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1.  INTRODUCTION

The results of different global and regional climate
models (GCMs and RCMs, respectively) continue to
show a large spread, even when the models are
applied under identical forcing conditions (Solomon et
al. 2007). One way to judge the quality of model results
is by an in-depth comparison against observations,
which does not immediately imply that good results for
the past are an indicator for good quality future climate

projections. Such a comparison includes different
hydro-meteorological quantities and their related pat-
tern on different temporal and spatial scales (e.g.
Jacob et al. 2007, Christensen et al. 2008, Feldmann et
al. 2008, Früh et al. 2010). The overall assessment of
the different comparisons can be interpreted as the
model quality. Within the EU-Project ENSEMBLES
(van der Linden & Mitchell 2009), various aspects of
model quality have been determined against observa-
tional data, and a weighting system for an ensemble of
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dataset for Europe (E-OBS). As additional datasets for comparisons, we also used the near-surface
temperature datasets from the CRU observations and from the ERA40 and NCEP/NCAR reanalysis.
The analysis was performed for the land fraction of 8 different European regions, the so-called PRU-
DENCE regions defined within the PRUDENCE project (http://prudence.dmi.dk). Annual and sea-
sonal linear trends in near-surface temperature were computed for each ENSEMBLES RCM, the
E-OBS dataset, and for the additional datasets mentioned above. In all regions, the computed linear
temperature trends based on annual mean temperatures showed smaller values for the RCMs and the
NCEP/NCAR reanalysis than for both observational datasets, and in most regions also smaller values
than for the ERA40 reanalysis dataset. Depending on the magnitude of the difference in linear trends
between the individual RCMs and the E-OBS dataset, skill scores were assigned to each RCM. The
resulting skill scores were of similar magnitude (0.7–0.9) for the different models and regions (except
for Scandinavia, which had lower skill scores around 0.6–0.8). Spatially aggregated for all of Europe,
and combined from annual and seasonal into one value for each RCM, these skill scores were
included in the general ENSEMBLES RCM weighting system
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RCMs has been developed (Christensen et al. 2010,
this Special).

The sensitivity of a climate model to external forcing
(like greenhouse gas concentrations) may be described
by the trends in temperatures or other climate parame-
ters. However, it is difficult to validate trends in climate
simulations: the observed change in 2 m temperature
since preindustrial conditions until the end of the 20th
century is less than 1 K for Europe (Jones & Moberg
2003), and about 1.5 K for large parts of Europe until
the end of 2007 (van Oldenborgh et al. 2009). State-of-
the-art climate models show systematic absolute tem-
perature biases of a similar or even larger magnitude
(Solomon et al. 2007), although these kinds of biases
do not necessarily influence the temperature trend.
Especially in the case of control experiments, inter-
nal multi-decadal variability masks long-term trends
(Giorgi 2002). Furthermore, trends can be computed
by different statistical methods, leading to different
estimations of trends. Despite of these difficulties, it is
important for a climate model to simulate a reasonable
temperature trend, especially when applying it to
future climate simulations; consequently the measure
of temperature trends is part of the ENSEMBLES RCM
weighting system.

Here we used the ENSEMBLES RCM experiments
for Europe forced by the global reanalysis ERA40
(Uppala et al. 2005) for the period 1961–2000. As this is
a rather short period for calculations of long-term
trends, all trends computed within this analysis were
simple linear trends covering the whole period
1961–2000. For all RCMs and for the new ENSEM-
BLES observational gridded dataset as a reference, we
computed linear yearly and seasonal trends for the
land fractions of 8 regions for this time period. The dif-
ference between the calculated trend for each RCM

and the trend in the reference dataset was then used to
compute skill scores for each model, season, and
region. For aggregation of the skill scores for the 8
regions into a general skill score for Europe, 2 different
methods were applied. Our final skill score was used in
the ENSEMBLES RCM weighting system as described
by Christensen et al. (2010).

2.  MODELS AND DATA

Validation of temperature trends was performed for
the ENSEMBLES RCM simulations for Europe on a
horizontal resolution of about 25 km; these simulations
were initialized and driven at their lateral boundaries
by the reanalysis data set ERA40 (Uppala et al. 2005)
from the European Centre for Medium Range Weather
Forecasts (ECMWF). The respective institutions, model
names, and acronyms for referencing the individual
simulations within this paper are listed in Table 1. For
all RCM simulations listed in Table 1, we used monthly
mean near-surface (2 m) temperature downloaded
from the ENSEMBLES RCM data base at DMI (http://
ensembles-eu.metoffice.com).

The gridded land-only ENSEMBLES data set E-OBS
(v. 2) based on station measurements (Haylock et al.
2008, Klok & Klein Tank 2009) was used as the refer-
ence. This dataset is available for Europe in several
grid resolutions; we used the version on a regular 0.25°
grid.

Three additional global near-surface temperature
datasets were incorporated for comparison. First, we
used the observational dataset from the Climate
Research Unit (CRU) v. TS3, which is a gridded land-
only dataset based on station measurements (Mitchell
& Jones 2005). Both the E-OBS and the CRU datasets

168

Institution RCM Acronym

Met Eireann, Community Climate Change Consortium for Ireland C4I RCA3.0 C4I
Czech Hydrometeorological Institute ALADIN CHMI
Météo-France CNRM RM4.5 CNRM
Danish Meteorological Institute HIRHAM5 DMI
Swiss Institute of Technology CLM ETHZ
UK Met Office, Hadley Centre for Climate Prediction and Research HadRM3 HC-Q0, HC-Q3, HC-Q16
The Abdus Salam International Centre for Theoretical Physics RegCM3 ICTP
The Royal Netherlands Meteorological Institute RACMO2 KNMI
The Norwegian Meteorological Institute HIRHAM METNO
Max Planck Institute for Meteorology REMO MPI-M
OURANOS Consortium on Regional Climatology and Adaptation to Climate Change MRCC4.2.3 OURANOS
Swedish Meteorological and Hydrological Institute RCA3.0 SMHI
Universidad de Castilla La Mancha PROMES UCLM

Table 1. Institutions, model names, and acronyms used in this paper for the ENSEMBLES RCM simulations. The Hadley Centre
performed 3 ERA40-driven regional climate model (RCM) simulations with different versions of the HadRm: HC-Q0 is the 

version with ‘normal’ climate sensitivity, HC-Q3 with ‘low’ climate sensitivity, and HC-Q16 with ‘high’ climate sensitivity
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make use of partly the same underlying station data,
which makes these observational datasets not com-
pletely independent from each other. Furthermore,
near-surface temperatures from ERA40 and from the
NCEP/NCAR reanalysis (hereafter NCEP) provided by
the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their web site at www.esrl.noaa.gov/psd/ (Kalnay
et al. 1996) were investigated. All 3 additional datasets
were remapped from their original resolutions (CRU:
0.5°, ERA40: about 1.125°, NCEP: about 1.9°) to the
regular 0.25° grid using only land points before per-
forming the analysis.

3.  METHODS

We first describe the computation of linear trends on
an annual and seasonal basis for several European
sub-regions. Second, the definition of skill scores de-
pending on the difference of the computed linear
trends from the respective RCM against the computed
linear trend from the E-OBS dataset is given. Third, the
aggregation from the annual and seasonal skill scores
computed for each European sub-region into annual
and seasonal skill scores valid for all of Europe is
defined. Last, the combination of the annual and sea-
sonal skill scores into a general skill score resulting in
1 general weight per RCM is introduced.

3.1.  Linear trend computation

To analyze the temperature trend, we
used linear regression. In this method, a
regular time series can be described by
Eq. (1):

(1)

where yi is the value of any variable at time
step i, α and β are the regression coeffi-
cients, ti is the year at time step i, and ri is
the residual value between the temperature
value and the value given by the regression
line at time step i. In our case (estimation of
trends), we were interested in the regres-
sion parameter β, which gives the magni-
tude and direction of the slope of the
regression line.

For the computation of the linear regres-
sion coefficients α and β, the sum Q of the
squares of the residuals for each time step
(n is the number of time steps) has to be
minimized (method of least squares):

(2)

For minimized Q, the resulting regression parameter β
can be computed using Eq. (3):

(3)

with overbars indicating the mean value of the time
series.

With this method, linear temperature trends were
computed for all datasets mentioned in the previous
section. The trends were computed for the 8 Euro-
pean sub-regions shown in Fig. 1, the so called ‘PRU-
DENCE regions’ defined within the EU-project PRU-
DENCE. In a first step, monthly area mean values of
2 m temperature were computed for the land fraction
of each sub-region. Out of these monthly values,
annual and seasonal mean values were computed,
which built the basis for the computation of the linear
trends.

For the annual and seasonal means, the slope para-
meter β (referred to hereafter as ‘trend’ ) and the
sum of the squared residuals Q (Eq. 2) were com-
puted for the period 1961–2000 for each region. The
resulting values for β were multiplied by 10; there-
fore, these values represent the decadal linear trend
(in K decade–1).
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Fig. 1. Eight European sub-regions defined within the PRUDENCE project
after Rockel (figure originally appeared in Christensen & Christensen
2007). 1: British Isles (BI), 2: Iberian Peninsula (IP), 3: France (Fr), 4: Mid-
Europe (ME), 5: Scandinavia (Sc), 6: Alps (Al), 7: Mediterranean (Md), 8: 

Eastern Europe (EE) 
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3.2.  Skill score computation

Skill scores (S) were computed for each RCM, each
season, and each region from the trends by:

(4)

S by definition is between 0 and 1, where 0 indicates a
large absolute difference between the estimated trend
in the RCM (β) and in the reference data set (βREF) and
1 indicates no difference. ζ is a scaling parameter for
the resulting skill score S: for very small absolute trend
differences between the trends in the RCM (β) and in
the reference data set (βREF), S reaches the value of 1;
for differences as large as ζ, S gets a value of 0.5; and
for differences much larger than ζ, S reaches the value
0. The choice of ζ influences the magnitude of the skill
score spread of the RCM suite, but it does not influence
the skill score order of the RCMs. Tests with different
values of ζ were carried out (0.1, 0.5, and 2.0 K de-
cade–1); in the ENSEMBLES weighting system, we
assigned ζ a value of 0.5 K decade–1.

3.3.  Spatial aggregation of skill scores

For combining the individual skill scores for the 8
PRUDENCE regions into 1 aggregated skill score for
all of Europe, 2 different methods were applied:

First, a simple arithmetic mean of the 8 skill scores of
the regions was calculated for each model, resulting
in equal weights for each region. This representation
of an unweighted aggregated skill is denoted in the
figures and tables as EUR-U.

Second, the skill scores of the individual PRUDENCE
regions were weighted depending on the magnitude of
the sum of the squared residuals Q (Eq. 2) of the refer-
ence E-OBS dataset for the individual regions. For
smaller (larger) values of Q for a specific region, the
time series is more (less) correlated with the regression
line, and therefore the estimated trend corresponds
more (less) to a linear trend function and should be
given a higher (lower) weight. Consequently, the
weights Wr for each region (r) were computed for each
season (Eq. 5) based on the Q values from the refer-
ence E-OBS dataset:

(5)

Similar to ζ in Eq. (4), ξ is a scaling parameter: for
very small values of Q, W reaches 1; if Q is equal to ξ,
W gets the value 0.5; and for values of Q much larger
than ξ, W reaches 0. Tests with different values of ξ
were carried out (2, 10, and 50 K). For the ENSEM-
BLES weighting system, a value of 10 K was used for ξ.

The aggregated skill score for Europe, SEUR, was com-
puted by Eq. (6):

(6)

This weighted aggregated skill is denoted in the
figures and tables as EUR-W.

3.4.  Combination of annual and seasonal skill scores

Finally, the skill scores based on annual and seasonal
mean values were combined into general skill scores.
For the ENSEMBLES weighting system, the ability of
the models to realistically simulate the general trend
can be considered more important than their ability to
simulate the individual seasonal trends. The computed
seasonal trends could be influenced by a shift in the
phase of the annual cycle of 2 m temperature. As the
analysis of the annual cycle is part of another metric of
the ENSEMBLES RCM weighting system (Christensen
et al. 2010), here we decided to give the skill scores
based on the annual mean values a higher weight than
the skill score based on seasonal mean values, namely
a weight of 0.5 for the skill score based on the annual
mean, and 0.125 for each of the skill scores based on
the 4 seasonal means, leading to Eq. (7):

(7)

4.  RESULTS

Computationally derived linear trends are statistical
quantities derived from time series; therefore, we first
show examples of the temporal evolutions of annual
mean near-surface temperatures in the observational
datasets and in the ENSEMBLES RCMs. Fig. 2 shows
the time series for the PRUDENCE regions British Isles
(BI), Iberian Peninsula (IP), France (Fr), Mid Europe
(ME), Scandinavia (Sc), Alps (Al), Mediterranean (Md),
and Eastern Europe (EE). Both observational datasets
E-OBS and CRU showed very similar characteristics.
For some regions, the 2 m temperature from the ERA40
reanalysis was very similar to E-OBS and CRU (e.g. Fr),
while there were significant differences in other re-
gions, e.g. Sc. These systematic biases between ERA40
and CRU, which were strongest for the beginning of
the analysis period, have also been identified for
Northern Europe by Keup-Thiel et al. (2006). This can
partly be explained by gaps in the availability of syn-
optic surface data in ERA40 prior to 1967 (Simmons &
Jones 2004). The first major result from this analysis
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Fig. 2. Annual mean 2 m temperatures (°C) (running 5 yr mean) in the observational datasets and in the ENSEMBLES RCMs for
the PRUDENCE regions British Isles (BI), Iberian Peninsula (IP), France (Fr) and mid-Europe (ME), Scandinavia (Sc), Alps (Al), 

Mediterranean (Md), and Eastern Europe (EE)
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is that the 2 m temperatures in ERA40 are not similar
in all regions to the those from the 2 observational
datasets, which were very close to each other. For the

NCEP reanalysis dataset, in most regions larger differ-
ences to the observational datasets were found than in
ERA40. In contrast to ERA40, this reanalysis did not

172

Fig. 3 (this and the next page). Differences of linear trends in 2 m temperature (K decade–1) with respect to E-OBS based on
(a) annual, (b) winter (DJF), (c) spring (MAM), (d) summer (JJA), and (e) autumn (SON) mean values for CRU (solid purple bars),
ERA40 (solid red bars), NCEP (solid green bars), and all ENSEMBLES RCMs (hatched bars) for all PRUDENCE regions. The 

sorting order of the bars for each region corresponds to the sorting order within the key
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incorporate surface temperature observations, and
hence gave an estimate for what the temperature
trends would be in a GCM driven by sea surface tem-
peratures (SSTs) and forced to have the observed cir-
culation.

In the ENSEMBLES RCMs, systematic biases in the
absolute values of seasonal means are obvious with
respect to observations for near-surface temperature
(Christensen et al. 2010). However, these kinds of
biases are not the subject of the present analysis,
which concentrated on trends only. For E-OBS and
CRU, no clear trends were visible in Fr within the first
half of the analysis period (1960–1980; Fig. 2), while
there were clear rising trends for the second half
(1980–2000), which could be associated with aerosol
decreases in this period (e.g. Ruckstuhl et al. 2008, van
Oldenborgh et al. 2009). For the RCMs, very small
downward temperature trends were visible for
1960–1980, and like in the observations, a clear posi-
tive trend for 1980–2000. Although there were varia-
tions, the previously described findings for Fr in princi-
ple also hold for all other regions except Sc, where it

was difficult to see a clear trend in the time series plot
(Fig. 2). In most regions, a positive trend was visible in
the second half of the analysis period (1980–2000) in
the observations and in the simulated data.

Linear trends were computed using Eq. (3) for all
observational datasets and RCMs, and for all PRU-
DENCE regions based on the seasonal means as well
as on the annual mean values. Fig. 3a shows the com-
puted linear trend differences with respect to the E-
OBS reference dataset based on annual mean values.
It is remarkable that for all regions, the estimated
trends from the individual RCM simulations were
weaker than the trends computed for E-OBS, visible in
the negative sign of the trend differences to E-OBS
(for the different regions, the calculated absolute trend
values for E-OBS ranged between 0.20 and 0.34 K de-
cade–1). The computed trends for CRU were stronger
in some regions than the trends for E-OBS, and in the
other regions they only showed small differences to E-
OBS. Furthermore, in all but 1 region (Md for the MPI-
M RCM), they were larger than the trends computed
for each individual RCM simulation. The trends com-

173

Fig. 3 (continued)



Clim Res 44: 167–177, 2010

puted for ERA40 were smaller in most regions than for
E-OBS or CRU, but still larger than these for most of
the RCMs. The trend differences for NCEP were gen-
erally larger than those for ERA40 and of similar mag-
nitude to those computed for the RCMs, which could
be due to missing processes in both the RCMs and the
NCEP/NCAR reanalysis.

Concerning the 3 realizations done by the Hadley
Centre (HC-Q0, HC-Q3, HC-Q16), for all regions the
high sensitivity run (HC-Q16) showed larger tempera-
ture trends than the normal sensitivity run (HC-Q0),
while the latter showed larger trends than the low sen-
sitivity run (HC-Q3). This set of experiments shows
that the sensitivity of the model influences the calcu-
lated trends.

The trends for the RCMs were similar for some
regions, such as BI, while they were quite different—
sometimes even with opposite sign of the absolute
trend value (not shown)—for other regions, such as
EE. All analyzed RCM simulations used the same dri-
ving dataset (ERA40) at their lateral boundaries. The
climate in Europe is dominated by pressure systems
travelling from west to east like in most regions of the
mid-latitudes, leading to the strongest influence of the
lateral boundary forcing data on the western boundary
of the RCM simulations. Furthermore, SSTs from the
ERA40 reanalysis were prescribed for all RCMs. Con-
sequently, region BI, as it is close to the western
boundary and is surrounded by water, was more
strongly influenced by the forcing data than the EE
region, which is far away from the western boundary
and has less sea areas (see Fig. 1) and a more continen-
tal climate, leading to a higher spread between the
individual RCM simulations in EE than in BI. This can
be summarized as follows: for a continental climate,
the ensemble of RCM simulations showed a larger
spread in 2 m temperature than for a maritime climate.
This was also reported in the PRUDENCE project
(Roeckner & Jacob 2008), which was based on an
ensemble of GCM-driven simulations.

With regard to the seasonal temperature trends, for
winter (DJF; Fig. 3b), the values for linear trends of
most RCMs agreed better in general with the trends for
E-OBS (visible by smaller magnitudes of the trend dif-
ferences), CRU, and ERA40. The trends in winter are
caused to a large extent by the shift towards a more
predominately westerly circulation (e.g. van Olden-
borgh et al. 2009). As this circulation is prescribed at
the boundaries, the relatively good agreement is not
very surprising. However, in winter, the RCMs from
CHMI and CNRM produced significantly larger nega-
tive trend differences to the observational datasets.
The reason for this is still unclear.

For spring (MAM; Fig. 3c), most RCM results again
showed significantly smaller trend values than E-OBS

and CRU for all regions (and also smaller than ERA40
for most regions). Here the exception was the ICTP
RCM, which showed the largest trends of all RCMs in
all regions and exceeded the values for E-OBS and
CRU in most regions.

For summer (JJA; Fig. 3d), the trend differences to
E-OBS calculated for most RCMs were again negative
in many regions. Furthermore, the trend differences
for the RCMs were again larger than those for the CRU
data, but of similar magnitude to the trend differences
for ERA40 data. For many regions, the CNRM RCM
results showed only small differences to E-OBS and
CRU data. Results from the OURANOS RCM showed
rather large negative trend difference values in some
regions (the data from the ETHZ RCM showed the
same behavior in weaker form). Interestingly, for the
PRUDENCE region of Sc, NCEP and all RCMs except
the one from CNRM calculated negative absolute trend
values, while E-OBS, CRU, and ERA40 data showed
positive absolute trends (not shown).

For autumn (SON), E-OBS, CRU, and ERA40 data
had small positive absolute trend values for the west-
ern regions BI, IP, and Fr, while they had almost no
absolute trend for all other regions, except EE, where
they had a clear negative absolute trend (not shown).
Most of the RCMs in general simulated small negative
trend differences compared to E-OBS and CRU data
(Fig. 3e). However, in all regions, the CNRM RCM sim-
ulated the highest trends of all RCMs, even exceeding
the trends from E-OBS and CRU data in all regions
except IP. Furthermore, for all regions, the ICTP RCM
data included the largest negative trend differences.

The skill scores computed by Eq. (4) depict the
absolute linear temperature trend difference of the
respective RCM results (or CRU, ERA40, and NCEP
data) with respect to the reference dataset E-OBS: the
smaller the absolute difference was, the larger was the
assigned value for S. As an example, the skill scores
based on the annual mean values (Fig. 4a) in general
showed the highest values for comparison with CRU
data (above 0.9) followed by ERA40 data. For most
regions, the RCMs simulated similar values of around
0.7–0.9, with significant lower values of around 0.6–
0.8 for Sc for the chosen value of 0.5 K decade–1 for ζ in
Eq. (4). The other tested values of 0.1 K decade–1 (1.0 K
decade–1) for ζ did not change the skill score order of
the RCMs, but changed the range to about 0.3–0.7
(0.85–0.95) for most regions (not shown).

For the aggregation of the individual skill scores
for the 8 PRUDENCE regions, weighting factors were
computed by Eq. (5) with a value of 10 K for ξ. They
showed moderate variations for the different regions
and seasons (Fig. 5). Tests with values of 2 K (50 K) for
ξ in Eq. (5) did not change the order of the weighting
factors of the different regions, but made the spread
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Fig. 4. Skill scores based on (a) annual mean values and (b) combined skill scores for CRU, ERA40, and the ENSEMBLES RCMs
for all PRUDENCE regions and aggregated for Europe (EUR-U, unweighted and EUR-W, weighted). The sorting order of the bars 

for each region corresponds to the sorting order within the key
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larger (smaller). The highest regional weighting fac-
tors were found for the regions BI, IP, and Md, indicat-
ing that for these regions the temperature time series
was slightly better represented by a linear trend than
for regions like Sc and EE with comparable small area
weighting factors. As a consequence of the described
relatively small variations in the weighting factors for
the different regions, the unweighted European mean
skill scores showed very similar values as the weighted
European mean skill scores (see columns EUR-U and
EUR-W in Fig. 4a). This finding also holds when the
region weighting factors were computed with values
for ξ (Eq. 5) of 2 K and 50 K instead of 10 K.

As a third method, European skill scores were com-
puted considering the whole of Europe as 1 separate
region (not shown). Again, the resulting skill scores
were very similar to the simple unweighted (EUR-U)
and weighted (EUR-W) European skill scores.

Finally, for all regions and aggregated for Europe,
the skill scores based on the annual and on seasonal
mean values were combined into overall skill scores by
Eq. (6). Given that in this formula, the skill score based
on the annual temperatures had a much larger influ-
ence than the skill scores based on the seasonal tem-
peratures, it is understandable that the combined skill
scores (Fig. 4b) were similar to the skill scores based on
the annual values (Fig. 4a). The combined and weighted
European skill scores (EUR-W) shown in Fig. 4b were
included in the general ENSEMBLES RCM weighting
system (Christensen et al. 2010).

5.  CONCLUSIONS

The linear trend values based on annual mean near-
surface temperatures for 1961–2000 in all analyzed
regions for all RCMs (and also the NCEP/NCAR
reanalysis) were weaker than in the observational
datasets E-OBS and CRU. This is surprising, since all
RCMs were driven by quasi-observed lateral boundary
conditions and SSTs from the global reanalysis dataset
ERA40. The fact that all RCMs underestimated the
trends seen by the observational E-OBS dataset implies
that no combination of the RCMs with any set of posi-
tive weights can replicate the observed trend.

For ERA40 data, the linear trends in 2 m tempera-
tures in most regions showed smaller values than the
ones in the E-OBS or CRU data, but in general they
were not as small as for the RCMs. The investigation of
the reasons for the systematic underestimation of the
linear trends in the RCMs is beyond the scope of the
present analysis. Nevertheless, having the largest
trends in the observational dataset, and the smallest in
the RCM results, points to deficiencies in their model-
ing systems, and even in the reanalysis systems of

NCEP and ERA40. Possible causes include missing pro-
cesses such as a realistic description of dust aerosols or
regional feedback processes. Especially in the summer
season, such regional feedback processes include soil
moisture exhaustion or decreasing cloud cover, which
can impact the temperature developments. Also, poten-
tial shortcomings in the observational datasets may
play a role and need further investigation.

In the analysis of linear trends based on seasonal
mean temperatures, some models showed rather large
(or small) trends for all analysis regions for individual
seasons, mostly associated with opposite behavior in
other season(s). A possible reason for this behavior
may be shifts in the phase of the annual cycle of near-
surface temperatures in the RCM simulations.

In this study, we used a simple linear trend analysis
for 8 large European regions to evaluate the ability of
the ENSEMBLES RCMs to realistically simulate the
observed trends of near-surface temperatures. This
task could also be tackled by other more elaborate
methods to investigate the robustness of the results.
Furthermore, it would be interesting to analyze trends
for smaller sub-regions, which has not been done and
which would require reliable observational data sets
with a high density in the regions under investigation.

The computed skill scores have been used for inclu-
sion in the ENSEMBLES RCM weighting system
(Christensen et al. 2010). Skill scores were of similar
magnitude for all analysis regions except for Sc, where
most RCMs showed a lower skill score. Nevertheless,
the magnitude of the spread of the computed skill
scores for different RCMs and different regions is
influenced by the choice of the scaling parameters ζ
(Eq. 4) and ξ (Eq. 5). Furthermore, the spatially aggre-
gated (temporally combined) skill scores were deter-
mined by the formulation of Eq. (5) (Eq. 7), which again
has a subjective component. Therefore, these subjec-
tive parts in the definition of the presented weighting
metric influence the overall model weights of the
ENSEMBLES RCM weighting system and should be
further investigated.
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