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1. INTRODUCTION 
 

The scientific understanding of Earth’s climate system 
is now sufficiently developed to show that climate 
change from anthropogenic greenhouse gas forcing is 
already upon us, and the rate of change as projected 
exceeds anything seen in nature in the past 10,000 
years. The indisputable evidence of global warming and 
the knowledge that surface temperatures will continue 
to rise over the next several decades under any plausible 
emission scenario is now a factor in the planning of 
many governments, businesses, and socio-economic 
sectors for which climate sensitivity and vulnerability is 
high. It does not imply, however, that future changes 
will be uniform around the globe. On the time scale of a 
few years to a few decades ahead, regional and seasonal 
variations in weather patterns and climate, and their 
corresponding impacts, will be strongly influenced by 

natural, internal variability. Decision makers in diverse 
arenas thus need to know the extent to which the climate 
events they are seeing are the product of this natural 
variability, and hence can be expected to reverse at 
some point, or are the result of potentially irreversible, 
forced anthropogenic climate change.  
 
Efforts to predict the evolution of climate over the next 
several decades that take into account both forced 
climate change and natural decadal-scale climate 
variability are in their infancy. Many formidable 
challenges exist. For example, climate system 
predictions on the decadal time scale will require 
initialization of coupled general circulation models with 
the best estimates of the current observed state of the 
atmosphere, oceans, cryosphere, and land surface – a 
state influenced both by the current phases of modes of 
natural variability and by the accumulated impacts to 



  

date of anthropogenic radiative forcing. However, given 
imperfect observations and systematic errors in models, 
the best method of initialization has not yet been 
established, and it is not known what effect initialization 
has on climate predictions. It is also not clear what 
predictions should be attempted or how will they be 
verified. The brevity of most instrumental records 
furthermore means that even the basic characteristics 
and mechanisms of decadal variations in climate are 
relatively poorly documented and understood. As a 
consequence, the representation of natural variability 
arising from the slowly-varying components of the 
climate system differs considerably among models, so 
the inherent predictability of the climate system on the 
decadal time scale is also not well established. Demands 
will therefore be made on observations, particularly 
ocean observations, not only to describe the state of the 
climate system and improve knowledge of the 
mechanisms that give rise to decadal fluctuations in 
climate, but also to provide the optimal observations for 
decadal climate predictions and their verification. 
 
The purpose of this paper is to outline the most 
significant issues and the challenges of producing 
skillful predictions of the evolution of the climate 
system on the time scale of years to decades ahead. A 
very brief overview of observed decadal variability and 
its associated impacts is presented in the following 
section, while a much more detailed description of the 
processes that give rise to such variability is presented 
in a companion white paper [1]. Different sources of 
predictability on decadal time scales are described in 
Section 3, while Section 4 describes issues associated 
with initializing coupled climate models (see also [2]). 
First attempts at initialized, decadal predictions and the 
challenge of verifying such predictions are summarized 
in the following two sections, while the paper concludes 
with some brief comments on the particular importance 
of ocean observations for emerging decadal prediction 
systems.  

 
2. OBSERVED DECADAL VARIABILITY AND 
IMPACTS 
 
Global warming will continue over the next several 
decades under any plausible emission scenario but will 
inevitably be accompanied by regional scale variability 
and change, which can have profoundly important 
impacts. Examples include the Dust Bowl drought of 
the 1930s, the Sahelian drought of the 1970s and 1980s, 
the ongoing drought in the southwestern US, and 
decadal scale changes in Atlantic hurricane activity. 
They are associated with differences in land and ocean 
temperatures, as well as differences among the oceans. 
It is a central challenge of climate science to attempt to 
predict such regional scale climate variability and 
change over time scales of decades.  
 

The most prominent example of a natural, coupled 
ocean-atmosphere phenomenon is the El Niño-Southern 
Oscillation (ENSO). El Niño events are typified by very 
strong warming of the central and eastern tropical 
Pacific Ocean with cooling over portions of the 
subtropics and the tropical western Pacific. These 
differences in regional sea surface temperature (SST) 
perturb the global atmospheric circulation so that some 
regions become warmer and wetter, while other regions 
cool and dry out. Historically, El Niño events occur 
about every 3 to 7 years and alternate with the opposite 
phase of below-average temperatures in the eastern 
tropical Pacific (La Niña).   
 
The nature of ENSO has varied considerably over time, 
however, and in recent years many studies have 
documented decadal and longer-term variability of 
ENSO and Pacific climate in general [3]. Decadal to 
inter-decadal variability in the atmospheric circulation is 
especially prominent in the North Pacific [4] where 
fluctuations in the strength of the wintertime Aleutian 
Low pressure system co-vary with North Pacific SST 
(Fig. 1, top) in what has been termed the “Pacific 
Decadal Oscillation” or PDO [5]. Very similar time 
scale fluctuations in SST and atmospheric and ocean 
circulation are present across the whole Pacific Basin, 
and these variations are known as the Inter-decadal 
Pacific Oscillation (IPO; [6], [7]). Phase changes of the 
PDO/IPO are associated with pronounced changes in 
temperature and rainfall patterns across North and South 
America, Asia and Australia ([8], [9], [10]), as well as 
important ecological consequences, including major 
shifts in distribution and abundance of zooplankton and 
important commercial species of fish [11]. Furthermore, 
ENSO teleconnections on interannual time scales 
around the Pacific basin are significantly modified by 
the PDO/IPO.   

  
The inter-decadal time scale of tropical Indo-Pacific 
SST variability is likely due to oceanic processes. In 
another OceanObs’09 white paper [1], describe the 
mechanisms likely responsible for observed decadal 
variations in climate, not only over the Pacific but also 
over the Atlantic sector. There, in contrast to the 
tropical Pacific, decadal variability has large amplitude 
relative to interannual variability, especially over the 
North Atlantic ([12], [13], [14]). Multi-decadal 
variability in the SSTs in the Atlantic has been termed 
the “Atlantic Multi-decadal Oscillation”, or AMO 
(Fig. 1, bottom). Instrumental records are not long 
enough to determine whether this variability has a well 
defined period rather than a simpler character, such as 
“red noise”. The robustness of the signal has therefore 
been addressed using paleoclimate records, and similar 
fluctuations have been documented through the last four 
centuries [15]. Numerous modelling studies have 
examined potential links between the AMO and the 
Atlantic Meridional Overturning Circulation (MOC), 



  

but the nature of the observed relationship is unclear 
owing to a lack of long-term, continuous, records of the 
MOC. There is clear evidence, however, of decadal 
variability in the heat and freshwater content of the 
Atlantic Ocean [16], as well as evidence of ocean 
circulation changes in recent decades ([17], [18]) that 
have likely played an important role in the evolution of 
the Atlantic SSTs. 

 

 
 
Figure 1. Top panel: Pacific Decadal Oscillation, as 
denoted by annual SST based on the leading EOF SST 
pattern for the Pacific basin north of 20°N, updated 
from Mantua et al. 1997. The color fill in both the upper 
and lower panels is from a low-pass symmetric filter 
with 13 total weights and a half-power point at 16 year 
periods, with the end points reflected. Bottom Panel: 
Atlantic Multidecadal Oscillation, as denoted by the 
low-pass filtered  time series of annual SST anomalies 
averaged over the North Atlantic (0-60°N, 0-80°W) 
relative to 1901 to 1970 (°C). The color fill depicts the 
low-pass filtered SST, and the solid lines are annual 
means. Updated from [19].  

 
The slow changes in Atlantic SSTs have affected 
regional climate trends over parts of North America and 
Europe ([13], [20]), hemispheric temperature anomalies 
[21], sea ice concentration in the Greenland Sea [22], 
Arctic Ocean conditions [23], hurricane activity in the 
tropical Atlantic and Caribbean ([24], [25], [19]) and 
fisheries production in the northern North Atlantic [26]. 
In addition, tropical Atlantic SST anomalies have 
contributed to rainfall anomalies over the Caribbean and 
the Nordeste region of Brazil, and severe multi-year 
droughts over parts of Africa including the Sahel ([27], 
[28], [29], [30]). Tropical Atlantic SST variations are 
also a factor in producing drought conditions over 
portions of North America, although tropical Pacific 

SST variations appear to play a more dominant role 
([31], [32], [33]).  

 
This brief survey of observed decadal climate variability 
makes it clear that, on the regional scales on which most 
planning decisions are made, anthropogenic climate 
change signals will be strongly modulated by natural 
climate variations, and especially those driven by the 
slowly varying oceans on a time scale of decades. This 
non-uniformity of change highlights the challenges of 
regional climate change that has considerable spatial 
structure and temporal variability. Moreover, it 
illustrates the need to predict not just the change in 
global mean temperature, but the patterns of SSTs 
around the globe as accurately as possible. A robust 
ocean observing system will be crucial to such decadal 
climate predictions. 

 
3. SOURCES OF PREDICTABILITY 
 
3.1. External Forcing 
 
A significant source of predictability on the decadal 
time scale is associated with radiative forcing changes. 
Past emissions of greenhouse gases have committed the 
climate system to future warming as the ocean comes 
into equilibrium with the altered radiative forcing ([34], 
[35]). Changes in solar irradiance and volcanic activity 
in the recent past also can provide some level of decadal 
predictability as the climate system responds to these 
forcing changes on decadal scales.  

 
The best possible estimates of future radiative forcing 
changes are also needed for predictions. Estimates of 
future emissions of radiatively important pollutants are 
needed for making predictions, as well as modeling 
capabilities to accurately simulate both how these 
pollutants affect the global energy, carbon and sulfur 
cycles, and how the climate system subsequently 
responds to that altered forcing. In this regard, future 
external forcing from greenhouse gases is likely to 
provide significant regional decadal predictability [36], 
since the increase of concentrations over the next 30 
years is about the same no matter what emission 
scenario is followed ([37]). While man-made aerosols 
can be washed out of the atmosphere by rain in just a 
few days, they tend to be concentrated near their sources 
such as industrial regions, and can affect climate with a 
very strong regional pattern. Future changes in 
anthropogenic aerosols, therefore, could have very 
significant regional climatic impacts on decadal scales. 
Unpredictable volcanic eruptions can be a significant 
“wild card” to decadal climate predictions, although 
techniques to handle this aspect are under consideration. 
Similarly, only very general features of the 11-year 
solar cycle can be projected, but could provide some 
decadal scale predictability. The influence of the 
stratosphere, by transmitting external forcing signals to 



  

the troposphere, might also be a significant source of 
predictability.  

 
3.2. Natural Internal Variability 
 
There have only been a handful of efforts to assess the 
predictability of the tropical and extratropical ocean 
state, especially on decadal to inter-decadal time scales. 
A classic measure of predictability is how rapidly two 
similar states diverge from each other with 
predictability being lost when the two states are as far 
apart as two randomly chosen states. Using a 40-
member ensemble of Community Climate System 
Model (CCSM-3; [38]) simulations that differ only in 
their initial atmospheric states, for the globe as a whole 
the limit of predictability for annual means of average 
upper-ocean temperature is about a decade (Fig. 2). 
There is less predictability of the global SST field 
because of the stronger influence of high-frequency 
atmospheric variability on surface temperature. The 
results in Fig. 2 are model dependent and could change 
with better models. 

 

 
 
Figure 2. Global Root-Mean-Square-Difference 
(RMSD) in surface and upper-ocean (0-300 m) 
temperature from 780 pairs of coupled climate model 
simulations, derived from an ensemble of 40 
simulations. Each simulation differs only in the 
specification of the initial atmospheric state. The RMSD 
from completely random states are given by the 
horizontal, dashed lines.  Courtesy of Grant Branstator 
and Haiyan Teng. 
 
Regionally, the predictability of SST can be higher than 
for the global field (not shown), with the highest levels 
on decadal time scales over the middle to high latitude 
ocean areas of both hemispheres, especially in regions 
where the surface layer makes contact with the deeper 
ocean beneath [39]. A fundamental precept in 
predictability is the notion that long-lived variations, 
such as those associated with the PDO or changes in the 

strength of the Atlantic MOC, can be predicted for a 
significant fraction of their lifetimes. This is simply a 
reflection of the fact that the persistence of the variation 
implies a stable balance that permits the variation to 
have an extended lifetime. Thus, there is some 
confidence that naturally occurring climate variations 
with decadal time scales can, at times, be predictable 
given an accurate initial state. These times are likely to 
be when a significant amplitude variation exists. At 
other times, particularly the nascent phase of variation 
growth, the predictability of variations is likely to be 
quite delicate and require a very accurate depiction of 
the current state of the climate system if there is to be 
any hope of accurate prediction. 
 
Studies of simulated variability help to identify signals 
of potential predictability.  For the Atlantic MOC, [40] 
found damped oscillatory MOC variability with a 50-
year time scale. Reference [41] demonstrated decadal 
predictability for several ocean fields in the GFDL 
model, and [42] found comparable levels of 
predictability in several independent climate models. 
Such studies, while provocative, are however limited by 
the fidelity of the models used and insufficient 
observations to fully evaluate the physical relevance of 
the simulations.  
 
The Atlantic MOC index is shown from eight different 
coupled climate model simulations in Fig. 3. Several 
points are salient to the decadal prediction problem:  

 
• The amplitude and spectra (not shown) of the 

MOC variability span a wide range, with some 
models showing periods of quasi-regular multi-
decadal oscillations and others showing highly-
damped variations whose power is focused more 
on interannual time scales. Perfect model 
predictability experiments would likely show 
correspondingly distinct behaviors. 

 
• The GFDL simulations CM2.1, CM2M, and 

CM2G use identical atmosphere, sea ice, and land 
models. Only the ocean model configurations 
differ; yet, the simulated Atlantic MOC variations 
exhibit considerable differences, with CM2G 
illustrating very little power at the decadal time 
scale. Such results illustrate the potential 
sensitivity of simulated variability to details of the 
ocean configuration and the corresponding 
representation of ocean processes. 

 
• In the CCSM-3 simulations, both the mean value 

of the Atlantic MOC and the amplitude of its 
variability have significant dependency on the 
atmospheric resolution ([43], [44]). There is a ~20 
year period of variability in both model 
configurations, in contrast to the longer-term 
variability evident in CCSM-4.  



  

• The paucity of observational data precludes a 
definitive statement as to which simulation best 
approximates nature. However, no model 
replicates time series like the observed AMO. 

 
The above results highlight some fundamental 
challenges and requirements, since the feasibility of 
decadal predictions largely stems from the role the 
ocean plays in the predictability of slowly evolving 
modes of variability. The challenge then is to have the 
capability to accurately represent this low frequency 
climate variability within climate models, so that 
initializing them offers the potential to predict the 
internal variability of the real climate system. To 
improve the representation of the internal variability in 
models, it will be necessary to compare and contrast the 
physical mechanisms that give rise to the simulated 
variability, with the goal of establishing organizing 
principle(s) to rationalize the wide ranging simulation 
behaviors evident in Fig. 3. Such analyses will 
ultimately lead to an assessment of the importance of 
certain physical processes for setting the simulated 
variability, as well as to an improved representation of 
those processes in models. Paleoclimate reconstructions 
will also play an important role in constraining the 
model simulated variability.  
 
Finally, it should be noted that many climate and 
biogeochemical variables exhibit long-term persistence 
that could be exploited using statistical forecasting 
schemes. Physical damping of high-frequency 
variability increases the decadal signal to noise ratio and 
hence the potential predictability on decadal timescales. 
Simple linear multivariate decadal prediction schemes 
that exploit the long-term damped persistence of certain 
physical processes may, in fact, be quite successful [46], 
but they rely heavily on long-term data sets to 
accurately estimate the covariance matrix. With their 
potential for long records, paleoclimate reconstructions 
may be of use in estimating such statistical relationships 
and developing predictive models. For example, a 
statistical model for predicting regime shifts in the 
AMO has been developed [47]; similar methodology 
could be applied for other climatic shifts.  
 
4. INITIAL CONDITIONS 
 
An important research question is “How accurately 
must the initial state be described to yield outlooks that 
are useful to society?” Prediction of the full coupled 
climate system requires an initial state to be specified 
based upon observations and a data assimilation system. 
All sorts of atmospheric observations are routinely 
processed in real time for numerical weather prediction 
purposes, and surface fields, including fluxes potentially 
useful for coupling, result from these analyses. 
However, surface fluxes of a reanalysis atmospheric 
model with specified SSTs are typically biased [48] and  

 
 
Figure 3. Atlantic MOC index from a suite of coupled 
climate models. Values plotted are departures from the 
respective long-term means (listed along top of each 
graph). Units are Sverdrups (Sv; 1 Sv = 106 m3 s-1). 
GFDL-R15 is from [40]; GFDL-CM2.1 is from [45]. 
CM2M and CM2G are prototype models developed for 
the AR5 IPCC simulations, with each model using the 
same atmosphere, sea ice, and land used in CM2.1, but 
with CM2M using updated ocean physics and CM2G 
using an isopycnal coordinate ocean. CM2.4 uses a ¼° 
square grid ocean component (with roughly 12km 
horizontal resolution in the North Atlantic) and a 1° 
atmosphere that uses the same physics as the 2° CM2.1 
atmosphere. CCSM-3 T42 and T85 [38] use the same 
atmosphere, sea-ice, land, and ocean models, but differ 
in the horizontal resolution of the atmospheric model. In 
both, the ocean model has a nominal 1° horizontal 
resolution. CCSM4 represents a prototype simulation 
that uses newer physics in all components with a 
nominal 2° horizontal resolution, finite-volume 
dynamical core atmosphere and a nominal 1° ocean 
model. 
 
can be very wrong as the ocean acts as an infinite heat 
and moisture source or sink.  
 
For climate predictions, the initial state of the 
atmosphere is less critical, but the initial states of other 
climate system components are vital. For predictions of 
a season to a year or so, the SSTs, sea ice extent and 
upper ocean heat content, soil moisture, snow cover, 
and state of surface vegetation over land are all 
important. Such initial value predictions are already 
operational for forecasting El Niño, and extensions to 
the global oceans are under way. For the decadal 
prediction problem, increased information throughout 
the ocean could be essential ([49], [50], [51], [52]). 
 
Initialization has three main components: the observing 
system, the assimilation method, and the model. These 
three components are combined to produce initial 



  

conditions for the climate model. One needs to keep in 
mind that the initialization problem is different from the 
state estimation problem. Next we examine each 
component and its relation to decadal prediction 
problem, focusing on the role of the ocean.  
 
4.1. The Observing System 
 
Historically the sub-surface ocean has been very 
sparsely observed, and some of the data appear to be 
significantly biased [53], making the development and 
testing of ocean initialization schemes difficult. For 
instance, the non-stationary nature of the ocean 
observing system (Fig. 4), particularly due to the 
paucity of salinity data as well as XBT data only going 
to 500 m, can give rise to spurious decadal variability 
making the assessment of forecasts difficult. 
 

 
 
Figure 4. The global number of temperature 
observations per month as a function of depth. The data 
sources are XBTs, fixed tropical moorings (TAO 
(Pacific), TRITON (Pacific), PIRATA (Atlantic), and the 
developing Indian Ocean array) and Argo floats. The 
apparent horizontal strata reflect the successive 
influence of 450 m XBTs, 750 m XBTs, 500 m TAO-class 
moorings and 1000 m and 2000 m Argo floats. 
 
Studies of historical periods are important in order to 
assess the likely skill of forecasts over a range of 
different climate states. Recent and planned 
improvements to the observational network, however, 
offer significant potential for improvements in future 
forecast skill. Perhaps most important among these is 
the recent (2003) deployment of a global array of 
profiling floats by the Argo program [54]. These 
provide for the first time contemporaneous 
measurements of both temperature and salinity over the 
upper 2 km of the global ocean, potentially offering a 
step change in our ability to initialize ocean heat and 
density anomalies. These measurements, for instance, 
are likely critical in order to make useful predictions of 
the Atlantic MOC (see Fig. 5 of [2]). Another important 
recent contribution is the altimetry data that, in addition 
to its own merits, holds great promise in conjunction 
with Argo. 

 
 

4.2 The Assimilation Method 
 
A simple approach that avoids the difficulties with 
historical sub-surface ocean observations is to initialize 
models by assimilating only SSTs [55], thus relying on 
ocean transport processes in the model to initialize the 
sub-surface ocean indirectly. An alternative approach 
(being tested at NCAR and MPI) is one in which sub-
surface ocean temperature and salinity are diagnosed 
from an ocean model forced by atmospheric 
observations, then nudged into a coupled model to 
produce initial conditions for forecasts. The direct use 
of sub-surface ocean observations, however, would be 
expected to improve forecast skill.  
 
Several reanalyses of historical ocean observations have 
been constructed and are being evaluated through the 
CLIVAR GSOP (Global Synthesis and Observations 
Panel) intercomparison project. Temperature and 
salinity from two of these have already been used to 
initialize models for decadal forecasts ([49], [56]). In 
this way, modeling groups without data assimilation 
schemes can perform initialized climate predictions. 
Ocean data assimilation is used operationally in several 
prediction centers around the world to initialize seasonal 
forecasts with coupled models, and it is from that 
experience that decadal prediction efforts will build [2]. 
Ultimately, however, fully-coupled data assimilation 
schemes that take advantage of covariances between 
ocean and atmospheric variables to generate an optimal 
estimate of the climate system are expected to offer the 
greatest forecast skill. Such schemes are under 
development with some encouraging results [57].   

 
4.3. The Model 
 
Although idealized model experiments show 
considerable promise for predicting internal variability, 
particularly in the North Atlantic ([42], [58]), there are 
technical obstacles that must be overcome if such 
potential predictability is to be achieved in reality. The 
problem of model error, as discussed in Section 3b, is 
critical for decadal prediction, since the sub-surface 
ocean state associated with the initial condition may be 
significantly different than the climate of the free 
running coupled model. As a consequence, at forecast 
initialization, the coupled model rapidly adjusts away 
from the observed climate estimate towards the coupled 
model climate that is itself a product of its own 
systematic errors. This is often referred to as an 
“initialization shock” or “coupling shock”.  Is simple 
bias correction sufficient to remove the effects of model 
drift, or is the non-linearity of climate such as to cause 
bias to destroy any useful predictability that may exist 
on the decadal timescale?  
 
 
 



  

Another approach, known as “anomaly initialization” 
[59], has therefore been tried ([49], [55], [56]) to avoid 
the systematic error. In this, models are initialized with 
observed anomalies added to the model climate, rather 
than initialized with observed values, and the model 
climate is removed to obtain forecast anomalies. 
However, the relative merits of bias correction and 
anomaly assimilation have yet to be quantified on 
decadal timescales. Nevertheless, with the current 
generation of ocean data assimilation systems and 
coupled models, it is possible to demonstrate the 
benefits of assimilating ocean data for the decadal 
forecast skill. 

 
5. DECADAL PREDICTIONS 
 
5.1. First Attempts 
 
Prediction of observed decadal variations in climate is 
in its infancy [60]. To date there have been two 
sensitivity studies ([61], [62]) and three extended 
hindcast experiments ([49], [55], [56]) that investigated 
the impact of initializing climate projections from an 
observed state. The sensitivity studies found little 
additional predictability from initialization over that due 
to changes in external radiative forcing on global [61] 
and regional scales [62]. However, neither study 
considered more than two start dates. 
 
The extended hindcast experiments indicated enhanced 
skill from initialization at global scale [49] and over the 
North Atlantic [55], [56]. These studies took a very 
similar approach: initializing a global climate model 
using observed anomalies and running it forward ten 
years, while accounting for changes in external forcing 
(natural and anthropogenic). However, the initialization 
technique, data and models were different and gave rise 
to different results. Whereas [49] demonstrated that 
initialization leads to better predictions for global mean 
temperature over the past nearly three decades of recent 
warming, the results of [55] and [56] were less 
convincing over the longer period (Fig. 5, top). The 
latter two studies demonstrated enhanced skill, however, 
in the North Atlantic Sector (Fig. 5, bottom).   
Predictability of global mean temperature arose from 
initialization of upper ocean heat content [49], whereas 
for North Atlantic SST it was from the Atlantic MOC. 
Hence, it may be speculated that differences among 
these systems comes primarily from different 
initialization strategies, which is partly supported by the 
fact that [55] and [56] used essentially the same model. 
Future ten-year projections from these systems also 
came to somewhat different outcomes (Fig. 5).  
 
5.2. Single versus Multiple Model Predictions 
 
Differences in the results from the initial decadal 
prediction efforts discussed above also likely arise from 

model differences, highlighting the potential importance 
of  a  multi-model  approach  to  prediction  as  is  being  
 

 
 

 
Figure 5. Observed and hindcast ten year mean (top) 
global surface temperature and (bottom) Atlantic SST 
dipole indices. The latter is sometimes used as a proxy 
for MOC fluctuations and is defined as the SST average 
difference 60-10W, 40-60N minus 30W-10E, 10-40S. 
Hindcasts for [49] begin in 1982, with one per season 
and four ensemble members (spread shaded); [55] 
begin in 1955, with one every five years and three 
ensemble members (vertical bars); and [56] begin in 
1953, with one per year. Separate vertical bars centered 
on the predicted period show future forecasts.  The [56] 
forecast has seven ensemble members. References [49], 
[55], and [56] hindcasts have been adjusted to have the 
observed means over the 1979-2001, 1955-2005, and 
1953-2001 periods, respectively. Observations are from 
HadISST 1.1 and HadCRU3. 
 
investigated, for instance, in the EU-Project 
ENSEMBLES (http://www.ensembles-eu.org). The 
need for ensemble prediction for weather is well 
established based on the fact that the atmosphere is 
chaotic and therefore sensitive to initial condition 
uncertainty.   

 
There has been considerable debate in the literature 
regarding ensemble generation techniques. In terms of 
sub-seasonal to interannual time scale variability, the 
climate system clearly exhibits sensitive dependence on 
initial conditions. For example, [63] argue that forecast 
errors in some ENSO predictions are dominated by 
initial condition errors. On decadal to multi-decadal 
time scales, the sensitivity to initial conditions is not 
firmly established, but could very well be important, 



  

particularly when considering quantifying the climate 
change commitment. 

 
Sensitivity due to uncertainty in model formulation can 
also have a significant impact on predictability [64]. 
This sensitivity is associated with the uncertainty in sub-
grid scale parameterized physics and model numerics. 
The recognition of the importance of this sensitivity has 
led to a number of efforts that have demonstrated that a 
multi-model ensemble strategy is the best current 
approach for adequately resolving forecast uncertainty 
and the forecast probability distribution in seasonal-to-
interannual predictions ([65], [66], [67], [68], [69]). 
Another recently proposed methodology is to use 
stochastic-dynamic parameterization techniques which 
perturb parameterizations in such a way as to improve 
on the benefits of a multi-model ensemble by using a 
single model [70]. 

 
6. VERIFICATION 
 
How to evaluate decadal hindcasts and predictions is a 
major challenge. A quick scan through the literature 
reveals a dizzying array of different climate metrics 
both interesting and important. Furthermore, the 
attraction to use metrics to select the “best” model for a 
climate application is problematic [71]. Metrics differ in 
variable, time scale, space scale, or functional 
representation. The same is not true in weather 
prediction, where some estimates of both prediction 
limits and the impact of different weather prediction 
metrics can be determined. Moreover, the skill of daily 
weather forecasts can be verified many times and a 
quantification of model skill is relatively 
straightforward.  

 
The problem is more difficult for seasonal prediction, 
since a large number of seasons and those forecast states 
must pass in order to build up forecast verification 
statistics.  For decadal and longer time scales, the 
problem of quantifying prediction skill becomes even 
more difficult, and the metrics will likely involve how 
the forecasts are used in applications [72]. One 
important issue is how to accumulate enough forecasts 
for quality assessments. The use of hindcasts is a typical 
approach (Section 5); however, the lack of initialization 
data and the non-stationary nature of observing systems, 
as well as the climate system itself, are difficult issues 
that must be addressed. For instance, forecasts 
benefiting from Argo data are potentially significantly 
more skillful than hindcasts based on very sparse 
historical observations ([2] see also Section 4). 
Extending the climate record back in time using paleo-
proxy data-based climate reconstructions is hence of 
paramount importance and should be an integral part of 
decadal prediction research.  

 
 

In general, decadal forecasts will be probabilistic in 
nature. There are two key elements in determining the 
quality of a probability forecast: reliability and 
resolution [73]. Reliability can be described as follows: 
in a set of forecasts where an event is predicted with a 
(say) 60% probability, the forecast system is reliable if 
the event occurs in reality, within this set, 60% of the 
time. In practice, because of model bias and other 
generic model shortcomings, single model ensembles 
are not reliable in this sense. Multi-model ensembles are 
more reliable than single model ensembles [69] but also 
cannot be said to be fully reliable [70]. Empirical 
corrections can be made to make the ensembles more 
reliable, but having to apply such empirical corrections 
is undesirable, especially since the decadal prediction 
problem is a nonlinear problem and the empirical 
correction methods are essentially linear. Evidence is 
starting to emerge that stochastic parameterization 
provides an alternative to the multi-model technique, in 
which reliability is improved [70]. 

 
The second element in determining the quality of a 
probability forecast is resolution. A system with 
“resolution” will forecast different probabilities 
according to whether the forecast event verifies or not. 
Hence a system that always predicts the climatological 
probability for some binary event, irrespective of 
whether or not the event verifies, will be reliable but 
have no resolution. A key goal of decadal prediction 
research is to establish that decadal prediction 
probabilities do indeed have some resolution, arising 
from predictable elements of the climate system such as 
the Atlantic MOC.   

 
7. CONCLUDING REMARKS 
 
Ocean observations will be at the heart of decadal 
climate prediction systems. Major challenges will, 
therefore, be to continually assess whether existing and 
planned ocean observing systems are also well suited 
for initialization and verification of decadal predictions 
and to address any identified deficiencies.  

 
As for seasonal-to-interannual climate predictions, most 
likely a range of prediction approaches will be used for 
the decadal time scale. Some early results indicate that 
the overturning circulation in the ocean can provide 
some level of useful predictability. Full water column 
observations will therefore likely be needed to properly 
initialize coupled system models. A tremendous 
advance has been the measurements of temperature and 
salinity over the upper 2000 m of the global ocean 
currently provided by Argo profiling floats. There 
exists, however, a need to assess whether observations 
from below 2000 m would be of use in decadal climate 
predictions by more completely characterizing deep 
ocean conditions. Verification of decadal predictions 
will also benefit from sustained moored time series 



  

observations, such as those already partially 
implemented by the OCEANSITES group.  

 
Instrumental errors of roving observing systems (e.g., 
Argo) remain a challenge, as do aliasing effects (due to 
mesoscale ocean eddies) from course resolution 
observations in time and space. It might be beneficial to 
sustain a dense observing system in critical regions for a 
decade or so in order to assess the requirements on 
spatial scales and depth resolution for decadal 
information. An excellent recent example is the 
RAPID/MOCA array, which will help verify model-
based predictions and assessments meridional ocean 
transports in the Atlantic. 

 
Despite the many issues and challenges outlined above, 
opportunities exist for major advancements in decadal 
climate prediction over the next several years. As part of 
the Coupled Model Intercomparison Project phase 5 
(CMIP5) [74], modeling centers around the world are 
planning coordinated suites of decadal hindcast and 
prediction experiments covering the period from 1960 
to 2035. The results from these prediction experiments 
will be available to the international research 
community, and analysis of these results should prove 
valuable in advancing our understanding of decadal 
scale variability and predictability. These initialized 
climate predictions will complement suites of longer 
term simulations that will explore other aspects of 
climate system change, including the carbon cycle and 
other biogeochemical processes and feedbacks that will 
determine the ultimate degree of climate change in the 
second half of the 21st century ([75], [37]). Ultimately, 
combining such approaches, including the use of higher 
resolution models capable of simulating regional scale 
climate phenomena, will provide a unified pathway for 
ever-improving decadal to centennial climate change 
predictions. 

 
Skillful decadal predictions will prove invaluable to 
numerous aspects of society [72].  Examples include: 
climate-related health issues, such as the preparation for 
and possible prevention of the spread of viruses and 
diseases; planning for possible disasters from increased 
forest and bush fires, heat waves, droughts, floods and 
major storms including hurricanes; long-term resource 
management decisions in industries such as agriculture, 
forestry, and fisheries; and development of freshwater 
allocation strategies. Since the decadal time scale is of 
the same order as monetary investments, financial 
institutions could use such climate predictions for 
planning investment strategies.  
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