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ABSTRACT

Cumulus clouds involve processes on a vast range of scales—including cloud droplets, turbulent mixing, and

updrafts and downdrafts—and it is often difficult to determine how processes on different scales interact with

each other. In this article, several multiscale asymptotic models are derived for cumulus cloud dynamics in

order to (i) provide a systematic scale analysis on each scale and (ii) clarify the nature of interactions between

different scales. In terms of scale analysis, it is shown that shallow cumulus updrafts can be described by

balanced dynamics with a balance between source terms and ascent/descent; this is a cloud-scale version of so-

called weak-temperature-gradient models. In terms of multiscale interactions, a model is derived that con-

nects these balanced updrafts to the fluctuations within the balanced updraft envelope. These fluctuations

describe parcels and updraft pulses, and this model encompasses some of the multiscale aspects of entrain-

ment. In addition to this shallow cumulus model, to provide a broad picture of general cumulus dynamics,

multiscale models are also derived for other scales; these include models for parcels and subparcel turbulent

mixing and models for deep cumulus. Broadly speaking, the differences between the shallow and deep cases

convey the notion that shallow cumulus dynamics are parcel dominated, whereas deep cumulus dynamics are

updraft dominated; this is largely due to the difference in the apparent magnitude of the background tem-

perature stratification. In addition to their use in guiding theory, the multiscale models also provide

a framework for multiscale numerical simulations.

1. Introduction

Cumulus clouds involve physical processes on a vast

range of scales, all of which are important for a cloud’s

development. These include aerosols and cloud droplets

on scales smaller than 1023 m, turbulent motions on

scales of roughly 1 m within the cloud, updrafts on scales

of roughly 103 m, and the ambient environment in which

the cloud forms. Because of this wide range of scales,

clouds remain poorly understood and thus contribute

greatly to uncertainty in predictions of weather and

climate (Houghton et al. 2001; Moncrieff et al. 2007;

Bodenschatz et al. 2010). A growing body of evidence

suggests that in order to fully understand cloud dy-

namics and their role in climate systems, the physical

processes operating on each scale must be accounted for

together (Albrecht 1989; Stevens and Brenguier 2009).

In other words, not only must each process on each scale

be understood, but the interactions across scales must

also be understood. Here we approach this problem by

designing multiscale models.

One example of a multiscale process in clouds is the

entrainment of ambient air parcels into a cloud updraft

(Blyth 1993; Houze 1993; Stevens 2005). This involves

the interaction between a large-scale updraft envelope

and the smaller-scale fluctuations within it: the dynamics

of the updraft envelope can potentially promote entrain-

ment, and the cumulative effects of many entrainment
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events can potentially affect the larger-scale updraft.

Important aspects of the entrainment process have

been documented in numerical simulations of clouds

(Grabowski and Clark 1991, 1993a,b; Carpenter et al.

1998a,b,c). However, many uncertainties remain about

this multiscale process and its role in cloud develop-

ment, such as the relative roles of entrainment at cloud

top versus lateral boundaries (Blyth 1993; Heus and

Jonker 2008).

Another example of a multiscale process in clouds

is the interaction between turbulent mixing and cloud

droplet evolution. For instance, when a parcel of ambi-

ent air is entrained into a cloud, the turbulent mixing of

the ambient and cloudy air eventually leads to evapo-

ration of cloud liquid water. The final droplet distribu-

tion at the end of the mixing event depends crucially on

the relative time scales of the mixing and evaporation

(Baker et al. 1984; Su et al. 1998; Burnet and Brenguier

2007; Andrejczuk et al. 2009). In addition to evaporation

of droplets, collisions of droplets can also be influenced,

and possibly enhanced, by turbulent fluid motions (Shaw

2003; Xue et al. 2008). Not only are these topics impor-

tant for our theoretical understanding of clouds, but they

are also important for numerical cloud models, in which

such processes are not explicitly resolved but could po-

tentially be included as a subgrid-scale parameterization

(Grabowski 2007; Morrison and Grabowski 2008).

A great deal has been learned about these cloud

processes through different types of models of various

complexities. Some of the simplest settings for under-

standing cloud processes are parcel models and column

models (Rogers and Yau 1989; Houze 1993). While they

have been in use for at least several decades, they con-

tinue to provide new, useful insight into cloud processes

(Stevens and Seifert 2008; Seifert and Stevens 2010).

One drawback of parcel and column models is that they

only represent dynamics on a single scale (i.e., the scales

of parcels or columns) and must parameterize (or simply

neglect) many important processes, such as entrainment

and turbulent mixing. On the other hand, instead of

simplified models, more complex numerical cloud models

such as large-eddy simulations can represent three-

dimensional fluid dynamics and are useful for under-

standing entrainment and cloud dynamics (Sommeria

1976; Stevens et al. 2001; Siebesma et al. 2003). How-

ever, it is often difficult to understand the important

interactions across all scales in a three-dimensional

simulation, and the vast range of scales makes these sim-

ulations computationally expensive. Furthermore, even

though a vast range of scales is resolved, many important

cloud processes must be parameterized. It is a major

challenge to properly couple the resolved and unresolved

processes, such as resolved fluid dynamics and unresolved

cloud microphysics; perhaps equally importantly, it is a

major challenge to properly couple unresolved processes

with each other, such as the effect of unresolved turbulent

mixing on the parameterized microphysics (Grabowski

2007; Morrison and Grabowski 2008). A proper repre-

sentation of all relevant processes, resolved and un-

resolved, might require a multiscale approach to cloud

modeling.

The discussion above demonstrates the need for a

better understanding of interactions between cloud pro-

cesses on different scales. A useful mathematical tool for

this is multiple scales asymptotics (Kevorkian and Cole

1996; Klein 2000; Majda 2003; Klein 2010). This method

allows one to identify the equations governing differ-

ent scales of interest, and, equally importantly, it also

identifies the form of the interactions between the dif-

ferent scales. An example of the utility of multiple scales

asymptotics is the work of Majda and Klein (2003),

which identifies interactions on much larger scales in the

tropics between synoptic-scale waves and intraseasonal/

planetary-scale motions such as the Madden–Julian os-

cillation (Madden and Julian 1971). Subsequent work with

multiscale models on these scales has shown how the

synoptic-scale waves can interact with the Madden–

Julian oscillation and, for instance, drive its westerly wind

burst (Biello and Majda 2005; Majda and Stechmann

2009).

The main purpose of the present paper is to develop

multiscale asymptotic models for cumulus cloud dy-

namics to (i) provide a systematic scale analysis on each

scale and (ii) clarify the nature of interactions between

different scales. For example, given a typical scaling for

cumulus updrafts, is there a simplified dynamics that

describes them? And what are the dominant interac-

tions between updrafts and parcels? Besides their use

for theoretical understanding, the models derived here

also provide a framework for multiscale numerical sim-

ulations of clouds, which has already been shown to be

a useful, promising technique for simulations of larger-

scale atmospheric circulations (Grabowski 2001; Randall

et al. 2003; Majda and Stechmann 2009).

The paper is organized as follows. In section 2, the

framework of multiple scales asymptotics is reviewed. In

section 3, a multiscale model for shallow cumulus dy-

namics is presented for the scales of updrafts and the

parcels within them. To provide both detailed and gen-

eral views of multiscale cumulus dynamics, this updraft/

parcel model is discussed in detail, and models for other

scales of cumulus dynamics are compared and contrasted

in sections 4 and 5. In section 4 a multiscale model is

presented for the scales of shallow cumulus parcels and

subparcel turbulent mixing, and in section 5 the deep

cumulus analogs of the shallow cumulus models are
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presented. Conclusions and future directions are sum-

marized in section 6.

2. Scaling

The equations for atmospheric fluid dynamics used as

a starting point here are the dimensional Boussinesq

equations:

Du

Dt
5�$p 1 kg

u

u
0

1 �q
y
� q

c

� �
,

Du

Dt
1 Guw 5

L
y

c
p

C,

Dq
y

Dt
1 Gqw 5�C,

Dq
c

Dt
5 C, and

$ � u 5 0,

(1)

where

D

Dt
5

›

›t
1 u � $ 5

›

›t
1 u

›

›x
1 y

›

›y
1 w

›

›z
,

x 5 (x, y, z) and u 5 (u, y, w) are the spatial coordinates

and velocities, and $ 5 (›x, ›y, ›z) is the gradient. The

vector k denotes the unit vector in the upward vertical

direction. The potential temperature u and water vapor

mixing ratio qy here are anomalies from background

states u0 1 Guz and qy,0 1 Gqz, where linear dependence

on z is used here for simplicity. The pressure here has

a constant density factor r0 absorbed into it, and �1 1 is

the ratio of the ideal gas constants for water vapor and

dry air. Molecular diffusion terms have been left off the

equations because we do not anticipate closing them on

scales where such processes become relevant. The mix-

ing ratio of condensed water is qc, and the source term C

represents condensation (or evaporation). The potential

temperature source term should be multiplied by a fac-

tor of u/T, where T is temperature, but we leave it out

above because this factor is set to unity here (and we use

the notation T as a time variable in the rest of the paper).

Strictly speaking the use of the Boussinesq equations is

only valid for scales much shallower than an atmospheric-

scale height. For applications involving deep convection,

an anelastic model should be used instead of a Boussinesq

model. Hence our use of these equations for deep con-

vection is illustrative, done mostly to highlight distinc-

tions between shallow and deep convection that are not

sensitive to this assumption.

In its present form, (1) is technically only valid for

nonprecipitating shallow convection, with closure for C

pending. An attractive option for the source term is the

approach taken by Klein and Majda (2006), in which

a warm rain microphysics closure is chosen and detailed

asymptotics are worked out for the closure and for the

thermodynamic background state. Here, the type of

detailed analysis done by Klein and Majda (2006) is not

repeated, but the moist thermodynamic scaling is mo-

tivated by their analysis and observations and simula-

tions. In the spirit of Majda and Klein (2003) and Majda

(2007), a generic source term is used rather than a spe-

cific condensation closure, and we then seek the multi-

scale dynamics consistent with this scaling.

To nondimensionalize the equations above, the scales

of shallow cumulus parcels are used here as the basic

reference scales:

u
ref

5 3.3 m s�1, x
ref

5 100 m, and t
ref

5 30 s,

where the components of space x and velocity u are

scaled isotropically. Table 1 summarizes all of the

reference values, which are based on a combination

of observations, simulations, and theory. The values

uref 5 3.3 m s21 and xref 5 100 m represent a typical

velocity fluctuation and length scale of a cloud parcel, and

the time scale is the advective time scale. The potential

temperature scale is chosen so that the reference buoy-

ancy acceleration and parcel acceleration are in balance as

uref 5 u0uref/gtref ’ 3.3 K, and the reference heating rate is

then uref/tref 5 3.3 K (30 s)21. The reference moisture

scale is chosen so that the reference condensation rate

and heating rate are in balance as qref 5 uref cp/Ly ’

1.3 g kg21. Besides this motivation based on balances,

these values are also consistent with typical parcel-scale

fluctuations seen in observations and simulations (Rogers

and Yau 1989; Houze 1993; Stevens et al. 2001; Siebesma

et al. 2003; Stevens 2005). The reference background

stratifications are taken as typical environmental lapse

rates of

Gu
ref 5

3.3 K

1 km
and G

q
ref 5

1.3 g kg�1

1 km
. (2)

These reference values are most appropriate for trade

wind cumulus but are applicable to other regimes to the

extent that they are order-of-magnitude values. For in-

stance, the value qref ’ 1.3 g kg21 can represent an order-

of-magnitude range of ;0.4–4 g kg21, and this value

seems reasonable in the sense that 0.13 g kg21 is proba-

bly too small and 13 g kg21 is probably too large for a

reference value for parcel-scale fluctuations. One could

expect to see fluctuations of ;0.4–4 g kg21 due to fluc-

tuations in the condensation rate and to mixing of cloudy

and cloud-free air.

Using these reference scales to nondimensionalize

(1), the equations become
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Du

Dt
5�$p 1 ku 1 �k(�q

y
� q

c
),

Du

Dt
1�Guw 5C,

Dq
y

Dt
1�Gqw 5�C,

Dq
c

Dt
5 C, and

$ � u 5 0.

(3)

Notice that the background stratification terms above are

O(�) for the assumed stratifications from (2). The three

instances of � above actually represent three different

nondimensional numbers: B
*

5 cpu0/Ly 5 qrefgtref/uref is

the coefficient of �q
y
� qc in the buoyancy term; Gu

* 5

Gu
refxref/uref is the coefficient of the background poten-

tial temperature stratification; and G
q

*
5 G

q
refxref

/q
ref

is

the coefficient of the background water vapor stratifi-

cation. For the reference scales used here, their numer-

ical values are B
*

5 0.12, G
*
u 5 0.1, and G

*
q 5 0.1. For the

asymptotic expansions below, we thus define the small

parameter � 5 B
*

’ 0.1, and we assume that G
*
u and G

*
q

are related to � in a distinguished limit with G
*
u 5 O(�) and

G
*
q 5 O(�) as � / 0.

Throughout this paper the focus is on multiscale

asymptotic solutions of (3), including both multiple

spatial scales and multiple time scales. Here we intro-

duce some additional scales, besides the parcel scales

from above, to illustrate some basic principles of mul-

tiscale asymptotics (Kevorkian and Cole 1996). As an

example, consider a case with interactions between

parcels on scales of xref 5 100 m, tref 5 30 s and larger-

scale updrafts on scales of Xref 5 1000 m, Tref 5 300 s,

which requires larger-scale variables X 5 (X, Y, Z) and

T defined as

X 5 �x and T 5 �t.

The two length scales x and X are then treated as in-

dependent variables in some ways. For instance, a

general function can depend on x and X independently

in the form f(x, X, t, T ), and the spatial and temporal

derivatives are computed using the chain rule as

�$X 1 $x and �›
T

1 ›
t
,

where $X 5 (›X, ›Y, ›Z) and $x 5 (›x, ›y, ›z).

Means and fluctuations are defined by averaging over

the smaller scales. For instance, for a general function

f(x, X, t, T), the integral over the short length scale x is

used to define the spatial mean and fluctuation:

f (X, t, T) 5 lim
L!‘

1

(2L)3

ðL

�L

ðL

�L

ðL

�L

f (x, X, t, T) dx dy dz and f 9(x, X, t, T) 5 f � f . (4)

TABLE 1. Reference scales for the shallow cumulus models.

Parameter Derivation Value Description

uref — 3.3 m s21 Reference velocity scale

xref — 100 m Reference length scale

tref xref/uref 30 s Reference time scale

u0 — 300 K Surface potential temperature

p0 — 105 Pa Surface pressure

r0 — 1.2 kg m23 Surface density

g — 9.8 m s22 Gravitational acceleration

cp — 1006 J kg21 K21 Specific heat of dry air

Ly — 2.5 3 106 J kg21 Latent heat of vaporization

Rd — 287 J kg21 K21 Gas constant for dry air

Ry — 462 J kg21 K21 Gas constant for water vapor

� (Ry/Rd) 2 1 0.61 Coefficient of water vapor for buoyancy

pref r0u2
ref 13 Pa Reference pressure scale

uref u0uref/gtref 3.3 K Reference potential temperature scale

qref cpuref/Ly 1.3 g kg21 Reference moisture scale

Cref cpuref/Lytref 1.3 g kg21 (30 s)21 Reference condensation rate

uref/tref 3.3 K (30 s)21 Reference heating rate

Gu
ref — 3.3 K (1 km)21 Reference potential temperature stratification

G
q
ref — 1.3 g kg21 (1 km)21 Reference water vapor stratification

B
*

cpu0/Ly 0.12 Coefficient of moisture for buoyancy

G
*
u Gu

refxref
/u

ref
0.1 Coefficient of background u stratification

G
*
q G

q
refxref/qref 0.1 Coefficient of background qy stratification
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Notice that the mean f (X, t, T) depends only on

the larger-scale variable X, from which it follows that

$xf 5 0. These definitions give a separation of any func-

tion into its spatial mean and fluctuation as f 5 f 1 f 9,

where, because the scales x and X are asymptotically

separated, f 9 5 0. Multiple time scales are handled in

a similar way, with temporal means and fluctuations de-

fined as

h f i(x, X, T) 5 lim
s!‘

1

2s

ðs

�s

f (x, X, t, T) dt and

~f (x, X, t, T) 5 f � h f i. (5)

A combined spatial and temporal decomposition can be

then be defined as

f (x, X, t, T) 5 h f i(X, T) 1
~f (X, t, T) 1 f 9(x, X, t, T),

(6)

which follows from expanding f 5 h f i1~f in f 5 f 1 f 9.

A summary of the notation for averages and fluctuations

is given in Table 2.
Another important aspect of the method of multiple

scale asymptotics is the sublinear growth condition

(Kevorkian and Cole 1996; Majda 2003; Majda and

Klein 2003). For an informal discussion of this condition,

consider an asymptotic expansion of the form

f
�
5 f (t, �) 5 f

0
(t, �t) 1 � f

1
(t, �t) 1 �2 f

2
1 O(�3).

For this expansion to be useful, the order of magnitude

of each term should be as designated; that is, we should

have f0 5 O(1), �f1 5 O(�), and so on, which means that

we should have fn 5 O(1) for each n. Furthermore, we

would like this expansion to remain valid on both time

scales, that is, for time scales where t 5 O(1) and also for

the long time scale where T 5 �t 5 O(1) or, equivalently,

t 5 O(�21). These requirements restrict the way that

fn(t, T) can depend on t; if fn(t, T) 5 t, then fn 5 �21 when

t 5 �21, which violates the requirement that fn 5 O(1)

on the long time scale. To prevent this, we require that

fn(t, T ) grow more slowly than t as a function of t (i.e.,

sublinearly as a function of t). For application in a dy-

namical setting, suppose the short time evolution of

fn(t, T) is given by

›
t
f

n
(t, T) 5 g(T), (7)

where g(T) is a given O(1) function that is independent of t.

Since the solution of this equation is fn(t, T) 5 tg(T) 1

constant, fn will grow sublinearly as a function of t if and

only if

g(T) 5 0. (8)

For a more general case that also appears in this paper,

suppose the short time evolution of fn(t, T) is given by

›
t
f

n
(t, T) 5 h(t, T), (9)

where h(t, T) is a given O(1) function that can depend on

both t and T. In this case, fn(t, T) will grow sublinearly as

a function of t if and only if the time average of h is zero:

hhi5 0. (10)

Physically, this means that a time-mean forcing would

lead to linear-in-time growth, where a special case is the

t-independent forcing in (7). A similar discussion applies

for the spatial variable x, and, for the practical purposes

of this paper, a compact way of expressing these sub-

linear growth conditions is to say that

$x f
n

5 0 and h›
t
f

n
i5 0. (11)

These conditions will be used often in the derivations

below.

3. Shallow cumulus: Parcel and updraft scales

Using the scaling for shallow cumulus from the pre-

vious section, we can now explore the dynamics implied

by this scaling. For example, given typical scaling for

cumulus updrafts, is there a simplified dynamics that

describes them? And what are the dominant interac-

tions between updrafts and parcels? Using the technique

of multiple scale asymptotics from section 2, we now

present a multiscale model for shallow cumulus parcels

and updrafts, which are shown schematically in Figs. 1

and 2. First, in section 3a, the model is presented; then,

in section 3b, the properties of the dynamics are dis-

cussed in detail; finally, in section 3c, the model deri-

vation is given.

a. The model

For interactions between parcels and updrafts in shal-

low cumulus, the relevant scales range from xref 5 100 m

TABLE 2. Notation for averages and fluctuations for the case with

space scales x and X 5 �x and time scales t and T 5 �t.

Notation Description

f(x, X, t, T) A general function of multiple scales

f (X, t, T) Space average of f

f 9(x, X, t, T) Space fluctuation of f

h f i(x, X, T) Time average of f
~f x, X, t, Tð Þ Time fluctuation of f

h f i(X, T) Space and time average of f
~f (X, t, T) Space average, time fluctuation of f
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and tref 5 30 s for parcels to Xref 5 1000 m and Tref 5

300 s for the updraft envelope. Therefore, in addition to

the variables x and t, this requires the larger-scale vari-

ables defined as

X 5 �x and T 5 �t,

where X 5 (X, Y, Z). Space and time averages are then

defined as in (4), (5), and (6), and a summary of notation

for averages and fluctuations is given in Table 2.

The multiscale model is obtained by seeking asymp-

totic solutions to (3) with the form

u
�
5 U(�x, t, �t) 1 U9(x, �x, t, �t) 1 �u 1 O(�2),

u
�
5 Q(�x, t, �t) 1 Q9(x, �x, t, �t) 1 �u 1 O(�2),

q
y,�

5 Q
y
(�x, t, �t) 1 Q9

y
(x, �x, t, �t) 1 �q

y
1 O(�2),

q
c,�

5 Q
c
(�x, t, �t) 1 Q9

c
(x, �x, t, �t) 1 �q

c
1 O(�2),

p
�
5 ��1 ~P�1

(�x, t, �t) 1 P(�x, t, �t) 1 P9(x, �x, t, �t)

1 �p 1 O(�2), and

C
�
5 C(�x, t, �t) 1 C9(x, �x, t, �t) 1 �c 1 O(�2),

(12)

where the subscript � denotes that qy,�(x, t) is a function

of x and t and the parameter �. The model consists of

dynamics on the three scales shown in the decom-

position in (6): parcels Q9y, updraft pulses ~Q
y
, and up-

draft envelopes hQ
y
i. The dynamics and interactions of

these three scales of motion are given by the following

three equation sets, which we identify by names as fol-

lows: nonlinear parcel dynamics,

D9

Dt
U9 5�$9P9 1 kQ9,

D9

Dt
Q9 5 C9,

D9

Dt
Q9

y
5�C9,

D9

Dt
Q9

c
5 C9, and

$9 �U9 5 0,

(13)

where $9 5 (›x, ›y, ›z) and

D9

Dt
5 ›

t
1 (hUi1 ~U 1 U9) � $9;

linear updraft pulses,

›
t
~U 5�$ ~P�1

1 k ~
Q,

›
t
~
Q 5

~C,

›
t
~Q

y
5� ~C,

›
t
~Q

c
5

~C, and

$ � ~U 5 0,

(14)

where $ 5 (›X , ›Y , ›Z); and balanced updraft enve-

lopes,

FIG. 1. A schematic diagram of the spatial scales of the shallow

cumulus models. The vertical spatial scale is the same as the hor-

izontal spatial scale in each case.

FIG. 2. The shallow cumulus models and their spatial and tem-

poral scales. The vertical spatial scale is the same as the horizontal

spatial scale in each case.
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hCi50,

hQi50,

D

DT
hU

h
i5�$

h
hPi�$ � hU9 :U9

h
i�$ � h ~U : ~U

h
i,

hui5� D

DT
hWi�›

Z
hPi1�hQ

y
i�hQ

c
i

�$ � hU9W9i�$ � h ~U ~Wi,

GuhWi5hci�$ � hU9Q9i�$ � h ~U ~
Qi,

D

DT
hQ

y
i1GqhWi5�hci�$ � hU9Q9

y
i�$ � h ~U ~Q

y
i,

D

DT
hQ

c
i5hci�$ � hU9Q9

c
i�$ � h ~U ~Q

c
i, and

$
h
� hU

h
i5�›

Z
hWi,

(15)

where

D

DT
5 ›

T
1 hUi � $

and where Uh 5 (U, V, 0) is the horizontal velocity,

$h 5 (›X , ›Y , 0) is the horizontal gradient, and the colon

has the meaning (U : Uh)i 5 UUh,i for i 5 1, 2.

b. Discussion

The model (13)–(15) describes interactions between

three paradigms of cumulus convection: parcels, pulses,

and updrafts. To gain further insight, the model is dis-

cussed here in two contexts: 1) properties of the equa-

tions and 2) phenomena of shallow cumulus dynamics.

1) PROPERTIES OF THE EQUATIONS

The model in (13)–(15) encompasses three different

types of dynamics on the three different scales of the

decomposition in (6). On the smallest scales are the

parcel dynamics of Q9y(x, X, t, T) in (13); this dynamics

involves both spatial and temporal fluctuations as func-

tions of both x and t with X and T treated as frozen

parameters. On the same fast time scale t but larger

spatial scales X are the updraft pulses ~Q
y
(X, t, T) in (14),

where T is treated as a frozen parameter. Finally, on the

slow time scale T and large spatial scales X are the

balanced updraft envelopes hQ
y
i(X, T) in (15). Next,

each of these three dynamics is discussed in this order.

On the short 100-m length scales and fast time scale t

in (13) are the parcel dynamics of Q9y. These equations

are essentially the nonlinear, unstratified Boussinesq

equations where the buoyancy at leading order does not

include moisture contributions. The parcel dynamics are

not isolated, however; the updraft pulses and updraft

envelope affect the parcels through advection by ~U

and U
� �

, respectively. One might also expect that large-

scale shear terms of the form U9 � $ Q
y

could potentially

generate turbulence on the O(100 m) parcel scales; how-

ever, these terms appear here at O(�) and are therefore not

part of the leading-order dynamics of (13). There is,

however, another way that the updrafts affect the par-

cels: the condensation term C9(x, X, t, T) is a nonlinear

function of the thermodynamic state, which is determined

at leading order by the sum of contributions from each

scale such as hQ
y
i(X, T) 1

~Q
y
(X, t, T) 1 Q9

y
(x, X, t, T).

In other words, the larger-scale fields such as hQ
y
i(X, T)

and ~Q
y
(X, t, T) provide a thermodynamic background

state for the parcels because

[f (Q
y
)]9 6¼ f (Q9

y
) for a nonlinear function f ; (16)

that is, [ f(Qy)]9 depends not only on Q9y but also on ~Q
y

and hQ
y
i for a nonlinear function f such as the conden-

sation.

On the same fast time scale t but on the larger 1000-m

spatial scales are the updraft pulses ~Q
y

in (14). On these

scales, advection terms are absent (i.e., the dynamical

core is linear), and the other scales are felt here only

through the nonlinear condensation ~C(X, t, T). The con-

densation on these scales is the spatial average of the

condensation over the smaller 100-m parcel scales, and it

is a function of not only the updraft pulse variables such

as ~Q
y

but also the parcel fluctuations Q9y and updraft

envelopes hQ
y
i; this is because

f (Q
y
) 6¼ f (Q

y
) for a nonlinear function f . (17)

Finally, on the 1000-m spatial scales and slow time scale

T are the balanced updraft envelopes Q
y

� �
in (15). These

dynamics are balanced in the sense that the leading-order

potential temperature u
� �

and vertical velocity W
� �

are

given by diagnostic balance conditions, while the other

variables evolve prognostically. This is a shallow cumulus-

scale version of the so-called weak-temperature-gradient

models that have been developed previously for larger-

scale tropical dynamics (Sobel et al. 2001; Majda and

Klein 2003; Majda et al. 2008). The balance condition

for W
� �

comes from the potential temperature equation

and represents balance between ascent/descent and heat

sources, which include condensation ch i and eddy fluxes

$ � hU9Q9
y
i and $ � h ~U ~Q

y
i from the parcels and updraft

pulses, respectively. The eddy fluxes can be thought of

as subadiabatic terms in this context, and the averaged

heating hci(X, T) is a function of not only the updraft

envelope fields such as Q
y

� �
but also the fluctuations;

this latter effect is due to the nonlinear nature of the

condensation rate as explained in (17).
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Also notice that the parcel-scale condensation/

evaporation fluctuations C9(x, X, t, T) are allowed to be

larger than the condensation/evaporation �hci(X, T)

on the updraft envelope scales; that is, C9 is allowed to

be as large as O[1.3 g kg21 (30 s)21], whereas �hci 5

O[1.3 g kg�1(300 s)�1]. While a major contributor to �hci
is adiabatic compression/expansion, as represented in

(15) by the effect of Gq W
� �

, this is not a leading-order

effect on parcel scales, as reflected by the absence of

a parcel-scale term GqW9 in (13). This is because adia-

batic compression/expansion is only felt at leading order

on the longer T time scale, after a parcel has ascended/

descended an appreciable vertical distance of O(1000 m).

Parcel-scale fluctuations C9 of O[1.3 g kg21 (30 s)21]

could arise from another mechanism: mixing of cloudy

and cloud-free air. On the parcel time scale of O(30 s), for

the mixing of cloud-free air and cloudy air with an

O(1.3 g kg21) cloud condensate anomaly, an evapora-

tion anomaly C9 of O[1.3 g kg21 (30 s)21] could be pro-

duced. The averaged effect of this parcel-scale mixing

then contributes to �hci at O[1.3 g kg21 (300 s)21] on the

updraft envelope scales, at the same order of magnitude

as the effect of adiabatic compression/expansion.

To summarize the dynamical aspects of the multiscale

interactions, two of the main features are that (i) updraft

envelopes obey a balanced dynamics in the form of

a cloud-scale weak-temperature-gradient model and

(ii) parcels affect updrafts through upscale eddy flux terms

such as $ � hU9Q9
y
i but updrafts do not affect parcels

through large-scale gradients such as U9 � $ Q
y
. In the

sense of this latter point, the multiscale model suggests

that shallow cumulus dynamics are parcel dominated

rather than updraft dominated.

2) PHENOMENOLOGY OF SHALLOW CUMULUS

DYNAMICS

In terms of shallow cumulus phenomena, one can see

that these three types of dynamics in (13)–(15) describe

three paradigms of shallow cumulus dynamics that are

seen in observations and simulations: parcels, pulses,

and updrafts. First, the notion of cloud parcels is well

known and pervasive (Rogers and Yau 1989; Houze

1993), and the various aspects of their dynamics are in-

cluded in (13): ascent/descent driven by condensation

and buoyancy, and nonlinear advection, transport, and

deformation, among others. Second, the dynamics in

(14) have been called ‘‘updraft pulses’’ here because of

their similarity to the ‘‘pulses’’ seen in observations

(French et al. 1999) and in simulations (Carpenter et al.

1998a; Zhao and Austin 2005; Heus et al. 2009). In the

model here, the pulses are O(1000 m) envelopes of

parcels and are driven by the averaged heating over the

envelope; they advect the smaller-scale parcels, and they

appear as temporal fluctuations to the balanced updraft.

In the simulations of Heus et al. (2009), the pulses have

spatial scales of O(1000 m), and several pulses typically

occur within the lifetime of a cloud. These similarities

suggest that the dynamics in (14) correspond to the ob-

served and simulated updraft pulses. Third, and finally,

the dynamics in (15) represent the balanced dynamics of

a cloud updraft over its lifetime, averaged over all the

fluctuations due to parcels and pulses. This balanced

updraft is driven by averaged heating and eddy fluxes

from the parcels and pulses; in turn, it advects the

smaller-scale parcels and provides a background ther-

modynamic state for them.

With an understanding of these processes at hand, it is

seen that these three paradigms and their relevant scales

are consistent with, and can be used to rationalize, the

results of numerical simulations. For instance, in order

to resolve the O(100 m) parcel dynamics in (13), a grid

spacing of O(10 m) would be required. Examples of this

include Brown (1999), Stevens et al. (2001), and Stevens

et al. (2002), which clearly show finescale structures

within updrafts when Dx 5 O(10 m) rather than Dx 5

O(100 m). If a coarse grid spacing of O(100 m) is used,

then one would expect the updraft pulses (14) and up-

draft envelopes (15) to be resolved faithfully; ideally, the

effect of the O(100 m) parcels is represented by subgrid-

scale parameterization. One example of this is the sim-

ulations of Stevens and Seifert (2008), in which a cloud

lifetime consists of a single updraft pulse, and the O(100 m)

parcels are only marginally resolved.

c. Derivation

The derivation of the parcel/updraft model in (13)–

(15) is as follows. Upon inserting the ansatz (12) into (3),

the O(1) part of the continuity equation is $9 � U9 5 0,

which is the continuity equation in (13) for the parcel

dynamics. The O(�) part of the continuity equation is

$ �U 1 $ �U9 1 $9 � u9 5 0. Using the condition in (11),

the spatial mean of this is $ �U 5 0. The time mean and

fluctuation of this equation are then the continuity

equations in (15) and (14), respectively.

For the derivation of the evolution equations on the

short time scale t, (13) and (14), we first consider the

potential temperature. To proceed, insert the ansatz

(12) into (3) and collect the O(1) terms:

›
t
Q 1 $9 � (UQ) 5 C,

where $9 �U 5 0 was used to write the advection terms in

conservative form. This equation can be split into its

spatial mean and fluctuation by using the condition in

(11), which leads to (13) for the spatial fluctuation and

›
t
Q 5 C
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for the spatial mean. Recall from section 2 that Q must

have sublinear growth as a function of t in order for the

asymptotic ordering in (12) to remain valid. Since the

equation above is of the form (9), the variable Q will

grow sublinearly as a function of t if and only if

hCi5 0.

Physically, this condition takes the following meaning:

if C
� �

were nonzero, then Q could potentially grow as

large as O(30 K). This provides the derivation for this

condition in the balanced updraft model in (15). It also

leads to the potential temperature evolution for updraft

pulses in (14) after also noting that ›t f 5 ›t
~f for any

general function f (t, T) 5 h f i(T) 1 ~f (t, T). Note that

the condition hQi 5 0 arises independently but for a

similar reason, as explained in the next paragraph.

For the derivation of the velocity equations, the O(1)

terms are

›
t
U 1 $9 � (U : U) 5�$ ~P�1

� $9P9 1 kQ,

where the colon has the meaning (U : U)i 5 UUi for i 5

1, 2, 3. This equation can be split into its spatial mean

and fluctuation by using the condition in (11), which

leads to (13) for the spatial fluctuation and to

›
t
~U 1 $ ~P�1

5 kQ, $ � ~U 5 0

for the spatial mean, where the continuity equation has

also been listed here. As was the case for the potential

temperature above, it must be ensured that ~U and ~P�1

grow sublinearly as functions of t in order for the as-

ymptotic ordering in (12) to remain valid. For the linear

system of equations above for ~U and ~P�1, sublinear

growth of ~U and ~P�1 occurs if and only if

hQi5 0, (18)

which is explained in more detail at the end of this sec-

tion for a more general situation. Physically, this con-

dition takes the following meaning: if hQiwere nonzero,

then U could potentially grow as large as O(33 m s21).

This provides the derivation for this condition in the

balanced updraft dynamics in (15), and it also leads to

the velocity equations in the updraft pulse model (14).

To arrive at the evolution equations on longer times,

the ansatz (12) is inserted into (3) and the O(�) terms are

collected; then a spatial average is applied to give the

potential temperature equation

›
t
u 5�›

T
Q� $ � (UQ)� GuW 1 c. (19)

Note that this is an equation of the form ›tu 5 h(t, T)

where T is treated as a frozen parameter. Therefore, u

grows sublinearly as a function of t if and only if hhi 5 0;

that is,

$ � hUQi1 GuhWi5 hci,

where it was also used that Q
� �

5 0 from (18). This is

the diagnostic relationship that determines W
� �

in (15),

where the eddy flux term is split into means and fluctu-

ations as

hUQi5 hU Q 1 U9Q9i

5 hUihQi1 h ~U ~
Qi1 hU9Q9i

5 0 1 h ~U ~
Qi1 hU9Q9i.

To obtain the velocity equations on longer times,

proceed as was done for (19) to arrive at

›
t
~u1$ ~P5�›

T
U�$ � (U :U)�$hPi1ku1k(�Q

y
�Q

c
)

5h(X, t, T),

$ � ~u50, (20)

where the incompressibility condition arises from (3) at

O(�2) after taking a spatial mean. This is a linear system

of partial differential equations for the vector ~u and the

pressure ~P as functions of X and t, where T is treated as

a frozen parameter and where the source term h on the

right-hand side depends on X, t, and T.

We must ensure sublinear growth of ~u and ~P as

functions of t. To accomplish this, apply a curl and di-

vergence to (20) to obtain, respectively,

›
t
~v 5 $ 3 h and �=

2 ~P 5 $ � h,

where ~v 5 $ 3 ~u. Now the same sublinear growth

condition of (9) can be applied to each component of ~v

to arrive at $ 3 hhi 5 0; and applying a time average to

the second equation leads to the condition $ � hhi 5 0 in

order to ensure that ~P maintains a time mean of zero.

The derivation is thus complete since $ 3 hhi 5 0 and

$ � hhi 5 0 are the vorticity form of the velocity equa-

tions in (15).

4. Shallow cumulus: Parcel and subparcel scales

In the previous section, a class of parcel–updraft in-

teractions was described, and it was seen that the in-

teractions are dominated by upscale eddy fluxes. In this

section we consider interactions on smaller scales be-

tween parcels and subparcel turbulent mixing. What is

the nature of these smaller-scale interactions? Are these

interactions also dominated by upscale eddy fluxes?

Below, a multiscale model is developed for the inter-

action between parcel and subparcel scales, and it will be
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compared and contrasted with the parcel/updraft model

of section 3. These different models and scales are

summarized schematically in Figs. 1 and 2.

The model in this section is developed to describe

interactions between parcels on scales of xref 5 100 m

and subparcel turbulent mixing on scales of jref 5 10 m.

In addition to the variables x and t, this requires the

smaller-scale variables defined as

j 5 ��1x and t 5 ��1t,

where j 5 (j, h, z) and tref 5 3 s. Asymptotic solutions

to (3) are then developed with the form

u
�
5 [hUi(x, t) 1 �u(x, t, ��1t)] 1 �u9(x, ��1x, t, ��1t)

1 �2u
2

1 O(�3),

u
�
5 [hQi(x, t) 1 �u] 1 �u9 1 �2u

2
1 O(�3),

q
y,�

5 [hQ
y
i(x, t) 1 �q

y
] 1 �q9

y
1 �2q

y,2
1 O(�3),

q
c,�

5 [hQ
c
i(x, t) 1 �q

c
] 1 �q9

c
1 �2q

c,2
1 O(�3),

p
�
5 [hPi(x, t) 1 �p 1 �2p

2
] 1 �2p9

2
1 �3p

3
1 O(�4), and

C
�
5 [hCi(x, t) 1 �c] 1 �c9 1 O(�2),

(21)

where f 5 f (x, t, t) and h fi5 h fi(x, j, t) now represent

spatial and temporal averages over the shorter space and

time scales j and t, respectively. The precise definitions

of these averages are given in the appendix. Also notice

that the weaker variables �u9 represent the smaller-scale

turbulent fluctuations, and their amplitude of roughly

0.33 m s21 ’ �uref is consistent with inertial-range scal-

ing of turbulence in the atmosphere:

u
turb

’ (Dj
ref

)1/3
’ 0.46 m s�1, (22)

where D 5 1022 m2 s23 is a typical atmospheric energy

dissipation rate.

With the ansatz from (21), the parcel/subparcel model

is given by the following three sets of equations: non-

linear parcel dynamics,

D

Dt
U 5�$ P 1 kQ,

D

Dt
Q 5 C,

D

Dt
Q

y
5�C,

D

Dt
Q

c
5 C, and

$ �U 5 0,

(23)

where $ 5 (›
x
, ›

y
, ›

z
) and

D

Dt
5 ›

t
1 U � $;

subparcel turbulent mixing,

D9

Dt
u9 1 u9 � $ U 5�$9p9

2
1 ku9,

D9

Dt
u9 1 u9 � $ Q 5 c9,

D9

Dt
q9

y
1 u9 � $ Q

y
5�c9,

D9

Dt
q9

c
1 u9 � $ Q

c
5 c9, and

$9 � u9 5 0,

(24)

where $9 5 (›j, ›h, ›z) and

D9

Dt
5 ›

t
1 U � $ 1 (u 1 u9) � $9;

and weaker linear parcel fluctuations,

D

Dt
u 1 u � $ U 5�$p 1 k(u 1 �Q

y
�Q

c
),

D

Dt
u 1 u � $ Q 1 GuW 5 c,

D

Dt
q

y
1 u � $ Q

y
1 GqW 5�c,

D

Dt
q

c
1 u � $ Q

c
5 c, and

$ � u 5 0,

(25)

where all variables in (23)–(25) are time-averaged var-

iables but the angle brackets h�i have been left off to ease

notation. The derivation of (23)–(25) and the precise

definitions of space and time averages are given in the

appendix.

Notice that the nonlinear parcel dynamics on scales of

O(100 m) are the same here in (23) as they were in (13)

if advection by updrafts is ignored in (13). While the

dynamics is the same, the notation differs between (13)

and (23) because the O(100 m) parcels are spatial fluc-

tuations (with primes such as Q9y) in the context of parcel/

updraft dynamics and spatial averages (with overbars

such as Q
y
) in the context of parcel/subparcel dynamics.

The intersection of these models at the O(100 m) parcel

scales can be seen in the schematic diagrams in Figs. 1 and 2.

In comparison to the parcel/updraft model of section 3,

one important difference here is that the spatial fluctuations
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q9y are affected by larger-scale gradients through the

term u9 � $ Q
y
, but the larger-scale fields are not affected

by the eddy fluxes $ � u9q9
y

at leading order; the opposite

was true for the parcel/updraft model in section 3. This

difference is largely due to the different scales involved,

as shown in the ansatzes of the two cases in (12) and (21);

parcels and updrafts are described by O(1) fields, whereas

subparcel fluctuations are O(�) in magnitude and agree

with turbulent inertial-range scaling as explained in (22).

Another striking difference from the parcel/updraft

model of section 3 is that (23)–(25) involve only a single

time scale. In other words, the O(100 m) parcels and

O(10 m) subparcel mixing occur on different spatial

scales but share a common time scale. This is consistent

with previous work that has shown that entrainment/

turbulent mixing occurs on the same time scale as larger-

scale cloud dynamics (Baker et al. 1984; Krueger et al.

1997; Grabowski 2007), and the cloud droplet spectrum

can be affected by the mixing scenario, depending on

whether it is homogeneous mixing, extremely inhomo-

geneous mixing, or an intermediate scenario (Su et al.

1998; Morrison and Grabowski 2008; Andrejczuk et al.

2009).

Finally, another key difference is the appearance of

a new advection term of the form U � $q9
y

for the sub-

parcel turbulent fluctuations in (24). Notice that this

represents parcel-scale gradients $ of the subparcel-scale

fluctuations q9y. The meaning of this term can be seen in

the evolution equation for q92
y , which is found from (24)

by multiplying by q9y and taking a spatial average:

›
t
q92

y 1 U � $q92
y 5�2q9

y
u9 � $ Q

y
� 2q9

y
c9. (26)

This new advection term therefore represents parcel-scale

advection of subparcel-scale variance, as is sometimes

used in subgrid-scale closures in large-eddy simulations

[see Sommeria (1976) and Stevens et al. (2001) and ref-

erences therein]. Hence, the scaling used in this section

represents a scenario where such advection terms appear

at leading order, although their effects on the larger scales

through upscale eddy fluxes are not present at leading

order (but may accumulate over longer time scales).

5. Deep cumulus

In sections 3 and 4, multiscale models were developed

for shallow cumulus. In what ways are deep cumulus

dynamics different from shallow cumulus? For instance,

are the parcel–updraft interactions for deep cumulus

also dominated by upscale eddy fluxes? Below, we de-

velop the deep cumulus analogs of the shallow cumulus

models, and the shallow and deep cumulus cases are

compared and contrasted.

To derive multiscale models for deep cumulus rather

than shallow cumulus, we proceed similarly to sections 2

and 3. The starting point for the models is still the di-

mensional Boussinesq equations in (1), but here a dif-

ferent set of reference scales is used to obtain the

nondimensional equations for the asymptotics. While

the scales of shallow cumulus parcels were used in sec-

tion 2, here the scales of deep cumulus parcels are used

as the basic reference scales:

u
ref

5 10 m s�1, x
ref

5 1 km, and t
ref

5 100 s.

These values and the pressure and heating rate values

are the only reference scales that are different for the

deep cumulus case, as summarized in Table 3. The

thermodynamic reference scales used here are the same

as they were for shallow cumulus (uref 5 3.3 K and qref 5

1.3 g kg21), and the reference heating rate is then 3.3 K

(100 s)21. The background stratifications are also as-

sumed to have the same reference scales as in (2). For

these new reference scales, the nondimensional number

� 5 B
*

5 cpu0/Ly keeps the same small value of � ’ 0.1,

but the two nondimensional numbers G
*
u and G

*
q are now

identically equal to 1.

Given these new reference scales, we can rescale

the dimensional Boussinesq equations in (1) to give

nondimensional equations on deep cumulus scales.

The resulting equations have the same form as the

TABLE 3. Reference scales for the deep cumulus models. Any reference scales that are the same as those for shallow cumulus in Table 1 are

not repeated here.

Parameter Derivation Value Description

uref — 10 m s21 Reference velocity scale

xref — 1 km Reference length scale

tref xref/uref 100 s Reference time scale

pref r0u2
ref 120 Pa Reference pressure scale

Cref cpuref/Lytref 1.3 g kg21 (100 s)21 Reference condensation rate

uref/tref 3.3 K (100 s)21 Reference heating rate

G
*
u Gu

refxref /uref 1 Coefficient of background u stratification

G
*
q G

q
refxref /qref 1 Coefficient of background qy stratification
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nondimensional equations (3) from section 2, except

the u and qy equations are now

Du

Dt
1 Guw 5 C and

Dq
y

Dt
1 Gqw 5�C. (27)

Notice the change from (3): the background stratifica-

tion terms have a different apparent magnitude [i.e.,

they appear now as O(1) terms]. This is because their

nondimensional coefficients, G
*
u and G

*
q, are now iden-

tically equal to 1 for deep cumulus. While each of the

shallow cumulus models in sections 3 and 4 has a deep

cumulus analog in this section (as summarized in Fig. 3),

there will be important differences between the two cases

due to the different apparent magnitude of the back-

ground stratification.

Two remarks are in order with regard to the scaling

differences between shallow and deep cumulus. First, in

its present form, (1) is probably an unrealistic limit for

deep convection because of the absence of anelastic

effects and precipitation processes; it might be relevant

at best to extreme cases of pyrocumulus or the de-

velopment phase of continental clouds. A Boussinesq

model is used here instead of an anelastic model, not for

any reason based on scaling, but for clarity of pre-

sentation. Leaving out anelastic effects helps to ease

notational complexity and to ease comparison with the

shallow cumulus case; in practical applications involving

deep cumulus, anelastic effects should be included.

Moreover, to the extent that one can generalize the

treatment of the source terms, the current model pro-

vides a skeleton of a model for precipitating deep con-

vection. Second, given the traditional notion that deep

cumuli are more intense than shallow cumuli, one might

be surprised that the reference heating rate used here for

deep cumulus is O[3.3 K (100 s)21], which is smaller

than the O[3.3 K (30 s)21] heating rate used for shallow

cumulus in section 3. Notice, however, that these are the

heating rates on the scales of parcels for deep and

shallow cumulus, whereas the traditional notion of in-

tensity is likely in reference to updraft intensity. A

comparison of the updraft-scale heating rates is, in fact,

consistent with traditional thinking: the updraft-scale

heating rate for shallow cumulus was O[3.3 K (300 s)21],

which is smaller than the O[3.3 K (100 s)21] updraft-

scale heating rate for deep cumulus, as shown below.

In summary, we have chosen a new set of reference

scales for deep cumulus parcels, and we have rescaled

the Boussinesq equations (1) using these reference

scales. The resulting nondimensional equations look the

same as (3), except for the changes to the coefficients of

the background stratification terms in (27). We now

proceed to look for asymptotic solutions of (27) using

the small parameter � 5 B
*

’ 0.1 with the distinguished

limit of G
*
u 5 O(1) and G

*
q 5 O(1).

a. Parcel and updraft scales

For comparison with the parcel/updraft model for

shallow cumulus in section 3, we now present an anal-

ogous model for deep cumulus. The model includes in-

teractions between deep cumulus parcels on scales of

xref 5 1 km and the larger-scale updrafts on scales of

Xref 5 10 km. The setup for this model is identical to that

in section 3, except the different moist thermodynamic

equations in (27) are used and the ansatz for moisture

variables in (12) is replaced by

q
y,�

5 ��1hQ
y,d
i(�x, �t) 1 Q

y
1 Q9

y
1 �q

y
1 O(�2) and

q
c,�

5 ��1hQ
c,d
i(�x, �t) 1 Q

c
1 Q9

c
1 �q

c
1 O(�2). (28)

The difference here is that the moisture variables are

now allowed to have an O(�21) contribution, which is

O(13 g kg21) in dimensional units. For the scales of

shallow cumulus in section 3, this O(�21) moisture was

not dynamic, and it appeared there simply as the back-

ground water vapor state Gqz. Also note that these

O(�21) moisture variables depend only on the O(10 km)

deep cumulus spatial variable X and are therefore la-

beled with a subscript d.

The equations that result from this expansion in (28)

are the deep cumulus analogs of the shallow cumulus

model (13)–(15) of section 3. The deep cumulus model is

given by the following three sets of equations: nonlinear

parcel dynamics,

D9

Dt
U9 5�$9P9 1 kQ9,

D9

Dt
Q9 1 GuW9 5 C9,

D9

Dt
Q9

y
1 U9 � $hQ

y,d
i5�C9,

D9

Dt
Q9

c
1 U9 � $hQ

c,d
i5 C9, and

$9 �U9 5 0,

(29)

FIG. 3. As in Fig. 2, but for deep cumulus.
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where $9 5 (›x, ›y, ›z) and

D9

Dt
5 ›

t
1 (hUi1 ~U 1 U9) � $9;

linear updraft pulses (now linear gravity waves),

›
t
~U 5�$ ~P�1

1 k ~
Q,

›
t
~
Q 1 Gu ~W 5

~C,

›
t
~Q

y
1

~U � $hQ
y,d
i5� ~C,

›
t
~Q

c
1

~U � $hQ
c,d
i5 ~C, and $ � eU 5 0,

(30)

where $ 5 (›
X

, ›
Y

, ›
Z

); and balanced updraft envelopes,

D

DT
hU

h
i5�$

h
hPi � $ � hU9 : U9

h
i � $ � h ~U : ~U

h
i,

hQi5��hQ
y,d
i1 hQ

c,d
i,

GuhWi5 hCi,

D

DT
hQ

y,d
i5�hCi,

D

DT
hQ

c,d
i5 hCi, and

$
h
� hU

h
i5�›

Z
hWi, (31)

where

D

DT
5 ›

T
1 hUi � $.

The derivation of these modified equations is similar

to the derivation in section 3 and is not shown here

in detail; one difference in the derivations is that the

horizontal Helmholtz decomposition uh(xh, z, t) 5

$hf 1 $h
?c 1 b(z, t) is useful here where the three-

dimensional vorticity was used in section 3. Note that the

balanced updraft model in (31) is identical to a model

derived by Majda et al. (2010) if one ignores the in-

teractions with processes on other scales; here the bal-

anced updrafts interact with smaller-scale processes,

whereas in Majda et al. they interact with larger-scale

dynamics on mesoscales.

The deep cumulus model in (29)–(31) is different from

its shallow cumulus counterpart in (13)–(15) in two main

ways, and these two points support the notion that deep

cumulus dynamics are updraft dominated, in contrast to

the shallow cumulus case from section 3. First, moisture

eddy flux terms are no longer leading order for the bal-

anced updrafts in (31) because of the presence of O(�21)

moisture anomalies and O(1) heating anomalies on the

slow T time scale. This suggests one difference between

shallow and deep cumulus: the transport of moisture is

dominated by both updrafts and parcels for shallow cu-

mulus and by updrafts alone for deep cumulus. Second,

the parcel and wave equations in (29) and (30) now in-

clude large-scale gradient terms: U � $(GuZ), U � $hQ
y,di,

and U � $hQc,di. This means that deep cumulus now feel

the effects of the background stratification; therefore,

instead of the updraft pulses in the shallow cumulus

model in (14), deep cumuli excite gravity waves in (30).

This latter difference can be seen elsewhere in previous

studies: it is known that subsidence associated with deep

convection occurs as a borelike gravity wave response

that rapidly propagates away from the cloud (Bretherton

and Smolarkiewicz 1989; Mapes 1993; Stechmann and

Majda 2009), whereas subsidence associated with shallow

cumulus appears in ‘‘shells’’ at the lateral edges of the

cloud (Heus and Jonker 2008). The difference in these

mechanisms of compensating subsidence is shown here to

result from a difference in the apparent magnitude of the

stratification on different scales.

b. Parcel and subparcel scales

In this section, a model is presented for the in-

teractions between deep cumulus parcels on scales of

xref 5 1 km and subparcel turbulent mixing on scales of

jref 5 100 m. The setup for this model is identical to that

in section 4, except the different moist thermodynamic

equations in (27) are used. Similar to the case in section

4, note that the velocity fluctuations �u9 5 O(1 m s21)

on the new turbulent mixing scales of jref 5 100 m are

still compatible with inertial-range scaling of turbulence

in the atmosphere:

u
turb

’ (Dj
ref

)1/3
’ 1 m s�1.

The resulting equations are also nearly identical to those

in section 4, except the potential temperature equations

in (23), (24), and (25) now take the respective forms

D

Dt
Q 1 GuW 5 C, (32)

D9

Dt
u9 1 u9 � $ Q 1 Guw9 5 c9, and (33)

D

Dt
u 1 u � $ Q 1 Guw 5 c, (34)

with similar changes to the water vapor equations. The

derivation of these equations is essentially the same as

the derivation in section 4 and is not repeated.

The main difference from the shallow cumulus case of

section 4 is that the background stratification now enters
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(32)–(34) at leading order. Consequently, the parcels in

(32) now feel the stratification, the subparcel mixing in

(33) now involves stratified turbulence, and the linear

equations in (34) now support internal gravity waves.

6. Summary and outlook

a. Summary

We have developed multiscale asymptotic models for

different aspects of cumulus cloud dynamics. Since it is

often difficult to understand how processes on different

scales interact with each other, the main purpose of this

paper was (i) to provide a systematic scale analysis on

each scale and (ii) to clarify the nature of interactions

between different scales. The presence or absence of

different terms in the equations—nonlinear advection,

waves, eddy flux divergence, etc.—provides insight into

the dominant physical processes on each scale and

across different scales. To address both detailed and

general aspects, a model for shallow cumulus parcels

and updrafts was discussed in detail (section 3), and

the broad picture of general cumulus dynamics was dis-

cussed through two comparisons: comparison to a model

for parcel and subparcel scales (section 4) and compari-

son to analogous models for deep cumulus (section 5).

The multiscale model in section 3 displayed a rich

variety of interactions between shallow cumulus parcels

and updrafts: the updrafts advect the parcels and pro-

vide an evolving background thermodynamic state for

them, and, in turn, the parcels drive the updrafts through

averaged condensation and eddy flux divergences. The

model consists of three different, coupled dynamics for

three paradigms of shallow cumulus dynamics: parcels,

updraft pulses, and updraft envelopes. The updraft pulse

dynamics appear to be consistent with the ‘‘pulses’’ seen

in observations (French et al. 1999) and in simulations

(Carpenter et al. 1998a; Zhao and Austin 2005; Heus

et al. 2009), and we associate the updraft envelopes with

the dynamics over a cloud’s lifetime, averaged over nu-

merous parcels and pulses. The updraft envelope evolves

by balanced dynamics with balance between heat sources

and ascent/descent; this is a cloud-scale version of so-

called weak-temperature-gradient models that have been

derived for larger-scale tropical atmospheric dynamics

(Sobel et al. 2001; Majda and Klein 2003; Majda et al.

2008). It was also noted that the large-scale gradients of

the updrafts do not affect the parcel dynamics, whereas

the parcels affect the updrafts through upscale eddy

fluxes; in this sense, the model suggests that shallow

cumulus dynamics are parcel dominated.

To complement this shallow cumulus parcel/updraft

model, multiscale models were derived for other scales

of cumulus dynamics in sections 4 and 5, and the full set

of models provides a broad overview of the similarities

and differences of cumulus dynamics on different scales,

which are summarized in Fig. 4. In section 4, a model was

derived for the smaller scales of parcels and subparcel

turbulent mixing. One important difference is that,

while the parcels and updrafts operate on different time

scales, the parcels and subparcel mixing share a common

time scale; this is in agreement with previous work that

shows that entrainment/turbulent mixing occurs on the

same time scale as larger-scale cloud dynamics (Baker

et al. 1984; Krueger et al. 1997; Grabowski 2007) and can

significantly affect the cloud droplet spectrum (Su et al.

1998; Morrison and Grabowski 2008; Andrejczuk et al.

2009). Another difference is that the dynamical aspects

of parcel/subparcel interactions are advection domi-

nated in the sense that parcel-scale gradients affect the

subparcel dynamics but upscale eddy fluxes do not ap-

pear at leading order.

As another comparison to the shallow cumulus case,

the deep cumulus analogs of the shallow cumulus

models were developed in section 5. On the one hand,

shallow and deep cumulus are similar in that each

shallow cumulus model has a deep cumulus analog; on

the other hand, there are important differences be-

tween the shallow and deep cumulus models. The most

striking difference is that the background temperature

stratification is not a leading-order term for shal-

low cumulus, but it is a leading-order term for deep

FIG. 4. The shallow and deep cumulus models and their spatial

and temporal scales. For this figure only, the scale of each model

is defined with respect to a single set of universal reference sca-

les with x ; 10 km and t ; 1000 s, which are similar to the ref-

erence scales used by Klein and Majda (2006) and Majda et al.

(2010).
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cumulus; this leads to subsiding shells for shallow cu-

mulus (Heus and Jonker 2008) and subsidence via bore-

like gravity waves for deep cumulus (Bretherton and

Smolarkiewicz 1989; Mapes 1993; Stechmann and

Majda 2009). In addition, the large-scale gradients of

temperature and moisture affect the parcels, but the

parcels do not affect the updrafts through upscale eddy

fluxes; this is the opposite of the shallow cumulus case,

and it suggests that deep cumulus dynamics are updraft

dominated.

b. Outlook

In addition to their use for guiding theory and

interpreting simulations or observations, the models

derived here also provide frameworks for multiscale

numerical simulations. This is because the large and

small scales of a multiscale model can be identified

with resolved and unresolved scales of a numerical

simulation. An example of this on larger scales in the

atmosphere is superparameterization, which uses a

cloud-resolving model to represent the ‘‘unresolved’’

convection within each ‘‘resolved’’ grid box of a large-

scale atmospheric model (such as a general circulation

model) (Grabowski 2001; Randall et al. 2003; Grabowski

2004; Majda 2007). On smaller scales, in the setting

for individual clouds, a multiscale model could be used

to couple resolved cloud dynamics with unresolved

microphysics and turbulence, as summarized here in

section 1. One challenge is to design a method to couple

the resolved and unresolved processes, and the models

in the present paper can be used as frameworks for

this. Another challenge is to design a suitable small-

scale model that allows the unresolved processes—

unresolved turbulence and microphysics—to evolve

dynamically and to interact with each other. The au-

thors are currently designing such a model based on

previous work (Kerstein 1991; Su et al. 1998; Kerstein

1999; Wunsch and Kerstein 2005), and results with

this model will be presented elsewhere in the near

future.
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APPENDIX

Derivation of Shallow Cumulus Parcel/Subparcel
Model

The derivation of the parcel/subparcel model in section 4

is as follows. Upon inserting the ansatz (21) into the

continuity equation of (3), the O(1) part is $9 � u9 1

$ � hUi 5 0. The spatial average of this is $ � hUi 5 0

since $9 � u9 5 0 because of the condition (11), and the

spatial fluctuation at O(1) is then $9 � u9 5 0, which

demonstrates the derivation of the continuity equations

in (23) and (24), respectively. To derive the continuity

equation of (25), consider the O(�) part of the continuity

equation, which is $9 � u92 1 $ � u 5 0. Applying a spatial

average to this equation and using the condition from

(11) leads to the continuity equation in (25).

The derivation of the O(1) equations will be demon-

strated using the potential temperature as an example;

equations for the other variables follow in a similar way.

Upon inserting the ansatz (21) into (3), the O(1) part of

the potential temperature equation is

›
t
u 1 hUi � $9u 5�›

t
hQi � hUi � $hQi1 hCi. (A1)

The goal is to ensure sublinear growth of u as a function

of the small-scale variables j and t. To this end, it is

useful to define a change of variables on the smaller

scales:

j
*

5 j � hUit and t
*

5 t. (A2)

Physically, this puts the smaller-scale fluctuations in

a reference frame moving with the larger-scale parcel.

Notice that x and t are regarded as frozen parameters

and hUi(x, t) is thus a fixed translation speed from the

perspective of the smaller scales j and t. Therefore, the

derivatives with respect to the new coordinates are given

by ›
j

5 ›
j*

and ›
t

5 ›
t*
� hUi � $

*
, where $

*
5 (›

j*
,

›
h*

, ›
z*

). The space and time averages here are then

understood as averages in the moving reference frame

and are defined as

f (x, t, t
*

) 5 lim
L!‘

1

(2L)3

ðL

�L

ðL

�L

ðL

�L

f (x, j
*

, t, t
*

) dj
*

dh
*

dz
*

and h f i(x, j
*

, t) 5 lim
s!‘

1

2s

ðs

�s

f (x, j
*

, t, t
*

) dt
*

,

(A3)
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where fluctuations are defined as f 9 5 f � f and
~f 5 f � h f i for a general function f(x, j

*
, t, t

*
). With

these new coordinates, (A1) can then be rewritten as

›
t*

u 5�›
t
hQi � hUi � $hQi1 hCi. (A4)

The equation for the O(1) potential temperature, Q
� �

, is

obtained by requiring sublinear growth of u in (A4). Notice

that (A4) is an equation of the form ›
t*

u 5 g(t), where

g(t) is independent of t
*
, and where t is treated as a frozen

parameter. For an equation of this form, u grows sub-

linearly as a function of t
*

if and only if g 5 0, which gives

the parcel equation in (23). Also, if g 5 0, then u must obey

›
t*

u 5 0; that is, u 5 hui. (A5)

The fact that the O(�) potential temperature u has no

temporal fluctuation will be used below in the derivation

of the subparcel mixing equations.

The equations for subparcel mixing come from insert-

ing the ansatz (21) into (3) and collecting the O(�) terms,

which are

›
t*

u
2

5�›
t
hui � hUi � $hui � hui � $9hui

� hui � $hQi � GuhWi1 c and (A6)

›
t*

u
2

1 $p 1 $9p9
2

5�›
t
hui � hUi � $hui

� hui � $9hui � hui � $hUi

1 khui1 k(�hQ
y
i � hQ

c
i), (A7)

where u 5 hui by an argument similar to that in (A5). Note

that (A6) is an equation of the form ›
t*

u2 5 h(t
*

, t),

where t is treated as a frozen parameter. For an equation

of this form, u2 grows sublinearly as a function of t
*

if and

only if hhi5 0, which gives (25) and (24) after splitting the

result into spatial mean and fluctuating parts, respectively.

The derivations of the water vapor and condensate

equations are similar and are not shown in detail.

To ensure sublinear growth of u2, consider the spatial

mean and fluctuating parts of (A7):

›
t*

~u
2

1 $~p 5�›
t
hui � hUi � $hui � hui � $hUi � $h pi

1 khui1 k(�hQ
y
i � hQ

c
i),

(A8)

$ � ~u
2

5 0, (A9)

›
t*

~u9
2

1 $9~p9
2

5�›
t
hu9i � hUi � $hu9i � hui � $9hu9i

� hu9i � $hUi � $9h p9
2
i1 khu9i, and

(A10)

$9 � ~u9
2

5 0, (A11)

where the incompressibility conditions can be derived

from (3) by recalling that u 5 hui. Notice that the linear

operators for ~u2 and ~p in (A8) and (A9) and for ~u92 and ~p92
in (A10) and (A11) are the same as in the derivation in

(20); thus, the remainder of the derivation here is com-

pleted as in (20).
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