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ABSTRACT

The climate response to increased CO2 concentration is generally studied using climate models that have

finite spatial and temporal resolutions. Different parameterizations of the effect of unresolved processes can

result in different representations of small-scale fluctuations in the climate model. The representation of small-

scale fluctuations can, on the other hand, affect the modeled climate response. In this study the mechanisms by

which enhanced small-scale fluctuations alter the climate response to CO2 doubling are investigated. Climate

experiments with preindustrial and doubled CO2 concentrations obtained from a comprehensive climate model

[ECHAM5/Max Planck Institute Ocean Model (MPI-OM)] are analyzed both with and without enhanced

small-scale fluctuations. By applying a stochastic model to the experimental results, two different mechanisms

are found. First, the small-scale fluctuations can change the statistical behavior of the global mean temperature

as measured by its statistical damping. The statistical damping acts as a restoring force that determines, ac-

cording to the fluctuation–dissipation theory, the amplitude of the climate response to a change in external

forcing (here, CO2 doubling). Second, the small-scale fluctuations can affect processes that occur only in re-

sponse to the CO2 increase, thereby altering the change of the effective forcing on the global mean temperature.

1. Introduction

Determining the climate response to increasing CO2

concentration with the aid of climate models involves

several uncertainties. The estimates for the equilibrium

climate sensitivity vary from model to model. The equi-

librium climate sensitivity is generally defined as the

equilibrium change in global surface temperature result-

ing from a doubling of CO2 concentration. The main

reason for the different climate sensitivities simulated by

the different models is the imperfect representation of

processes related to thermodynamical feedbacks, for ex-

ample, cloud feedbacks, water vapor feedback, and sur-

face albedo feedbacks (Colman 2003; Soden and Held

2006; Webb et al. 2006; Bony et al. 2006).

However, other factors also affect the modeled climate

sensitivity. In a previous study (Seiffert and von Storch

2008, hereafter SS08), we showed that the presence of

enhanced small-scale fluctuations can affect the model’s

sensitivity to a doubling of CO2 concentration. Using the

comprehensive climate model ECHAM5/MPI-OM de-

veloped at the Max Planck Institute for Meteorology, we

carried out equilibrium climate change experiments with

enhanced small-scale fluctuations. To enhance small-scale

fluctuations we either reduced the horizontal diffusion or

added white noise to spectral coefficients with high total

wavenumbers. In SS08, we found that the largest effects

of the enhanced small-scale fluctuations on the temper-

ature response occur in the upper troposphere at about

300 hPa. There, the equilibrium temperature response is

increased by up to 14% in experiments with reduced

horizontal diffusion and decreased by up to 36% in ex-

periments with additional noise.

In SS08, however, it remains unclear via which mech-

anisms small-scale fluctuations can affect the tropospheric

temperature response. Because small-scale fluctuations

are omnipresent and always need to be parameterized in

climate models, it is important to understand how they

affect the temperature response to a CO2 doubling. To
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achieve this goal, we use a stochastic model to investigate

how enhanced small-scale fluctuations influence the tro-

pospheric temperature response.

a. Fluctuation–dissipation theorem

A study by von Storch (2004) provides the main mo-

tivation for the present stochastic approach. Von Storch

(2004) showed that the representation of small-scale var-

iables is crucial for the temporal statistics of large-scale

variables. Because the temporal statistics of large-scale

variables are linked to the response of the system to in-

creased CO2 concentration via the fluctuation–dissipation

theorem (FDT), the mean response can depend on the

representation of small-scale variables.

That the characteristics of large-scale variables in-

fluence the system’s response to external forcing is also

found by Branstator and Selten (2009). They found that

the structure of intrinsic modes of variability affect the

structure of forced climate trends.

The FDT states that the response of a system to a

small change in external forcing can be directly deduced

from the statistics of the undisturbed system. This is

possible because the recovery of the system from an

artificial perturbation is assumed to have, on average,

about the same temporal behavior as the recovery from

a natural fluctuation. Although the climate system is in

a stationary state, it is frequently driven away from its

mean state because of internal instabilities. The way in

which the system returns from these excursions back to

the mean state is determined by the overall effect of the

internal feedback and interaction processes, resulting in

a restoring force. The FDT assumes that these same in-

ternal feedback and interaction processes also determine

the response of the system to small, artificial impulsively

forced perturbations. The system’s response to impul-

sively forced perturbations can be used to estimate the

mean response to any change in external forcing with

the aid of linear response theory. Hence, by observing

the naturally fluctuating system, we can draw conclusions

about the response of the system to a constant increment

in external forcing.

The FDT originates from statistical physics. Although

the climate system does not satisfy all of the conditions

required for the theorem, Leith (1975) first argued that

the FDT could be used to approximate the climate re-

sponse to small changes in external forcings. Less re-

strictive derivations of the FDT, which are better suited

for the climate system, have been suggested by von Storch

(2004) and Gritsun and Branstator (2007). Since Leith’s

paper, several studies have obtained promising results

when testing the FDT in climate-like systems. Bell (1980)

applied the FDT successfully to a model of the barotropic

vorticity equation. Other studies (North et al. 1993; Cionni

et al. 2004; Langen and Alexeev 2005; Gritsun and

Branstator 2007) tested the FDT in different versions of

the Community Climate Model (CCM) developed at the

National Center for Atmospheric Research (NCAR).

Although these studies all test the FDT, they differ in

many aspects. North et al. (1993) and Cionni et al. (2004)

apply the theorem within a univariate environment deal-

ing only with the statistics and response of the global mean

temperature. In contrast, Langen and Alexeev (2005)

and Gritsun and Branstator (2007) use a multivariate ap-

proach. Whereas most studies aim at estimating the cli-

mate response to changed solar forcing or increased CO2

concentration, Gritsun and Branstator (2007) analyze the

response to localized heat sources. They compare the

global response patterns generated by the atmospheric

general circulation model with the global response pat-

terns estimated by the usage of the FDT.

b. Effects of small-scale fluctuations on large-scale
statistics

In contrast to the above-mentioned studies, we do not

test the FDT. We assume that it is applicable to the

climate system and use it to assess which mechanisms

lead to the change in climate sensitivity caused by en-

hanced small-scale fluctuations. The main objective of

the present study is to investigate whether the enhanced

small-scale fluctuations change the temporal statistics of

the global mean tropospheric temperature in the un-

disturbed system (i.e., in experiments with preindustrial

CO2 concentration), and thereby cause the higher/lower

climate response.

If, in our experiments, the enhanced small-scale fluc-

tuations affected the temporal statistics of the global

mean temperature, then the temperature response to

increased CO2 concentration would, according to the

FDT, also be influenced. In other words, because the

climate response depends on the statistical properties of

the preindustrial climate, the response would be changed

if the statistical properties were varied by enhanced

small-scale fluctuations. Indeed, the study by von Storch

(2004) indicates that stronger small-scale fluctuations

can lead to different temporal statistics of large-scale

variables.

In the next section we briefly describe the experiments

carried out with ECHAM5/MPI-OM and introduce the

stochastic model. In section 3 the main properties of the

fitted stochastic model are presented. In section 4 we de-

rive a simple form of the FDT and show how the tem-

perature response can depend on the statistics of the

undisturbed system. Furthermore, we describe how the

parameters of the stochastic model are affected by a

CO2 doubling and enhanced small-scale fluctuations.
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2. Method

a. Experiments with ECHAM5/MPI-OM

ECHAM5/MPI-OM is a comprehensive coupled

atmosphere–ocean–sea ice general circulation model de-

veloped at the Max Planck Institute for Meteorology

(MPI) in Hamburg (Germany). No flux adjustment is

needed to maintain a realistic steady climate. For a de-

tailed description of ECHAM5, see Roeckner et al.

(2003, 2006). The latter also provides a comparison of

the simulated climate to reanalysis data. Technical details

about the ocean model can be found in Marsland et al.

(2003). A description of the mean ocean circulation for

the high-resolution version is given by Jungclaus et al.

(2006). The coupled model is used (with different reso-

lutions) for a wide range of applications (e.g., Pohlmann

et al. 2006; Bengtsson et al. 2007; Solomon et al. 2007;

Marotzke and Botzet 2007; Kloster et al. 2007; von

Storch and Haak 2008). Here we used the low-resolution

version [atmosphere: T31 (’3.88 3 3.88) and 19 vertical

levels, ocean: ’38 3 38 and 40 vertical levels].

For this study we analyze the same experiments as

introduced in SS08. In the following we briefly describe

the experiments; for a more detailed description, please

see SS08. Table 1 defines and summarizes the experi-

ments that are carried out. All of the experiments are at

least 150 yr long. For the analysis we use the last 100 yr

of integration.

Experiments ctrl13 and ctrl23 correspond to 1 3

CO2 and 2 3 CO2 integrations using the standard model

with no changes of the representation of the small-scale

fluctuations. In experiments diffus13_24 (diffus23_24)

and diffus13_36 (diffus23_36), the horizontal diffusion

is reduced under 1 3 CO2 (2 3 CO2) conditions. In

ECHAM5 the horizontal diffusion in the form of a hyper-

Laplacian is applied in spectral space on temperature,

vorticity, and divergence. Generally, the rate of change

of the spectral coefficient Xl,m caused by the horizontal

diffusion is defined as

›X
l,m

›t

�
�
�
�
horizontal diffusion

5 �K
l
X

l,m
, (1)

with

K
l
5

1

t
0

l(l 1 1)

l
0
(l

0
1 1)

� �q

. (2)

Here l denotes the total wavenumber, and l0 marks the

truncation scale of the model. The order of the hyper-

Laplacian operator is 2q. It depends on the vertical

level. The order is 20 below the sixth model level, that is,

below about 140 hPa. In the experiments with reduced

horizontal diffusion, the damping time t0, which con-

trols the strength of the horizontal diffusion, is in-

creased by a factor of 2 or 3 from the standard value of

12 to 24 or 36 h. The increase in t0 leads to a weaker

damping and hence an enhancement of the variability of

high wavenumber components. Because the high-order

hyper-Laplacian is very scale selective, the increase in

t0 does not directly affect components with small

wavenumbers.

Furthermore, two pairs of experiments in which noise

is added to the smallest resolved scales under 1 3 CO2

and 2 3 CO2 are considered: noise13_3 and noise23_3,

and noise13_6 and noise23_6. At each time step white

noise is added to the spectral coefficients of tempera-

ture, divergence, and vorticity, with a total wavenumber

l $ 26. Here ‘‘_3’’ and ‘‘_6’’ distinguishes between two

noise intensities. In the experiments noise13_3 and

noise23_3, the standard deviation of the noise snoise is

3 3 1022 K for temperature and 3 3 1027 s21 for vor-

ticity and divergence. In the noise13_6 and noise23_6

experiments, we use higher noise intensities: 6 3 1022 K

for temperature and 6 3 1027 s21 for vorticity and di-

vergence. Note that if the unresolved scales vary on time

scales much smaller than those of the resolved scales,

their effect can be well approximated by white noise.

b. Stochastic model

To analyze how small-scale fluctuations influence the

statistical properties of the global mean temperature at

300 hPa, we will fit a nonlinear Langevin equation

_x
s
(t) 5 h(x

s
) 1 g(x

s
)h(t) [S] (3)

to the results obtained from the ECHAM5/MPI-OM

experiments. We choose the temperature at 300 hPa

because at this level the largest response to CO2 dou-

bling occurs (SS08).

TABLE 1. Overview of the experiments carried out with

ECHAM5/MPI-OM (atmosphere: T31L19, ocean: 38).

1 3 CO2 2 3 CO2

Control experiments,

t0 5 12 h, snoise 5 0

ctrl13 ctrl23

Reduced horizontal

diffusion, t0 5 24 h

diffus13_24 diffus23_24

Reduced horizontal

diffusion, t0 5 36 h

diffus13_36 diffus23_36

Moderate noise,

snoise 5 3 3 1022 K

(3 3 1027 s21)

noise13_3 noise23_3

High noise,

snoise 5 6 3 1022 K

(6 3 1027 s21)

noise13_6 noise23_6
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In Eq. (3) xs represents the global mean temperature at

300 hPa from which the mean diurnal and annual cycles

are removed and the long-term variability associated with

the interactions between the ocean and the atmosphere is

filtered out. The filtering procedure is described in the

appendix. The long-term variability resulting from the

atmosphere–ocean interactions is filtered out, because we

are interested in modeling the temporal behavior of the

global mean tropospheric temperature resulting from

atmospheric processes only. We expect that the enhanced

small-scale fluctuations primarily influence the short-

term atmospheric feedback processes (e.g., cloud feed-

backs, water vapor feedback). The other variables in

Eq. (3) have the following meanings: _xs denotes the time

derivative of xs, t denotes time, h(t) represents white

noise, and h(xs) and g(xs) are deterministic functions,

which need to be estimated.

Equation (3) models the time evolution of xs in a

compact way. The first term on the right-hand side rep-

resents the overall effect of the interactions between xs

and variables on similar time scales as xs. The stochastic

forcing g(xs)h(t) mainly comprises the interactions be-

tween xs and processes acting on time scales much shorter

than those of xs.

The symbol [S] indicates that Eq. (3) is defined in the

Stratonovich system. The distinction between Strato-

novich and Itô systems is closely related to the definition

of continuous white noise. While the Stratonovich defi-

nition implies a small but finite correlation between two

random numbers, the Itô definition sticks to the strict

mathematical definition that white noise is totally un-

correlated. For a comprehensive definition and discus-

sion about the differences between Stratonovich and

Itô calculus, see Risken (1984), Gardiner (1985), and

Penland (2003). Each Stratonovich stochastic differen-

tial equation (SDE) can be transformed into an equiv-

alent Itô SDE and vice versa. In the Itô system, Eq. (3)

can be written as

_x
s
(t) 5 h(x

s
) 1 g(x

s
)

›g(x
s
)

›x
s

1 g(x
s
)h(t) [I] (4)

Where [I] stands for the Itô system. Equations (3) and

(4) yield the same results if (3) is integrated in the

Stratonovich sense and (4) is integrated in the Itô sense.

Because Itô SDEs are easier to integrate, we will stick to

the transformed Itô SDE in this study.

To determine h(xs) and g(xs), we follow the approach

of Siegert et al. (1998), which is, for example, also ap-

plied by Sura (2003) and Berner (2005). Equation (4) is

a stochastic differential equation, that is, a differential

equation including a stochastic process. Hence, the so-

lution of (4) contains a random term. Because for each

integration of (4) different random numbers are used,

each integration represents a different trajectory in phase

space. After observing a large number of trajectories

we can assign each point xs in phase space a probability

dw 5 r(xs) dxs that the infinitesimal interval (xs, xs 1 dxs)

will be visited by the next trajectory. In this way a

probability density function r(xs) can be defined. The

time evolution of the probability density function of a

Langevin equation is generally governed by a Fokker–

Planck equation,

›r(x
s
, t)

›t
5

›

›x
s

[A(x
s
)r(x

s
, t)] 1

›2

›x2
s

[B(x
s
)r(x

s
, t)], (5)

where A(xs) is called the drift coefficient and B(xs) is the

diffusion coefficient. [For a comprehensive introduction

to statistical physics and the Fokker–Planck equation

see, e.g., Gardiner (1985) and Risken (1984).]

The coefficients A(xs) and B(xs) can be directly esti-

mated from data. The drift coefficient is equal to the

local mean tendencies

A(x
s
) 5 lim

t!0

1

t
hx

s
(t 1 t)� x

s
(t)i
�
�
�
�
x

s
(t)5x

s

, (6)

and the diffusion coefficient is defined as

B(x
s
) 5 lim

t!0

1

2t
h[x

s
(t 1 t)� x

s
(t)]2i

�
�
�
�
x

s
(t)5x

s

. (7)

Here, h � � � ijx
s
(t)5x

s
denote conditional ensemble aver-

ages. The equilibrium climate experiments are assumed

to be stationary and ergodic. Therefore, the ensemble

averages can be replaced by time averages.

By knowing the Fokker–Planck equation, we can in

the univariate case deduce the explicit form of the cor-

responding Langevin equation. In the Stratonovich sys-

tem A(xs) and B(xs) are related to h(xs) and g(xs) in the

following way (Risken 1984):

A(x
s
) 5 h(x

s
) 1 g(x

s
)

›g(x
s
)

›x
s

,

B(x
s
) 5

1

2
[g(x

s
)]2. (8)

Inserting the definitions of (8) into Eq. (4) yields the

Itô SDE

_x
s
(t) 5 A(x

s
) 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2B(x
s
)

q

h(t) [I]. (9)

In contrast to Eq. (8), the relations between the co-

efficients A(xs), B(xs) and the functions h(xs), g(xs) in the

Itô system would be
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A(x
s
) 5 h(x

s
),

B(x
s
) 5

1

2
[g(x

s
)]2. (10)

Note that if we had defined our system in the beginning to

be an Itô system we would use relations (10) and Eq. (3)

marked with an [I] instead of the [S]. The resulting

equation would be the same as Eq. (9). For our conclu-

sions it makes technically no difference whether we write

a [S] or an [I] next to Eq. (3). The only difference lies in

the interpretation. Stating that our system is a Strato-

novich system implies that A(xs) is not only determined

by the deterministic drift h(xs) but also by the noise-

induced drift g(xs)[›g(xs)/›xs]. On the other hand, stating

that our system is an Ito system would imply that A(xs) is

determined entirely by the deterministic drift h(xs).

The method of fitting the stochastic model to the

ECHAM5/MPI-OM data can be summarized as follows:

(i) We determine xs by subtracting the mean daily and

annual cycle from the global mean temperature at

300 hPa and filtering out the long-term variability

as described in the appendix.

(ii) We estimate A(xs) and B(xs) by using their defini-

tions (6) and (7).

(iii) We insert A(xs) and B(xs) into (9).

(iv) Time series of xs can be generated by integrating (9).

Using the above-outlined method, the stochastic

model (3) will be fitted to global mean temperature time

series at 300 hPa for the different experiments. The

differences in the fitted models will be used to assess the

impact of small-scale fluctuations on climate response to

CO2 doubling.

c. Time lag t

In practice, the implementation of point ii of the

above list is not straightforward. As can be seen from (6)

and (7), the definitions of the drift and diffusion co-

efficients involve the limit of the time lag t / 0. When

using discrete model output it is not possible to take the

limit t / 0.

The question is which time lag t we should take for the

estimation of the drift and diffusion coefficient. When

fitting a stochastic model to a deterministic system it

is not necessarily the best strategy to use the smallest

available time step. By using a stochastic model we as-

sume that we can treat rapid fluctuations with small cor-

relation times as if small-scale processes behave like

white noise. To be able to do this approximation we

should not estimate the parameters for the Fokker–

Planck equation from the smallest available time step

(Berner 2005). In temperature time series obtained from

deterministic climate models adjacent time steps are

highly correlated. We must take care that the time step is

sufficiently large that the system can be described by

a differential equation containing a white noise term.

To get an idea which time lag is sufficiently large we

compute, in a similar way to Berner (2005), the decor-

relation rate for different time lags. The decorrelation

rate a is defined as

a(t) 5�1

t
lnc(t) (11)

in which c(t) denotes the autocorrelation function of

the ECHAM5/MPI-OM data xs at time lag t. A simple

Markov model following the linear Langevin equation

_z
1
(t) 5�a

0
z

1
(t) 1 b

0
h(t), (12)

with a0 and b0 being constant, has, for example, the

decorrelation rate a(t) 5 a0. In this model the decor-

relation rate a0 is independent of the time lag t. DelSole

(2000) investigated a ‘‘red noise model’’ in which the

white noise term h(t) is replaced by random fluctuations

rg(t) with a small but finite decorrelation time tg: _z2(t) 5

2a0z2(t) 1 b0rg(t). In this model the decorrelation rate

increases linearly with time lags t , tg and asymptotes

to a0 for t . t
a0

[ 1/a
0
. For our results, this means that

as long as the decorrelation rate increases linearly with

time lag, we cannot assume that the deterministic small-

scale fluctuations can be approximated as white noise

because they are not yet decorrelated.

Figure 1a illustrates the dependency of the decorrela-

tion rate on t in our system. The thick gray curve repre-

sents the autocorrelation function c(t) obtained from

ECHAM5/MPI-OM data xs. The dashed black lines are

exemplary exponentially decaying correlation functions

with different decorrelation rates a(t) 5 2(1/t) lnc(t) for

the time lags t 5 1 d, 2 d, 3 d, . . . , 8 d. Especially for small

time lags, there is no unique decorrelation rate that is

able to reproduce the autocorrelation function c(t) over

a wider range of time lags. Because c(t) does not decay

for small time lags exponentially, the dashed lines greatly

differ from each other. For larger time lags the dashed

lines are more similar, implying similar decorrelation

rates.

In Fig. 1b the decorrelation rate of ctrl13 against the

time lag is shown. As already indicated in Fig. 1a, for

small time lags the decorrelation rate strongly increases.

After reaching a maximum at 5–6 days a slowly de-

creases again. Because of the above considerations the

time lag at which the maximum occurs is chosen as the

shortest time step for which the stochastic model can be

fitted. A time step of 5 days is large enough to eliminate

strong correlations between adjacent time steps and is
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small enough to still capture the main excursions con-

tributing to the variance of the time series.

Because the definitions (6) and (7) are only valid for

the limit t / 0, estimating the drift and diffusion co-

efficients by using a finite time lag leads to systematic

finite-difference errors. The errors made can be estimated

up to first order (Sura and Barsugli 2002), and, following

Berner (2003), we could correct the coefficients. Never-

theless, in a further analysis we will use uncorrected esti-

mates of A(xs) and B(xs), because the estimation of the

error itself introduces new uncertainties and because we

found that the finite-difference errors made are small (not

shown).

3. Fitting the stochastic model

a. Coefficients A(xs) and B(xs)

We estimate the drift coefficient A(xs) and diffusion

coefficient B(xs) from data with a time lag of 5 days by

dividing the phase space into 20 equidistant intervals. The

main results described below do not change when we use

25, 30, or 35 intervals. Figure 2 shows the estimated co-

efficients A(xs) and B(xs) of the Fokker–Planck equation

of the experiment ctrl13. For the evaluation we used one

chunk of data including 100 yr. To estimate the sampling

error resulting from the usage of a finite number of data

points, the gray lines represent results from 70 other

chunks of data each of which are 100 yr long.

As a first approximation the drift coefficient can be

characterized by a straight line, suggesting that the de-

terministic part of the Langevin equation represents

essentially a linear damping plus a constant forcing. The

diffusion coefficient is by definition everywhere positive.

In general, a constant diffusion coefficient independent

of xs would correspond to additive noise in the Langevin

equation. From Fig. 2b it can be seen that B(xs) is not

constant, consistent with the presence of multiplicative

noise. Large temperature anomalies are on average ac-

companied with higher noise intensities.

b. Statistical properties

To get an impression how well the nonlinear Langevin

Eq. (9) is able to reproduce main statistical properties, we

compare in the following xs, that is, the filtered global

mean temperature at 300 hPa obtained from ECHAM5/

MPI-OM, with data generated by integrating the sto-

chastic model (9). The stochastic differential equation

is numerically integrated by using the stochastic Euler

scheme (Kloeden 1992).

Figure 3 shows the probability density function (PDF)

of the ECHAM5/MPI-OM data and the PDF obtained

from data generated by the stochastic model. In general,

the PDF is reproduced well by the stochastic model. The

PDF of the stochastic model, however, overestimates the

maximum. The overestimation of the maximum is related

to the too-heavy tails of the PDF of the stochastic model.

The kurtosis estimated from the ECHAM5/MPI-OM

data is 0.2, whereas it ranges from 0.9 to 1.5 for different

realizations of the stochastic model.1 Normally distrib-

uted data would have a kurtosis of zero.

FIG. 1. (a) Autocorrelation function c(t) of xs obtained from experiment ctrl13 (thick gray line). Exponentially decaying functions fitted to

match the decorrelation rate a(t) 5 21/t lnc(t) at the time lags t 5 1 d, 2 d, 3 d, . . . , 8 d (dashed lines), and (b) decorrelation rate of xs

depending on the time lag t for ctrl13.

1 The range of 0.9–1.5 results from the calculation of the kurtosis

for 40 different realizations of the stochastic model (9). Each re-

alization has the same number of time steps as the ECHAM5/MPI-

OM data; 95% of the calculated values lie within the above-given

range.
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The autocorrelation function (Fig. 3b) of the stochastic

model fitted to xs resembles the autocorrelation func-

tion of the filtered ECHAM5/MPI-OM data xs up to

a time lag of t ’ 20 days well. For larger time lags the

ECHAM5/MPI-OM data xs still show some long-term

variability that cannot be simulated by the stochastic

model.

4. Implications of the stochastic model

a. Two ways in which the mean and its response to
CO2 doubling is affected

In Fig. 2 we noticed that the drift coefficient is ap-

proximately a linear function of temperature. Thus, we

replace A(xs) in Eq. (9) with a linear function A(xs) 5

2axs 1 F, where a and F are constants. We get

_x
s
(t) 5�ax

s
1 F 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2B(x
s
)

q

h(t) [I]. (13)

In the next steps we want to find equations for the time

mean of xs and its response to CO2 doubling. Applying

a time average to Eq. (13) yields

0 5�ax
s
1 F 1 0 (14)

Because the system is statistically stationary, the aver-

age of the time derivative _xs(t) is zero. The vanishing of

the third term on the right-hand side needs some more

explanations. When integrating the Itô SDE (13) in time

the next value xi11
s depends on the previous value xs

i ,

B(xs
i), and a random number hi11. Because hi11 is totally

uncorrelated from the previous random number hi that

FIG. 2. Estimated coefficients of the Fokker–Planck equation for model data xs obtained from ctrl13 (solid black

lines). For the evaluation we used one chunk of data including 100 yr. Estimated coefficients from 70 other chunks

each having a length of 100 yr (gray lines). The additional chunks result from an extension of the experiment ctrl13

to a total length of 800 yr as described in section 4b. Each chunk overlaps the previous chunk by 90 yr. (a) Drift

coefficient A(xs) and (b) diffusion coefficient B(xs) are shown. The number of data points per interval is represented

by dashed lines.

FIG. 3. (a) Probability density function of xs extracted from ECHAM5/MPI-OM data of the experiment ctrl13

(dashed) and of the stochastic model with t 5 5 d (solid); (b) autocorrelation functions of the ECHAM5/MPI-OM

data xs of ctrl13 (dashed) and of the stochastic model fitted to xs (solid). The probability density functions were

estimated by using the MATLAB-function ksdensity.
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is used to compute xs
i and B(xs

i), B(xs) and h(t) are

independent of each other. The time average can be

applied separately on each factor of the third term on

the right-hand side to yield
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2B(xs)
p

h(t). Because the

mean of the noise is zero the whole term vanishes. In a

Stratonovich SDE, the time mean of the term involving

white noise would not be necessarily zero because B(xs)

was not independent of h(t). However, if we had derived

Eq. (13) as a Stratonovich SDE, an additional term on

the right-hand side would have appeared. This term

should cancel the nonzero contribution from the noise

term.

For the mean equilibrium state m1 under 1 3 CO2

conditions we get

m
1

[ x
s
5

F

a
. (15)

The mean m1 is solely determined by the two parameters

F and a representing two distinct ways in which the

mean is influenced.

The F represents the effective forcing. It results from

the mean net effect of all processes within the climate

system that do not depend on the actual value of xs. For

example, F includes external factors such as CO2 con-

centration and solar irradiance. However, it also com-

prises the influence of, for example, the mean oceanic

and atmospheric circulation, the mean cloud distribu-

tion, and the mean surface albedo on the global mean

temperature.

The parameter a is related to the internal feedback

and interaction processes that depend on the actual state

of xs. The term 2axs in Eq. (13) is often referred to as

statistical dissipation or damping. It is inevitable for

achieving an equilibrium state under a constant forcing.

The negative slope 2a ensures the stationarity of the

system and describes how the system is driven on average

back toward its mean after experiencing a perturbation.

Doubling the CO2 concentration modifies the forcing

F in Eq. (13) to F 1 DF. After a certain time the system

reaches a new equilibrium m2,

m
2

5
F 1 DF

a
. (16)

The response Dm to the doubled-CO2 concentration is

determined by combining Eqs. (15) and (16) as

Dm [ m
2
� m

1
5

DF

a
. (17)

The above relation represents a simple form of the

fluctuation dissipation theorem. It is valid only if the

system can be described by Eq. (13) and the changed

forcing (here the CO2 increase) does not alter the sta-

tistical damping coefficient a. Equation (17) states that

the mean response Dm can be determined from know-

ing the statistics of the undisturbed system, namely, a,

and the change in forcing DF.

Note that DF is not equal to the radiative forcing of

CO2 as considered in the Intergovernmental Panel on

Climate Change (IPCC) Third and Fourth Assessment

Reports. Therein, the radiative forcing of CO2 is defined

as ‘‘the change in net irradiance at the tropopause after

allowing for stratospheric temperatures to readjust to

radiative equilibrium but with surface and tropospheric

temperatures and state held fixed at the unperturbed

values’’ (Forster et al. 2007). In contrast, here the entire

atmosphere is allowed to change. Here, DF represents the

net change in the parameter F for 300-hPa temperature

resulting from a doubling of the CO2 concentration.

Considering relation (17), we find three possibilities of

how the climate response Dm can be influenced via en-

hanced small-scale fluctuations:

d Case 1: The numerator DF could be changed by the

different representations of small-scale fluctuations.

In other words, DF results not only from changes in

CO2 concentration but also from the representation of

small-scale fluctuations. Because DF cannot be observed

in the undisturbed system, the small-scale fluctuations

would alter feedback and interactions processes that

only occur in response to the CO2 increase.
d Case 2: The enhanced small-scale fluctuations could

lead to a larger or smaller statistical damping co-

efficient a. As discussed in the introduction this would

mean that the statistics of the global mean tempera-

ture are altered. The small-scale fluctuations would

alter feedback and interaction processes that are al-

ready present in the undisturbed system.
d Case 3: Both a and DF are influenced by the repre-

sentation of the small-scale fluctuations. The mean

temperature response is affected via both mechanisms

described in cases 1 and 2.

In the following, for each experiment we estimate the

drift coefficient and its slope 2a. By comparing the re-

sults we will see whether the enhanced small-scale fluc-

tuations alter the statistics of xs and with it the response

Dm. We determine the drift coefficient from the last

100 yr of data of each experiment (model years 51–150

corresponding to ’1 314 000 time steps) by using re-

lation (6) with t 5 5 days. To get a good estimate of the

slope 2a, we take the mean of three linear least squares

fits differing in the number of data points used. For the

fitting we use the 6, 8, or 10 midmost points, because we

are interested in the slope drawn by the inner points.
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b. The restoring parameter a

For the derivation of Eq. (17) we assumed that a CO2

doubling exerts only a small change in external forcing

on the system. That means the main temporal statistics,

namely, the restoring mechanism ensuring the stationarity

of the system, remain unchanged under 2 3 CO2 con-

ditions. Figures 4 and 5 give evidence that this assump-

tion is justified in the climate system.

Figure 4 shows the drift coefficient A(xs) obtained

from the control experiments with 1 3 CO2 concentra-

tion and with 2 3 CO2 concentration. The increased

CO2 concentration results mainly in a horizontal shift of

the drift coefficient. The external forcing F is increased.

The slope of the drift coefficient 2a changes only little.

We find actrl13 5 1.84 3 1023 h21 and actrl23 5 2.03 3

1023 h21.

To get an idea of the uncertainties involved when

estimating a, we performed a nonparametric statistical

test. As null hypothesis, we assume that a in experiment

ctrl23, actrl23, equals a in experiment ctrl13, actrl13. In

other words, the difference between actrl13 and actrl23

occurred just by chance. We extend the experiment

ctrl13 by 650 yr and split the now 800-yr-long ctrl13

experiment into 71 chunks of data. Each chunk has a

length of 100 yr and overlaps the previous chunk by 90 yr.

For each chunk we estimate the statistical damping co-

efficient a as described above. The 71 resulting values are

estimates of the parameter actrl13, which we could have

obtained, if we by chance had used another chunk of 100-yr

data instead of year 51–150 of the ctrl13 experiment.

The empirical cumulative distribution function ob-

tained from the 71 a estimates is shown in Fig. 5. The

vertical dotted lines mark the 2.5th and 97.5th percen-

tiles. If actrl23 were smaller than the 2.5th percentile or

larger than the 97.5th percentile, we would reject the

null hypothesis with 5% risk and accept the alternative

hypothesis that actrl23 is statistically significantly dif-

ferent from actrl3. The dashed vertical line marks the

estimate of actrl23. It lies within the uncertainty range of

actrl13. Hence, we conclude that a higher CO2 concen-

tration does not significantly alter a. Our results are

FIG. 4. Drift coefficients A(xs) of the experiments ctrl13 (closed circles) and ctrl23 (open

circles) as well as a linear fit of ctrl13 (right gray dashed line). The linear fit of ctrl13 shifted

along the x axis is also displayed (left gray dashed line).

FIG. 5. Cumulative distribution function (CDF) of the parameter

a obtained from the experiment ctrl13. The CDF is estimated from

71 drift coefficients, which were calculated by using 71 overlapping

100-yr chunks. The 2.5th and 97.5th percentiles (dotted vertical

lines) are marked, and the estimate of a for ctrl23 is shown (dashed

vertical line).
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consistent with Eq. (17). The response Dm is mainly due

to an increase of F.

In the following we investigate whether the statistical

damping coefficient a obtained from the experiments

with enhanced small-scale fluctuations are significantly

different from that in ctrl13. If a were changed it might

be an explanation for the different temperature re-

sponses found. Figure 6 shows the a estimates of all of

the experiments in the context of the cumulative distri-

bution function estimated for actrl13; for explicit values,

see also Table 2. Overall, we find distinct behaviors of

the diffusion experiments and the noise experiments.

Reducing the horizontal diffusion does not significantly

change the statistical damping coefficient. Adding noise

to the small scales, however, may result in a different

statistical damping. With the exception of the experi-

ment noise13_3 all noise experiments have a larger a.

This means that the slopes of the corresponding drift

coefficients are steepened. Thus, the noise strengthens

the statistical damping of the global mean temperature

at 300 hPa. On average, the system with noise is driven

back more strongly toward the mean state than the

system without noise.

From Fig. 6 we conclude that reducing the horizontal

diffusion does not change a. Because Dm in the diffusion

experiments is not the same as Dm in the control ex-

periments (Table 2, third column), DF must be different

(case 1).

For the noise experiments the situation is more com-

plicated. Because in the set of experiments with mod-

erate noise (noise23_3–noise13_3) a changes from the

1 3 CO2 experiment to the 2 3 CO2 experiment, re-

lation (17) is not valid. The noise13_3 and noise23_3

experiments violate the assumption that a CO2 doubling

does not change the statistical damping coefficient. We

cannot say whether the change in Dm is caused by

changes in a or DF.

For the set of experiments with strong noise

(noise23_6–noise13_6) cases 2 or 3 may be true, assum-

ing that anoise13 6 and anoise23 6 are not significantly

TABLE 2. Estimates of the statistical damping coefficient a, global mean temperature response at 300 hPa to a doubling of CO2 Dm, and

the parameter DF defined in Eq. (17). The value of actrl13 corresponds to the mean obtained from the 71 a estimates used to create the

cumulative distribution function in Fig. 5. Its uncertainty interval (1.73, 2.05) is based on the 2.5th and 97.5th percentiles of the cumulative

distribution function. All of the other statistical damping coefficients are estimated each from a single 100-yr-long data chunk. For the sets

of experiments ctrl, diffus_24, and diffus_36, DF is evaluated by using a
ctrl13

5 1.87 3 10�3 1/h and Dm of each set of experiments. For

noise_6 DF is evaluated by using (a
noise13 6

1 a
noise23 6

)/2 5 2.44.

a
Dm

(K)

DF

(1023 K h21)(1023 h21)

Set of experiments 1 3 CO2 2 3 CO2 2 3 CO2–1 3 CO2 2 3 CO2–1 3 CO2

Ctrl 1.87 (1.73, 2.05) 2.03 5.6 10.5

Diffus_24 1.85 1.79 6.1 11.4

Diffus_36 1.78 1.89 6.4 12.0

Noise_3 1.69 2.30 5.1 —

Noise_6 2.52 2.35 3.6 8.8

FIG. 6. CDF of the parameter a obtained from the experiment ctrl13 as shown in Fig. 5. The

2.5th and 97.5th percentiles are marked (dotted, vertical lines), and the estimates of a for

different experiments as given in Table 2 are given (dashed vertical lines).
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different (seeing the uncertainty range of ctrl13, this is

a reasonable assumption). In comparison to the control

experiments the statistical damping coefficient in experi-

ments noise13_6 and noise23_6 changed, but we have to

check whether the change of the statistical damping co-

efficient alone is responsible for the decrease of Dm by 2 K.

c. The change in constant forcing DF

For the experiments in which a13CO2 5 a23CO2

(within the range of uncertainty), we evaluate DF using

(17), as DF 5 Dma. As a result, our estimates for DF are

not independent measures and cannot be used for test-

ing the validity of relation (17).

Because we found that the statistical damping co-

efficients in the sets of experiments ctrl, diffus_24, and

diffus_36 are equal within the uncertainty range, we use

for the determination of DF of these three sets of exper-

iments the same statistical damping coefficient a
ctrl13

5

1.87 3 10�3 h�1. Here, a
ctrl13

is the mean of the 71 a

estimates used to create the cumulative distribution

function in Fig. 5. Because the responses to CO2 dou-

bling are larger in the experiments, diffus_24 and

diffus_36 compared to ctrl, and the statistical damping

coefficients are taken to be equal, DF has to be larger

in the experiments with reduced horizontal diffusion

(Table 2, last column).

For the set of noise_6 experiments we evaluate DF

by using the average of anoise13 6 and anoise23 6. We get

DFnoise 6 5 8.8 3 10�3 K h21, which is smaller than

DFctrl 5 10.5 3 1023 K h21. Hence, we infer that in the

set of noise_6 experiments the noise alters both the sta-

tistical damping coefficient a and the change in the forc-

ing DF. Case 3 of the above consideration applies.

5. Discussion and conclusions

To better understand how small-scale fluctuations

alter the equilibrium tropospheric temperature response

to CO2 doubling, we used a stochastic model. We fitted a

nonlinear Langevin equation to global mean temperature

time series at 300 hPa obtained from climate change ex-

periments with and without enhanced small-scale fluctu-

ations. The resulting Langevin equation has a nearly

linear damping term and multiplicative noise.

a. Validity of a special form of the FDT

During this study we assumed that the fluctuation dis-

sipation theorem (FDT) expressed in relation (17), Dm 5

DF/a, is applicable to our system. This special form of the

FDT is only valid if we can describe the main statistical

properties of the global mean temperature at 300 hPa by

the Langevin equation. From Fig. 3b we see, however, that

the autocorrelation function of the ECHAM5/MPI-OM

data is, especially for larger time lags, not decaying

exponentially. The Langevin equation is only a crude

approximation. An imperfect representation of the au-

tocorrelation function means that Eq. (3) is not perfectly

representing the time evolution of the tropospheric tem-

perature. Despite this shortcoming we still believe that

the FDT as used in this study is a useful tool for analyzing

the system’s response to increased CO2 concentration and

enhanced small-scale fluctuations.

Note that to truly test the validity of relation (17) we

would need to obtain independent estimates of Dm, a,

and DF. Whereas, we are able to determine Dm and a, it

is difficult to estimate DF. We determined DF by using

the relation (17). Thus, DF is not an independent pa-

rameter; DF depends directly on Dm and a.

b. Another condition relevant for the FDT

One important condition required for the FDT to be

applicable is that the internal restoring force, as described

by the correlation function or a for one-dimensional

linear systems, must remain unchanged when the ex-

ternal forcing is perturbed. Only then can the FDT be

used to determine the response to the change in the

external forcing.

Obviously, such a condition will only be satisfied when

the change in the forcing is sufficiently small. Does a

CO2 doubling represent such a small forcing change? Our

analysis suggests that this is the case in most experiments.

A CO2 doubling leads primarily to an increase of the

effective forcing F, with a remaining unchanged. The

only exception is the experiment with moderate noise

intensity. In this case, a is significantly changed by a CO2

doubling. The FDT is not applicable in this case. We

speculate that generally noise enhances a. However, such

an impact of the noise on a is only well established when

the noise is sufficiently strong. This could be the reason

why we did not obtain a stable a in experiments with

moderate noise.

c. Possible mechanisms responsible for changed
tropospheric temperature response through
enhancing small-scale fluctuations

The results of our stochastic analysis suggest that

small-scale fluctuations affect the tropospheric temper-

ature responses by altering the change in the effective

forcing DF. Changes in DF resulting from enhanced

small-scale fluctuations mean that DF depends not only

on the magnitude of the CO2 increase, but also on other

factors such as the representation of small-scale pro-

cesses. Here we suggest one possible chain of processes,

through which different representations of small-scale

fluctuations produce different values of DF. Table 3

shows the 300-hPa temperature and vertically integrated
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water vapor in different 1 3 CO2 experiments. Relative

to the control climate, the climates are warmer in the

diffus_24 and diffus_36 experiments and colder in the

noise_3 and noise_6 experiments. Because of the warmer

preindustrial climates, the CO2 doubling triggers stronger

water vapor–greenhouse feedbacks in the diffusion ex-

periments than in the control experiments. The globally

averaged vertically integrated water vapor content in-

creases, for example, in diffus_36 by 36% and in the

control experiments only by 32%. The stronger water

vapor–greenhouse feedback contributes to the larger

change of the effective forcing DF. In contrast, the colder

climates in the noise experiments lead to weaker water

vapor–greenhouse feedbacks. The change of the effective

forcing resulting from CO2 doubling DF is reduced.

Changes in the statistical damping imply that the re-

storing force, which describes how fast the stationary

system returns from a natural fluctuation to its mean,

has changed. That means that the enhanced small-scale

fluctuations alter the internal large-scale feedback and

interaction processes. For example, negative cloud feed-

backs acting in the equilibrium system could be strength-

ened, resulting in an overall larger negative feedback

toward the mean. The system then returns faster from

a natural disturbance to its mean.

d. Conclusions

We conclude that small-scale fluctuations can influ-

ence the mean temperature response to a CO2 doubling

via two different mechanisms. First, they can influence

the mean temperature response via altering the statisti-

cal damping, which acts as a restoring force. That means

that internal feedback and interaction processes that are

present in the undisturbed system can be changed due to

a different representation of small-scale processes. Sec-

ond, the small-scale fluctuations can alter feedback and

interaction processes that are directly coupled to the

CO2 increase. They can affect the change in forcing

resulting from processes that are independent from the

time-dependent state of the undisturbed system. Whereas

reducing the horizontal diffusion changes the climate

sensitivity via the second mechanism, the additional noise

triggers both mechanisms.

Acknowledgments. We thank Lorenzo Tomassini,

Johann Jungclaus, and Klaus Hasselmann for useful

discussions. We also thank two anonymous reviewers for

their comments and valuable suggestions that greatly

improved the manuscript. This work was supported by

the Max Planck Society and the International Max

Planck Research School on Earth System Modelling.

APPENDIX

Filtering Out the Long-Term Variability

In the following we describe the derivation of xs from

the global mean temperature at 300 hPa x. We assume

that the time anomalies of the global mean temperature

at 300 hPa, x9 5 x� x, can be divided into two parts:

x9 5 x
s
9 1 x

l
9, (A1)

where x9s describes the part which is associated with the

internal short-term atmospheric variations and x9l is re-

lated to the long-term variations of the atmosphere

caused by the interactions of the atmosphere and the

ocean. To estimate x9l, a linear relationship between x9l
and the anomalies of the global mean sea surface tem-

perature (SST) y9 is assumed;

x
l
9 5 by9. (A2)

Before carrying out a least squares fit, a 90-day running

mean is applied to the data. In this way we ensure that

only the long-term variations contribute. Under the as-

sumption that x9s and y990d are uncorrelated, b is esti-

mated with

b 5
hx9

90d
y9

90d
i

hy9
90d

2i , (A3)

where x990d and y990d denote the time series on which a

90-day running mean was applied. We determine x9s by

subtracting the scaled SST anomalies from x9

x9
s
5 x9� by9

90d
. (A4)

The filtered global mean temperature at 300 hPa xs can

now be defined as

x
s
5 x9

s
1 x 5 x� by9

90d
. (A5)

TABLE 3. Mean globally averaged temperature at 300 hPa, T300

(K); mean globally averaged vertically integrated water vapor

content qv (kg m23); and the fractional gain of qv resulting from

CO2 doubling Dqv/qv (where Dqv 5 qv
23CO2 2 qv

13CO2). All num-

bers are based on 50-yr averages.

Experiment T300 qy Dqy /qy

Ctrl13 232.2 26.0 0.32

Diffus13_24 232.6 26.4 0.34

Diffus13_36 232.8 26.7 0.36

Noise13_3 230.8 25.8 0.30

Noise13_6 230.1 24.3 0.25
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