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Interannual variability (IAV) in tropospheric species concentrations can be driven by
variability in emissions, chemistry, transport and UV radiation. In a 3D CTM study we
have found good agreement between the IAV of NO, columns observed by the GOME
satellite instrument and model simulations over Western Europe from 1996 to 2000. We
find that meteorological variability is an important factor during this period. Averaged 10 m
wind speeds from the European Centre for Medium-Range Weather Forecasts (ECMWF)
operational analysis are a good proxy for the overall meteorology driving the IAV during
the studied period of 1996-2000. Copyright © 2008 Royal Meteorological Society
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I. Introduction

Interannual  variability (IAV) of tropospheric
composition has been the subject of many recent stud-
ies using both observations and modeling. Creilson
et al. (2003) showed a relationship between transport
of ozone across the North Atlantic into Europe and
the positive phase of the North Atlantic Oscillation
(NAO). Duncan and Bey (2005) studied IAV of export
from Europe and found that export of pollution was
more frequent for the positive phase of the NAO.
Tropospheric ozone production in many areas is
NO, limited (Sillman, 1999 and references therein),
so a key component of the IAV of ozone is the inter-
annual variation in NO,. Richter et al. (2005) recently
showed a large positive trend in NO, over China and
a smaller downward trend over Europe. Uno et al.
(2007) studied the sensitivity of NO; columns in east-
ern Asia to meteorology and emissions and found that
errors in estimating emission trends were larger for
autumn and winter because of the variability of meteo-
rology. Our objective in this study is to understand the
sensitivity of tropospheric NO, columns to variabil-
ity in both emissions and meteorology over Western
Europe. Using GOME data we validate the modeled
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IAV of tropospheric NO, and, by performing a sensi-
tivity study, we investigate if emissions or dynamical
processes are dominant drivers of the IAV of NO; in
Western Europe.

2. Model details

This study uses the global offline chemistry trans-
port model p-TOMCAT which is an updated ver-
sion (O’Connor et al., 2004) of the TOMCAT model
(Law et al., 2000; Savage et al., 2004). In this study
p-TOMCAT was run with a 2.8° x 2.8° horizontal
resolution and 31 vertical levels from the surface to
10 hPa with offline meteorology from the operational
analyses of the European Centre for Medium-Range
Weather Forecasts (ECMWF) model for 1996—-2000.

The model used annually and monthly varying
emissions for industry, transport, shipping and biomass
burning from the RETRO emissions database (Schultz
et al., 2007a). Further details of the RETRO biomass
burning emissions can be had from Schultz er al.
(2007b). The terrestrial anthropogenic emissions in
the RETRO database were produced using the TNO
Emissions Assessment Model (Pulles and van het
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Bolscher, 2007). There was a minor error in the
seasonality of the anthropogenic emissions but this had
a negligible effect on this study. Lightning emissions
of NO, are based on the parameterization of Price and
Rind (1992) as implemented by Stockwell et al. (1999)
with an average emission for 1996—-2000 of 3.9 Tg (V)
per year. The modeled heterogeneous removal of N,Os
on sulfate aerosol is based on that in the MOZART
model as described in Tie er al. (2003). Offline sulfate
aerosol data were taken from the GOCART model
(Chin et al., 2002) and an uptake coefficient of 0.04
was assumed. The cloud fields used to calculate the
offline photolysis rates are based on climatology and
so do not contain IAV. 3D fields of NO, were output
from the model at 10:30 local time. More details of
model data processing can be obtained from Savage
et al. (2004).

3. Scope of the study

The model setup we are using is suitable to describe
the contributions to IAV of NO, due to variations in
emissions and large scale dynamic meteorology. The
use of precalculated photolysis rates based on monthly
mean cloudiness will naturally suppress any variability
due to variations in cloudiness. This model limitation
clearly prevents us from answering the question of
how variability in cloudiness contributes to NO;
differences, and is an important simplification of the
system. Nevertheless, it also reduces the complexity
of the analysis by relating modeled NO, differences
simply to either large scale differences in the flow
field or to emissions. Our intention is to isolate the
impact on NO, variability of these two factors; we
accept that other factors (e.g. cloud-induced variations
in photolysis) will also play a role. Nevertheless, any
good agreement between observations and our model
results here will suggest that an important component
of observed NO, variability must be related to changes
in emissions and/or large scale meteorology.

4. GOME data

The GOME instrument as described by Burrows
et al. (1999) measures each location at the same
local time, e.g. the northern midlatitudes at around
10:45. Monthly mean GOME data for the period
1996-2000 were used for this study. Daily data
from the stratospheric Chemistry Transport Model
(CTM) SLIMCAT (Chipperfield, 1999) were used
to account for the variability in stratospheric NO;.
Other data used in the retrieval were the surface
albedo climatology of Koelemeijer et al. (2003) and
monthly air mass factors based on tropospheric aerosol
classified according to maritime, rural and urban
locations, and vertical NO, profiles for 1997 from the
MOZART model (Horowitz et al., 2003). A correction
for topography effects was made and a 0.2 cloud
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cover threshold based on the FRESCO algorithm
(Koelemeijer et al., 2001) used to select cloud free
pixels. More details can be found in Richter et al.
(2005).

5. Experimental set up

To evaluate the reasons for IAV of ozone and its pre-
cursors, two particularly important contributions have
been investigated — meteorology (except cloudiness)
and emissions. A base run has been performed using
the monthly and annually varying RETRO emissions
and ECMWF operational analyses for the 1996—-2000
period. Two further runs were then completed: ‘Met.
Fix.” where the emissions varied according to the
RETRO database for 1997-2000, but the meteorology
for 1996 was repeated annually and ‘Emi. Fix.” where
the emissions for 1996 were repeated for each model
year, but the meteorology varied for 1997-2000 as in
the base run.

For all years, 3-month averages (JFEM, AMJ, JAS,
OND) from both GOME (regridded to T42 resolu-
tion) and the model runs have been calculated. This
averaging helps reduce the effects of random error
in GOME retrievals. In addition, for differences from
the 5-year mean, any consistent systematic errors will
cancel. Because of instrument problems there was no
GOME data available for January 1998. In the com-
parisons shown below when calculating the seasonal
average for JFM 1998 January’s data was replaced by
the average of January 1996, 1997, 1999 and 2000.
The same procedure was applied to the model data to
ensure consistency.

6. Results

Figure 1 shows the IAV in NO; columns over Western
Europe in JFM from GOME, the model base run and
the run with fixed emissions for the 1996—2000 period.
These anomalies should be compared to average
GOME NO; columns in this region at this time of year
of 6-8 x 10'> molecules cm™2. The model captures
well the main features of the IAV. For 1996 and 1997 a
positive anomaly can be seen in northwestern Europe.
The size and position of the deviation from the mean
is similar in both model and GOME for both years
and in both datasets the anomaly is smaller in 1997
than in 1996. In 1998 GOME has a large negative
anomaly and although the differences in p-TOMCAT
are smaller than those in GOME there is a negative
anomaly in the same location as the largest negative
deviations in GOME. Both 1999 and 2000 also show
generally negative anomalies in NO; although in 2000
there is a positive anomaly over Southern England not
seen in the model. The results from the run with fixed
emissions give a very similar pattern of anomalies to
the base run indicating that much of the variability in
this region come from IAV of meteorology.
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Figure I. Tropospheric NO, column anomalies over Western Europe for JFM 1996—-2000 from GOME observations (left)
and p-TOMCAT data (middle: base case; right: ‘Emi. Fix.” run). Rectangles indicate the areas for which area averaged temporal

correlations were calculated.

Area averages of the anomalies have been calcu-
lated for two regions: northwestern Europe (18 grid
model boxes) and Iberia (9 grid boxes), as indicated in
Figure 1. The average NO, emissions were 1.5 Tg(N)
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per year for northwestern Europe and 0.34 Tg(N) per
year for Iberia. Emission trends in the two regions
are quite different — weakly negative for northwest-
ern Europe (—1.2% per year) and positive for Iberia
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(+4.7% per year). In Iberia, there is an increase in
emissions every year. In northwestern Europe, the
emissions decrease every year except in 2000 when
there is a small increase to a value between those of
1998 and 1997. The total year to year variability in
emissions is therefore small.

Temporal correlations between GOME and
p-TOMCAT were then determined for these regions
(Table I). In addition, the ordinary least squares bisec-
tor best-fits between model values and GOME have
been calculated. As well as correlations the table
shows the intercept (c¢) and gradient (m) of this fit.
As this is a relatively short period the correlations are
not expected to be statistically significant but still illus-
trate the good overall agreement between GOME and
the base run of p-TOMCAT for certain seasons. For
JEM the correlation between the NO, column anoma-
lies for the base run are good for both northwestern
Europe and Iberia (0.84 and (.79 respectively) while
it is actually even better (0.90) in northwestern Europe
for the AMJ season. For other seasons the correlations
are lower, falling to only 0.18 for Iberia in JAS. For
the base run the gradient of the best-fit line is between
0.43 and 0.94 in northwestern Europe while that in
Iberia lies between 0.36 and 1.0. This indicates that the
model does not capture all of the IAV but in general
has the right signal in these regions. The best correla-
tions are also seen for the periods and regions where
there is the greatest IAV. In northwestern Europe the
worst correlations are in JAS, which is also the season
with the smallest TAV.

Although for JFM the correlations for northwestern
Europe are similar for all runs (0.84 for the base run,
0.86 for the ‘Met. Fix.” and 0.84 for the ‘Emi. Fix.’
runs) the amplitude of the variation is much smaller
in the ‘Met. Fix.” run. The magnitude of the modeled
IAV is indicated by the gradient of the best-fit line.
If the model could explain all the observed variation
the slope of the best-fit line would be equal to 1 and
have a correlation of 1. A model which captures the
sign of the IAV but underpredicts its magnitude by
a constant factor would have a correlation coefficient
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of 1 but a gradient less than 1. For the ‘Met. Fix.’
experiment the gradient is only 0.1 compared to 0.6 for
the base run and 0.54 in the run with fixed emissions.
These results are illustrated in Figure 2, which shows
the seasonal mean anomalies for the three runs plus
the best-fit line for all three experiments. The best-fit
line for the emissions and the base case are very close
to each other as are the anomalies in all years. From
these amplitudes, and from the fact that the pattern
of anomalies in the ‘Emi. Fix.” run closely resembles
those in the base run and in GOME, we conclude that
in this region the variability in JFM is dominated by
meteorological factors. In cases with high correlation
coefficients, the result of the base run is, to a good
approximation, the sum of the ‘Met. Fix.” and ‘Emi.
Fix.” runs. This linearity supports our interpretation of
the importance of meteorology for the IAV of NO,.
One of the chemical processes driving the NO;
variability could be the increased formation of per-
oxyacetylnitrate (PAN) and/or HNO3;. However, the
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Figure 2. Scatter plot of JFM area averaged anomalies for
northwestern Europe GOME observations versus p-TOMCAT
model results. The light dotted line indicates the | : | line.

Table 1. Intercept (c, 10'® molecules cm™2), gradient (m) and temporal correlations of area averaged deviations from the 5-year
mean of tropospheric NO; columns between GOME data and p-TOMCAT base case. Areas considered are marked in Figure |

Base Emi. Fix. Met. Fix.

NW Europe c m r m r c m r

JFM [.25E-07 0.60 0.84 2.66E-08 0.54 0.84 |.60E-07 0.10 0.86
AMJ —1.79E-07 0.87 0.90 —3.00E-08 0.67 0.88 2.90E-09 0.26 091
JAS —9.65E-10 0.94 0.63 —9.45E-08 08l 063 2.15E-08 0.36 047
OND —3.84E-08 043 051 —7.12E-09 0.37 0.56 5.30E-09 0.21 0.20
Iberia c m r c m r c m r

JFM —2.72E-08 043 0.79 2.62E-09 0.37 051 —1.29E-08 0.17 0.77
AM —1.38E-10 0.36 036 —7.05E-09 —028 —-047 —2.14E-08 025 0.78
JAS |.89E-08 1.00 0.18 —5.61E-10 —0.88 —0.8l 2.69E-08 1.37 0.64
OND 2.08E-08 042 044 |.08E-08 029 0.77 —2.70E-09 —036 —0.34
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anomalies in the columns of PAN and HNOj are pos-
itively correlated with the NO, column anomalies so
that rapid conversion of NO; to PAN or nitric acid
cannot explain the periods of lower NO,.

These model runs included a radon tracer (lifetime
5.5 days, emissions mostly over land) based on the
experiment described in Jacob et al. (1997). Figure 3
shows the anomalies in the surface concentrations of
NO; and radon in the base run for JFM. The pat-
terns of the radon and NO, anomalies are very similar
and the anomalies in surface NO, closely resemble
the anomalies seen in the total NO, column. For

N. H. Savage et al.

northwestern Europe the temporal correlation coeffi-
cient in JFM between NO, and radon is 0.993 and for
Iberia it is 0.722. Figure 3 also shows the anomalies
in averaged 10 m wind speed. In northwestern Europe
the high NO, and radon columns in 1996 and 1997
correspond to low wind speeds in most of this region,
while the lower columns in this region seen in the other
years also correspond to generally higher than average
wind speeds in this region. For northwestern Europe
the temporal correlation coefficient in JFM between
NO, and wind speed is —0.89 and for Iberia it is
—0.21. We conclude that the IAV of NO, columns

NO2(ppb*10)/Rn(vmrx10~20)/pressure(10xhPa)/windspeed (2+*ms—1)

NO2 1996 Radon 1996

30
-20
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Figure 3. JFM anomalies from 5-year mean for surface NO,, radon and averaged 10 m wind speed.
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in northwestern Europe is mostly driven by the trans-
port of NO, emissions away from their sources. This
may be related directly to the wind speeds themselves,
e.g. faster horizontal transport in the lower troposphere
being associated with higher wind speeds or in addi-
tion, the averaged 10 m wind speed may be a proxy for
other aspects of meteorology such as turbulence (as far
as the models, ECMWF and p-TOMCAT can represent
those processes) with, for example, higher wind speeds
being associated with greater vertical mixing and more
effective release of tracers into the free troposphere
and subsequent (stronger) advection of the emissions
from source regions. The source of variability is less
clear for Iberia but given the strong correlation with
radon transport processes are clearly involved and
wind direction may be more critical for this region.

The link between meteorology and IAV seems
particularly strong in Western Europe. This may be a
combination of the facts that trends in NO, emissions
over this period were small in this region and that
midlatitude weather systems have a strong influence on
wind direction in northwestern Europe thus potentially
having a large influence on air mass origins.

7. Conclusions

The p-TOMCAT model has been used to study IAV
of NO,. Model variability driven by meteorology is
a more important factor than emission changes with
deviations from the 5-year mean NO, column of
the order of 1 x 10" molecules cm™2 from meteo-
rology alone. We have not considered variability in
cloud, which could be another important driver of
interannual variations in composition. Nevertheless,
the model reproduces well many aspects of the IAV
of NO, columns seen in GOME data over Western
Europe. The agreement is particularly good in JFM
and AMJ. There appears to be a relationship between
the averaged 10 m wind speed and NO, columns with
higher than average wind speeds leading to lower than
average NO, columns. The steady increase/decrease
in GOME NO; columns over China/Western Europe
of ~5 x 10> molecules cm™2 from 1996 to 2002
(Figure 3 of Richter et al., 2005) is significantly larger
than the interannual variations due to meteorology
alone shown here. However the variations from mete-
orology alone are large enough that any use of GOME
NO; columns for trend analysis must consider the
potential influence of meteorology or rely on summer
measurements where the sensitivity to meteorology is
smaller as a result of the shorter NO, lifetime.
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