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Strong cloud–circulation coupling explains 
weak trade cumulus feedback

Raphaela Vogel1,3 ✉, Anna Lea Albright1, Jessica Vial1, Geet George2, Bjorn Stevens2 & 
Sandrine Bony1

Shallow cumulus clouds in the trade-wind regions cool the planet by reflecting solar 
radiation. The response of trade cumulus clouds to climate change is a key uncertainty 
in climate projections1–4. Trade cumulus feedbacks in climate models are governed by 
changes in cloud fraction near cloud base5,6, with high-climate-sensitivity models 
suggesting a strong decrease in cloud-base cloudiness owing to increased lower- 
tropospheric mixing5–7. Here we show that new observations from the EUREC4A 
(Elucidating the role of cloud-circulation coupling in climate) field campaign8,9 refute 
this mixing-desiccation hypothesis. We find the dynamical increase of cloudiness 
through mixing to overwhelm the thermodynamic control through humidity. 
Because mesoscale motions and the entrainment rate contribute equally to variability 
in mixing but have opposing effects on humidity, mixing does not desiccate clouds. 
The magnitude, variability and coupling of mixing and cloudiness differ markedly 
among climate models and with the EUREC4A observations. Models with large trade 
cumulus feedbacks tend to exaggerate the dependence of cloudiness on relative 
humidity as opposed to mixing and also exaggerate variability in cloudiness. Our 
observational analyses render models with large positive feedbacks implausible and 
both support and explain at the process scale a weak trade cumulus feedback. Our 
findings thus refute an important line of evidence for a high climate sensitivity10,11.

Earth’s climate strongly depends on the abundance and behaviour of 
its smallest clouds. Shallow trade-wind cumulus clouds are rooted in 
the turbulent sub-cloud layer and form when thermals rise above the 
lifting condensation level12. They may grow only a few hundred metres 
high in dry environments or become positively buoyant and rise up to 
the trade-wind inversion, where they detrain condensate into stratiform 
cloud layers. Trade cumuli populate most of the subtropical oceans 
and cool the planet by reflecting the incoming solar radiation. Owing 
to their large geographical extent, small errors in predicting the way 
trade cumuli respond to warming can have a large effect on the global 
radiative budget. This explains why shallow cumuli in the trades are a 
main source of spread in the estimates of climate sensitivity of climate 
models1–4.

Cloudiness near the base of the cumulus layer makes up two-thirds 
of the total cloud cover in the trades13 and its change with warming 
governs the strength of the trade cumulus cloud feedback in climate 
models5,6. Reductions in cloud-base cloudiness in climate models are 
tightly coupled with increases in lower-tropospheric mixing owing to 
convective and large-scale circulations5–7. On the basis of this strong 
negative coupling between mixing and cloudiness, the hypothesis 
emerged that enhanced convective mixing might desiccate the lower 
cloud layer and reduce cloudiness in the trades7. This mixing-desiccation 
hypothesis suggests that the moisture transported by convection from 
the sub-cloud layer to the trade inversion is compensated by downward 
mixing of drier air and evaporation of clouds near cloud base.  

The mechanism—which is expected to become more pronounced with 
warming owing to the nonlinear Clausius–Clapeyron relationship—is 
consistent with idealized high-resolution simulations of nonprecipitat-
ing trade cumuli14 and with the behaviour of climate models that have 
a strongly positive trade cumulus feedback5,7,15. However, the 
mixing-desiccation hypothesis has never been tested with observa-
tions. Using the convective mass flux at cloud base, M, as a proxy for 
lower-tropospheric convective mixing, the hypothesis can be tested 
by analysing the relationship between M and the mean relative humid-
ity (R) and cloud fraction (C) at cloud base in observations, with 
C M∝ ∝ βR  and β < 0 suggesting the mixing-desiccation mechanism 
to be present in nature (Fig. 1a).

The mixing-desiccation mechanism is based on several assumptions 
that might not be operating in nature. M is commonly defined as the 
product of the cloud fraction and the in-cloud vertical velocity, and its 
variability is mostly governed by the area coverage of active clouds16,17, 
defined as saturated and buoyant updrafts that ventilate the sub-cloud 
layer. If variability in the in-cloud vertical velocity near cloud base is 
small, a positive relationship between C and M is expected (β > 0; 
Fig. 1b). This was demonstrated for nonprecipitating trade cumuli 
using Doppler radar data17,18 and seems at odds with the mixing- 
desiccation hypothesis. Yet active clouds represent only half of the 
total C (refs. 19,20) and the lifetime and variability of passive clouds, such 
as the detritus of decaying clouds, might be more sensitive to R and 
mixing-induced drying of their environment than to M.
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The sub-cloud-layer mass budget provides a theoretical basis for 
interpreting the mixing-desiccation mechanism. It can be expressed 
as a budget of the sub-cloud-layer height h,

h
t

V h E W M
∂
∂

+ ⋅ ∇ = + − , (1)h

in which the entrainment rate, E, representing the mass source owing 
to the entrainment of dry and warm cloud layer air, and the mesoscale 
vertical velocity, W, are balanced by the mass export owing to the con-
vective mass flux, M (ref. 20). Note that we define M as the (mass) specific 
mass flux, which has units of velocity (see Methods). E is the only term 
directly affecting the sub-cloud-layer moisture and heat budgets21,22. 
If an increase in M is mostly balanced by an increase in E, a drying and 
warming of the sub-cloud layer and a reduction in R and C is expected 
(Fig. 1a). The trades, however, exhibit strong mesoscale convective 
organization, which is linked to the presence of mesoscale circulations 
and substantial variability in W (refs. 20,23–25). This variability in W could 
contribute to variability in M without directly affecting R (Fig. 1b). An 
increase in M could also produce increased inversion cloudiness and 
thus increased total cloud cover, compensating the radiative effects 
of a potential decrease in C. The diversity of cloud types and the large 
variability in W in the trades thus call into question the mixing- 

desiccation mechanism as the dominant control of C and trade cumu-
lus feedbacks.

The EUREC4A field campaign was conceived to test the mixing- 
desiccation hypothesis8,9. EUREC4A took place in January and February 
2020 near Barbados, a region selected as a source of data because 
clouds in its vicinity are representative for the entire trade-wind belt26. 
During EUREC4A, we made measurements designed to quantify the 
magnitude and (co-)variability of M, C and R over one month, which 
was characterized by substantial variability in the mesoscale convective 
organization27 and the large-scale circulation9 (see Methods). With the 
help of these measurements, we are able to test the mixing-desiccation 
hypothesis with observations for the first time.

Observations of M, C and R co-variations
During EUREC4A, we dropped more than 800 dropsondes from 
the HALO aircraft flying at about 10 km altitude along 1-h circles of 
220 km diameter28,29. We use the dropsonde data to estimate M at the 
sub-cloud-layer top as a residual of the mass budget (equation (1)) on 
the 3-h scale of three consecutive circles (see Methods). Figure 2a shows 
a large day-to-day variability of M, with higher values at the beginning 
and end of the campaign, and a campaign mean of 17.4 ± 7.5 mm s−1 
(mean ± standard deviation σ). M shows a pronounced diurnal cycle 
(Extended Data Fig. 1), with larger values around sunrise and smaller 
values in the afternoon (consistent with refs. 20,30). The mass budget 
estimates are robust to changes in the estimation procedure and con-
sistent with independent data (Methods and Extended Data Fig. 2).

The entrainment rate E is computed as the ratio of the scaled sur-
face buoyancy flux and the buoyancy jump across h (equation (2) 
and Extended Data Fig. 3). E averages to 18.3 ± 6.4 mm s−1 across the 
campaign (Fig. 2b) and also shows a pronounced diurnal variability 
(Extended Data Fig. 1). E is mostly controlled by variability in the surface 
buoyancy flux (Extended Data Fig. 4b). It is the strengthening of winds 
and surface fluxes that contributes most to the increase in E and M in the 
second half of EUREC4A. W is, with −0.9 ± 6.7 mm s−1, on average nearly 
zero. Variability in W, however, is substantial and contributes slightly 
more to variability in M compared with E (Extended Data Fig. 4a). So 
although M ≈ E holds on average, consistent with the mixing-desiccation 
hypothesis (Fig. 1a), variability in M is controlled by both E and W.

Figure 2c shows the new measurements of the cloud-base cloud 
fraction C from combined horizontally staring lidar and radar on board 
the ATR aircraft flying near cloud base31. C is, with 5.4 ± 3.1%, both small 
and highly variable. The variability of C on the 3-h scale is substantially 
larger than variability on synoptic and longer timescales13. The robust-
ness of C is demonstrated by the internal consistency among comple-
mentary and independent measurements in terms of measurement 
techniques and spatial sampling31. The R at cloud base is robustly 
around 86% (Fig. 2d), except for a few outliers. Three data points with 
much lower R for ATR compared with HALO (marked with ‘X’ in Fig. 2d) 
are excluded in the following analyses, as these situations were associ-
ated with air masses that were sampled differently by the two aircraft 
(see Methods and Fig. A2 in ref. 31).
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Fig. 1 | Illustration of two mechanisms for the coupling of mixing and 
cloudiness. a, The mixing-desiccation mechanism contends that E increases 
in response to an increase in M, which leads to a reduction in R and cloud-base 

cloudiness C, and a relationship RC M∝ ∝ β with β < 0. b, The mesoscale motion 
control of cloudiness instead suggests that M is equally controlled by both E 
and W, such that M is uncorrelated to R and β > 0.
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Fig. 2 | Time series of mixing and cloudiness during EUREC4A. a–d, Measurements  
of M (a), E and W (b), C (c) and R (d), with filled symbols representing the 3-h 
scale and open symbols representing the 1-h scale. The vertical bars in a–c show 
the estimation uncertainty at the 3-h scale (see Methods section ‘Uncertainty 
estimation’). The R in d is shown for both the HALO (blue) and ATR (green) 
aircraft, with the ‘X’ markers representing the data points that are excluded in the 
correlations owing to inconsistent sampling of the mesoscale cloud patterns 
between the two aircraft. The campaign mean ± 1σ is shown on the left side of 
each panel.
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Despite being fundamental quantities to understand climate sen-
sitivity, the challenging nature of observing M and C so far prevented 
an observational analysis of the relationship between mixing and 
cloud-base cloudiness. With the EUREC4A observations presented 
here, we are now able to test the mixing-desiccation hypothesis with  
data.

Data refute mixing-desiccation hypothesis
The cloud-base cloud fraction is suggested to be controlled both 
dynamically through M and thermodynamically through R. We can 
therefore express C as a multiple linear regression C a a M aˆ = + +M0

͠� RR , 
in which ͠( ) represents standardized values (for example, M M σ= / M

� ). 
Figure 3a shows that the observed C and the reconstructed Ĉ  agree 
very well (r = 0.83 [0.80, 0.91], with values in the square brackets rep-
resenting the 25th and 75th quartiles of bootstrapped correlations, 
respectively), demonstrating that M and R dominate variability in C.

The mixing-desiccation mechanism contends that, as M increases, E 
increases and leads to a reduction in R. The anticorrelation of E and R 
is confirmed by the observations ( Rr = −0.47 [−0.62, −0.32]E , ; Extended 
Data Fig. 4d). But W is also correlated to R (r = 0.48 [0.29, 0.62]W ,R ; 

Extended Data Fig. 4e). W does not directly affect the thermodynamic 
properties of the sub-cloud layer22, as it transports mass with the same 
properties of the well-mixed sub-cloud layer. The positive correlation 
between W and R is thus probably connected to a self-aggregation feed-
back leading to a net convergence of moisture into areas that are already 
moist25,32,33. The opposing correlations of E and W with R lead to a neg-
ligible anticorrelation of M and R (r = −0.08 [−0.26, 0.10]; Fig. 3b). 
Although this makes M and R independent predictors of C, it contrasts 
with the expected desiccation effect of increased mixing. The basic 
premise of the mixing-desiccation hypothesis thus breaks down in the 
presence of strong variability in W.

Figure 3c further shows a pronounced positive correlation between 
C and M (r = 0.72 [0.64, 0.81]), demonstrating that M explains more than 
50% of variability in C. The EUREC4A data are therefore in line with a more 
direct relation C ∝ Mβ and a β > 0 (Fig. 1b). The tight connection between 
C and M is also consistent with physical understanding represented in 
the scaling ∗C C M w≈ 2 ∝ 2 /core , in which Ccore is the area fraction of active 
cloud cores and w* is the Deardorff vertical velocity scale (see Methods 
and ref. 24). The correlation of C with R is weaker (r = 0.36 [0.16, 0.56]; 
Fig. 3d). These conclusions are robust to changes in the estimation pro-
cedure of M and to independent estimates of C (Extended Data Fig. 5).
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Fig. 3 | Relationships among M, R  and C. a–d, The relationships between the 
observed C and the reconstructed Ĉ from the regression � RRC a a M aˆ = + +M0

͠  (a), 
M and R (b), M and C (c) and R and C (d) are shown at the 3-h scale. The error bars 
represent the estimation uncertainty for M and C and the sampling uncertainty 
for R (see Methods). The dotted line in a is the 1:1 line. The size of the markers in b  

represents C. The shading in c represents the scaling for C ∝ 2M/w* using the 
mean ± 2σ of the velocity scale w*. The grey ‘X’ markers represent data that are 
excluded in the correlations owing to inconsistent sampling between the two 
aircraft (see Fig. 2d and Methods).
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The relationships exposed by the EUREC4A data are thus in opposi-
tion to the mixing-desiccation hypothesis, which contends that increas-
ing mixing (larger M) leads to a desiccation of the lower cloud layer 
(smaller R) and a reduction in cloud-base cloudiness (smaller C). We 
also find a positive relationship between C and another indicator of 
lower-tropospheric mixing (Extended Data Fig. 4f) and a weak positive 
correlation between M and the total projected cloud cover (Extended 
Data Fig. 6). Hence, the EUREC4A data emphasizes dynamic factors—the 
convective mass flux M and the mesoscale vertical velocity W—as 
dominant controls of C, rather than thermodynamic factors related to 
the mixing-desiccation mechanism.

Models underestimate strong cloud–circulation 
coupling
How consistent is the present generation of climate models with our 
observations? To assess how climate models represent the relationship 
between mixing and cloudiness, we use ten models from the Cloud 
Feedback Model Intercomparison Project (CFMIP)34 that provide the 
necessary pointwise M, C and R output at high temporal resolution 
near the EUREC4A domain (see Methods). In contrast to the consistency 
among many independent EUREC4A observations, Fig. 4a shows that 
the models strongly differ in their magnitude and variability of M and 
C. Although some models predict unrealistically low M (CanAM4, 
MIROC6 and MPI-ESM), the IPSL-CM6A has a five times larger mean M 
compared with the EUREC4A observations. Except for IPSL-CM6A, all 
models strongly overestimate variability in C (see also ref. 35) and 8 of 
10 models also overestimate the magnitude of C. This is partly owing 
to the tendency of models to produce stratocumulus clouds in this 
shallow cumulus regime36,37 (evident in the strong increases in C (up to 
50–100%) above a critical R of about 94%; see Extended Data Fig. 7). 
By contrast, the observations indicate no occurrence of C > 13% or 
R > 94%. The models that produce such more stratocumulus-like con-
ditions with R > 94% more than 15% of the time (Extended Data Fig. 8a) 
are labelled with open symbols in Fig. 4.

Only the BCC-CSM2 model represents the pronounced positive cor-
relation between C and M observed during EUREC4A at the 3-h scale 
(Fig. 4b). Six of the other models have a correlation coefficient r < 0.05, 
of which three models even show a negative correlation. Most models 
thus strongly underestimate the tight coupling between clouds and 
convection observed in EUREC4A. Instead, these six models are more 
in line with the mixing-desiccation mechanism and a β < 0 (Fig. 1a), even 

though this is not mediated by a pronounced negative correlation 
between M and R (Extended Data Fig. 8c). All the models also strongly 
underestimate variability in W (Extended Data Fig. 8b), as they do not 
represent the sub-grid processes leading to the observed variability in 
the mesoscale vertical velocity (for example, shallow circulations driven 
by differential radiative cooling38 or local sea-surface temperature (SST) 
gradients39). The relationships between C and R are more consistent 
among most models (Fig. 4b) and are also more consistent with the 
observations compared with the relationships between C and M.

In contrast with the observations, clouds as parameterized by climate 
models are more thermodynamically than dynamically controlled. 
The misrepresentation of the relative sensitivity of C to changes in M 
or R by all models is encapsulated in the ratio of the standardized regres-
sion coefficients Ra a/M  from the regression RRC a a M aˆ = + +M0

� ͠ .  
The model samples lie completely outside the EUREC4A data (Fig. 4c). 
All models, with one exception, substantially underestimate the value 
of a a/M R  compared with the observations, highlighting that, in the 
climate models, variability in C is primarily controlled by variations in 
R rather than variations in M. Although BCC-CSM2 seems credible in 
terms of the magnitude and relationship of C and M, its credibility is 
eroded by its unrealistic relationship between C and R (Extended Data 
Fig. 7), and thus an implausible a a/M R of −5.2. At odds with the obser-
vations, in most models, M and R are only weak predictors of C, as 
evident in the low coefficient of determination (r2) of the multiple lin-
ear regression of Ĉ (Extended Data Fig. 8c). The cloud parameteriza-
tions of the models thus fail in capturing the key relationships between 
C and the dynamic and thermodynamic environment observed in 
nature.

Implications for trade cumulus feedbacks
The EUREC4A observations provide robust estimates of the mean, 
variability and coupling of M, C and R in contrasted trade cumulus 
environments. Although the observed variability is substantial, the 
variability simulated by climate models is unrealistic, as are the drivers 
of this variability. The EUREC4A data thus provide a physical test of the 
capacity of models to represent the interplay of the processes active 
in regulating trade-wind cloud amount and may guide future model 
development. Moreover, the fact that the relationships at the 3-h pro-
cess scale are consistent with the relationships at the monthly timescale 
(r ≥ 0.84; Extended Data Fig. 8e,f) suggests that the underlying fast 
physical processes that couple M, R and C in the models are largely 
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R > 94% more than 15% of the time; see Extended Data Fig. 8a). The grey shading 
represents the 25th to 75th quartile and the grey bars the 95% confidence 
interval of bootstrapped observational values. For plotting purposes, a shows 
the mean M -30 for IPSL-CM6A and c shows the ratio a a/ + 3M R  for BCC-CSM2.  
In c, the upper end of the observational 95% confidence interval (at 6.75) is 
cropped.
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invariant with the timescale. The relationships derived from the 
EUREC4A observations can therefore also be used to evaluate the cred-
ible range of trade cumulus feedbacks in the climate models.

Figure 4b demonstrates that all models with a strong trade cumulus 
feedback represented by a change in the cloud radiative effect (ΔCRE) 
with warming exceeding 0.37 W m−2 K−1 (reddish colours in Fig. 4c) 
represent the refuted mixing-desiccation mechanism with a negative 
(or very weak) correlation between M and C. Also, these four models 
exaggerate both the coupling of C to R (small a a/M R; Fig. 4c) and the 
variability in C (σC; Extended Data Fig. 8d). By contrast, the models that 
are closer to the observations tend to have a weaker positive ΔCRE with 
warming. The EUREC4A observations of the physical processes that 
drive the short-term variability of C thus rule out the mechanism that 
leads to the largest positive trade cumulus feedbacks in current climate 
models.

By showing that mesoscale motions inhibit the mixing-desiccation 
mechanism, we refute an important physical hypothesis for a large 
trade cumulus feedback. In the spirit of the storyline approach for 
constraining equilibrium climate sensitivity10, our findings thus refute 
an important line of evidence for a strong positive cloud feedback and 
thus a large climate sensitivity. The EUREC4A observations therefore 
support recent satellite-derived constraints from observed natural 
variability37,40 and climate-change experiments using idealized high- 
resolution simulations41,42, which suggest that a weak trade cumulus 
feedback is more plausible than a strong one. Moreover, for the first 
time, we take into account all types of cloud present in the trades, 
including the optically thinnest ones that are usually missed in satellite 
observations43, and consider the full range of mesoscale variability 
that was not represented in idealized simulations of cloud feedbacks. 
We also provide an explanation for the inconsistency of models with 
large positive feedbacks: in these models, the observed tight coupling 
between convective mixing and cloudiness is absent; instead, C is pri-
marily controlled thermodynamically by R, which exaggerates vari-
ability in C and feedbacks to warming. By not representing the 
variability in mesoscale circulations, the models miss an important 
process regulating trade cumulus clouds. Future research should focus 
on better understanding the processes controlling these mesoscale 
circulations and how they might change in a warmer climate.
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Methods

EUREC4A field campaign
We use data from the EUREC4A field campaign, which took place in 
January and February 2020 and was anchored in Barbados8,9. We focus 
on measurements made by the HALO29 and ATR aircraft31, which flew 
coordinated patterns in the approximately 220-km diameter EUREC4A 
circle centred at 13.3° N, 57.7° W. The HALO aircraft flew three circles at 
10.2 km altitude in 200 min (about 60 min per circle plus a 15-min break 
between circles) and launched dropsondes every 30° of heading (about 
12 sondes per circle) to characterize the large-scale environment28. 
At the same time, the ATR aircraft flew 2–3 50-min rectangle patterns 
inside the circle near cloud base and measured the cloud fraction with 
horizontally staring cloud radar and backscatter lidar, and with several 
in situ probes and sensors31. Observations from the Barbados Cloud 
Observatory (BCO)15 and the RV Meteor44 provide further context at 
the western and eastern boundaries of the EUREC4A circle.

A typical flight day of HALO consisted of two sets of three consecu-
tive circles lasting about 3 h and comprising 30–36 sondes (sometimes 
defined as circling9,22,29). The 3-h circle sets are separated by a 1.5-h 
break to refuel the ATR. The circle patterns were flown from 22 January 
to 15 February with different starting times between 04:30 and 19:30 
local time (LT) to sample the diurnal cycle. Four more single-dropsonde 
circles are also used, three of which were flown by the P3 aircraft45 dur-
ing nighttime (starting at 00:15 LT on 9 and 10 February, and at 01:30 LT 
on 11 February). In total, the dataset comprises 73 circles (1-h scale) 
and 24 sets of three consecutive circles (3-h scale), for which 16 have 
coincident ATR data. We assume that HALO and ATR sample compa-
rable conditions on the 3-h scale. This is confirmed by the similar 
cloud-base R of the aircraft during most flights (Fig. 2d), except for 
the first 3-h circle set on 2 February and the second 3-h circle set on 7 
and 13 February, in which the spatial scale of the cloud organization 
was larger than the scale of the domain sampled by the ATR. These 
three 3-h circle sets are marked in the figures and excluded from the 
calculated correlations.

The spatial scale of the observations represents the lower end of 
Orlanski’s46 meso-α scale and is comparable in size with a climate model 
grid box. The 200–300-km scale is the relevant scale of the cloud pro-
cesses for a trade cumulus ensemble and also the scale that convective 
parameterizations target. It lies in between the O(1 km) scale of indi-
vidual clouds and the synoptic scale of O(1,000 km), and is associated 
with the emergence of the prominent trade cumulus cloud organization 
patterns47. As the air masses are advected by about 30 km per hour (at 
the campaign mean wind speed of about 9 m s−1 at 1 km height), the 
spatial sampling of the 220-km diameter circle does not differ substan-
tially between the 1-h and 3-h timescales, which motivates our nomen-
clature focus on the time rather than space scale. Using the 
measurements, model and reanalysis data, we would not expect our 
results to change substantially if the analysis domain were increased 
or reduced by a factor of two or more (see Methods section ‘Mass flux 
estimation’ for a discussion of the scale sensitivity of the results).

The Barbados region was chosen as the location of EUREC4A because 
shallow trade cumulus clouds are the dominant cloud type in the area 
during winter13. Furthermore, clouds in the Barbados region are simi-
lar to clouds across the trade-wind regions in both observations and 
models26. The mean meteorological conditions during the EUREC4A 
campaign, as sampled by the dropsondes, also correspond well to the 
average January–February conditions from 12 years of data from the 
ERA-Interim reanalysis48 (their Fig. 5), albeit with a 10% larger 850 hPa 
relative humidity during EUREC4A (the EUREC4A dropsondes also 
have an approximately 8% larger relative humidity compared with 
the 2013–2022 average in ERA5, not shown). Also, all four prominent 
patterns of mesoscale cloud organization47 were present during the 
campaign27. The conclusions drawn from the EUREC4A data are thus 
relevant across the tropics and for climate timescales.

Observations
For estimating the cloud-base mass flux M, R and many other variables, 
we use dropsonde data from the JOANNE dataset28, namely Level 3 
(gridded quality-checked sondes) and Level 4 (circle products) vertical 
profiles of thermodynamic quantities, wind and mesoscale vertical 
velocity, W. The HALO dropsondes are corrected for a dry bias by mul-
tiplying the relative humidity by 1.06 (ref. 28).

For the cloud-base cloud fraction C, we use the BASTALIAS lidar-radar 
synergy product31, which includes both cloud and drizzle (but not rain) 
and constitutes an upper bound on C. We also test the relationships for 
three further estimates of C:
•	The non-drizzling cloud product from the radar-lidar synergy (Conly), 

which excludes drizzle and constitutes a lower bound on C.
•	 In situ estimates from a microphysical probe defined on the basis of 

thresholds of liquid water content plus particle size (Cpma).
•	 In situ high-frequency (25-Hz) humidity sensor, with cloud defined 

as relative humidity ≥98% (Cturb).
The in situ sensors measure the along-track C, whereas the lidar-radar 

synergy samples clouds inside the rectangle at a distance up to 8 km 
from the aircraft31. Despite pronounced differences in the measurement 
principles and sampling, Fig. 18 of ref. 31 demonstrates the internal 
consistency and robustness among the independent C estimates. The 
ATR turbulence measurements also include measurements of vertical 
updraft and downdraft velocities49, from which an in-cloud mass flux 
Mturb is computed by multiplying Cturb by the in-cloud vertical velocity.

Further HALO aircraft measurements used are total projected cloud 
cover (CC) estimates from the differential absorption lidar WALES, the 
hyperspectral imager specMACS and the cloud radar HAMP29. From 
these cloud masks, we derive the CC along the 1-h circle. For specMACS 
and HAMP, the cloud detection is ambiguous and we consider both the 
‘probably cloudy’ and the ‘most likely cloudy’ flags in our CC estimates.

We also use ceilometer and cloud radar data from the BCO and the RV 
Meteor to test the robustness of the sub-cloud-layer height definition 
(not shown). Radar cloud fraction profiles are obtained by correcting 
the hydrometeor fraction profiles with ceilometer data during periods 
of rain (see ref. 30 for a description of the correction applied). The BCO 
cloud radar data also demonstrate that missing the level of maximum 
cloud-base cloud fraction in 3-h averages by, say, 60 m does not affect 
the variability of C (correlations of r = 0.99 and r = 0.93 with the maxi-
mum C when 60 m above and below the peak level, respectively) and 
only marginally affects its magnitude (18% and 33% smaller relative to 
the maximum C for being 60 m above or below the peak level, respec-
tively). So only if the ATR flight level deviated from the height of maxi-
mum cloudiness in ways that co-varied with M would we expect such a 
height difference to influence our analysis. As the ATR aircraft usually 
flew slightly above h (Extended Data Fig. 3a) and because it sampled 
many more clouds in 3 h compared with the stationary BCO, a potential 
influence of missing the peak level is deemed not to bias our findings.

Surface buoyancy flux
To estimate the surface buoyancy flux (w θ′ ′v s∣ , needed to compute M), 
we use dropsonde humidity, temperature and wind data at 20 m height 
and apply the Coupled Ocean-Atmosphere Response Experiment 
(COARE) bulk flux algorithm version 3.6 (refs. 50,51). For the SST, we 
extrapolate the 2-m-depth SST of the RV Meteor (thermosalinograph 
primary backboard temperature), or alternatively from the AutoNaut 
Caravela52, to the dropsonde location based on a fixed zonal and merid-
ional SST gradient of −0.14 K per degree. A gradient of −0.14 K per 
degree corresponds to the median zonal and meridional gradient 
(−0.145 K per degree and −0.135 K per degree, respectively) across the 
EUREC4A circle over the period from 19 January to 15 February in the 
ERA5 reanalysis53 and in two satellite SST products (from the Advanced 
Baseline Imager on board the Geostationary Operational Environmen-
tal Satellite (GOES-16 ABI) and the Collecte Localisation Satellites (CLS).



The sonde-derived surface buoyancy flux on the 3-h scale compares 
favourably with bulk fluxes from the RV Meteor mast, with a correlation 
coefficient r = 0.83 and a mean offset of 0.1% relative to RV Meteor. The 
sonde-derived flux has a comparable magnitude with the flux measured 
at the RV Ronald Brown54 further upstream and is also well correlated 
(r = 0.81) with ERA5. The ERA5 fluxes, however, overestimate the surface 
buoyancy flux compared with the sonde-derived flux by 25%, which is 
mostly because of the overestimation of the sensible heat flux by 64% 
relative to the observations (9.8 W m−2 and 6.0 W m−2 for ERA5 and 
dropsondes, respectively). A strong overestimation of the sensible 
heat flux compared with buoy measurements in the region is also pre-
sent in the predecessor ERA-Interim reanalysis55. Overall, the good 
correspondence of our sonde-derived surface buoyancy flux with the 
independent data lends credibility to our estimation procedure. The 
sonde-derived surface buoyancy flux is also used to compute the  
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shown in Fig. 3c, in which g is the gravitational acceleration.

Mass flux estimation
Vogel et al.20 developed a method to estimate the shallow-convective 
mass flux at the sub-cloud-layer top as a residual of the sub-cloud-layer 
mass budget and tested it in real-case large-eddy simulations over the 
tropical Atlantic. Here the method is applied to EUREC4A observations, 
in parallel with Albright et al.22, who close the sub-cloud-layer mois-
ture and heat budgets and provide an independent constraint on the 
entrainment rate E. Except for the surface buoyancy flux estimate (see 
the previous section), all data for the budgets come entirely from the 
dropsondes.

Equation (1) expresses the budget of the sub-cloud-layer height h 
per unit area and constant density. h

t
∂
∂

 represents the temporal fluc-
tuation of h and Vh · ∇h its horizontal advection, E is the entrainment 
rate, W the mesoscale vertical velocity (positive upwards) and M the 
convective mass flux at h.

The sub-cloud-layer height h is defined as the height at which the vir-
tual potential temperature (θv) first exceeds its density-weighted mean 
from 100 m up to h by a fixed threshold ϵ = 0.2 K (refs. 22,56). Extended 
Data Fig. 3a confirms that our h is usually close to the ATR flight alti-
tude and h is also well within the range of independent BCO and RV 
Meteor observations of the maximum radar cloud-base cloud fraction 
and the peak frequency of the first ceilometer cloud-base height (not 
shown). This confirms that our h agrees well with the level of maximum 
near-base cloud fraction, which was set as the target height for the ATR 
flight level and thus for evaluating the mass budget31.

The entrainment rate E represents the deepening of h owing to 
small-scale mixing at the sub-cloud-layer top. We use a modified ver-
sion of the classical flux-jump model57,58 that accounts for the finite 
thickness of the transition layer, the approximately 150-m-thick stable 
layer separating the mixed layer from the cloud layer (see ref. 22 for 
details). The buoyancy flux at h is modelled as a fixed fraction Ae of the 
surface buoyancy flux, ∣w θ′ ′v s, in which Ae is the effective entrainment 
efficiency. The buoyancy jump at the sub-cloud-layer top is computed 
as θ θ θ q q θΔ = Δ + 0.61( Δ + Δ )v , with θ C θ θΔ = ( − )θ h+  and q C q qΔ = ( − )q h+ . 
q is the specific humidity, Cq and Cθ are scaling coefficients accounting 
for uncertainty in the depth over which the jumps are computed, the 
subscript h+ refers to the value of q or θ above h (computed as the aver-
age from h to h + 100 m) and q  and θ  are averages from 50 m to the 
mixed-layer top (defined as the height of maximum relative humidity 
below 900 m). Finally, E is computed as

E
A w θ

θ
=

′ ′

Δ
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∣

The uncertain parameters Ae, Cq and Cθ are estimated through a joint 
Bayesian inversion to close the moisture and heat budgets by ref. 22, 

yielding maximum-likelihood estimates of Ae = 0.43 ± 0.06 (mean ± 1σ), 
Cq = 1.26 ± 0.34 and Cθ = 1.15 ± 0.31.

The mesoscale vertical velocity W at h is computed by vertically 
integrating the divergence of the horizontal wind field measured by 
the dropsondes23 from the surface up to h. W is at the lower end of the 
meso-α scale of ref. 46, what climate modellers often associate with 
the ‘large scale’. The terms h, E and W are computed at the 1-h scale 
of a single circle and then aggregated to the 3-h scale (three circles).

The temporal fluctuation of h is estimated as the linear regression 
slope of h computed from the 30–36 soundings available per 3-h circle 
set. Similarly, the horizontal advection of h is estimated as the sum of 
the linear regressions of the eastward (∂h/∂x) and northward (∂h/∂y) 
gradients of the individual h, multiplied by the wind speed at the 3-h 
mean h. Both ∂h/∂t and Vh · ∇h are only available on the 3-h scale.

The default M shown in the paper is the equilibrium mass flux M = E + W, 
which reproduces well the mass flux diagnosed directly from cloud-core 
area fraction and vertical velocity in large-eddy simulations20. This equi-
librium M is also available on the 1-h scale of an individual circle. Taking 
into account ∂h/∂t and Vh · ∇h in the mass flux estimate leads to 
M M V h′ = − − ⋅ ∇h

t h
∂
∂ , which shows very similar characteristics compared 

with M (Extended Data Fig. 3). This is mainly because both the advection 
(−1.3 ± 2.7 mm s−1) and temporal fluctuation (0.5 ± 6.8 mm s−1) terms are 
on average about zero, and the advection term is also nearly invariant. 
The inclusion of advection and h

t
∂
∂

 in M′ slightly enhances variability on 
the diurnal timescale (Extended Data Fig. 1a).

Cold pools formed by evaporating precipitation destroy the struc-
ture of the sub-cloud layer and make the estimation of h less robust. We 
thus exclude soundings that fall into cold pools in the analysis using 
the criterion of h < 400 m developed by ref. 56 based on the EUREC4A 
soundings. The influence of these and other assumptions on the magni-
tude and variability of M are discussed in the Methods section ‘Robust-
ness of observational estimates’. Also note that our M is defined as the 
(mass) specific mass flux and has units of velocity. It differs from the 
more familiar mass flux (in units of kg m−2 s−1) by the air density, which 
is usually assumed to be constant18,59, and which is justified here given 
the small density variations across the measurements (mean ± σ of 
1.104 ± 0.0077 kg m−3, that is, less than 0.7% of the mean).

Although the 1-h scale variability of M can be substantial (for example, 
second 3-h circle sets on 26 January and 13 February; Fig. 2), the median 
estimation uncertainty is only 20% at the 3-h scale (see section below). 
Also, M has a similar magnitude and reassuring correlation (r = 0.77) to 
the independent Mturb estimate from in situ turbulence measurements 
on the ATR aircraft (Extended Data Fig. 2d).

The mass budget terms show different degrees of scale sensitivity 
(see also discussion in ref. 20). Extended Data Figs. 2c and 4a show that 
the correlation between W and M is slightly larger at the 1-h scale com-
pared with the 3-h scale (rW,M 3h = 0.60 and rW,M 1h = 0.67), whereas they 
are essentially the same for E and M (rE,M 3h = 0.54 and rE,M 1h = 0.55). The 
scale sensitivity of the W variance is in line with radiosonde data from 
the EUREC4A ship array, which show that the divergence amplitudes 
at equivalent radii of 100–300 km scale inversely with radius60 (as in 
ERA5 and ICON, consistent with ref. 23). In ERA5, the scale sensitivity 
of the surface buoyancy flux, which contributes most to variability 
in E (Extended Data Fig. 4b), is much smaller compared with the scale 
sensitivity of W (not shown). This is probably because variability in the 
surface buoyancy flux is mostly controlled by the surface wind speed 
(Extended Data Fig. 4h) and radiative cooling61, both of which are large 
scale. The surface wind speed has autocorrelation coefficients of 0.74 for 
a 2-day and 0.48 for an 8-day lag (Fig. 3d of ref. 22). Although weaker com-
pared with the synoptic variability, the surface wind also has a distinct 
diurnal cycle62,63, which causes a diurnal cycle of the surface buoyancy 
flux (Extended Data Fig. 1c and ref. 20). Some of the diurnal variability 
in E is thus lost for longer temporal averaging. Also, the variability in 
the temporal fluctuation and horizontal advection of h (equation (1)) 
decreases on larger scales20. In summary, M variability decreases on 
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larger averaging scales. The scale sensitivity of W is larger compared 
with E, such that the contribution of W to M variability tends to become 
smaller compared with the contribution of E on much larger scales.

As noted above, E describes the net effect of local processes and 
must be inferred from the statistics of other quantities (that is, the 
mean sub-cloud-layer growth rate or the dilution of sub-cloud-layer 
properties). This raises the question whether the E estimate itself might 
depend on the mesoscale environment and therefore introduce spuri-
ous co-variabilities between M, W and C. The Bayesian estimation of 
the uncertain parameter estimates Ae, Cq and Cθ is a priori independent 
of M and W. Also, the synoptic variability during EUREC4A can be well 
explained by keeping them constant22. Reference 22 also explored to 
what extent other factors correlated with residuals in their Bayesian fits 
and found no evidence of a systematic effect of other factors, including 
wind speed and shear64. As discussed above, the variability in E tends 
to be less scale-sensitive than W and mostly controlled by larger-scale 
factors, such as the surface wind speed (through the surface buoyancy 
flux; Extended Data Fig. 4b,h). Furthermore, E and W are anticorrelated 
(rE,W = −0.35; Extended Data Fig. 4g). So both statistically from the anti-
correlation and physically through the scale argument, we believe that 
our parameterization of E does not induce spurious co-variability.

Uncertainty estimation
For the M, R and C estimates, we distinguish two sources of uncertainty: 
sampling uncertainty and estimation (or retrieval) uncertainty. For all 
terms, the sampling uncertainty is computed at the 3-h scale as the 
standard error, σ nSE = / , of the three individual 1-h circle values (each 
representing about 50 min of flight or up to 12 sondes), in which σ is 
the standard deviation and n the number of circles.

The estimation uncertainty is computed differently for every term 
according to the underlying assumptions and choices. For R, the 
manufacturer-stated uncertainty (that is, repeatability) is 2% and some 
extra uncertainty stems from the correction of the dry bias of the HALO 
dropsondes (see ref. 28). Because this uncertainty is the same for all 
data points, the estimation uncertainty of R is not shown in the figures. 
For C, the estimation uncertainty is computed for every 3-h circle set 
as the SE of the four different estimates of C, namely C itself, Conly, Cturb 
and Cpma. The uncertainty estimate therefore represents uncertainty 
in measurement principles and spatial sampling31. Further uncertain-
ties of the individual C estimates (for example, owing to the choice of 
thresholds) are neglected, as sensitivity tests suggest that they are 
smaller than the uncertainty among the different C estimates31.

For W, the advection term Vh · ∇h and the temporal fluctuation ∂h/∂t, 
the estimation uncertainty is taken as the SE of the respective regression 
used to compute the term. Because ∂h/∂t is computed from individual 
sondes, it contains both temporal and spatial variability of h on the 3-h 
scale and its SE is inflated.

The estimation uncertainty of the surface buoyancy flux is a com-
bination of uncertainty in the underlying SSTs and in the COARE 
bulk flux algorithm. We estimate the uncertainty in the underlying 
SSTs by computing the SE of five different versions of the flux (three 
with different fixed SST gradients (the default median value and the 
median ± interquartile range, that is, −0.14 K per degree, −0.21 K per 
degree and −0.07 K per degree), one with a temporally varying gradient 
(not shown) and one with a different baseline SST (from the AutoNaut 
Caravela52 instead of the RV Meteor)) and adding a 5% uncertainty of the 
COARE algorithm given in ref. 50 as the 1-h uncertainty in the 0–10 m s−1 
wind speed range. For Ae and Δθv, we use the relative uncertainties of 
the Bayesian inversion as the estimation uncertainty (that is, σ(Ae)/Ae 
for Ae and the average of σ(Cq)/Cq and σ(Cθ)/Cθ for Δθv).

Uncertainties in the three individual terms of E are propagated by 
adding their fractional uncertainties in quadrature to yield the estima-
tion uncertainty of E. In the same spirit, the estimation uncertainty is 
propagated from the 1-h scale to the 3-h scale and from the individual 
terms of equation (1) to M.

The uncertainties of the correlations and the multiple linear regres-
sion are estimated with bootstrapping (10,000 repetitions). We 
communicate these uncertainties by mentioning the 25th and 75th 
quartiles in the text and by showing both the quartiles and the 2.5% 
and 97.5% quantiles (representing the 95% confidence interval) in Fig. 4 
and Extended Data Fig. 8. Apart from the uncertainty quantification 
described here, we assess the robustness of the M and C observations to 
several other choices and assumptions in the Methods section ‘Robust-
ness of observational estimates’.

Other mixing indicators
Other proxies for lower-tropospheric mixing were used in previous 
studies5,7,65 that can be estimated from the dropsonde data and com-
pared with the variability in C. Here we compute the boundary- 
layer vertical advection (BVA) diagnostic from ref. 65 defined as 

∫ W z ρ zBVA = ( ) d
Z

z0

∂MSE
∂

min , in which MSE is the moist static energy, Zmin 
the level of minimum MSE that marks the top of the trade-wind layer 
(on average at 2,900 m) and ρ the density. Note that a lower (more 
negative) BVA value indicates stronger mixing.

Reference 65 found a pronounced positive relationship between 
changes in BVA and changes in C from a series of single-column 
model experiments with the IPSL-CM5A model, which is character-
ized by a strong positive low-cloud feedback and the presence of 
the mixing-desiccation mechanism (Fig. 4). Extended Data Fig. 4f 
shows a pronounced negative correlation between BVA and M in the 
EUREC4A data, indicating good agreement in their complementary 
definitions of mixing. Smaller BVA (stronger mixing) is also associ-
ated with larger C (not shown), which is at odds with the IPSL-CM5A 
model. The absolute correlation between BVA and C (r = 0.34), how-
ever, is considerably smaller than the correlation between M and C  
(r = 0.72).

General circulation models
The cloud fraction, net mass flux (upward and downward) and relative 
humidity at cloud base are calculated for ten Coupled Model Intercom-
parison Project (CMIP) models:
•	Four from the fifth phase, CMIP5 (ref. 66): CanAM4 (ref. 67), 

MPI-ESM-LR68, IPSL-CM5A-LR69, HadGEM2-A70 and
•	Six from the sixth phase, CMIP6 (ref. 71): BCC-CSM2-MR72, CNRM-CM6-1 

(ref. 73), IPSL-CM6A-LR74, MIROC6 (ref. 75), MRI-ESM2-0 (ref. 76), 
HadGEM3-GC31-LL77

using the sub-hourly vertical profiles at selected sites (named cfSites 
in CMIP5 and CFsubhr in CMIP6) provided by CFMIP34. Note that the M 
from the models is not computed using equation (1) but is defined 
according to the respective convective parameterization scheme of 
the models (see references above). We use the atmosphere-only amip 
configuration from 1979 to 2008, selecting data from December, Janu-
ary, February and March to be broadly consistent with the winter condi-
tions sampled during EUREC4A. For each model, between two and six 
sites are available in the North Atlantic trades between 60–50° W and 
12–16° N, namely the BOMEX, NTAS, EUREC4A, BCO and RICO sites. 
All profiles with clouds above 600 hPa (about 4.2 km) are dropped to 
ensure a focus on shallow convection. We verified that, in terms of the 
large-scale environment, the cfSites fall into the climatological trade 
cumulus regime as defined by ref. 40.

The cloud-base level is defined as the level of maximum cloud frac-
tion between 870 and 970 hPa (between about 400 and 1,300 m).  
If the maximum cloud fraction is smaller than 0.25% for a given profile, 
the cloud-base level is taken at the climatological level of maximum 
cloud fraction. The hourly cloud-base data are aggregated to a 3-h 
timescale, which corresponds to the 3-h scale of the EUREC4A data, as 
well as a monthly timescale. The values computed are insensitive to  
(1) averaging across the sites before aggregating to the 3-h timescale, 
(2) removing the site near the Northwest Tropical Atlantic Station buoy 
upstream of the EUREC4A circle (near 51° W and 15° N), (3) focusing only 



on January and February, and (4) excluding nighttime values outside 
the hours sampled during EUREC4A (not shown).

We use the thermodynamic component of the change in the cloud 
radiative effect at the top of the atmosphere (ΔCRE) with warming under 
given dynamical conditions to quantify the strength of the trade cumu-
lus radiative feedback. Reference 2 showed that the ΔCRE with warming 
is a good approximation of the cloud feedback computed with radia-
tive kernels78. The CRE is defined as the difference between all-sky (all, 
including clouds) and clear-sky (clr, clouds assumed to be transparent 
to radiation) net downward radiative fluxes, CRE = Rall − Rclr = (LWclr − 
LWall) + (SWall − SWclr) = CRELW + CRESW, with R being the total radiative 
flux and LW and SW its longwave and shortwave components, respec-
tively. The radiative fluxes are defined positive downward. The ΔCRE 
with warming is then simply the difference in CRE between the warmer 
amip4K (4-K uniform increase in SST) and the amip (control) simula-
tions, normalized by the 4-K temperature difference (that is, ΔCRE/
ΔTs = (CREamip4K − CREamip)/4K). To restrict the feedback estimation to 
the trade cumulus regime, we focus on ocean-only grid points between 
35° S and 35° N and use the regime partitioning of ref. 40 with trade cumu-
lus regimes in each simulation (amip or amip4K) defined as having a 
climatological annual mean estimated inversion strength smaller than 
1 K and a vertical velocity at 700 hPa between 0 and 15 hPa day−1.

Robustness of observational estimates
Applying the mass budget formulation to the EUREC4A dropsonde data 
involves several choices for definitions and thresholds. These choices 
are guided by constraints from independent data and from closure of 
the moisture and heat budgets in ref. 22, which provides justification 
for the default configuration described in the Methods section ‘Mass 
flux estimation’. Nevertheless, it is important to assess and understand 
the sensitivity of the mass budget estimates and the key relationships 
to different estimation choices.

We focus first on the influence of different definitions of the 
sub-cloud-layer height h and the entrainment rate E on the mean and 
standard deviation (σ) of M and E, the respective correlations of M with 
E and W, and the correlation and mean difference to the independent 
Mturb estimate from turbulence measurements onboard the ATR aircraft 
(see Extended Data Fig. 2). For the h definition, we compare our default 
h to an alternative definition, ‘h.parcel’, which defines h as the level of 
neutral buoyancy of a surface-lifted parcel (with density-weighted θv 
averaged from 30 to 80 m) plus 0.2 K θv excess. Using ‘h.parcel’ leads 
to a 16 m shallower mean h compared with the default. The slightly 
shallower h decreases Δθv (the denominator of the E formulation in 
equation (2)) from 0.36 K to 0.34 K, which slightly increases E and M by 
around 1.5 mm s−1. Although W is unaffected by this small change in h, 
the resulting M has a slightly reduced correlation to the independent 
Mturb compared with the default M (r = 0.69 versus r = 0.77). The same 
chain of arguments holds for increasing and decreasing the threshold 
ϵ in the h definition by ±0.05 K. With ϵ = 0.25 K instead of 0.2 K (case 
‘h.eps = 0.25’), h increases by 31 m and, through the larger Δθv, decreases 
E and M by about 3.3 mm s−1. Owing to the presence of a thin transi-
tion layer22, the response to ϵ ± 0.05 K is nonlinear and a reduction of 
ϵ to 0.15 K (‘h.eps = 0.15’) leads to a disproportionately smaller Δθv 
and roughly 6 mm s−1 larger E and M. The 35 m shallower mean h with 
ϵ = 0.15 K also strongly increases σE, which increases the correlation 
between E and M at the expense of a decreased correlation between 
the unaffected W and M (Extended Data Fig. 2c).

The next set of choices involves the entrainment rate estimate. We 
test the influence of the different surface buoyancy flux estimates 
from ERA5 and RV Meteor. As the ERA5 flux is 25% larger than the other 
fluxes, we scale it to have same mean as the dropsonde-derived flux (case 
‘sbf = ERA5.sc’). For ‘sbf = ERA5.sc’, the variability in E and M are substan-
tially larger compared with the default dropsonde flux, increasing their 
correlation. For the case ‘sbf = Meteor’, the differences to the default 
estimates is smaller (Extended Data Fig. 2a,b) and the correlation with 

Mturb is slightly larger than in the other configurations. The estimates are 
also unaffected by changing the three coefficients Ae, Cq and Cθ estimated 
by Bayesian inversion in ref. 22 to close the moisture and energy budgets 
during EUREC4A when cold pool soundings (defined as having h < 400 m 
following ref. 56) are excluded (‘diffEpars’). We further compare four 
different ways of computing Δθv. Computing the value at h+ as averages 
from h to h + 50 or h + 150 m (instead of to h + 100 m) has a similar (but 
more linear) influence as increasing ϵ ± 0.05 K (see discussion above). 
Using two different heights for averaging θv across the mixed layer (up to 
h in ‘tvbar = h’ and up to the level at which q first falls below its mean by a 
threshold of 0.3 g kg−1 in ‘tvbar = qgrad’) hardly influences the estimates.

Last, we show the influence of computing the mass budget including the 
cold pool soundings for two sets of surface buoyancy flux estimates, case 
‘withCP’ for the default dropsonde-derived flux and ‘withCP_sbf = ERA5.sc’  
for the scaled ERA5 flux. In both cases, the mean and σ of both M and E are 
increased when cold pools are included (matching the mean E of ref. 22, who 
included cold pools). However, especially for the default surface fluxes 
(case ‘withCP’), the correlation with Mturb is strongly reduced.

Extended Data Fig. 2a,d also shows the influence of selected choices 
on the total mass flux M′, which includes the contribution of the temporal 
fluctuation and horizontal advection of h. Because these extra terms are 
on average nearly zero (Extended Data Fig. 3c), their inclusion does not 
affect M . σM instead increases by about 1.5 mm s−1 owing to the pronounced 
variability in the temporal fluctuation term. As this term is not very robust, 
we use the more reliable equilibrium M as our best estimate. The equilib-
rium M is also robust at the 1-h scale of an individual circle (case ‘1h-scale’).

Overall, Extended Data Fig. 2 makes us very confident in the robustness 
of our mass budget estimates because they only show a modest sensitiv-
ity to the various choices and because we can explain these sensitivities 
physically. Also, the independent ATR Mturb estimates (Extended Data 
Fig. 2d) and the extra constraints on E from our complementary analy-
ses of the moisture and heat budgets in ref. 22 (dashed lines in Extended 
Data Fig. 2b) lend further credibility to our default estimation choices.

Next, we focus on the sensitivity of the key relationships between M, 
C and R to a selected set of plausible estimation choices of M and the 
different C estimates from the ATR aircraft. Extended Data Fig. 5a shows 
that the positive correlation between M and C is notable for all parameter  
choices, and both the equilibrium M and total M′. Furthermore, the 
negligible correlation between M and R is also very robust.

Extended Data Fig. 5b further confirms that the default M also has 
strong correlations with the three independent estimates of C from 
the ATR aircraft. The same is true for the other estimation choices of M,  
with a small overall range of correlations of 0.52 < rM,C < 0.73. Correla-
tions between C and R are more variable between the different C esti-
mates and are in the range r0.12 < < 0.63C,R . It is not surprising that the 
Conly estimate that neglects contributions from drizzle has the strong-
est correlation with R, as it mostly features passive clouds that are 
more affected by ambient humidity than the more active clouds that 
also include drizzle. Note that there is also a slight dependency of r(R,C) 
on the M estimates, as the cases ‘h.parcel’ and ‘h.eps = 0.25’ result in 
different h and thus different heights at which R is evaluated.

The bottom panels of Extended Data Fig. 5 also confirm the robust-
ness of the correlation coefficient of the multiple linear regression 

� R͠RC a a M aˆ = + +M0  and the ratio of the standardized regression coef-
ficients a a/M R to the M estimation choices (Extended Data Fig. 5c) and 
the different C estimates (Extended Data Fig. 5d). There is no configu-
ration with a a/ < 1M R , indicating that C is always more strongly coupled 
to M than to R in the observations. Slightly larger values of Ra a/M  and 
smaller correlations are evident for the total M′.

Also, the standard deviation of C (σC) is very similar for the differ-
ent C estimates that include drizzle (between 2.1% and 3.7%, with 3.1% 
being the σC of the default BASTALIAS lidar-radar synergy product) 
and only slightly lower for the Conly estimate (1.6%) when using the full 
sample. Variability is slightly reduced in the smaller sample that over-
laps with the HALO flights, because it excludes two night flights with 
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larger cloudiness and two flights in dry environments with very small 
cloudiness (σC of 1.7–2.4% for the C estimates that include drizzle).

Overall, Extended Data Fig. 5 demonstrates the insensitivity of the 
observed relationships to a wide range of configurations. We there-
fore conclude that the relationships between mixing and cloudiness 
observed during EUREC4A are very robust.

Data availability
All data used in this study are published in the EUREC4A database of 
AERIS (https://eurec4a.aeris-data.fr/, last accessed: 28 July 2022). We use 
v2.0.0 of the JOANNE dropsonde data28 (https://doi.org/10.25326/246). 
The specific ATR datasets31 used are the BASTALIAS product (https://
doi.org/10.25326/316), the turbulence measurements49 (https://doi.
org/10.25326/128) and the PMA/Cloud composite dataset (https://
doi.org/10.25326/237). The specific HALO datasets29 used are cloud 
masks derived from WALES cloud-top height estimates (https://doi.
org/10.25326/216), HAMP Cloud Radar (https://doi.org/10.25326/222) 
and specMACS (https://doi.org/10.25326/166), and the flight segmen-
tation product (https://doi.org/10.5281/zenodo.4900003). From the 
BCO15, we used ceilometer (https://doi.org/10.25326/367) and cloud 
radar data (https://doi.org/10.25326/55). From the RV Meteor44, we 
used standard dship meteorological data for the EUREC4A Meteor 
cruise M161 (retrieved from http://dship.bsh.de/, last accessed: 28 June 
2022), surface heat fluxes (https://doi.org/10.25326/312), ceilometer 
measurements (https://doi.org/10.25326/53) and cloud radar data (v1.1, 
https://doi.org/10.25326/164). We further used data from AutoNaut 
Caravela52 (https://doi.org/10.25326/366) and 10-min air–sea flux data 
(v1.3, https://doi.org/10.25921/etxb-ht19) from the RV Ronald Brown54. 
Also, we used CLS Daily High Resolution Sea Surface Temperature maps 
(retrievable through the AERIS operational centre https://observa-
tions.ipsl.fr/aeris/eurec4a-data/SATELLITES/CLS/SST/, last accessed: 
28 June 2022, or directly from https://datastore.cls.fr/catalogues/
sea-surface-temperature-infra-red-high-resolution-daily), GOES-16  
ABI SSTs from the ABI_G16-STAR-L3C-v2.7 product (https://doi.
org/10.25921/rtf0-q898) and ERA5 (ref. 53) reanalysis data. The CMIP5 
and CMIP6 climate model outputs are available for download at https://
esgf-node.llnl.gov. Source data are provided with this paper.

Code availability
The scripts used for the analyses and other supporting information 
that may be useful for reproducing this study can be obtained from 
https://doi.org/10.5281/zenodo.7032765.
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Extended Data Fig. 1 | Diurnal cycles of key terms. M and M′ (a), E and W (b), 
surface buoyancy flux (c) and C (d) versus local time both at the 3-h scale (filled 
circles) and at the 1-h scale (open circles). The vertical bars show the estimation 
uncertainty at the 3-h scale (see Methods section ‘Uncertainty estimation’). 

The correlation coefficients given in the legends represent the correlation 
between the individual terms and the time at the 3-h scale (‘r’) and at the 1-h 
scale (‘r.1h’ in brackets).
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Extended Data Fig. 2 | Influence of estimation procedure and parameter 
choices on mass budget estimates. Campaign mean and standard deviation 
of M (a) and E (b). c, correlation coefficients between M and E (rM,E) and M and W (rM,W).  
d, Correlation and mean difference between M and Mturb from ATR turbulence 

measurements, for different configurations of the mass budget. Open symbols 
in a and d show the total M′. The dashed lines in b show the mean and standard 
deviation of E from ref. 22 and the zero line in d. See the Methods section 
‘Robustness of observational estimates’ for details.



Extended Data Fig. 3 | Time series of other mass budget terms. Shown are h 
and the flight level of the ATR aircraft (a), the equilibrium M, the total M′ and the 
Mturb from ATR turbulence measurements (b), the temporal fluctuation and 
advection terms (c), the surface buoyancy flux (d) and the Δθv (e). The vertical 
bars show the estimation uncertainty at the 3-h scale (see Methods section 

‘Uncertainty estimation’) and the small open circles show the 1-h scale. The ‘X’ 
markers in a and b indicate the data that are excluded in the correlations owing 
to inconsistent sampling between the two aircraft. The campaign mean ± 1σ is 
shown on the left side of each panel.



Article

Extended Data Fig. 4 | Relationships of other key terms. a, E and W versus M. 
b, Surface buoyancy flux versus E. c, Δθv versus E. d, R versus E. e, R versus W.  
f, BVA mixing indicator versus M. g, E versus W. h, 10-m wind speed versus surface  
buoyancy flux. a–c,f–h show both the 3-h scale (filled circles) and the 1-h scale 
(open circles, with the corresponding correlation coefficient denoted as ‘r.1h’). 
A dotted 1:1 line is shown in a and g. In d and e, the error bars represent the 
estimation uncertainty for E and W and the sampling uncertainty for R (see Methods).  

The correlations in d and e are given both for the sample with consistent 
sampling among the HALO and ATR aircraft (blue points, as used for the 
correlations in Figs. 2 and 3) and for the entire sample of the HALO aircraft 
(including the grey points that represent the three data points marked  
with ‘X’ in Fig. 3 and eight other data points when ATR was not flying. The 
corresponding correlation coefficient is denoted as ‘r.all’).



Extended Data Fig. 5 | Influence of different M and C estimates on key 
relationships. Correlation coefficients r of M and C (rM,C) and M and R (rM,R) (a) 
and M and C (rM,C) and R and C (r C,R ) (b). c,d, Correlations of the reconstructed 

� R͠RC a a M aˆ = + +M0  and the observed C (r C Cˆ, ), as well as the ratio of the 

standardized regression coefficients a a/M R. a and c also show the relationships 
for the total M′ (open symbols), whereas b and d show the relationships for 
different estimates of C (different symbols). See details in Methods section 
‘Robustness of observational estimates’.
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Extended Data Fig. 6 | Relationship of M with three estimates of the total 
projected cloud cover. Cloud cover (CC) from WALES backscatter lidar (a), 
hyperspectral imager specMACS (b) and HAMP cloud radar (c) on board HALO. 

The error bars represent the sampling uncertainty (for the CC estimates)  
and the estimation uncertainty (for M; see Methods section ‘Uncertainty 
estimation’).



Extended Data Fig. 7 | Individual relationships of C, M and R for climate 
models. Relationships among individual 3-h C and M (first and third columns) 
and C and R (second and fourth columns) for all ten climate models. The red 

and blue points represent the median and mean of the respective variables, and 
the red lines extend from the 25th to the 75th quartile. The grey vertical line in 
the R panels shows the 94% R-threshold.
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Extended Data Fig. 8 | Comparison of other variables and relationships  
in climate models against the EUREC4A data. a, Mean R and fraction of 
stratocumulus-like conditions with R > 94%. b, Standard deviation of R and W 
( Rσ  and σW). c, r2 of multiple linear regression C a a M aˆ = + +M0

͠� RR  and 
correlation coefficient of M and R. d, Standard deviation of C (σC) and 
thermodynamic component of the cloud feedback ΔCRE/ΔTs, as well as the 3-h 
and monthly correlations of M and C (e) and R and C (f). e and f also show the 

inter-model correlation coefficients of the respective variables and the 1:1 line 
(dotted line). As in Fig. 4, the models are coloured in bins of feedback strength 
and open symbols indicate models with frequent stratocumulus (defined as 
having > 94%R   more than 15% of the time). The observational uncertainty 
range is shown in grey, with the shading representing the 25th to 75th quartile 
and the grey bars indicating the 95% confidence interval of bootstrapped 
values. HadGEM2-A is not shown in b owing to the absence of W output.
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