underestimate the tight coupling between clouds and
convection observed in EUREC*A. Instead, these six models are more
inline withthe mixing-desiccation mechanismand af < 0 (Fig.1a), even
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R >94% more than15% of the time; see Extended DataFig. 8a). The grey shading
represents the 25th to 75th quartile and the grey bars the 95% confidence
interval of bootstrapped observational values. For plotting purposes, ashows
the mean M-30 for IPSL-CM6A and c shows theratio ay,/ay +3for BCC-CSM2.
Inc, the upper end of the observational 95% confidence interval (at 6.75) is
cropped.

though this is not mediated by a pronounced negative correlation
between M and R (Extended Data Fig. 8c). All the models also strongly
underestimate variability in W (Extended Data Fig. 8b), as they do not
represent the sub-grid processes leading to the observed variability in
the mesoscale vertical velocity (for example, shallow circulations driven
by differential radiative cooling®® or local sea-surface temperature (SST)
gradients®). The relationships between C and R are more consistent
among most models (Fig. 4b) and are also more consistent with the
observations compared with the relationships between Cand M.

Incontrast with the observations, clouds as parameterized by climate
models are more thermodynamically than dynamically controlled.
The misrepresentation of the relative sensitivity of C to changes in M
orRbyallmodelsisencapsulatedinthe ratio of the standardized regres-
sion coefficients a,,/ay from the regression C=a,+a,M +a,R.
Themodel samples lie completely outside the EUREC*A data (Fig. 4c).
Allmodels, with one exception, substantially underestimate the value
of ay,/a, compared with the observations, highlighting that, in the
climate models, variability in Cis primarily controlled by variationsin
‘R rather than variations in M. Although BCC-CSM2 seems credible in
terms of the magnitude and relationship of Cand M, its credibility is
eroded by its unrealistic relationship between Cand R (Extended Data
Fig.7), and thus animplausible a),/a of -5.2. At odds with the obser-
vations, in most models, M and R are only weak predictors of C, as
evidentin the low coefficient of determination (r*) of the multiple lin-
ear regression of C (Extended Data Fig. 8c). The cloud parameteriza-
tions of the models thus fail in capturing the key relationships between
C and the dynamic and thermodynamic environment observed in
nature.

Implications for trade cumulus feedbacks

The EUREC*A observations provide robust estimates of the mean,
variability and coupling of M, Cand R in contrasted trade cumulus
environments. Although the observed variability is substantial, the
variability simulated by climate modelsis unrealistic, asare the drivers
of this variability. The EUREC*A data thus provide a physical test of the
capacity of models to represent the interplay of the processes active
inregulating trade-wind cloud amount and may guide future model
development. Moreover, the fact that the relationships at the 3-h pro-
cessscaleare consistent with the relationships at the monthly timescale
(r = 0.84; Extended Data Fig. 8e,f) suggests that the underlying fast
physical processes that couple M, R and Cin the models are largely



invariant with the timescale. The relationships derived from the
EUREC*A observations can therefore also be used to evaluate the cred-
ible range of trade cumulus feedbacks in the climate models.

Figure 4b demonstrates that allmodels with a strong trade cumulus
feedback represented by achangeinthe cloud radiative effect (ACRE)
with warming exceeding 0.37 W m K™ (reddish colours in Fig. 4c)
represent the refuted mixing-desiccation mechanism with anegative
(or very weak) correlation between M and C. Also, these four models
exaggerate both the coupling of Cto R (small a),/a; Fig. 4c) and the
variability in C (o, Extended Data Fig. 8d). By contrast, the models that
arecloser to the observations tend to have aweaker positive ACRE with
warming. The EUREC*A observations of the physical processes that
drive the short-term variability of Cthus rule out the mechanism that
leadsto thelargest positive trade cumulus feedbacksin current climate
models.

By showing that mesoscale motions inhibit the mixing-desiccation
mechanism, we refute an important physical hypothesis for a large
trade cumulus feedback. In the spirit of the storyline approach for
constraining equilibrium climate sensitivity', our findings thus refute
animportantline of evidence for astrong positive cloud feedback and
thus a large climate sensitivity. The EUREC*A observations therefore
support recent satellite-derived constraints from observed natural
variability*”*° and climate-change experiments using idealized high-
resolution simulations**?, which suggest that a weak trade cumulus
feedback is more plausible than a strong one. Moreover, for the first
time, we take into account all types of cloud present in the trades,
including the optically thinnest ones that are usually missed in satellite
observations*®, and consider the full range of mesoscale variability
that was notrepresented inidealized simulations of cloud feedbacks.
We also provide an explanation for the inconsistency of models with
large positive feedbacks: in these models, the observed tight coupling
between convective mixing and cloudinessis absent; instead, Cis pri-
marily controlled thermodynamically by R, which exaggerates vari-
ability in C and feedbacks to warming. By not representing the
variability in mesoscale circulations, the models miss an important
processregulating trade cumulus clouds. Future research should focus
on better understanding the processes controlling these mesoscale
circulations and how they might change in a warmer climate.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competinginterests; and statements of dataand code availability
are available at https://doi.org/10.1038/s41586-022-05364-y.

1. Bony, S. & Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud
feedback uncertainties in climate models. Geophys. Res. Lett. 32, L20806 (2005).

2. Vial, J., Dufresne, J. L. & Bony, S. On the interpretation of inter-model spread in CMIP5
climate sensitivity estimates. Clim. Dyn. 41, 3339-3362 (2013).

3. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res.
Lett. 47, €2019GL085782 (2020).

4.  Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte,
V. etal.) Ch. 7 (Cambridge Univ. Press, 2021).

5. Vial, J., Bony, S., Dufresne, J.-L. & Roehrig, R. Coupling between lower-tropospheric
convective mixing and low-level clouds: physical mechanisms and dependence on
convection scheme. J. Adv. Model. Earth Syst. 8,1892-1911 (2016).

6.  Brient, F. et al. Shallowness of tropical low clouds as a predictor of climate models’
response to warming. Clim. Dyn. 47, 433-449 (2016).

7. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to
atmospheric convective mixing. Nature 505, 37-42 (2014).

8. Bony, S. etal. EUREC*A: a field campaign to elucidate the couplings between clouds,
convection and circulation. Surv. Geophys. 38, 1529-1568 (2017).

9.  Stevens, B. et al. EUREC®A. Earth Syst. Sci. Data 13, 4067-4119 (2021).

10. Stevens, B., Sherwood, S. C., Bony, S. & Webb, M. J. Prospects for narrowing bounds on
Earth's equilibrium climate sensitivity. Earths Future 4, 512-522 (2016).

1. Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of
evidence. Rev. Geophys. 58, €2019RG0O00678 (2020).

12. Malkus, J. S. On the structure of the trade wind moist layer. Pap. Phys. Oceanogr. Meteorol.
13,1-47 (1958).

13.  Nuijens, L., Serikov, I., Hirsch, L., Lonitz, K. & Stevens, B. The distribution and variability of
low-level cloud in the North Atlantic trades. Q. J. R. Meteorol. Soc. 140, 2364-2374 (2014).

14. Rieck, M., Nuijens, L. & Stevens, B. Marine boundary layer cloud feedbacks in a constant
relative humidity atmosphere. J. Atmos. Sci. 69, 2538-2550 (2012).

15.  Stevens, B. et al. The Barbados Cloud Observatory: anchoring investigations of clouds
and circulation on the edge of the ITCZ. Bull. Am. Meteorol. Soc. 97, 787-801 (2016).

16. Dawe, J. T. & Austin, P. H. Statistical analysis of an LES shallow cumulus cloud ensemble
using a cloud tracking algorithm. Atmos. Chem. Phys. 12, 1101-1119 (2012).

17.  Lamer, K., Kollias, P. & Nuijens, L. Observations of the variability of shallow trade wind
cumulus cloudiness and mass flux. J. Geophys. Res. Atmos. 120, 6161-6178 (2015).

18. Klingebiel, M., Konow, H. & Stevens, B. Measuring shallow convective mass flux profiles in
the trade wind region. J. Atmos. Sci. 78, 3205-3214 (2021).

19. Siebesma, A. P. et al. A large eddy simulation intercomparison study of shallow cumulus
convection. J. Atmos. Sci. 60, 1201-1219 (2003).

20. Vogel, R., Bony, S. & Stevens, B. Estimating the shallow convective mass flux from the
subcloud-layer mass budget. J. Atmos. Sci. 77, 1559-1574 (2020).

21. Vial, J., Bony, S., Stevens, B. & Vogel, R. Mechanisms and model diversity of trade-wind
shallow cumulus cloud feedbacks: a review. Surv. Geophys. 38, 1331-1353 (2017).

22. Albright, A. L., Bony, S., Stevens, B. & Vogel, R. Observed subcloud-layer moisture and
heat budgets in the trades. J. Atmos. Sci. 79, 2363-2385 (2022).

23. Bony, S. & Stevens, B. Measuring area-averaged vertical motions with dropsondes. J.
Atmos. Sci. 76, 767-783 (2019).

24. George, G., Stevens, B., Bony, S., Klingebiel, M. & Vogel, R. Observed impact of mesoscale
vertical motion on cloudiness. J. Atmos. Sci. 78, 2413-2427 (2021).

25. Narenpitak, P., Kazil, J., Yamaguchi, T., Quinn, P. & Feingold, G. From sugar to flowers: a
transition of shallow cumulus organization during ATOMIC. J. Adv. Model. Earth Syst. 13,
€2021MS002619 (2021).

26. Medeiros, B. & Nuijens, L. Clouds at Barbados are representative of clouds across the
trade wind regions in observations and climate models. Proc. Natl Acad. Sci. USA 113,
E3062-E3070 (2016).

27.  Schulz, H. C*ONTEXT: a Common Consensus on Convective OrgaNizaTion during the
EUREC*A eXperimenT. Earth Syst. Sci. Data 14, 1233-1256 (2022).

28. George, G. et al. JOANNE: Joint dropsonde Observations of the Atmosphere in tropical
North atlaNtic meso-scale Environments. Earth Syst. Sci. Data 13, 5253-5272 (2021).

29. Konow, H. et al. EUREC*A's HALO. Earth Syst. Sci. Data 13, 5545-5563 (2021).

30. Vial, J. etal. A new look at the daily cycle of trade wind cumuli. J. Adv. Model. Earth Syst.
11, 3148-3166 (2019).

31.  Bony, S. etal. EUREC*A observations from the SAFIRE ATR42 aircraft. Earth Syst. Sci. Data
14, 2021-2064 (2022).

32. Bretherton, C. S. &Blossey, P. N. Understanding mesoscale aggregation of shallow
cumulus convection using large-eddy simulation. J. Adv. Model. Earth Syst. 9, 2798-2821
(2017).

33. George, G. Observations of Meso-scale Circulation and its Relationship with Cloudiness in
the Tropics PhD thesis, Universitat Hamburg (2021).

34. Webb, M. J. et al. The cloud feedback model intercomparison project (CFMIP)
contribution to CMIP6. Geosci. Model Dev. 10, 359-384 (2017).

35. Nuijens, L., Medeiros, B., Sandu, . & Ahlgrimm, M. The behavior of trade-wind cloudiness
in observations and models: the major cloud components and their variability. J. Adv.
Model. Earth Syst. 7, 600-616 (2015).

36. Nam, C., Bony, S., Dufresne, J.-L. & Chepfer, H. The ‘too few, too bright’ tropical low-cloud
problem in CMIP5 models. Geophys. Res. Lett. 39, L21801(2012).

37. Cesana, G. V. & Del Genio, A. D. Observational constraint on cloud feedbacks suggests
moderate climate sensitivity. Nat. Clim. Change 11, 213-218 (2021).

38. Naumann, A. K., Stevens, B., Hohenegger, C. & Mellado, J. P. A conceptual model of a
shallow circulation induced by prescribed low-level radiative cooling. J. Atmos. Sci. 74,
3129-3144 (2017).

39. Lambaerts, J., Lapeyre, G., Plougonven, R. & Klein, P. Atmospheric response to sea surface
temperature mesoscale structures. J. Geophys. Res. Atmos. 118, 9611-9621 (2013).

40. Myers, T. A. et al. Observational constraints on low cloud feedback reduce uncertainty of
climate sensitivity. Nat. Clim. Change 11, 501-507 (2021).

41, Vogel, R., Nuijens, L. & Stevens, B. The role of precipitation and spatial organization in
the response of trade-wind clouds to warming. J. Adv. Model. Earth Syst. 8, 843-862
(2016).

42. Radtke, J., Mauritsen, T. & Hohenegger, C. Shallow cumulus cloud feedback in large eddy
simulations - bridging the gap to storm-resolving models. Atmos. Chem. Phys. 21,
3275-3288 (2021).

43. Mieslinger, T. et al. Optically thin clouds in the trades. Atmos. Chem. Phys. 22, 6879-6898
(2022).

Publisher’s note Springer Nature remai utional affiliations.

Open Access This article is licensed under a Creative Commons Attribution

By 4.0 International License, which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons license, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons license and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this license,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

Nature | www.nature.com | 5


https://doi.org/10.1038/s41586-022-05364-y
http://creativecommons.org/licenses/by/4.0/

Article

Methods

EUREC*A field campaign

We use data from the EUREC*A field campaign, which took place in
January and February 2020 and was anchored in Barbados®’. We focus
on measurements made by the HALO® and ATR aircraft®, which flew
coordinated patternsinthe approximately 220-km diameter EUREC*A
circlecentredat13.3° N, 57.7° W. The HALO aircraft flew three circles at
10.2 kmaltitudein 200 min (about 60 min per circle plus a15-minbreak
betweencircles) and launched dropsondes every 30° of heading (about
12 sondes per circle) to characterize the large-scale environment?,
At the same time, the ATR aircraft flew 2-3 50-min rectangle patterns
inside the circle near cloud base and measured the cloud fraction with
horizontally staring cloud radar and backscatter lidar, and with several
in situ probes and sensors™. Observations from the Barbados Cloud
Observatory (BCO)" and the RV Meteor** provide further context at
the western and eastern boundaries of the EUREC*A circle.

Atypical flight day of HALO consisted of two sets of three consecu-
tive circles lasting about 3 hand comprising 30-36 sondes (sometimes
defined as circling®?>%). The 3-h circle sets are separated by a1.5-h
breaktorefuelthe ATR. The circle patterns were flown from 22 January
to 15 February with different starting times between 04:30 and 19:30
local time (LT) to sample the diurnal cycle. Four more single-dropsonde
circlesarealso used, three of which were flown by the P3 aircraft* dur-
ing nighttime (startingat 00:15 LT on9and 10 February,and at 01:30 LT
on 1l February). In total, the dataset comprises 73 circles (1-h scale)
and 24 sets of three consecutive circles (3-h scale), for which 16 have
coincident ATR data. We assume that HALO and ATR sample compa-
rable conditions on the 3-h scale. This is confirmed by the similar
cloud-base R of the aircraft during most flights (Fig. 2d), except for
the first 3-h circle set on 2 February and the second 3-h circle set on 7
and 13 February, in which the spatial scale of the cloud organization
was larger than the scale of the domain sampled by the ATR. These
three 3-h circle sets are marked in the figures and excluded from the
calculated correlations.

The spatial scale of the observations represents the lower end of
Orlanski’s* meso-a scale and is comparable in size with a climate model
gridbox. The200-300-km sscaleis the relevant scale of the cloud pro-
cesses foratrade cumulus ensemble and also the scale that convective
parameterizations target. It lies in between the O(1 km) scale of indi-
vidual clouds and the synoptic scale of O(1,000 km), and is associated
withthe emergence of the prominent trade cumulus cloud organization
patterns*. As the air masses are advected by about 30 km per hour (at
the campaign mean wind speed of about 9 m s™ at 1km height), the
spatial sampling of the 220-km diameter circle does not differ substan-
tiallybetween the1-hand 3-h timescales, which motivates our nomen-
clature focus on the time rather than space scale. Using the
measurements, model and reanalysis data, we would not expect our
results to change substantially if the analysis domain were increased
orreduced by afactor of two or more (see Methods section ‘Mass flux
estimation’ for a discussion of the scale sensitivity of the results).

The Barbados region was chosen as the location of EUREC*A because
shallow trade cumulus clouds are the dominant cloud typeinthe area
during winter®™. Furthermore, clouds in the Barbados region are simi-
lar to clouds across the trade-wind regions in both observations and
models*. The mean meteorological conditions during the EUREC*A
campaign, as sampled by the dropsondes, also correspond well to the
average January-February conditions from 12 years of data from the
ERA-Interim reanalysis*® (their Fig. 5), albeit with a10% larger 850 hPa
relative humidity during EUREC*A (the EUREC*A dropsondes also
have an approximately 8% larger relative humidity compared with
the 2013-2022 average in ERAS, not shown). Also, all four prominent
patterns of mesoscale cloud organization* were present during the
campaign®. The conclusions drawn from the EUREC*A data are thus
relevant across the tropics and for climate timescales.

Observations

For estimating the cloud-base mass flux M, R and many other variables,
we use dropsonde data from the JOANNE dataset®®, namely Level 3
(gridded quality-checked sondes) and Level 4 (circle products) vertical
profiles of thermodynamic quantities, wind and mesoscale vertical
velocity, W.The HALO dropsondes are corrected for adry bias by mul-
tiplying the relative humidity by 1.06 (ref. %%).

For the cloud-base cloud fraction C, we use the BASTALIAS lidar-radar
synergy product®, whichincludes both cloud and drizzle (but not rain)
and constitutesan upper bound on C. We also test the relationships for
three further estimates of C:

+ The non-drizzling cloud product from the radar-lidar synergy (C,,),
which excludes drizzle and constitutes alower bound on C.

« Insitu estimates from a microphysical probe defined on the basis of
thresholds of liquid water content plus particle size (C,,).

« In situ high-frequency (25-Hz) humidity sensor, with cloud defined
as relative humidity 298% (Cyp)-

Theinsitu sensors measure the along-track C, whereas the lidar-radar
synergy samples clouds inside the rectangle at a distance up to 8 km
fromtheaircraft®. Despite pronounced differences in the measurement
principles and sampling, Fig. 18 of ref. > demonstrates the internal
consistency and robustness among the independent Cestimates. The
ATR turbulence measurements also include measurements of vertical
updraft and downdraft velocities*’, from which an in-cloud mass flux
M,.»is computed by multiplying C,,, by the in-cloud vertical velocity.

Further HALO aircraft measurements used are total projected cloud
cover (CC) estimates from the differential absorption lidar WALES, the
hyperspectral imager specMACS and the cloud radar HAMP?, From
these cloud masks, we derive the CC along the 1-hcircle. For specMACS
and HAMP, the cloud detectionisambiguous and we consider both the
‘probably cloudy’ and the ‘most likely cloudy’ flagsin our CC estimates.

We also use ceilometer and cloud radar datafrom the BCO and the RV
Meteor to test the robustness of the sub-cloud-layer height definition
(notshown). Radar cloud fraction profiles are obtained by correcting
the hydrometeor fraction profiles with ceilometer data during periods
of rain (see ref. ** for adescription of the correction applied). The BCO
cloudradar dataalso demonstrate that missing the level of maximum
cloud-base cloud fractionin 3-h averages by, say, 60 m does not affect
the variability of C (correlations of r = 0.99 and r = 0.93 with the maxi-
mum Cwhen 60 m above and below the peak level, respectively) and
only marginally affectsits magnitude (18% and 33% smaller relative to
the maximum Cfor being 60 m above or below the peak level, respec-
tively). Soonlyifthe ATRflightlevel deviated from the height of maxi-
mum cloudiness in ways that co-varied with Mwould we expect sucha
height difference to influence our analysis. As the ATR aircraft usually
flew slightly above h (Extended Data Fig. 3a) and because it sampled
many more cloudsin3 hcompared with the stationary BCO, a potential
influence of missing the peak level is deemed not to bias our findings.

Surface buoyancy flux

Toestimate the surface buoyancy flux (w’6;| , needed to compute M),
we use dropsonde humidity, temperature and wind data at 20 m height
and apply the Coupled Ocean-Atmosphere Response Experiment
(COARE) bulk flux algorithm version 3.6 (refs. >). For the SST, we
extrapolate the 2-m-depth SST of the RV Meteor (thermosalinograph
primary backboard temperature), or alternatively from the AutoNaut
Caravela®, to the dropsonde location based on a fixed zonal and merid-
ional SST gradient of —-0.14 K per degree. A gradient of —-0.14 K per
degree corresponds to the median zonal and meridional gradient
(-0.145K per degree and —0.135 K per degree, respectively) across the
EUREC*A circle over the period from 19 January to 15 February in the
ERAS reanalysis® and in two satellite SST products (from the Advanced
Baseline Imager onboard the Geostationary Operational Environmen-
tal Satellite (GOES-16 ABI) and the Collecte Localisation Satellites (CLS).




The sonde-derived surface buoyancy flux on the 3-h scale compares
favourably with bulk fluxes from the RV Meteor mast, witha correlation
coefficientr=0.83 and amean offset of 0.1% relative to RV Meteor. The
sonde-derived flux hasacomparable magnitude with the flux measured
at the RV Ronald Brown®** further upstream and is also well correlated
(r=0.81) withERAS. The ERAS5 fluxes, however, overestimate the surface
buoyancy flux compared with the sonde-derived flux by 25%, whichis
mostly because of the overestimation of the sensible heat flux by 64%
relative to the observations (9.8 W m2and 6.0 W m~2 for ERAS and
dropsondes, respectively). A strong overestimation of the sensible
heat flux compared with buoy measurements in the regionis also pre-
sent in the predecessor ERA-Interim reanalysis®. Overall, the good
correspondence of our sonde-derived surface buoyancy flux with the
independent data lends credibility to our estimation procedure. The
sonde-derived surface buoyancy flux is also used to compute the

1/3
Deardorff sub-cloud-layer vertical velocity scale w* = heiw’e’v|s)
shownin Fig. 3¢, in which g is the gravitational acceleration.

Mass flux estimation

Vogel et al.”® developed a method to estimate the shallow-convective
mass flux at the sub-cloud-layer top as aresidual of the sub-cloud-layer
mass budget and tested it in real-case large-eddy simulations over the
tropical Atlantic. Here the method is applied to EUREC*A observations,
in parallel with Albright et al.”2, who close the sub-cloud-layer mois-
ture and heat budgets and provide an independent constraint on the
entrainment rate E. Except for the surface buoyancy flux estimate (see
the previous section), all data for the budgets come entirely from the
dropsondes.

Equation (1) expresses the budget of the sub-cloud-layer height h
per unit area and constant density. % represents the temporal fluc-
tuationof hand V,,- Vhits horizontafadvection, Eis the entrainment
rate, Wthe mesoscale vertical velocity (positive upwards) and M the
convective mass flux at A.

The sub-cloud-layer height his defined as the height at which the vir-
tual potential temperature (8,) first exceeds its density-weighted mean
from 100 mup to h by a fixed threshold e = 0.2 K (refs. ?°%), Extended
Data Fig. 3a confirms that our A is usually close to the ATR flight alti-
tude and h is also well within the range of independent BCO and RV
Meteor observations of the maximum radar cloud-base cloud fraction
and the peak frequency of the first ceilometer cloud-base height (not
shown). This confirms that our h agrees well with the level of maximum
near-base cloud fraction, which was set as the target height for the ATR
flight level and thus for evaluating the mass budget®.

The entrainment rate £ represents the deepening of h owing to
small-scale mixing at the sub-cloud-layer top. We use a modified ver-
sion of the classical flux-jump model*”*® that accounts for the finite
thickness of the transition layer, the approximately 150-m-thick stable
layer separating the mixed layer from the cloud layer (see ref. # for
details). The buoyancy flux at hismodelled as a fixed fraction A, of the
surface buoyancy flux, w’6; |, in which A, is the effective entrainment
efficiency. The buoyancy jump at the sub-cloud-layer top is computed
asAf,=A0+0.61(0 Ag + gAb), with AG=Cy(6y, — 6)and Ag = C (q,, ~ q)-
gisthespecifichumidity, C;and Cyare scaling coefficients accounting
for uncertainty in the depth over which the jumps are computed, the
subscript h+refers tothe value of g or 8 above 1 (computed as the aver-
age from A to h+100 m) and g and @ are averages from 50 m to the
mixed-layer top (defined as the height of maximum relative humidity
below 900 m). Finally, Eis computed as

Fe A8

A6, @

Theuncertain parameters A., C,and C,are estimated through ajoint
Bayesian inversion to close the moisture and heat budgets by ref. %,

yielding maximum-likelihood estimates of A, = 0.43 + 0.06 (mean + 10),
C,=1.26 +0.34and C,=1.15+0.31.

The mesoscale vertical velocity W at his computed by vertically
integrating the divergence of the horizontal wind field measured by
the dropsondes? from the surface up to h. Wis at the lower end of the
meso-a scale of ref. *¢, what climate modellers often associate with
the ‘large scale’. The terms h, E and W are computed at the 1-h scale
of asingle circle and then aggregated to the 3-h scale (three circles).

The temporal fluctuation of & is estimated as the linear regression
slope of h computed fromthe 30-36 soundings available per 3-h circle
set. Similarly, the horizontal advection of h is estimated as the sum of
the linear regressions of the eastward (0h/0x) and northward (0h/dy)
gradients of the individual A, multiplied by the wind speed at the 3-h
mean h.Bothdh/0tand V- Vh are only available on the 3-h scale.

Thedefault Mshowninthe paper is the equilibriummass fluxM=E+ W,
which reproduces well the mass flux diagnosed directly from cloud-core
areafractionand vertical velocity inlarge-eddy simulations. This equi-
librium Mis also available on the 1-h scale of anindividual circle. Taking
into account 0h/0t and V,,- Vh in the mass flux estimate leads to
M=M- % = V},- Vh,which shows very similar characteristics compared
with M (Extended DataFig.3). Thisis mainly because both the advection
(-1.3+2.7 mms™) and temporal fluctuation (0.5 + 6.8 mms™) terms are
on average about zero, and the advection term is also nearly invariant.
Theinclusion of advection and ‘;—'Z in M’ slightly enhances variability on
the diurnal timescale (Extended Data Fig. 1a).

Cold pools formed by evaporating precipitation destroy the struc-
ture of the sub-cloud layer and make the estimation of hless robust. We
thus exclude soundings that fall into cold pools in the analysis using
the criterion of h <400 m developed by ref. * based on the EUREC*A
soundings. The influence of these and other assumptions on the magni-
tude and variability of Mare discussed in the Methods section ‘Robust-
ness of observational estimates’. Also note that our Mis defined as the
(mass) specific mass flux and has units of velocity. It differs from the
more familiar mass flux (in units of kg m™s™) by the air density, which
is usually assumed to be constant’®*’, and which isjustified here given
the small density variations across the measurements (mean + g of
1.104 £ 0.0077 kg m, that is, less than 0.7% of the mean).

Although the1-hscale variability of M can be substantial (for example,
second 3-h circle sets on 26 January and 13 February; Fig. 2), the median
estimation uncertainty is only 20% at the 3-h scale (see section below).
Also, Mhas asimilar magnitude and reassuring correlation (r=0.77) to
theindependent M., estimate frominsitu turbulence measurements
onthe ATR aircraft (Extended Data Fig. 2d).

The mass budget terms show different degrees of scale sensitivity
(seealso discussioninref. *°). Extended Data Figs. 2c and 4a show that
the correlation between Wand Mis slightly larger at the 1-h scale com-
pared with the 3-h scale (3, = 0.60 and ry,,;, = 0.67), whereas they
are essentially the same for Eand M (rg3, = 0.54 and rgq, = 0.55). The
scale sensitivity of the Wvariance is in line with radiosonde data from
the EUREC*A ship array, which show that the divergence amplitudes
at equivalent radii of 100-300 km scale inversely with radius® (as in
ERAS5 and ICON, consistent with ref. %), In ERAS, the scale sensitivity
of the surface buoyancy flux, which contributes most to variability
in E (Extended Data Fig. 4b), is much smaller compared with the scale
sensitivity of W(not shown). This is probably because variability in the
surface buoyancy flux is mostly controlled by the surface wind speed
(Extended DataFig. 4h) and radiative cooling®, both of which are large
scale. The surface wind speed has autocorrelation coefficients of 0.74 for
a2-day and 0.48 for an 8-day lag (Fig. 3d of ref. %2). Although weaker com-
pared with the synoptic variability, the surface wind also has a distinct
diurnal cycle®>®, which causes a diurnal cycle of the surface buoyancy
flux (Extended Data Fig. 1c and ref.?°). Some of the diurnal variability
in E'is thus lost for longer temporal averaging. Also, the variability in
the temporal fluctuation and horizontal advection of 4 (equation (1))
decreases on larger scales®. In summary, M variability decreases on
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larger averaging scales. The scale sensitivity of Wis larger compared
with £, such that the contribution of Wto Mvariability tends tobecome
smaller compared with the contribution of £on much larger scales.
As noted above, E describes the net effect of local processes and
must be inferred from the statistics of other quantities (that is, the
mean sub-cloud-layer growth rate or the dilution of sub-cloud-layer
properties). This raises the question whether the E estimate itself might
depend onthe mesoscale environment and therefore introduce spuri-
ous co-variabilities between M, W and C. The Bayesian estimation of
the uncertain parameter estimates A,, C,and Cyis a prioriindependent
of Mand W. Also, the synoptic variability during EUREC*A can be well
explained by keeping them constant?. Reference ?? also explored to
what extent other factors correlated with residuals in their Bayesian fits
andfoundnoevidence of asystematic effect of other factors, including
wind speed and shear®. As discussed above, the variability in £ tends
tobeless scale-sensitive than Wand mostly controlled by larger-scale
factors, suchasthe surface wind speed (through the surface buoyancy
flux; Extended Data Fig. 4b,h). Furthermore, Eand Ware anticorrelated
(r;w=-0.35; Extended Data Fig. 4g). So both statistically from the anti-
correlationand physically through the scale argument, we believe that
our parameterization of £ does not induce spurious co-variability.

Uncertainty estimation

Forthe M, R and Cestimates, we distinguish two sources of uncertainty:
sampling uncertainty and estimation (or retrieval) uncertainty. For all
terms, the sampling uncertainty is computed at the 3-h scale as the
standard error,SE = g/-/n, of the three individual 1-h circle values (each
representing about 50 min of flight or up to 12 sondes), in which o is
the standard deviation and n the number of circles.

The estimation uncertainty is computed differently for every term
according to the underlying assumptions and choices. For R, the
manufacturer-stated uncertainty (that s, repeatability) is 2% and some
extrauncertainty stems fromthe correction of the dry bias of the HALO
dropsondes (see ref. 2%). Because this uncertainty is the same for all
datapoints, the estimation uncertainty of Ris not shown in the figures.
For C, the estimation uncertainty is computed for every 3-h circle set
as the SE of the four different estimates of C, namely Citself, C,,, Cyyro
and C,,,,. The uncertainty estimate therefore represents uncertainty
inmeasurement principles and spatial sampling®. Further uncertain-
ties of the individual Cestimates (for example, owing to the choice of
thresholds) are neglected, as sensitivity tests suggest that they are
smaller than the uncertainty among the different C estimates™.

For W,theadvectionterm V,,- Vhand the temporal fluctuation dh/ot,
the estimation uncertainty is taken as the SE of the respective regression
used to compute the term. Because dh/dtis computed fromindividual
sondes, it contains both temporal and spatial variability of honthe 3-h
scaleand its SE isinflated.

The estimation uncertainty of the surface buoyancy flux is a com-
bination of uncertainty in the underlying SSTs and in the COARE
bulk flux algorithm. We estimate the uncertainty in the underlying
SSTs by computing the SE of five different versions of the flux (three
with different fixed SST gradients (the default median value and the
median t interquartile range, that is, —-0.14 K per degree, -0.21 K per
degreeand -0.07 K per degree), one with atemporally varying gradient
(notshown) and one with adifferent baseline SST (from the AutoNaut
Caravela® instead of the RV Meteor)) and adding a 5% uncertainty of the
COARE algorithmgiveninref.*°asthe1-huncertaintyinthe 0-10 ms™
wind speed range. For A. and A8,, we use the relative uncertainties of
the Bayesian inversion as the estimation uncertainty (that is, o(A4,)/A.
for A. and the average of 6(C,)/C,and o(Cy)/C,for AD,).

Uncertainties in the three individual terms of E are propagated by
addingtheir fractional uncertaintiesin quadrature toyield the estima-
tion uncertainty of £. In the same spirit, the estimation uncertainty is
propagated from the 1-h scale to the 3-h scale and from the individual
terms of equation (1) to M.

The uncertainties of the correlations and the multiple linear regres-
sion are estimated with bootstrapping (10,000 repetitions). We
communicate these uncertainties by mentioning the 25th and 75th
quartiles in the text and by showing both the quartiles and the 2.5%
and 97.5% quantiles (representing the 95% confidence interval) in Fig. 4
and Extended Data Fig. 8. Apart from the uncertainty quantification
described here, we assess the robustness of the Mand Cobservations to
several other choices and assumptions in the Methods section ‘Robust-
ness of observational estimates’.

Other mixing indicators

Other proxies for lower-tropospheric mixing were used in previous
studies®”® that can be estimated from the dropsonde data and com-
pared with the variability in C. Here we compute the boundary-
layer v%rtical advection (BVA) diagnostic from ref. ® defined as
BVA :jo'“‘" W(z)a'\g%pdz, inwhich MSE is the moist static energy, Z,;,
the level of minimum MSE that marks the top of the trade-wind layer
(on average at 2,900 m) and p the density. Note that a lower (more
negative) BVA value indicates stronger mixing.

Reference % found a pronounced positive relationship between
changes in BVA and changes in C from a series of single-column
model experiments with the IPSL-CM5A model, which is character-
ized by a strong positive low-cloud feedback and the presence of
the mixing-desiccation mechanism (Fig. 4). Extended Data Fig. 4f
shows a pronounced negative correlation between BVA and Min the
EUREC*A data, indicating good agreement in their complementary
definitions of mixing. Smaller BVA (stronger mixing) is also associ-
ated with larger C (not shown), whichis at odds with the IPSL-CM5A
model. The absolute correlation between BVA and C (r = 0.34), how-
ever, is considerably smaller than the correlation between Mand C
(r=0.72).

General circulation models
Thecloud fraction, net mass flux (upward and downward) and relative
humidity at cloud base are calculated for ten Coupled Model Intercom-
parison Project (CMIP) models:
« Four from the fifth phase, CMIPS5 (ref. ®®): CanAM4 (ref. ),
MPI-ESM-LR®, IPSL-CM5A-LR®, HadGEM2-A" and
« Six from the sixth phase, CMIP6 (ref. ”"): BCC-CSM2-MR”?, CNRM-CMé6-1
(ref. %), IPSL-CM6A-LR™, MIROC6 (ref.”), MRI-ESM2-0 (ref. ),
HadGEM3-GC31-LL”
using the sub-hourly vertical profiles at selected sites (named cfSites
in CMIP5 and CF,,;,. in CMIP6) provided by CFMIP**. Note that the M
from the models is not computed using equation (1) but is defined
according to the respective convective parameterization scheme of
themodels (see references above). We use the atmosphere-only amip
configurationfrom 1979 t0 2008, selecting datafrom December, Janu-
ary, February and March to be broadly consistent with the winter condi-
tions sampled during EUREC*A. For each model, between two and six
sites are available in the North Atlantic trades between 60-50° W and
12-16° N, namely the BOMEX, NTAS, EUREC*A, BCO and RICO sites.
All profiles with clouds above 600 hPa (about 4.2 km) are dropped to
ensure afocus onshallow convection. We verified that, in terms of the
large-scale environment, the cfSites fall into the climatological trade
cumulus regime as defined by ref. *°.

The cloud-base level is defined as the level of maximum cloud frac-
tion between 870 and 970 hPa (between about 400 and 1,300 m).
Ifthe maximum cloud fractionis smaller than 0.25% for agiven profile,
the cloud-base level is taken at the climatological level of maximum
cloud fraction. The hourly cloud-base data are aggregated to a 3-h
timescale, which corresponds to the 3-h scale of the EUREC*A data, as
well as a monthly timescale. The values computed are insensitive to
(1) averaging across the sites before aggregating to the 3-h timescale,
(2) removing the site near the Northwest Tropical Atlantic Station buoy
upstream of the EUREC*A circle (near 51° Wand 15° N), (3) focusing only



onJanuary and February, and (4) excluding nighttime values outside
the hours sampled during EUREC*A (not shown).

We use the thermodynamic component of the change in the cloud
radiative effect at the top of the atmosphere (ACRE) with warming under
givendynamical conditions to quantify the strength of the trade cumu-
lus radiative feedback. Reference showed that the ACRE with warming
is a good approximation of the cloud feedback computed with radia-
tive kernels’. The CRE is defined as the difference between all-sky (all,
including clouds) and clear-sky (clr, clouds assumed to be transparent
to radiation) net downward radiative fluxes, CRE =R, — R, = (LW, —
LW,,) + (SW,, — SW,,,) = CRE,,, + CREgy,, with R being the total radiative
flux and LW and SW its longwave and shortwave components, respec-
tively. The radiative fluxes are defined positive downward. The ACRE
with warmingis thensimply the differencein CREbetween the warmer
amip4K (4-K uniformincrease in SST) and the amip (control) simula-
tions, normalized by the 4-K temperature difference (that is, ACRE/
AT, = (CRE,pipax —~ CRE,;,)/4K). To restrict the feedback estimation to
the trade cumulus regime, we focus on ocean-only grid points between
35°Sand 35° Nand use the regime partitioning of ref. ** with trade cumu-
lus regimes in each simulation (amip or amip4K) defined as having a
climatological annual mean estimated inversion strength smaller than
1K and a vertical velocity at 700 hPabetween 0 and 15 hPa day.

Robustness of observational estimates

Applying the mass budget formulation to the EUREC*A dropsonde data
involves several choices for definitions and thresholds. These choices
are guided by constraints fromindependent dataand from closure of
the moisture and heat budgets in ref. >, which provides justification
for the default configuration described in the Methods section ‘Mass
flux estimation’. Nevertheless, itisimportant to assess and understand
the sensitivity of the mass budget estimates and the key relationships
to different estimation choices.

We focus first on the influence of different definitions of the
sub-cloud-layer height h and the entrainment rate £ on the mean and
standard deviation (o) of Mand E, the respective correlations of Mwith
Eand W, and the correlation and mean difference to the independent
M., estimate from turbulence measurements onboard the ATR aircraft
(see Extended DataFig. 2). For the h definition, we compare our default
htoanalternative definition, ‘h.parcel’, which defines h as the level of
neutral buoyancy of a surface-lifted parcel (with density-weighted 6,
averaged from 30 to 80 m) plus 0.2 K 6, excess. Using ‘h.parcel’ leads
to a 16 m shallower mean h compared with the default. The slightly
shallower h decreases A6, (the denominator of the E formulation in
equation (2)) from 0.36 Kto 0.34 K, whichslightly increases £ and M by
around 1.5 mm s™. Although Wis unaffected by this small changein i,
the resulting M has a slightly reduced correlation to the independent
M., compared with the default M (r = 0.69 versus r = 0.77). The same
chainof arguments holds forincreasing and decreasing the threshold
ein the h definition by +0.05 K. With e = 0.25 K instead of 0.2 K (case
‘h.eps =0.25’), hincreases by 31 mand, throughthe larger A,, decreases
E and M by about 3.3 mm s™. Owing to the presence of a thin transi-
tion layer?, the response to € + 0.05 K is nonlinear and a reduction of
€10 0.15K (‘h.eps = 0.15") leads to a disproportionately smaller A6,
and roughly 6 mm s larger £ and M. The 35 m shallower mean h with
€=0.15K also strongly increases o, which increases the correlation
between £ and M at the expense of a decreased correlation between
the unaffected Wand M (Extended Data Fig. 2¢).

The next set of choices involves the entrainment rate estimate. We
test the influence of the different surface buoyancy flux estimates
from ERAS and RV Meteor. As the ERAS5 flux is 25% larger than the other
fluxes, we scaleit to have same meanas the dropsonde-derived flux (case
‘sbf = ERAS5.sc’). For ‘sbf = ERAS.sc’, the variability in £ and M are substan-
tially larger compared with the default dropsonde flux, increasing their
correlation. For the case ‘sbf = Meteor’, the differences to the default
estimates is smaller (Extended Data Fig. 2a,b) and the correlation with

M, isslightly larger thaninthe other configurations. The estimates are
alsounaffected by changing the three coefficients A, C;and Cyestimated
by Bayesianinversioninref. ?to close the moisture and energy budgets
during EUREC*Awhen cold poolsoundings (defined as having h <400 m
following ref.®) are excluded (‘diffEpars’). We further compare four
different ways of computing A@,. Computing the value at h+as averages
from hto h+50 or h+150 m (instead of to 2 +100 m) has a similar (but
more linear) influence as increasing € + 0.05 K (see discussion above).
Using two different heights for averaging 6, across the mixed layer (up to
hin‘tvbar =h’anduptothelevel at whichgfirst fallsbelowitsmeanbya
threshold of 0.3 g kg 'in‘tvbar = qgrad’) hardly influences the estimates.

Last, we show the influence of computing the mass budgetincluding the
cold poolsoundings for two sets of surface buoyancy flux estimates, case
‘withCP’ for the default dropsonde-derived flux and ‘withCP_sbf = ERAS.sc’
forthe scaled ERA5 flux. Inboth cases, the meanand cof both Mand Eare
increased when cold pools areincluded (matching the mean Eof ref. 22, who
included cold pools). However, especially for the default surface fluxes
(case ‘withCP’), the correlation with M, is strongly reduced.

Extended Data Fig. 2a,d also shows the influence of selected choices
onthetotalmass flux M, whichincludes the contribution of the temporal
fluctuationand horizontal advection of h. Because these extratermsare
on average nearly zero (Extended Data Fig. 3¢), their inclusion does not
affect M. o instead increases by about 1.5 mm s owing to the pronounced
variability in the temporal fluctuation term. As thistermis not very robust,
we use themorereliable equilibrium Mas our best estimate. The equilib-
rium Misalsorobustatthel-hscale ofanindividual circle (case ‘lh-scale’).

Overall, Extended Data Fig.2 makes us very confident in the robustness
of our mass budget estimates because they only show amodest sensitiv-
ity tothe various choices and because we can explain these sensitivities
physically. Also, the independent ATR M, estimates (Extended Data
Fig. 2d) and the extra constraints on £ from our complementary analy-
ses of the moisture and heat budgets in ref.  (dashed lines in Extended
DataFig. 2b) lend further credibility to our default estimation choices.

Next, we focus on the sensitivity of the key relationships between M,
Cand R to aselected set of plausible estimation choices of M and the
different Cestimates from the ATR aircraft. Extended Data Fig. 5a shows
thatthe positive correlation between Mand Cis notable for all parameter
choices, and both the equilibrium M and total M’. Furthermore, the
negligible correlation between M and R is also very robust.

Extended Data Fig. 5b further confirms that the default M also has
strong correlations with the three independent estimates of C from
the ATRaircraft. The sameis true for the other estimation choices of M,
with a small overall range of correlations of 0.52 < r), < 0.73. Correla-
tions between Cand R are more variable between the different Cesti-
matesandareintherange0.12 <ry < 0.63.Itisnotsurprising that the
Cony€stimate that neglects contributions from drizzle has the strong-
est correlation with R, as it mostly features passive clouds that are
more affected by ambient humidity than the more active clouds that
alsoincludedrizzle. Note that thereis also a slight dependency of (R,C)
on the M estimates, as the cases ‘h.parcel’ and ‘h.eps = 0.25 result in
different h and thus different heights at which R is evaluated.

The bottom panels of Extended Data Fig. 5 also confirm the robust-
ness of the correlation coefficient of the multiple linear regression
C=ay+ayuM + ayRandtheratio of the standardized regression coef-
ficients ay,/a tothe Mestimation choices (Extended Data Fig. 5¢c) and
the different Cestimates (Extended DataFig. 5d). Thereis no configu-
rationwitha,,/a <1 indicating that Cis always more strongly coupled
toMthantoRintheobservations. Slightly larger values of ay,/a; and
smaller correlations are evident for the total M'.

Also, the standard deviation of C (o) is very similar for the differ-
ent Cestimates thatinclude drizzle (between 2.1% and 3.7%, with 3.1%
being the o, of the default BASTALIAS lidar-radar synergy product)
and only slightly lower for the C,,, estimate (1.6%) when using the full
sample. Variability is slightly reduced in the smaller sample that over-
laps with the HALO flights, because it excludes two night flights with
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larger cloudiness and two flights in dry environments with very small
cloudiness (0. 0f 1.7-2.4% for the C estimates that include drizzle).

Overall, Extended Data Fig. 5 demonstrates the insensitivity of the
observed relationships to a wide range of configurations. We there-
fore conclude that the relationships between mixing and cloudiness
observed during EUREC*A are very robust.

Data availability

All data used in this study are published in the EUREC*A database of
AERIS (https://eurec4a.aeris-data.fr/,lastaccessed: 28 July2022). We use
v2.0.0 of the JOANNE dropsonde data® (https://doi.org/10.25326/246).
The specific ATR datasets® used are the BASTALIAS product (https://
doi.org/10.25326/316), the turbulence measurements*’ (https://doi.
org/10.25326/128) and the PMA/Cloud composite dataset (https://
doi.org/10.25326/237). The specific HALO datasets® used are cloud
masks derived from WALES cloud-top height estimates (https://doi.
org/10.25326/216), HAMP Cloud Radar (https://doi.org/10.25326/222)
and specMACS (https://doi.org/10.25326/166), and the flight segmen-
tation product (https://doi.org/10.5281/zenod0.4900003). From the
BCO", we used ceilometer (https://doi.org/10.25326/367) and cloud
radar data (https://doi.org/10.25326/55). From the RV Meteor**, we
used standard dship meteorological data for the EUREC*A Meteor
cruise M161 (retrieved from http://dship.bsh.de/, last accessed: 28 June
2022), surface heat fluxes (https://doi.org/10.25326/312), ceilometer
measurements (https://doi.org/10.25326/53) and cloud radar data (v1.1,
https://doi.org/10.25326/164). We further used data from AutoNaut
Caravela® (https://doi.org/10.25326/366) and 10-min air-sea flux data
(v1.3, https://doi.org/10.25921/etxb-ht19) from the RV Ronald Brown**.
Also, we used CLS Daily High Resolution Sea Surface Temperature maps
(retrievable through the AERIS operational centre https://observa-
tions.ipsl.fr/aeris/eurec4a-data/SATELLITES/CLS/SST/, last accessed:
28June 2022, or directly from https://datastore.cls.fr/catalogues/
sea-surface-temperature-infra-red-high-resolution-daily), GOES-16
ABI SSTs from the ABI_G16-STAR-L3C-v2.7 product (https://doi.
org/10.25921/rtf0-q898) and ERAS (ref. %) reanalysis data. The CMIP5
and CMIP6 climate model outputs are available for download at https://
esgf-node.llnl.gov. Source data are provided with this paper.

Code availability

The scripts used for the analyses and other supporting information
that may be useful for reproducing this study can be obtained from
https://doi.org/10.5281/zenodo.7032765.
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Extended DataFig. 4 |Relationships of other key terms. a, Fand Wversus M.
b, Surfacebuoyancy flux versusE.c, A6, versus E.d, R versus E. e, R versus W.
f,BVAmixingindicator versus M.g, Eversus W.h,10-mwind speed versus surface
buoyancy flux.a-c,f~hshowboththe 3-hscale (filled circles) and the 1-h scale
(opencircles, with the corresponding correlation coefficient denoted as ‘r.1h’).
Adotted1:1lineisshowninaandg.Indand e, theerrorbarsrepresent the
estimationuncertainty for Fand Wand thesamplinguncertainty for R (seeMethods).

Thecorrelationsind and eare given both for the sample with consistent
sampling among the HALO and ATR aircraft (blue points, as used for the
correlationsinFigs. 2 and 3) and for the entire sample of the HALO aircraft
(including the grey points that represent the three data points marked
with X’ inFig.3 and eight other data points when ATR was not flying. The
corresponding correlation coefficientis denoted as ‘r.all’).
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Extended DataFig. 5|Influence of different Mand Cestimates on key
relationships. Correlation coefficients rof Mand C (ry,c) and Mand R (ry, ) (a)
and Mand C(ry, ) and Rand C(r, () (b). ¢,d, Correlations of the reconstructed
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standardized regression coefficients ay,/a.aand calso show the relationships
for the total M’ (open symbols), whereas b and d show the relationships for
different estimates of C (different symbols). See details in Methods section
‘Robustness of observational estimates’.
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Extended DataFig.7|Individual relationships of C, Mand R for climate
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Extended DataFig. 8| Comparison of other variables and relationships
inclimate models against the EUREC*A data.a, Mean R and fraction of
stratocumulus-like conditions with R > 94%. b, Standard deviation of R and W
(0 and o). ¢, r*of multiple linear regression € = ay+ a,M + ax R and
correlation coefficientof Mand R.d, Standard deviation of C (o) and
thermodynamic componentofthe cloud feedback ACRE/AT,, as well as the 3-h
and monthly correlations of Mand C (e) and R and C (f). e and falso show the

inter-model correlation coefficients of the respective variablesand the1:1line
(dottedline). AsinFig.4, the models are coloured in bins of feedback strength
and opensymbolsindicate models with frequent stratocumulus (defined as
having R >94% more than15% of the time). The observational uncertainty
rangeisshowningrey, with the shading representing the 25th to 75th quartile
and the grey barsindicating the 95% confidence interval of bootstrapped
values.HadGEM2-Ais not showninb owing to the absence of Woutput.
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