
1.  Introduction
Clouds play a key role in the climate system. They regulate the hydrologic cycle and have a substantial influence 
on Earth's radiative budget (Allen & Ingram, 2002). Yet, in climate models with horizontal resolutions commonly 
on the order of 100 km, clouds are sub-grid scale phenomena, that is, they cannot be directly resolved but need 
to be “parameterized.” These parameterizations are a major cause of uncertainties in climate model projections 
(e.g., Randall et al., 2003; Schneider et al., 2017) and effective climate sensitivity (Meehl et al., 2020; Schlund 
et al., 2020).

The long-standing deficiencies in cloud parameterizations have motivated the development of high-resolution 
global cloud-resolving climate models (Klocke et al., 2017; Stevens, Satoh, et al., 2019) with the ultimate goal of 

Abstract  A promising approach to improve cloud parameterizations within climate models and thus 
climate projections is to use deep learning in combination with training data from storm-resolving model 
(SRM) simulations. The ICOsahedral Non-hydrostatic (ICON) modeling framework permits simulations 
ranging from numerical weather prediction to climate projections, making it an ideal target to develop 
neural network (NN) based parameterizations for sub-grid scale processes. Within the ICON framework, 
we train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and 
global ICON SRM simulations. We set up three different types of NNs that differ in the degree of vertical 
locality they assume for diagnosing cloud cover from coarse-grained atmospheric state variables. The 
NNs accurately estimate sub-grid scale cloud cover from coarse-grained data that has similar geographical 
characteristics as their training data. Additionally, globally trained NNs can reproduce sub-grid scale 
cloud cover of the regional SRM simulation. Using the game-theory based interpretability library SHapley 
Additive exPlanations, we identify an overemphasis on specific humidity and cloud ice as the reason why our 
column-based NN cannot perfectly generalize from the global to the regional coarse-grained SRM data. The 
interpretability tool also helps visualize similarities and differences in feature importance between regionally 
and globally trained column-based NNs, and reveals a local relationship between their cloud cover predictions 
and  the  thermodynamic environment. Our results show the potential of deep learning to derive accurate yet 
interpretable cloud cover parameterizations from global SRMs, and suggest that neighborhood-based models 
may be a good compromise between accuracy and generalizability.

Plain Language Summary  Climate models, such as the ICOsahedral Non-hydrostatic climate 
model, operate on low-resolution grids, making it computationally feasible to use them for climate projections. 
However, physical processes –especially those associated with clouds– that happen on a sub-grid scale (inside 
a grid box) cannot be resolved, yet they are critical for the climate. In this study, we train neural networks that 
return the cloudy fraction of a grid box knowing only low-resolution grid-box averaged variables (such as 
temperature, pressure, etc.) as the climate model sees them. We find that the neural networks can reproduce 
the sub-grid scale cloud fraction on data sets similar to the one they were trained on. The networks trained 
on global data also prove to be applicable on regional data coming from a model simulation with an entirely 
different setup. Since neural networks are often described as black boxes that are therefore difficult to trust, we 
peek inside the black box to reveal what input features the neural networks have learned to focus on and in what 
respect the networks differ. Overall, the neural networks prove to be accurate methods of reproducing sub-grid 
scale cloudiness and could improve climate model projections when implemented in a climate model.
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explicitly resolving clouds and convection. Yet, these simulations are extremely computationally demanding and 
cannot be run on climate timescales for multiple decades or for ensembles. Deep learning for the parameterization 
of sub-grid scale processes has been identified as a promising approach to improve parameterizations in climate 
models and to reduce uncertainties in climate projections (Eyring et al., 2021; Gentine et al., 2021).

In the atmospheric component of the state-of-the-art ICOsahedral Non-hydrostatic (ICON) climate model (ICON-
A), clouds result from an interplay of different parameterization schemes (Giorgetta et al., 2018). In it, the cloud 
cover scheme takes an integral role. Its cloud cover directly influences the tendencies and hence statistics of cloud 
liquid water, cloud ice, and water vapor through the microphysics scheme (Lohmann & Roeckner, 1996; Pincus 
& Stevens, 2013), and the energy balance through the radiation scheme.

Our goal is to develop a machine learning based parameterization that can replace ICON's semi-empirical cloud 
cover scheme. We cover the background of these two fields in Section 1.1 by reviewing (a) the existing cloud 
cover scheme in ICON (in Section 1.1.1) and (b) the machine learning based parameterizations (in Section 1.1.2) 
before defining the scope of our study in Section 1.2.

1.1.  Background

1.1.1.  Existing Cloud Cover Scheme in ICON

Cloud cover is estimated as a diagnostics in ICON, which is based on the local amount of relative humidity 
(RH), and a semi-empirical relationship devised by Sundqvist et  al.  (1989) and further adapted by Xu and 
Krueger (1991) (see Lohmann and Roeckner (1996)) and Mauritsen et al. (2019). In this scheme, cloud cover 
exists whenever RH exceeds a specified lower bound (the critical RH threshold), which depends solely on atmos-
pheric and surface pressure.

RH-based cloud cover schemes have some notable drawbacks. First of all, knowing RH does not fully determine 
cloud cover. For instance Walcek (1994) had shown, that with an RH of 80% and a pressure between 800 and 
730 hPa, the probability of observing any amount of cloud cover can be nearly uniform. In addition, no clear 
critical RH threshold seems to exist. Furthermore, even though they influence cloud characteristics, RH-based 
schemes do not directly differentiate between local dynamical conditions (e.g., whether the grid column under-
goes deep convection; A. Tompkins, 2005). The ICON-A cloud cover scheme also does not account for vertical 
sub-grid scale cloud cover variability. An exception to this is the recent adaptation to artificially increase RH in 
regions below subsidence inversions to incorporate thin marine stratocumuli (Mauritsen et al., 2019).

Finally, most cloud schemes are based on local thermodynamic variables, yet rapid advection (e.g., updrafts) 
could lead to non-locality in the relationship.  Overall, the formation and dissipation of clouds is still poorly 
understood (Stensrud,  2009). Therefore, physics-based cloud parameterizations have to build on incomplete 
knowledge and are prone to inaccuracies. They usually also contain tuning parameters. In the ICON-A cloud 
cover scheme these are the RH for 100% cloud cover, the asymptotic critical RH in the upper troposphere, the 
critical RH at the surface, and the shape factor. These parameters have to be adjusted following the primary goal 
of a well balanced top-of-the-atmosphere energy budget (Giorgetta et al., 2018).

1.1.2.  Machine Learning Based Parameterizations

The field of machine learning based parameterizations is growing and can loosely be classified into two groups: 
The first group consists of studies about machine learning based parameterizations that emulate and speed up 
existing parameterizations. In Beucler et al. (2020), Gentine et al. (2018), Han et al. (2020), Mooers et al. (2020), 
and Wang et  al.  (2022) these existing parameterizations were superparameterizations, that is, embedded 
two-dimensional cloud-resolving models (Khairoutdinov et  al.,  2005). For instance, in a pioneering study by 
Rasp et al. (2018), a neural network (NN) was successfully trained to estimate sub-grid scale convective effects 
by learning from the output of the superparameterized Community Atmosphere Model in an idealized aquaplanet 
setting. Other notable members of this group, that focused on emulating more traditional parameterizations, 
are Chevallier et  al.  (2000), Chantry et  al.  (2021), Gettelman et  al.  (2021), Krasnopolsky et  al.  (2005), and 
Seifert and Rasp (2020). The second group consists of studies about machine learning based parameterizations 
that learn from three-dimensional, high-resolution data. In most of those studies, the high-resolution data was 
coarse-grained to the low-resolution grid of the climate model. The first proof of concept was established by 
Krasnopolsky et al. (2013) who trained a very small NN on coarse-grained regional data. Later, Brenowitz and 
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Bretherton (2018), Brenowitz and Bretherton (2019), Brenowitz et al. (2020), Yuval and O'Gorman (2020), and 
Yuval et al. (2021) adapted this approach. However, in contrast to our study, they worked with idealized aqua-
planet simulations and coarse-graining limited to the horizontal dimension.

While some of these studies were conducted in a purely “offline” fashion, that is, decoupled from the dynamics 
of the climate model, Brenowitz and Bretherton (2019), Brenowitz et al. (2020), Chantry et al. (2021), Gettelman 
et al.  (2021), Krasnopolsky et al.  (2005), Ott et al.  (2020), Rasp et al.  (2018), Wang et al.  (2022), Yuval and 
O'Gorman (2020), and Yuval et al. (2021) also achieved stable online simulations in specific setups.

Recent research has suggested that emulating sub-grid scale physics on a process-by-process level may lead to 
more stable machine learning powered climate simulations (Yuval et al., 2021). It may also facilitate interpreta-
bility and targeted studies of the interaction between large-scale (thermo)dynamics and cloudiness.

1.2.  Machine Learning Based Cloud Cover Parameterization

In the context of these new advances, our study is the first machine learning based approach specifically focused 
on the parameterization of cloud cover.

Our novel approach to a cloud cover parameterization is based on the idea of training a supervised deep learning 
scheme to estimate cloud cover from the thermodynamical state, using coarse-grained high-resolution data. We 
allow for vertical sub-grid scale cloud cover variability by learning the fraction of a grid volume that is cloudy 
(“cloud volume fraction”; Brooks et al., 2005). Cloud volume fraction is the preferable measure of cloud cover, 
for instance in ICON's microphysics scheme where in-cloud condensation and evaporation rates are multiplied by 
the volume fraction of the grid box that is cloudy (Lohmann & Roeckner, 1996). In Section 4.2, we also introduce 
NNs that predict the horizontally projected amount of cloudiness inside a grid cell (“cloud area fraction”). The 
reason is that we still require cloud area fraction as a parameter for the (ICON's two-stream) radiation scheme 
(Pincus & Stevens, 2013) to evaluate whether radiation penetrates through a cloud or not.

The ICON modeling framework is used in realistic conditions on a variety of timescales and resolutions (Zängl 
et al., 2015). It thus allows us to work with data from high-resolution ICON simulations to train machine learning 
based parameterizations fit for the low-resolution ICON climate model. Observations, on the other hand, are 
temporally and spatially sparse and would thus constitute less adequate training data (Rasp et al., 2018). The basis 
of our training data form new storm-resolving ICON simulations from the Next Generation Remote Sensing for 
Validation Studies (NARVAL) flight campaigns (Stevens, Ament, et al., 2019) and the Quasi-Biennial Oscillation 
in a Changing Climate (QUBICC) project (Giorgetta et al., 2022), with horizontal resolutions of 2.5 and 5 km 
respectively. At these resolutions one can generally consider deep convection to be resolved (Vergara-Temprado 
et  al.,  2020), and therefore these simulations forego the use of convective parameterizations. Hohenegger 
et al. (2020) systematically compared 27 different statistics in ICON simulations with resolutions ranging from 
2.5 to 80 km. They concluded that simulations with explicit convection at resolutions of 5 km or finer may indeed 
be used to simulate the climate. Stevens et al. (2020) have shown that the NARVAL simulations can more accu-
rately represent clouds and precipitation than simulations with an active convective parameterization.

We train NNs on coarse-grained data from these high-resolution simulations. Here, two commonly used ICON-A 
grids (with horizontal resolutions of 80 and 160 km) are the target grids we coarse-grain to. ICON uses an icosa-
hedral grid in the horizontal and a terrain-following height grid in the vertical. On these grids, more sophisticated 
and partly new methods of coarse-graining are required than on simpler regular grid types. As our machine learn-
ing algorithm we choose NNs, which are able to incorporate this wealth of data to –in principle– approximate any 
type of nonlinear function (Gentine et al., 2018; Hornik, 1991). While being generally fast at inference time, NNs 
also have computational advantages over alternative machine learning based approaches such as random forests 
(Yuval et al., 2021). Hence, an NN-powered parameterization of cloud cover could accelerate and improve the 
representation of cloud-scale processes (from radiative feedbacks to precipitation statistics).

In this study, we focus on developing an offline (i.e., without coupling to the dynamical core), ML-based cloud 
cover parameterization for ICON. While offline skill does not always guarantee online performance once the NN 
is coupled back to the dynamical core (Gagne et al., 2020), Ott et al. (2020) showed that offline skill generally 
correlated with the stability (although not necessarily the accuracy) of online simulations. Several time-consuming 
tasks are required to achieve operational online skill, such as ensuring excellent extrapolation skills to different 
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distributions of state variables for stable simulations (across climate-regimes). Then, a re-calibration of the 
coarse-resolution climate model against the observed state of the atmosphere (top-of-the-atmosphere radiative 
fluxes, global mean surface temperature, clouds, precipitation, wind fields, etc., Giorgetta et al. (2018)) is most 
likely necessary, for example, since there are too few (low-level) clouds in the ICON model, and other tunable 
parameters are currently calibrated to compensate for that fact (Crueger et al., 2018). After all, the performance 
of a (ML-based) cloud cover parameterization always depends on the accuracy of its inputs, which in turn are 
affected by other parameterizations in an online setting (e.g., cloud ice/water mixing ratios and specific humidity 
are modified by ICON's microphysics scheme). Finally, these tasks depend on the correct implementation of the 
Python-trained NNs into climate model source code (typically written in Fortran). To keep this study tractable, 
we therefore chose to leave the online implementation for future work; taking the first necessary step of demon-
strating a robust offline parameterization, we focus on five questions.

The first key question that we tackle in this study is whether we can train an NN based cloud cover parameteri-
zation that is able to emulate high-resolution cloudiness. We then ask the following subquestions: For the sake 
of generalizability and computational efficiency should we keep the parameterization as local as possible? Or 
shall we consider non-local effects for improved accuracy? Can we apply this parameterization universally or is 
it tied to the regions and climatic conditions over which it was trained upon? And can we extract useful physical 
information from the NN after it has been trained, gaining insight into the interaction between the large-scale 
(thermo)dynamic state and convective-scale cloudiness?

We first introduce the training data (Section  2.1) and the NNs (Section  3), before evaluating regionally 
(Section 4.1) and globally (Section 4.2) trained networks in their training regime, studying their generalization 
capability (Section 4.3) and interpreting their predictions (Sections 4.4 and 4.5).

2.  Data
2.1.  ICON High-Resolution Simulations

The training data consists of coarse-grained data from two distinct ICON storm-resolving model (SRM) simula-
tions. Both simulations provide hourly model output.

The first simulation is a limited-area ICON simulation over the tropical Atlantic and parts of South America and 
Africa (10°S–20°N, 68°W–15°E). The simulation ran for a bit over 2 months (December 2013 and August 2016) 
in conjunction with the NARVAL (NARVALI and NARVALII) expeditions (Klocke et al., 2017; Stevens, Ament, 
et al., 2019). The model was initialized at 0 UTC every day and ran for 36 hr. We use the output from the model 
runs with a native resolution of ≈2.5 km. NARVAL data also exists with a higher resolution of ≈1.2 km, but it 
covers a significantly smaller domain (in 4°S–18°N, 64°W–42°W). The native vertical grid extends up to 30 km 
on 75 vertical layers.

The second simulation is a global ICON simulation that ran as part of the QUBICC project. Currently there is a 
set of hindcast simulations available of which we chose three to work with (hc2, hc3, hc4). Each simulation covers 
1 month (November 2004, April 2005, and November 2005). While the horizontal resolution (≈5 km) is lower 
than in NARVAL, the vertical grid extends higher (up to 83 km) on a finer grid (191 layers).

The two simulations used different collections of parameterization schemes. While the NARVAL simulations 
were set up to run with ICON's numerical weather prediction physics package (Prill et al., 2019), the QUBICC 
simulations used the so-called Sapphire physics, developed for SRM simulations and based on ICON's ECHAM 
physics package as described in Giorgetta et al. (2022). An overview of the specifically chosen parameterization 
schemes can be found in Table S1 in Supporting Information S1. By virtue of their high resolution, both simu-
lations dispensed with parameterizations for convection and orographic/non-orographic gravity wave drag. For 
microphysics they used the same single-moment scheme, which predicts rain, snow, and graupel in addition to 
water vapor, liquid water, and ice (Doms et al., 2011; Seifert, 2008). Different schemes were used for the vertical 
diffusion by turbulent fluxes (NARVAL: Raschendorfer (2001), QUBICC: Mauritsen et al. (2007)), for the radi-
ative transfer (NARVAL: Barker et al. (2003); Mlawer et al. (1997), QUBICC: Pincus et al. (2019)), and the land 
component (NARVAL: Schrodin and Heise (2001); Schulz et al. (2015), QUBICC: Raddatz et al. (2007)). The 
simulations also differed in their cloud cover schemes. The QUBICC simulation assumed to resolve cloud-scale 
motions, diagnosing a fully cloudy grid cell whenever the cloud condensate ratio exceeds a small threshold and 
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a cloud-free grid cell otherwise. The cloud cover scheme used in NARVAL alternatively produces fractional 
cloud cover with a diagnostic statistical scheme that combines information from convection, turbulence, and 
microphysics.

In ICON terminology, the NARVAL simulations ran on an R2B10 and the QUBICC simulations on an R2B9 
(horizontal) grid. Generally speaking, an RnBk grid is a refined spherical icosahedron. The refinement is 
performed by (a) dividing its triangle edges into n parts, creating new triangles by connecting the new edge 
points and by (b) completing k subsequent edge bisections while once more connecting the new edge points after 
each bisection (Giorgetta et al., 2018). In between these refinement steps, the position of each vertex is slightly 
modified using a method called spring dynamics, which improves the numerical stability of differential operators 
(Tomita et al., 2001; Zängl et al., 2015).

A key limitation of the data lies in a temporal mismatch between some model output variables from one common 
time step. This is caused by the sequential processing of some parameterization schemes in the ICON model 
(Giorgetta et al., 2018). For instance, the cloud cover scheme diagnoses cloud cover before the microphysics 
scheme alters the cloud condensate mixing ratio, which has led to ≈7% of the cloudy grid cells in our data to be 
condensate-free. However, this mismatch should not exceed the fast physics time step in the model, which was 
set to 40 s in the QUBICC and to 24 s in the NARVAL simulations. Another limitation of our QUBICC data is 
that the mixing length in the vertical diffusion scheme was mistakenly set to 1000 m instead of 150 m, causing 
unrealistically strong vertical diffusion in some situations.

2.2.  Coarse-Graining

We now use both NARVAL and QUBICC data to derive training data for our machine learning based cloud cover 
parameterization.

This requires coarse-graining the data horizontally and vertically to the low-resolution ICON-A grid since we 
cannot a priori assume that the same (cloud cover) parameterization will work across a very wide range of spatial 
resolutions. Our goal is to mimic typical inputs of our cloud cover parameterization, which are the large-scale 
state variables of ICON-A. We design our coarse-graining methodology to best estimate grid-scale mean values, 
which we use as proxies for the large-scale state variables. Figure 1 shows an example of horizontal and vertical 
coarse-graining of cloud cover snapshots from the QUBICC and the NARVAL data set.

We coarse-grain the simulation variables from R2B9 and R2B10 grids to the default R2B4 grid of Giorgetta 
et al. (2018) with a resolution of ≈160 km. To demonstrate the robustness of our machine learning algorithms 
across typical ICON-A resolutions, we additionally coarse-grain to the low-resolution R2B5 grid used in 
Hohenegger et  al.  (2020) with a resolution of ≈80  km. Afterward, we vertically coarse-grain the data to 27 
terrain-following sigma height layers, up to a height of 21 km because no clouds were found above that height. 
The technical aspects of our coarse-graining methodology can be found in Appendix A. We now turn toward the 
specifics of the NNs.

3.  Neural Networks
3.1.  Setup

We set up three general types of NNs of increasing representation power. Each NN follows its own assump-
tion as to how (vertically) local the problem of diagnosing cloud cover is. Choosing three different NN archi-
tectures allows us to design a vertically local (cell-based), a non-local (column-based), and an intermediate 
(neighborhood-based) model type.

The (grid-)cell-based model only takes data from the same grid cell level and potentially some surface variables 
into account. In that sense, the traditional cloud cover parameterization in ICON-A, being a function of local 
RH, pressure, and surface pressure, is similarly a cell-based parameterization (with the exception of including 
the lapse rate in certain situations). Such a local model is very versatile and can be implemented in models with 
varying vertical grids.

The neighborhood-based model has variables as its input that come from the same grid cell and from the ones 
above and below, and also includes some surface variables. The atmospheric and dynamical conditions in the 
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close spatial neighborhood of the grid cell most likely have a significant influence on cloudiness as well. A 
grid column undergoing deep convection for instance is very likely to have different cloud characteristics than 
a grid  cell in a frontal stratus cloud (A. Tompkins, 2005). Furthermore, strong subsidence inversions that lead 
to thin stratocumuli cannot be detected by looking at the same grid cell only. As an example, this dependence 
of cloudiness on the surroundings has been actualized in A. M. Tompkins (2002). In their study, the sub-grid 
distribution of total water is described as a function of horizontal and vertical turbulent fluctuations, effects of 
convective detrainment and microphysical processes.

The column-based model operates on the entire grid column at once, and therefore has as many output nodes 
as there are vertical layers. In a column-based approach we do not have to make any a priori assumptions as to 
how many grid cells from above and below a given grid cell should be taken into account. Furthermore, surface 
variables are naturally included in the set of predictors. Coefficients of a multiple linear model fitted to the 
data suggest that the parameterization of cloud cover is a non-local problem, further motivating the use of a 
column-based model (see Figure S1 in Supporting Information S1). The input-output architecture of these three 
NN types is illustrated in Figure S2 in Supporting Information S1.

We specify three NNs to be trained on the (coarse-grained) NARVAL R2B4 data and three networks to be trained 
with (coarse-grained) QUBICC R2B5 data. Using data that is coarse-grained to different resolutions allows 
us to demonstrate the applicability of the approach across resolutions. The primary goal of the NNs trained 
on NARVAL R2B4 data is to show the ability to reproduce SRM cloud cover from coarse-grained variables, 
whereas for the globally-trained QUBICC R2B5 NNs it is a versatile applicability and more grid-independence. 
In this context, the largest differences between the R2B4- and R2B5 models exist in the specification of the 
neighborhood-based models:

The set of predictors for the neighborhood-based R2B5 model contains data from the current grid cell and its 
immediate neighbors (above and below it). On the layer closest to the surface this requires padding to create data 
from “below.” The vertical thickness of grid cells decreases with decreasing altitude. Therefore, we assume a 

Figure 1.  Illustration of coarse-graining using the example of cloud fraction. Here we show distinct snapshots of the horizontal fields (on a single layer) and vertical 
profiles (from a single column) from the high-resolution NARVAL and Quasi-Biennial Oscillation in a Changing Climate (QUBICC) simulations (top row) and the 
corresponding coarse-grained horizontal fields and vertical profiles (bottom row). We coarse-grain the NARVAL/QUBICC data sets horizontally from 2.5 km/5 km 
to 160 km/80 km and vertically from 66/87 to 27 layers up to a height of 21 km. Final coarse-grained grid boxes constitute the training data for the machine learning 
models.
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layer separation of 0 for this artificial layer below, allowing us to fill it with values from the layer closest to the 
surface.

The neighborhood-based R2B4 model considers two grid cells above and two below. We did not extend the 
padding to create another artificial layer, but trained a unique network per vertical layer. This allows for maxi-
mum flexibility, discarding input features that are non-existent or constant on a layer-wise basis. Additionally, the 
R2B4 model has cloud cover from the previous model output time step (1 hr) in its set of predictors.

An overview of the NNs and their input parameters can be found in Table  1. The input parameters were 
mostly motivated by the existing cloud cover parameterizations in ICON-A and the Tompkins Scheme (A. M. 
Tompkins, 2002). All NNs have a common core set of input features. Choosing varying additional features allows 
us to study their influence. However, we found that none of these additional features have a crucial impact on a 
model's performance. We generally chose as few input parameters as possible to avoid extrapolation situations 
outside of the training set as much as possible. By doing so, we hope to maximize the generalization capability 
of the NNs.

3.2.  Training

In this section we explain the training methodology and the corresponding tuning of the models' and the optimiz-
er's hyperparameters (e.g., model depth, activation functions, initial learning rate). These hyperparameters have a 
large impact on the potential quality of the NN. The importance of hyperparameter tuning for NN parameteriza-
tions was pointed out in Ott et al. (2020), and Yuval et al. (2021) proposed its particular need in a real-geography 
setting.

The choice of hyperparameters for an NN depends on the amount and nature of the training data which in turn 
depends strongly on the setup. A column-based model in an R2B4 setup trained on NARVAL data can be trained 
with no more than 1.7 ⋅ 10 6 data samples, using all available data. In contrast, a cell-based model in an R2B5 
setup trained on QUBICC data can learn from maximally 4.6 ⋅ 10 9 data samples. Table S2 in Supporting Infor-
mation S1 shows the amount of available training data for every setup. Mainly the coarse-grained QUBICC data 
had to be (further) preprocessed to (a) reduce the size of the data set, (b) scale the cloud cover target to a common 
range, (c) normalize the training data, and (d) combat the class imbalance of having a relatively large number of 
cloud-free grid cells in the training data. Steps c) and (d) were also necessary for the coarse-grained NARVAL 
data. The more balanced ratio between cloudy and cloud-free grid cells (which encourages the neural networks to 
correctly recognize cloudy cells) for (d) was achieved by randomly sub-sampling from the cloud-free grid cells. 
More details on the preprocessing can be found in the Supporting Information S1.

To train the NARVAL R2B4 networks we follow conventional machine learning practices and split the 
(coarse-grained and preprocessed) R2B4 data into randomly sampled disjoint training, validation and test sets 
(78%/8%/20% of the data). By randomly splitting the data, we ensure (with a high probability) that the model 
will see every weather event present in the training data, with the caveat that strongly correlated samples could be 
distributed across the three subsets. In contrast, for the QUBICC R2B5 models, we focus on universal applicabil-
ity. We therefore use a temporally coherent three-fold cross-validation split (illustrated in Figure S3 in Supporting 

NN Type Land Lake Cor. Ts zg qv qc qi T p ρ u v clct−1

N1 Cell-based ✓ – – – ✓ ✓ – ✓ ✓ ✓ – – – –

N2 Column-based – ✓ – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – –

N3 Neighborhood-based – ✓ – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ – – ✓

Q1 Cell-based ✓ – ✓ – ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ –

Q2 Column-based ✓ – – – ✓ ✓ ✓ ✓ ✓ ✓ – – – –

Q3 Neighborhood-based – – ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ – ✓ ✓ –

Note. Models N1–N3 are trained on NARVAL R2B4 and models Q1-Q3 on QUBICC R2B5 data. 2D variables (fraction of land/lake, Coriolis parameter and surface 
temperature) are listed in the first three columns. More information on the choices and meaning of the features can be found in the SI.

Table 1 
Overview of the NNs and Their Input Features
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Information S1). Every fold covers roughly 15 days to make generalization to the validation folds more chal-
lenging. We choose 15 days to stay above weather-timescales (so that for instance the same frontal system does 
not appear in the training and validation folds) and to mitigate temporal auto-correlation between training and 
validation samples. The validation folds of each split are equally difficult to generalize to, since a part of every 
month is always included in the training folds. The three-fold split itself lowers the risk of coincidentally working 
with one validation set that is very conducive to the NN.

After tuning the hyperparameters using the Bayesian optimization algorithm within the SHERPA package (Hertel 
et al., 2020) we found that a common architecture was optimal for the models N1-N3 and Q2. We list the space 
of hyperparameters we explored in the SI. For models Q1 and Q3 we had more training data. To counteract the 
increase in training time, we increased the batch size to keep a similar amount of iterations per training epoch. 
After renewed hyperparameter tuning we found a different architecture for models Q1 and Q3. The final choice 
of hyperparameters for the NNs is shown in Table 2. The relatively small size of the NNs (which is comparable to 
those of Brenowitz and Bretherton (2019)) helps against overfitting the training data and allows for faster training 
of the networks. By performing systematic optimization of hyperparameters we also found that these networks 
are already able to capture the functional complexity of the problem.

4.  Results
4.1.  Regional Setting (NARVAL)

In this section we show the results of the NNs trained and evaluated on the coarse-grained and preproc-
essed NARVAL R2B4 data (see Supporting Information S1 for more details on the preprocessing). For these 
regionally-trained NNs we define cloud cover as a cloud volume fraction.

The snapshots and Hovmoeller plots of Figure 2 provide visual evidence concerning the capability of the (here 
column-based) NN to reproduce NARVAL cloud scenes. The ground truth consists of the coarse-grained 
NARVAL cloud cover fields, which the NN reconstructs while only having access to the set of coarse-grained 
input features. In the Hovmoeller plots we trace the temporal evolution of cloudiness throughout 4 days in a 
randomly chosen grid column of the NARVAL region. Given the large-scale data from the grid column, the NN 
is able to deduce the presence of all six distinct lower- and upper-level clouds.

The models' mean-squared errors (MSEs) (shown in Table 3) represent the absolute average squared mismatch 
per grid cell in percent between the predicted and the true cloud cover. For a given data set 𝐴𝐴 𝐴𝐴 = {𝑋𝑋𝑖𝑖}

𝑁𝑁

𝑖𝑖=1 , where 

for each of the samples Xi the true cloud cover is given by Yi and the predicted cloud cover by 𝐴𝐴 𝑌𝑌𝑖𝑖 , the MSE is 
defined by

MSE = 1
�

�
∑

�=1

(

�� − �̂�
)2
.� (1)

Models N1–N3 and Q2 Models Q1 and Q3

Hidden layers 2 3

Units per hidden layer 256 64

Activation fct. for each layer ReLU → ReLU → linear tanh → leaky ReLU (α = 0.2) → tanh → linear

L1, L2 reg. coef. for each layer None L1: 4.7 ⋅ 10 −3, L2: 8.7 ⋅ 10 −3

Batch Normalization None After the second hidden layer

Optimizer N1–N3: Nadam, Q2: Adam Q1: Adam, Q3: Adadelta

↪ Initial learning rate 10 –3 4.3 ⋅ 10 −4

↪ Batch size N1–N3: 32, Q2: 128 1,028

↪ Maximal number of epochs N1–N3: 70, Q2: 40 Q1: 30, Q3: 50

Table 2 
Hyperparameters of the NNs and the Optimizer
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As opposed to Figure 2, the MSEs provide more statistically tangible information. The column-based model 
(which has the largest number of learnable parameters) and the neighborhood-based model (which consists of a 
unique NN per vertical layer) have lower MSEs than the cell-based model. More trainable parameters allow for 
the model to adjust better to the ground truth. We also found that by adding more input features (RH, liquid water 
content, lapse rate and surface pressure) to the cell-based model, we can further decrease its MSE to ≈5 (%) 2. On 
the flip side, every additional input feature bears the risk of impeding the versatile applicability of the model and 
reducing its capacity to generalize to unseen conditions. By training multiple models of the same type, we veri-
fied these MSEs to be robust (varying by ±0.12 (%) 2). The MSEs for the neighborhood-based model are averaged 
over all NNs (i.e., one per vertical layer), while the upper-most two layers are left out due to the rare presence of 
clouds at these altitudes.

Our data is temporally and spatially correlated. As a consequence, our division into random subsets for training, 
validation, and testing leads to very similar MSEs on the respective subsets. And the error on the training set is 
only slightly smaller than on the validation and test sets.

With MSEs being below 16 (%) 2, Table 3 shows that the NNs are able to diagnose cloud cover better than our 
baseline models (with the exception of the cell-based random forest). These baseline models are fitted to the 
same normalized data sets as the respective NNs. As our first baseline we evaluate a constant output model, 

which outputs the average cloud cover. The constant output model's MSE 
thus also represents the variance of cloud cover in the data. Small differences 
in the preprocessing of the data for each model type lead to differences in the 
MSEs of the zero and constant output model. The (multiple) linear model is 
trained on the data using the ordinary least squares method. For the random 
forests, we use the default implementation of the RandomForestRegressor in 
scikit-learn, adjusting the number and the maximum depth of the trees so that 
the training duration is similar to the NNs. Further adjustments of these two 
hyperparameters that would further increase or decrease the training dura-
tions either reach computational limits or show no decrease in validation 
loss. While the cell-based random forest actually achieves a lower MSE than 
the NN, its ≈10 5 larger size (400 GB) makes it impractical to manage. When 
forced to have a similar storage requirement using the two hyperparameters 
mentioned above, its MSE (26.22) becomes larger than that of the NN.

We implemented the Sundqvist scheme as it is described in Giorgetta 
et al. (2018). It is a simplified version of the currently implemented (mainly 

Figure 2.  The column-based neural network (NN) trained and evaluated on the coarse-grained NARVAL R2B4 data. Panels 
(a and b) show cloud cover snapshots with (a) displaying the cloud scene as it is estimated by the NN and (b) the reference 
cloud scene from the coarse-grained NARVAL data. Note that some columns over land could not be vertically interpolated 
due to overlapping topography and are therefore missing in (a). The upper plot of panel (c) shows the cloud cover predictions 
of 1 August – 4 August 2016 by the NN in some arbitrary location within the NARVAL region. The plot below depicts the 
data's actual (coarse-grained) cloud cover. The vertical axis shows average heights of selected vertical layers.

Type

Cell-
based

Column-
based

Neighborhood-
based

Neural Training set 15.16 1.64 0.84

networks Validation set 15.18 1.78 1.00

Test set 15.19 1.78 1.01

Baseline Constant output model 109.63 92.23 86.48

models Best linear model 81.71 18.56 4.79

Random forest 10.40 6.15 1.73

Sundqvist scheme 51.14 – –

Table 3 
Mean-Squared Errors (in (%) 2) of NARVAL and Baseline Models Evaluated 
on the Coarse-Grained and Preprocessed NARVAL Data
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cell-based) ICON-A cloud cover parameterization, because it does not include an adjustment for cloud cover in 
regions below subsidence inversions over the ocean (see Mauritsen et al. (2019)). We fitted the Sundqvist scheme 
to the data by doing a grid search over a space of tuning parameters around the values used in the ICON-A model. 
The grid search yielded a better set of tuning parameters than those found by implementing the scheme as a layer 
in TensorFlow and optimizing the tuning parameters using gradient descent. To still allow for a differentiation 
between grid cells over land and ocean, we found optimal sets of tuning parameters for cells that are mainly over 
land ({rsat, r0,top, r0,surf, n} = {1.12, 0.3, 0.92, 0.8}) and for cells that are mainly over the sea ({rsat, r0,top, r0,surf, 
n} = {1.07, 0.42, 0.9, 1.1}).

Figure  3a shows that the mean vertical profiles of cloud cover predicted by the NNs closely align with the 
“Ground truth” profile of coarse-grained cloud cover. The profiles feature three maxima that can be attributed 
to the three modes of tropical convection: shallow, congestus, and deep. Note that in contrast to Müller (2019), 
we do find a clear peak for deep convective clouds in the coarse-grained NARVAL and NARVALII data, which 
could be due to differences in how we define cloudy grid cells (using the cloud cover model output rather than a 
boolean based on the total cloud condensate mass mixing ratio exceeding 0.1 g/kg).

In Figure 3b we show the coefficient of determination/R 2-value profiles for the different models. For a given 
vertical layer l, the R 2-value is defined by

𝑅𝑅
2

𝑙𝑙
= 1 −

𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙

var𝑙𝑙
.� (2)

For a given vertical layer l, msel is the MSE between a given model's prediction and the true cloud cover and varl 
the variance of cloud cover. Clearly, (a) 𝐴𝐴 𝐴𝐴

2
𝑙𝑙
≤ 1 , (b) 𝐴𝐴 𝐴𝐴

2
𝑙𝑙
= 1 implies msel = 0, and (c) if 𝐴𝐴 𝐴𝐴

2
𝑙𝑙
≤ 0 , then a function 

always yielding the cloud cover mean on layer l would outperform the model in question.

We see that the neighborhood- and column-based models generally have R 2-values exceeding 0.9, or equivalently 
msel ≤ 0.1 ⋅ varl. The somewhat lower reproduction skill for the cell-based model concurs with the MSEs found 
in Table 3. The models exhibit strongly negative R 2-values above 19 km and are therefore not shown in the 
figure, that is, on these layers a constant-output model would be more accurate than the NNs. The reason for this 
is that there are almost no clouds above 19 km; the variance of cloud cover is not greater than 10 −4 (%) 2. Never-
theless,  the neighborhood-based model with its unique NN per vertical layer is still able to learn a reasonable 
mapping at 19.2 km, achieving an R 2-value of 0.93. Altogether, we found the mean cloud cover statistics to be 
independent of how the NNs were initialized prior to training.

Figure 3.  Evaluation of the NARVAL R2B4 models on the coarse-grained and preprocessed NARVAL R2B4 data. The three cloud cover maxima of panel (a) are 
located roughly at 1 km, 5.3 and 12.2 km. The maximal absolute discrepancy between the averaged neural network predictions and the ground truth for a given vertical 
layer is less than 0.5%. In panel (b), the two upper-most layers are not shown.
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4.2.  Global Setting (QUBICC)

Having studied the performance of our regionally trained NNs, we now shift the focus to the NNs trained and 
evaluated on the coarse-grained and preprocessed global QUBICC R2B5 data set. Changing the region as well as 
the resolution of the training data allows us to conduct studies across these domains in Section 4.4.

Table 4 shows the performance of the cloud volume and cloud area fraction NNs on their validation folds. For 
each model type and each of the three cross-validation splits we trained one NN and then selected the NN that 
has the lowest MSE on the entire QUBICC data set. Generally, this is also the NN with the lowest loss on its 
validation set. When comparing Table 4 with Table 3, we find that QUBICC(-trained) NNs exhibit larger MSEs 
than NARVAL(-trained) NNs. Causes for the higher MSEs can be attributed to the data now stemming from 
the entire globe and the higher stochasticity present in the higher resolution R2B5 data. Both of these reasons 
allow for a larger range of outputs for similar inputs, inevitably increasing the MSE of our deterministic model. 
Nevertheless, with the exception of the cell-based random forest, we are still well below the MSEs given by 
our baseline models. However, as in Section 4.1, the cell-based random forest requires much more (factor of 
≈10 6) memory, and a random forest of similar size to the NN has a larger MSE (85.86). The parameters for the 
Sundqvist scheme were again found using separate grid searches for grid cells that are mainly over land ({rsat, 
r0,top, r0,surf, n} = {1.1, 0.2, 0.85, 1.62}) and for grid cells that are mainly over sea ({rsat, r0,top, r0,surf, n} = {1, 0.34, 
0.95, 1.35}). In a similar vein, estimating cloud area fraction is a more challenging task than estimating cloud 
volume fraction. Depending on whether a cloud primarily spans horizontally or vertically, practically any value 
of cloud area fraction can be attained in a sufficiently humid grid cell. This could explain the increased MSEs of 
the cloud area fraction models.

In Table 4 we also include bounded losses in parentheses. That means that the NN's cloud cover predictions that 
are smaller than 0% are set to 0% before its MSE is computed. And likewise, predictions greater than 100% are set 
to 100%. The difference between these two types of losses is relatively small. We can deduce that the NNs usually 
stay within the desired range of [0, 100]% without being forced to do so. On average, 76.4% of the predictions of 
all our QUBICC-trained neural networks in their respective validation sets lie within the [0, 100]%, and 95% of 
the predictions lie within the slightly larger [−1, 100]% range.

In Figure 4 we show that the local cell-based model—the model type with the largest MSE—is still able to 
reproduce the mean cloudiness statistics of the validation sets that it did not have access to during training. These 
validation sets each consist of the union of two blocks of 15 days, which is sufficiently temporally displaced from 
the training data to be above weather timescales. We can see that the validation set bias of the model correspond-
ing to the third split is larger than that of the first two splits. The model from the second split has the overall best 
performance on the QUBICC data set and is therefore analyzed further in Section 4.3.

Type

Cell-based Column-based Neighborhood-based

Neural Cloud volume fraction 32.77 (28.98) 8.14 (8.03) 25.07 (20.46)

networks Cloud area fraction 87.98 (80.96) 20.07 (19.79) 52.19 (46.61)

Baseline Constant output model 684.51 431.28 558.28

models Best linear model 401.47 97.81 297.63

Random forest 25.90 161.98 54.74

Sundqvist scheme 474.12 – –

Note. Due to computational reasons, only 1% of the data (i.e., ≈10 7 samples) was used to compute the MSE of the 
Sundqvist scheme. We only show the MSEs of the models with the lowest loss on their respective validation folds. Here, the 
neighborhood-based models comprise one model per split, evaluated on all layers. In parentheses we compute the losses after 
bounding the model output to the [0, 100]% interval. The baseline models are trained and evaluated on coarse-grained and 
preprocessed QUBICC cloud volume fraction data.

Table 4 
Mean-Squared Errors (in (%) 2) of the NNs Trained With a 3-Fold Cross-Validation Split on the Coarse-Grained and 
Preprocessed Quasi-Biennial Oscillation in a Changing Climate Data
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Despite the challenging setting, Figures 5a and 5c show that the models are very well able to reproduce the aver-
age profiles of cloud volume and cloud area fraction of the global data set. The same holds true for the ability 
to capture the variance in time and the horizontal for a given vertical layer, which is conveyed by the R 2-values 
being usually well above 0.8 for all layers below 15 km. As in Figure 3, layers above 19 km had to be omitted in 
the R 2-plots. When it comes to reconstructing the QUBICC cloudiness, the column-based model with its large 
amount of adaptable parameters is able to outperform the other two model types.

After introducing and successfully evaluating both regionally and globally trained networks on their training 
regimes, we investigate the extent to which we can apply these NNs.

4.3.  Generalization Capability

In this section we demonstrate that our globally-trained QUBICC networks can successfully be used to predict 
cloud cover on the distinct regional NARVAL data set. Furthermore, we show that, with the input features we 
chose for our NNs, achieving the converse, that is, applying regionally-trained networks on the global data set, 
is out of reach.

We note that, beside the regional extent, the QUBICC data covers a different timeframe and was simulated with 
a different physics package and on a coarser resolution (5 km) than the NARVAL data (2.5 km). As opposed to 
NARVAL's fractional cloudiness scheme, the QUBICC cloud cover scheme diagnosed only entirely cloudy or 
non-cloudy cells. These differences make the application of NNs trained on one data set to the other data set 
non-trivial.

4.3.1.  From Global to Regional

We first study the capability of QUBICC-trained models to generalize to the NARVAL data (see Figure 6). We 
see that the models estimate cloud volume and cloud area fraction quite accurately. This is the case despite the 
significant differences between QUBICC's and NARVAL's mean vertical profiles of cloud cover. We gener-
ally recognize a decrease of R 2-value (by ≈0.2) when compared to the models' performance on its training 
data (Figure 5). A certain decrease was to be expected with the departure from the training regime. But as the 
R 2-values on average still exceed 0.7, we find that the models can be applied successfully to the NARVAL data. 
In comparison, the Sundqvist scheme we tuned on the QUBICC R2B5 data has a layer-wise averaged R 2-value of 
−0.54/0.29 for cloud volume/area fraction on the NARVAL data, but only if we discard the surface-closest layer.

Figure 4.  The cell-based cloud volume and cloud area fraction models of the 3-fold cross-validation split evaluated on their 
respective validation sets. The validation losses of the models from split 2 are given in Table 4.
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However, there is a significant bias affecting all three NN types, namely consistent overprediction of both cloud 
volume and cloud area fraction between 6 and 9 km. In this altitude range, this is visible in all four plots, either 
through the mismatch in mean cloud cover or the dip in R 2-value. This behavior will be further investigated in 
Section 4.5. Another minor bias is a slightly poorer generalization of the column-based model to the NARVAL 
data (see e.g., Figure 6c). We can understand this as a sign of overfitting if we also take into account that the 
column-based model showed a higher skill on the training data than the other two model types.

4.3.2.  From Regional to Global

We have seen that the NNs are able to reproduce the cloud cover distribution of the storm-resolving NARVAL 
simulation, limited to its tropical region. We coarse-grain the QUBICC data to the same R2B4 grid resolution 
that the NARVAL NNs were trained with. This helps us to investigate to what extent the NNs can actually 
generalize to out-of-training regimes. We focus on the tropics first, extending the evaluation from the NARVAL 
region (68W–15 E, 10S–20 N) to the entire tropical band (23.4S–23.4 N). Note that the QUBICC data shows 
a much stronger presence of deep convection and a weaker presence of shallow and congestus-type convection. 
Nevertheless, the NNs are able to reproduce the general structure of the mean cloud cover profile, in particu-
lar the peak due to deep convection. The flattened peak of shallow convection is most accurately represented 

Figure 5.  Evaluation of Quasi-Biennial Oscillation in a Changing Climate (QUBICC) cloud volume and cloud area models on coarse-grained and preprocessed 
QUBICC R2B5 data. The layer-wise averaged R 2-values of the cell-, column-, and neighborhood-based models shown in (b) are (0.94, 0.98, 0.94) and in (d) are (0.90, 
0.97, 0.93). The ground truth profiles do not match due to differences in preprocessing, especially in how many cloud-free cells were removed from the respective data 
sets (see Supporting Information S1 for more details). The column-based ground truth profile represents the true QUBICC cloud cover profiles since its data was not 
altered by preprocessing.
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by the neighborhood-based model, while the weakened congestus-type convection is reproduced by both the 
neighborhood- and the column-based models.

However, the NNs are not able to generalize to the entire globe. To show this, we use two column-based models 
as an example. Looking at Figure S4 in Supporting Information S1, we can see that they are unable to reproduce 
mean cloudiness statistics over the region covering the Southern Ocean and Antarctica. In addition, models with 
the same architecture produce entirely different cloudiness profiles. In this polar region, the NNs are evidently 
forced to extrapolate to out-of-training regimes and are thus unable to produce correct or consistent predictions. 
Let us look exclusively at the univariate distributions of the QUBICC input features (those for temperature and 
pressure are plotted on the margins of Figure 7b). Then we can see that their values are usually covered by the 
distribution of the NARVAL training data. Only their joint distribution reveals that a large number of QUBICC 
samples exhibit combinations of pressure and temperature that were not present in the training data. For instance, 
temperatures as cold as 240K never occur in tandem with pressure values as high as 1,000 hPa in the tropical 
training regime of the NARVAL data. This circumstance is particularly challenging for the neighborhood- and 
column-based models. This is because the input nodes in these two NARVAL model types correspond to specific 
vertical layers. So the NNs have to extrapolate when facing (during training) unseen input feature values on any 
vertical layer, such as in our example cold temperatures on a vertical layer located at around 1,000 hPa.

Figure 6.  Evaluation of Quasi-Biennial Oscillation in a Changing Climate R2B5 cloud volume and cloud area models on NARVAL R2B5 data. The layer-wise 
averaged R 2-values of the cell-, column-, and neighborhood-based models shown in (b) are (0.74, 0.74, 0.79) and in (d) are (0.72, 0.71, 0.72).
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In this section, we demonstrated that the QUBICC NNs can be used on NARVAL data, while in our setup the 
converse is not feasible. This begs the question: In which way do these NNs differ and have they actually learned 
a meaningful dependence of cloud cover on the thermodynamic environment?

4.4.  Understanding the Relationship of Predicted Cloud Cover to Its Thermodynamic Environment

In this section, our goal is to dig into the NNs and understand which input features drive the cloud cover predic-
tions. We furthermore want to uncover similarities and differences between the NARVAL- and QUBICC-trained 
NNs that help understand differences in their generalization capability.

NNs are not inherently interpretable, that is, we cannot readily infer how the input features impacted a given 
prediction by simply looking at the networks' weights and biases. Instead, we need to use an attribution method 
that uses an explanation method built on top of the NN (Ancona et al., 2019). Within the class of attribution 
methods, few are adapted for regression problems. A common choice (see e.g., Brenowitz et al. (2020)) is to use 
gradient-based attribution methods. However, these methods may not fairly account for all inputs when explain-
ing a model's prediction (Ancona et al., 2019). Additionally, gradient-based approaches can be strongly affected 
by noisy gradients (Ancona et al., 2019) and generally fail when a model is “saturated,” that is, when changes in 
the input do not lead to changes in the output (Shrikumar et al., 2017).

Instead we approximate Shapley values for every prediction using the SHAP (SHapley Additive exPlanations) 
package (Lundberg & Lee, 2017). The computation of Shapley values is solidly founded in game theory and 
the Shapley values alone satisfy three “desirable” properties (Lundberg & Lee,  2017). Shapley values quan-
tify the influence of how an input feature moves a specific model prediction away from its base value, defined 
as  the  expected output. The base value is usually an approximation of the average model output on the training 
data set. With Shapley values, the difference of the predicted output and the base value is fairly distributed among 
the input features (Molnar, 2020). A convenient property is that one can recover this difference by summing over 
the Shapley values (“efficiency property”).

Figure 7.  Panel (a): Evaluation of NARVAL R2B4 models (NARVAL region: 68W–15 E, 10S–20 N) on Quasi-Biennial Oscillation in a Changing Climate (QUBICC) 
R2B4 data over the tropical zone (23.4S–23.4 N). We plot the means over 10 days (20 November–29 November 2004). Different NNs of the same type produce 
consistent mean vertical cloudiness profiles (±1%). The layer-wise averaged R 2-values below 15 km of the cell-, column-, and neighborhood-based models are (−0.88, 
0.29, 0.67), and within the upper troposphere (between 6 and 12 km) they are (0.72, 0.62, 0.84). Panel (b): Joint distribution of temperature and pressure in NARVAL 
R2B4 and QUBICC data. On the margins we see the univariate distributions of temperature and pressure. The jagged structure emerges from the underlying coarse 
vertical grid.
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The DeepExplainer within the SHAP package is able to efficiently compute approximations of Shapley values 
for deep NNs (Lundberg & Lee, 2017). SHAP also comes with various visualization methods, which allow us to 
aggregate local sample-based interpretations to form global model interpretations.

We now show how we use SHAP to compare the way NARVAL (R2B4)- and QUBICC (R2B5)-trained networks 
arrive at good predictions. We focus on the column-based (cloud volume fraction) models. These are uniquely 
able to uncover important non-local effects, have the largest number of input features to take into account and 
have on average the lowest MSEs in their training regimes (taking into account both Tables 3 and 4).

We collect local explanations on a sufficiently large subset of the NARVAL R2B5 data. For this, we compute the 
base values by taking the average model predictions on subsets of the respective training data sets. A necessary 
condition for the base value is that it approximates the expected NN output (on the entire training set) well. We 
found that ≈10 4 QUBICC samples are sufficient for the average NN prediction to converge. Therefore, we used 
this size for the random subsets of the QUBICC and of the smaller NARVAL training set as well. We showed 
that on the NARVAL R2B5 data set, the QUBICC models are able to reconstruct the mean vertical profile with 
high R 2-values (Figure 6). Impressively, the column-based version of our NARVAL R2B4 models also makes 
successful predictions on the NARVAL R2B5 data set (with an average R 2-value of 0.93; Figure S5 in Supporting 
Information S1) despite the doubling of the horizontal resolution.

The size of the subset of NARVAL R2B5 data (≈10 4 samples) is chosen to be sufficiently large to yield robust 
estimates of average absolute Shapley values. Averaging the absolute Shapley values over many input samples 
measures the general importance of each input feature on the output. An input feature with a large average abso-
lute Shapley value contributes strongly to a change in the model output. It on average increases or decreases the 
model output by precisely this value.

The absolute SHAP values (Figure  8) suggest that both models learned a remarkably local mapping, with a 
clear emphasis on the diagonal (especially above the boundary layer). That means that the prediction at a given 
vertical layer mostly depends on the inputs at the same location. The models have learned to act like our cell- or 
neighborhood-based models without human intervention.

The input features have a larger influence in the QUBICC model than they do in the NARVAL model. We can 
also see this phenomenon, if we use a similar base value for both models (see Figure S6 in Supporting Informa-
tion S1). This is most likely due to the fact that the QUBICC model was exposed to a wide variety of climatic 

Figure 8.  Average absolute SHAP values of the Quasi-Biennial Oscillation in a Changing Climate (QUBICC) R2B5 and the NARVAL R2B4 column-based models 
when applied to the same, sufficiently large subset of the NARVAL R2B5 data. We use the conventional ICON-A numbering of vertical layers from layer 21 (at a height 
of ≈20.8 km) decreasing in height to layer 47, which coincides with Earth's surface. The dashed line shows the tropopause, here at ≈15 km, the dash dotted line shows 
the freezing level (i.e., where temperatures are on average below 0 degrees C), here at ≈5 km. Tests with four different seeds show that the pixel values are robust (the 
absolute values never differ by more than 0.55%). The input features that are not shown exhibit smaller absolute SHAP values (ρ < 1.8%, p < 1.5%, zg < 0.7%, land/lake 
<0.1%) everywhere and are thus omitted.
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conditions across the entire globe during training, resulting in a greater variance in cloud cover. The NN is thus 
used to deviate from the average cloud cover, putting more emphasis on its input features, and consequently 
causing larger Shapley values.

Both models take into account that in the boundary layer the supply of moisture qv from below in combina-
tion with temperature anomalies that could drive convective lifting influence the sub-grid distribution of cloud 
condensates and henceforth cloud cover. Such a non-local mixing due to updrafts presents limitations for purely 
local parameterizations. In the boundary layer (which we define to be at below 1 km), temperature T and specific 
humidity qv are found to be the most important variables (having the largest sum of absolute SHAP values) for the 
NNs. Higher in the troposphere, the local amount of moisture has a significant impact on cloud cover. Specific 
cloud liquid water content qc is a major predictor of cloud cover below the freezing level, while specific cloud ice 
content qi is a major predictor of cloud cover above the freezing level. In contrast to the global QUBICC model, 
the tropical NARVAL model only considers the impact of qi at sufficiently high altitudes, which allow for the 
formation of cloud ice. The QUBICC model also learned to place more emphasis on T and qv in the lower tropo-
sphere and pressure p in the higher troposphere than the NARVAL model.

Generally, the most important variables above the boundary layer and below the freezing level are temperature T 
(for the QUBICC model) and cloud water qc (for the NARVAL model). Above the freezing level, the QUBICC 
model emphasizes pressure p most, while the NARVAL model learns a similar impact of T, qi, and p (not shown). 
Due to the Clausius-Clapeyron relation, RH depends most strongly on temperature. Taking into account that 
throughout the troposphere RH is the best single indicator for cloud cover (Walcek, 1994), this is a likely expla-
nation for the models' large emphasis on temperature.

After using SHAP to illustrate which features drive the (column-based) NN predictions, we use the same approach 
to understand the source of a specific generalization error of the QUBICC NNs (Figure 6).

4.5.  Understanding Model Errors

In this section, our goal is to understand the source of flawed NN predictions. We want to analyze what type of 
dependence on which input features is most responsible for erroneous predictions. This type of analysis reveals 
differences in the (NN-learned) characteristics of the training data set and a data set to which an NN is applied to.

In the evaluation of the QUBICC (R2B5) cloud volume fraction models on NARVAL R2B5 data (Figure 6) we 
have seen a pronounced dip in performance (R 2 ≤ 0.8 for all models) on a range of altitudes between 6 and 9 km. 
The dip was accompanied by an overestimation of cloud cover (relative error >15%). We specifically focus on 
explaining the bias at 7 km. The vertical layer that corresponds to this altitude is the 32nd ICON-A layer. On layer 
32, the R 2-values are minimal (R 2 ≤ 0.5 for all models) making it arguably the largest tropospheric generalization 
error of the models. However, the method we employ here can be used to understand other generalization errors 
as well.

The NARVAL (R2B4) models are perfectly able to make predictions on NARVAL R2B5 data on layer 32 (Figure 
S5 in Supporting Information S1), making it a suitable benchmark model. As in the previous section we use 
SHAP on the column-based models. In order to be able to compare Shapley values corresponding to certain 
features individually, we follow the strategy outlined in Appendix B.

Figure 9a shows the influence of each input feature from the entire grid column on the average model output on 
layer 32. We find that the QUBICC model bias is driven by qv and qi. Compared to the NARVAL model, the 
QUBICC model clearly overestimates the impact of these two variables. This impact is dampened somewhat 
by a net decreasing effect of p and T on the cloud cover predictions. In the NARVAL model the impact of these 
features is much less pronounced. The reason is probably once again that the model has not learned the need for 
deviating much from the base value in its tropical training regime.

When investigating the vertical profile of Shapley values in Figures 9b and 9c we find that the local values have 
the largest effect on cloud cover. This local importance is also corroborated by Figure 8. We can zoom in and 
look at the more precise conditionally-averaged functional dependence of clc_32 on these local qi_32 and qv_32 
variables (Figures 9d and 9e). We find the two functions to be very similar, albeit differing in their slope. The 
QUBICC model quickly increases cloud cover with increasing values of qi_32 and qv_32. The QUBICC model's 
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large emphasis on qi_32 could be a relict from the cloud cover scheme in the native QUBICC data. This scheme 
had set cloud cover to 100%, whenever the cloud condensate ratio had exceeded a given threshold.

5.  Summary
In this study we develop the first machine learning based parameterization for cloud cover based on the ICON 
model and deep NNs. We train the NNs with coarse-grained data from regional and global SRM simulations 
with real geography. We demonstrate that in their training regime, the NNs are able to learn the sub-grid scale 
cloud cover from large-scale variables (Figures 3 and 5). Additionally we show that our globally trained NNs can 
also be successfully applied to data originating from a regional simulation that differs in many respects (e.g., its 
physics package, horizontal/vertical resolution, and time frame; Figure 6). Using SHAP we compare regionally 
and globally trained NNs to understand the relationship between predicted cloud cover and its thermodynamic 
environment and vertical structure (Figure 8). We are able to uncover that specific humidity and cloud ice are the 
drivers of one NN's largest tropospheric generalization error (Figure 9).

We implement three different types of NNs in order to assess the degree of (vertical) locality and the amount 
of information they need when it comes to the task of diagnosing cloud cover. We find that by enforcing more 
locality, the performance of the NN suffers on its training set (Figures 3 and 5). However, the more local cell- and 
neighborhood-based NNs show slightly fewer signs of overfitting the training data (Figure 6). Generally we find 
that none of the three types clearly outperforms the other two types and that the potentially non-local model in 
actuality also mostly learned to disregard non-local effects (Figure 8). Overall, the neighborhood-based model 
trained on the global QUBICC data (Q3) is most likely the preferable model. It has a good accuracy on the 
training data, the lowest generalization error on the NARVAL data, is low-dimensional, easy to implement and 
cross-model compatible. The last point refers to the fact that (unlike the column-based model) it is not tied to the 
vertical grid it was trained on.

Furthermore, the NNs are trained to differentiate between cloud volume and cloud area fraction, which are 
distinct interpretations of cloud cover. We found cloud area fraction to be a somewhat more difficult value to 
predict. The shape of a cloud, which determines its cloud area fraction, is harder to extract from grid-scale aver-
aged thermodynamic variables. We agree with Brooks et al. (2005) that a distinction between these two concepts 

Figure 9.  SHAP/Shapley value statistics per input feature for cloud cover predictions on vertical layer 32 (at ≈ 7 km) of the column-based models with a focus on qv 
and qi in (b–e). Input features the models have not in common are neglected. As in Figure 8, the Shapley values for both models are computed on the same sets of 10 4 
random NARVAL R2B5 samples (using 10 different seeds). (a): The sum of average SHAP values over all vertical layers. The black lines show the range of values 
(min/max). The absolute Quasi-Biennial Oscillation in a Changing Climate R2B5 model bias (of 0.95%) on layer 32 (cf. Figure 6a) can approximately be recovered by 
summing over all orange values (which yields 0.81%). (b, c): The vertical profiles of SHAP values for qv and qi for all 10 seeds. In the SHAP dependence plots (d, e) 
we zoom in on the features with the largest SHAP values (qi and qv of layer 32). (d, e): Each dot corresponds to one NARVAL R2B5 sample. The lines show smoothed 
conditional expectations computed over all seeds. The dashed lines show the average SHAP value of the input features qv and qi on layer 32 whose values can also be 
found in (b and c).
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of cloud cover would be expedient inside a general circulation model for two reasons: First, both interpretations 
are used in the microphysics and radiation schemes. Second, depending on the interpretation, cloud cover can 
differ significantly (Figure A2).

The natural next step will be to implement and evaluate the machine learning based parameterization for cloud 
cover in the ICON model. In such an ICON-ML model, the machine learning based parameterization would 
substitute the traditional cloud cover parameterization. The NN predictions for cloud area and cloud volume 
fraction would be used as parameters for the radiation and microphysics parameterizations, depending on which 
interpretation is most appropriate in each case. Preliminary online simulations covering one QUBICC month (not 
shown) demonstrate the potential of our neighborhood-based NN parameterization as it is (a) able to process its 
input variables from the coarse-scale distributions while (b) pushing the statistics of, for example, the cloud water 
mixing ratio, to that of the (coarse-grained) high-resolution statistics as desired. However, as we discussed in 
the introduction, more work is required to create an ICON-ML model that produces accurate and robust results.

The presence of condensate-free clouds in the training data shows inaccuracies that are present both in the 
NARVAL and the QUBICC training data. These could have been avoided by introducing targeted multiple calls 
to the same parameterization scheme in the high-resolution model that generated the data. However, we empha-
size that the machine learning approach is general enough that if the data were generated more carefully then our 
approach would still work.

Our regionally-trained networks are not able to generalize to the entire globe. Similar difficulties might arise 
when applying our globally-trained networks to a very different climate (Rasp et al., 2018). In practice, this would 
require us to filter out data samples which the NN cannot process in a meaningful way. Alternatively, one could 
train the NNs with climate-invariant features only, eliminating the need of ever extrapolating to out-of-training 
distributions (Beucler et al., 2021). By additionally using causal discovery methods to guide their selection, one 
would most likely arrive at a more rigorous and physically consistent set of input features (Nowack et al., 2020; 
Runge et al., 2019). Another useful modification to our NNs would be to add a method that allows us to estimate 
the uncertainty associated with a prediction, for example, either by adding dropout (Gal & Ghahramani, 2016) or 
by implementing the NNs as Bayesian NNs.

From a climate science perspective, instead of diagnosing cloud cover from large-scale variables directly, one 
could also train an NN to output parameters specifying distributions for sub-grid scale temperature and mois-
ture. Cloud cover could then be derived from these distributions (see statistical cloud cover schemes in e.g., 
Stensrud (2009); A. M. Tompkins (2002)). By reusing the distributions for other parameterizations as well, we 
could increase the consistency among cloud parameterizations. However, this approach would require us to make 
assumptions concerning the general form of these distributions (Larson, 2017) and we leave this for future work.

Overall, this study demonstrated the potential of deep learning combined with high-resolution data for developing 
parameterizations of cloud cover.

Appendix A:  Coarse-Graining Methodology
Our goal is to best estimate grid-scale mean values. Ideally, we would derive the large-scale grid-scale mean 𝐴𝐴 𝑆̄𝑆 
of a given variable S by integrating over the grid cell volume 𝐴𝐴 𝐴𝐴 𝐴 ℝ

3 . In practice, we compute a weighted sum 
over the values Si,j of all high-resolution grid cells H. Here, i is the horizontal and j is the vertical index of a 
high-resolution grid cell. We define the weights αi,j ∈ [0, 1] as the fraction of V that a high-resolution grid cell 
indexed by (i, j) fills. This is a basic discretization of the integral.

To make this term easier to compute in practice, we introduce another approximation. Instead of computing αi,j 
directly, we split it into the fraction of the horizontal area of V (denoted by γi ∈ [0, 1]) times the fraction of the 
vertical thickness of V (denoted by βj ∈ [0, 1]) that the high-resolution grid cell indexed by (i, j) fills. We first 
compute the weights γi and the weighted sum over the horizontal indices i (horizontal coarse-graining). Only 
afterward do we compute the weights βj and the weighted sum over the vertical indices j (vertical coarse-graining).

Note that this is indeed an approximation. The geometric heights and vertical thicknesses of grid cells in H 
on a specific vertical layer j do not need to match exactly. These slight differences are lost when horizontally 
coarse-graining to fewer grid boxes. Therefore, the second approximation is an approximation because we (a) 
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compute the vertical overlap βj after we horizontally coarse-grain the grid cells and (b) work on a terrain-following 
height grid which allows for vertical layers of varying heights over mountaineous land areas. Over ocean areas, 
where the height levels have no horizontal gradient, this simplification in the computation of the weights has no 
disadvantage.

In short, let αi,j, βj, γi  ∈  [0, 1] be the weights describing the amount of overlap in volume/vertical/horizon-
tal between the high-resolution grid cells and the low-resolution grid cell. We then calculate the large-scale 
grid-scale mean as the weighted sum of high-resolution variables

𝑆̄𝑆 ≡
1

|𝑉𝑉 | ∫𝑉𝑉

𝑆𝑆𝑆𝑆𝑆𝑆 ≈

∑

(𝑖𝑖𝑖𝑖𝑖)∈𝐻𝐻

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑖 ≈

∑

(𝑖𝑖𝑖𝑖𝑖)∈𝐻𝐻

𝛽𝛽𝑗𝑗𝛾𝛾𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖𝑖 .� (A1)

We also illustrate our approach in panel a) of Figure A1.

The use of spring dynamics in between model grid refinement steps allows for the presence of fractional hori-
zontal overlap γi. As our method for horizontal coarse-graining we choose the first order conservative remapping 
from the Climate Data Operators package (Schulzweida, 2019), which is able to handle fractional overlap and the 
irregular ICON grid to coarse-grain to and from.

There are locations where the low-resolution grid cells that are closest to Earth's surface extend significantly 
further downwards than the high-resolution grid cells. This is due to topography that can only be seen at fine 
scales and makes it difficult to endue these low-resolution grid cells with a meaningful average computed from 
the high-resolution cells. We therefore omit these grid cells during coarse-graining. This issue is present only in 
scattered, isolated grid cells over land and it affects a small fraction of all grid cells (0.2%) and columns (4.7%). 
So it does not pertain entire regions, which would decrease the scope and quality of the data set. While horizon-
tally coarse-graining NARVAL data, we analogously omit low-resolution grid cells that are not located entirely 
inside the NARVAL region.

To derive the cloud area fraction C we cannot start by coarse-graining horizontally. We first need to utilize 
the high-resolution information on whether the fractional cloud cover on vertically consecutive layers of a 
low-resolution grid column overlaps or not. Therefore, we first vertically coarse-grain cloud cover to a grid 
that would—after subsequently horizontally coarse-graining—resemble the ICON-A grid as much as possible. 
For the first step, we assume maximum overlap as the level separation of vertical layers is relatively small. We 

Figure A1.  Sketch of our general coarse-graining methodology in panel (a) and for cloud area fraction in panel (b). We 
picture a vertical slice through two grid columns. For simplicity we assume that the grid boxes all have the same depth. The 
greenly hatched area depicts a coarse-scale grid box V. Panel (a): Due to our approximation the weight α2,3 for the value in 
grid box S2,3 is 1/6 and therefore larger than it were without the sequential horizontal and vertical coarse-graining steps. Panel 
(b): In the vertical range of V we vertically coarse-grain cloud cover values according to a maximum overlap assumption 
before we coarse-grain in the horizontal.
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thus calculate the coarse-grained cloud area fraction 𝐴𝐴 𝐶𝐶  as the sum of the vertically maximal cloud cover values 
maxj{Ci,j} weighted by the horizontal grid cell overlap fractions γi

� =
∑

(�,�)∈�

�� max
�

{��,�} .� (A2)

Equation A2 is exemplified in panel b) of Figure A1. For QUBICC grid cells, which are always either fully cloudy 
or cloud-free, we can directly interpret Equation A2 as returning the fraction of high-resolution horizontal grid 
points that are covered by a cloud of any non-zero vertical extent within a coarse vertical cell. Due to the frac-
tional cloudiness and the maximum overlap assumption, this link is less direct for the NARVAL data. Figure A2 
illustrates the different mean vertical profiles of cloud volume fraction and cloud area fraction. Considerable 
differences in their coarse-grained vertical profiles (differing absolutely by almost 10% on some layers) corrobo-
rate the need to distinguish these two concepts of cloud cover.

Appendix B:  Comparing Two Neural Networks Using Attribution Methods
We use SHAP to compare two neural networks and to decompose model errors. However, our error decomposi-
tion framework can be used with any attribution method (Layer-wise Relevance Propagation, Local Interpretable 
Model-agnostic Explanations, Integrated Gradients, etc., Samek et al. (2019)) which fulfills the property that the 
attributed feature importances sum up to the predicted model output (possibly shifted by a constant value).

For a given NN h, data sample X and input feature i, the SHAP package computes the corresponding Shapley 
value ϕh,X,i. Shapley values satisfy the so-called efficiency property for every sample, which means that they sum 
up to the difference between the model output and its base value (the expected model output)

∑

𝑖𝑖∈𝐼𝐼

𝜙𝜙ℎ,𝑋𝑋𝑋𝑋𝑋 = ℎ(𝑋𝑋) − 𝔼𝔼[ℎ(𝑋𝑋)],� (B1)

where 𝐴𝐴 𝐴𝐴 𝐴 ℕ consists of the features' indices. A Shapley value ϕf,X,i can thus be interpreted as the amount by 
which an input feature i contributes to the deviation of f's prediction from the base value. Shapley values are 
constructed so that 𝐴𝐴 𝐴𝐴 (𝑋𝑋) − 𝔼𝔼[𝑓𝑓 (𝑋𝑋)] is fairly distributed among the features.

Let f be the QUBICC R2B5 and g the NARVAL R2B4 NN. Their base values 𝐴𝐴 𝐴𝐴𝑓𝑓 ∶= 𝔼𝔼[𝑓𝑓 (𝑋𝑋)] and 𝐴𝐴 𝐴𝐴𝑔𝑔 ∶= 𝔼𝔼[𝑔𝑔(𝑋𝑋)] 
are computed as the average prediction of f and g on a subset of their respective training data sets (the so-called 
background data set). By repeatedly drawing an appropriate sample from the training set of f, we can construct its 
background data set such that Bf = Bg. Plugging f and g into (Equation B1) we get

Figure A2.  Comparison of the coarse-grained mean cloud volume and mean cloud area fraction profiles for (a) NARVAL 
and (b) QUBICC. In a given grid cell, the cloud volume fraction is never greater than the cloud area fraction. Close to the 
surface, the grid cell thickness and thus also the vertical sub-grid variability of clouds is small. There it follows that the cloud 
area fraction is approximately equal to the cloud volume fraction.
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∑

𝑖𝑖∈𝐼𝐼

𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −

∑

𝑗𝑗∈𝐽𝐽

𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑓𝑓 (𝑋𝑋) − 𝑔𝑔(𝑋𝑋) + 𝐵𝐵𝑓𝑓 − 𝐵𝐵𝑔𝑔 = 𝑓𝑓 (𝑋𝑋) − 𝑔𝑔(𝑋𝑋),� (B2)

where 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 𝐴 ℕ . Let S be a random subset of the NARVAL R2B5 data and the overline 𝐴𝐴 ⋅ denote the average over 
all samples in S. The size of S is chosen to be large enough such that (a) 𝐴𝐴 𝑓𝑓  and 𝐴𝐴 𝑔𝑔 are good approximations of the 
predicted averages of f and g on the entire NARVAL R2B5 data set (as shown in Figure 6a and Figure S5a in 
Supporting Information S1) and (b) the mean Shapley values are robustly estimated.

The sum of Shapley values corresponding to input features that are present in only one model (such as ρ) are 
in our case very small (absolute value < 0.08) and thus negligible. Hence, by averaging over (Equation B2) we 
can approximate the mismatch between the average outputs of f and g by the sum of the difference of averaged 
Shapley values corresponding to features that f and g have in common

𝑓𝑓 − 𝑔𝑔 =
∑

𝑖𝑖∈𝐼𝐼∩𝐽𝐽

(
𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

)
+

∑
𝑖𝑖∈𝐼𝐼∖𝐽𝐽

𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −
∑

𝑖𝑖∈𝐽𝐽∖𝐼𝐼

𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

≈
∑

𝑖𝑖∈𝐼𝐼∩𝐽𝐽

(
𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

)
.

� (B3)

So by comparing 𝐴𝐴 𝜙𝜙𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝐴𝐴 𝜙𝜙𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 for all common features i ∈ I ∩ J individually, we can explain which input 
features contribute to the difference between 𝐴𝐴 𝑓𝑓  and 𝐴𝐴 𝑔𝑔 . Having ensured that S satisfies (a) and (b), we can gener-
alize (Equation B3) to the entire NARVAL R2B5 data set.

Data Availability Statement
The neural network and analysis code can be found at https://github.com/agrundner24/iconml_clc and is 
preserved at DOI: https://doi.org/10.5281/zenodo.5788873. Primary data used in this work is archived by the 
Max Planck Institute for Meteorology (contact: marco.giorgetta@mpimet.mpg.de). The coarse-grained model 
output used for training the neural networks amounts to several TB. An extract from the training data is made 
available in the GitHub repository. The software code for the ICON model is available from https://code.mpimet.
mpg.de/projects/iconpublic.
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