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Abstract

The Tidal Model forced by Ephemerides (TiME) has been developed. TiME is a hydrodynamic,
global ocean model based on shallow water equations incorporating the complete lunisolar tidal
potential of second degree. The spatial resolution has beenchosen to be 5 minutes globally
(2 - 10 kilometres). Tidal currents and sea surface elevations are calculated in real-time as
opposed to most existing tidal models that utilise selectedpartial tides. The application of com-
plete forcing and non-linear model equations allows for interactions between partial tides and,
consequently, the generation of shallow-water tides. The results of the real-time simulations
have been divided into partial tides through harmonic analysis in order to compare the results of
this study with others. TiME has been evaluated with a set of pelagic measurements of the sea
surface elevations. Correlation coefficients are higher than 0.88 for all partial tides considered,
showing that the tidal oscillation system is well-capturedby this new modelling approach.

The model’s high horizontal resolution reveals a detailed picture of tidal propagation on shelf
areas worldwide where non-linearities are shown to be most significant. Comparisons of the
old partial tide approach with the new approach with complete forcing show that amplitude
values of selected partial tides can locally differ by up to 50%. For the first time, global charts
of a selection of non-linear shallow-water tides were predicted by an ocean model for both sea
surface elevations and tidal currents.

The total energy dissipated by the complete tidal oscillation system has been calculated to be
about 4.8 Terawatts (TW). The contribution of ocean tides totidal friction, which results in an
acceleration of lunar angular velocity, has been estimatedto be about 4.1 TW. This value lies
within the range of available measurements. Most recent studies, however, agree on a lower
value of 3 TW.

TiME can calculate the contribution of the entire range of frequencies of the ocean tides to
the earth rotation parameters (ERP). This further leads to anovel determination of the oceanic
tidal angular momentum (OTAM) taking into account the entire tidal spectrum. The improved
description of the ocean tides’ influence on OTAM and ERP havebeen assessed. Compar-
isons with measurements included tidal constituents whichwere not investigated by a numerical
model study before and show good to excellent agreement. Theeffects on ERP of some addi-
tional astronomical partial tides as well as a selection of shallow-water tides not yet included in
any measurement or modelling study have also been calculated.
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Zusammenfassung

Im Rahmen der vorliegenden Doktorarbeit wurde das globale hydrodynamische Ozeanmodell
”TiME” (Tidal Model forced by Ephemerides) entwickelt. Es basiert auf nichtlinearen Flach-
wassergleichungen und wird von dem vollständigen lunisolaren Potential zweiten Grades an-
getrieben; seine räumliche Gitterauflösung beträgt weltweit 5 Minuten (2 - 10 Kilometer).
Gezeitenströme und Meeresspiegelauslenkungen werden somit in Echtzeit simuliert. Dieser
neue Ansatz steht damit im Gegensatz zu den meisten existierenden Gezeitenmodellen, welche
mit ausgewählten Partialtiden angetrieben werden. Die Anwendung des vollständigen Antriebs
in Verbindung mit den nichtlinearen Termen der Modellgleichungen ermöglicht es, Wechsel-
wirkungen zwischen einzelnen Partialtiden darzustellen und folglich auch nichtlineare Seicht-
wassertiden abzubilden. Ergebnisse dieser Echtzeitsimulationen wurden mittels harmonischer
Analyse in Partialtiden zerlegt, um sie einem Vergleich mitErgebnissen anderer Studien unter-
ziehen zu können. Zur Einschätzung der Güte der Modellergebnisse wurde ein Standard-
Datensatz pelagischer Wasserstandsmessungen herangezogen. Korrelationskoeffizienten mit
Werten über 0.88 für alle untersuchten Partialtiden zeigen, dass das Schwingungssystem der
Ozeangezeiten durch den neuen Modellansatz gut abgebildetwird.

Die hohe horizontale Modellauflösung gewährt einen detaillierten Einblick in die Ausbreitung
von Gezeitenströmen in den Randmeeren weltweit. Eben diese Schelfmeere sind stark von
Nichtlinearitäten geprägt. Vergleiche von Ergebnissendes alten Partialtidenantriebs mit dem
neuen vollständigen Antrieb zeigen, dass die Amplitudenwerte der gezeitenbedingten Meeres-
spiegelschwankungen je nach Modellansatz lokal um bis zu 50% voneinander abweichen. Erst-
malig wurden globale Strömungs- und Auslenkungsfelder einiger ausgewählter nichtlinearer
Seichtwassertiden von einem numerischen Ozeanmodell berechnet.

Die durch das vollständige Schwingungssystem der Gezeiten insgesamt vernichtete Energie
wurde mit etwa 4,8 Terawatt (TW) berechnet. Der Anteil der Ozeangezeiten an der Gezeiten-
reibung, welche beschleunigend auf die Mondumlaufbahn wirkt, wurde auf 4,1 TW geschätzt.
Dieser Wert liegt innerhalb der Spanne bekannter Messwerte. Neueste Messungen stimmen
jedoch eher in einem vergleichweise niedrigeren Wert von ungefähr 3 TW überein.

Mit TiME lässt sich der Einfluss der gesamten Spanne von hoch- bis niederfrequenten Tiden
auf die Erdrotationsparameter (ERP) berechnen. Das führtzu einer neuen Bewertung der
durch Ozeangezeiten verursachten Drehimpulse (oceanic tidal angular momentum, OTAM),
welche zeitgleich das gesamte Gezeitenspektrum berücksichtigt. Die verfeinerte und erweiterte
Beschreibung der Einflüsse von Ozeangezeiten auf OTAM und ERP wurde abgeschätzt und
bewertet. In den Vergleichen mit Messungen wurden auch Partialtiden berücksichtigt, welche
bislang noch nicht von numerischen Modellen beschrieben wurden. Sie weisen zumeist gute
bis hervorragendëUbereinstimmungen auf. Die Einflüsse auf die ERP einiger zusätzlicher
astronomischer Partialtiden sowie einer Auswahl von Seichtwassertiden, welche bislang noch
in keinerlei Modell- oder Messstudien Erwähnung fanden, wurden ebenfalls berechnet.
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Chapter 1

Introduction

Ocean tides are forced by the gravitation of the moon and sun.The moon’s orbit around the
earth and the earth’s orbit around the sun determine where, how strong and in which direction
these tidal forces act on the water masses of the oceans. The respective orbits are characterised
by a number of strict periodicities with different frequencies. A dynamic oscillation system
of tidal currents and elevations forms where favourable basin dimensions produce pronounced
resonance.

These periodic displacements of water masses lead to variations in the rotational behaviour of
the earth. Both sea surface elevations and currents have their effect on the earth’s rotation:
elevations by changes in the oceanic tensor of inertia; currents by their motion relative to the
earth’s body-fixed frame. These variations result in changes in the earth’s angular velocity and
its axis orientation.

Additionally, a long-term trend can be observed as a seculardeceleration of the earth’s rotation.
It is related to an acceleration of the mean angular velocityof the moon which eventually results
in an increase of the distance of the moon from the earth. Thiseffect is known as tidal friction.
It results from tidal energy which is dissipated in the earthsystem due to frictional processes.

1.1 Measurements

With the improvements of modern geodetic measurement techniques, changes in the sea surface
elevation and the earth’s rotation can now be determined with an accuracy of microseconds and
centimetres and are approaching nanoseconds and millimetres. Several studies have focused
on the determination of the aforementioned changes in the earth’s rotation due to tides from
very long baseline interferometry (VLBI), lunar laser ranging (LLR) and global positioning
system (GPS) and have calculated the effect of up to 40 partial tides on the earth rotation (e.g.
Sovers et al., 1993; Herring and Dong, 1994; Gipson, 1996; Rothacher et al., 1998; Chapront
et al., 2002).

The amount of available satellite data has been increasing over the years. Satellite altimetry
studies are now moving part of their focus towards selected shelf areas, such as th North Sea
and the Patagonian Shelf. First studies have demonstrated the importance of non-linearities
within the dynamics of ocean tides in these areas of shallow water depth (e.g. Andersen, 1999).
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1.2 Modelling Approaches

Theoretical studies have been conducted with the help of numerical ocean tide models in order
to better understand the physical dynamics that lead to these variations. Seiler (1991) calculated
variations in the oceanic tidal angular momentum (OTAM) with an ocean tide model of 1◦-
resolution globally forced by selected partial tides. Gross (1993) has utilised these OTAM to
calculate their effect on the earth’s rotation.

As measurements of the sea surface elevations (pelagic and derived from satellite altimetry)
have become more abundant in recent years, ocean tide modelsassimilating data have been
developed (e.g. Egbert et al., 1994; Zahel, 1995). The predictions of the sea surface elevation
due to ocean tides have been improved dramatically with thisapproach (Shum, 1997). The data
assimilation process compensates the deficiency in the description of the physical processes in
the model and can be characterised by dynamical residuals (Zahel, 1995). These have been
shown to be of dissipative nature and in many cases take largevalues where bottom topography
is not properly resolved due to the relatively coarse spatial resolution of the model (Zahel et al.,
2000). Some of these studies have also focused on the determination of OTAM and calculated
the tides effect on the earth’s rotation (e.g. Desai, 1996; Chao and Ray, 1997; Kantha et al.,
1998; Zahel et al., 2000) and tidal friction (e.g. Egbert andRay, 2000).

An alternative approach has been developed by forcing a general circulation model with the full
lunisolar tidal potential rather than just single partial tides (Thomas, 2001). Such an approach
allows for interactions of tidal currents with other ocean currents. Seitz (2004) further took
the influence of the solid earth into account and developed a dynamic earth system model for
the investigation of the earth’s rotation which also allowsfor feedbacks between the respective
components.

1.3 Objectives and Outline of this Study

The objective of this study is to develop an unconstrained ocean model in order to investigate
the complete effect of ocean tides on the earth’s rotation. To this end, the position of the moon
and sun (ephemerides) are calculated to force an ocean modelwith their tidal potential. This
leads to real-time simulations.

As the oscillation system of ocean tides strongly depends onthe topography of the oceans,
the model resolution has been chosen to be as high as computationally feasible. A maximum
resolution of 1/12 of a degree (5 minutes) has been used for the experiments. The actual distance
between two grid points ranges from 2 to 10 kilometres. The model also includes the Arctic
Ocean which is often neglected in other model approaches.

The set-up of the newly developed model enables a unique feature by describing non-linearities
in ocean tide dynamics. These non-linearities are due to interactions between partial tides.
The novel approach with the forcing by the complete lunisolar tidal potential presented in this
study includes all partial tides simultaneously. The non-linear terms of the model equations
are most influential in shallow waters which are resolved by the model due to its high spatial
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resolution. Throughout this study, special attention willbe turned to the significance of these
non-linearities.

The model will be presented in Chapter 2 together with a description of the methodology for
harmonic analysis, statistics and calculation of angular momentum and earth rotational parame-
ters. Chapter 3 will describe the improvements implementedinto the precursor ocean tide model
(Seiler, 1989) in order to ensure the feasibility to performsimulations with the 5’ resolution and
evaluates the model results with measurements.

Results of the tidal oscillation system as simulated by the new model will be presented in Chap-
ter 4 and will also have a focus on selected regions in order toillustrate the non-linearities
captured by the new approach. Chapter 5 describes the angular momenta calculated from the
simulations and discusses the tides’ effect on the earth’s rotation.

Chapter 6 summarises the main findings and presents an outlook for current and future studies
and developments.
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Chapter 2

Model Description and Methods of
Analysis

A global ocean tide model, the Tidal Model forced by Ephemerides (TiME), has been devel-
oped. Its major part consists of a vertically-integrated barotropic ocean module (Section 2.1).
It is forced by an astronomic module calculating the gravitational potential (Section 2.2) and
accompanied by a geodetic module calculating instantaneous angular momentum budgets (Sec-
tion 2.3). TiME can be run with the user’s choice of either a single selected partial tide or
the complete lunisolar tidal potential calculated from theexact position of the moon and sun
(ephemerides) (Fig. 2.1). This second option represents ”real-time” simulations.

amplitudes and phases

(elevations and velocities)

model model model

harmonic analysis

M2 K1 Mf …

tidal elevations & currents

lunisolar tidal potential

model (ocean module)

model (ephemerides module)

lunisolar tidal potential

partial tides

M2 K1 Mf …

sun moon

amplitudes and phases

(elevations and velocities)

model model model

harmonic analysis

M2 K1 Mf …

harmonic analysis

M2 K1 Mf …

tidal elevations & currents

lunisolar tidal potential

model (ocean module)

model (ephemerides module)

tidal elevations & currents

lunisolar tidal potential

model (ocean module)

model (ephemerides module)

lunisolar tidal potential

partial tides

M2 K1 Mf …

sun moon

Figure 2.1: Flow diagram of the two optional set-ups of TiME.The left path represents
the classical partial tide forcing. The right path is the novel approach of the
complete forcing with subsequent harmonic analysis.
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Until now, most research on ocean tides has been done using only partial tide forcing. Thus, the
results of simulations utilising the complete forcing haveto be post-processed so that the results
are comparable with the results from other studies. The amplitude and phase values of selected
partial tides are derived from the time series of the real-time simulations through a harmonic
analysis (Section 2.4).

The two model set-ups are presented in Figure 2.1. For the traditional forcing (left path), the
lunisolar tidal potential is divided into partial tides, each one describing a certain aspect of
the orbits of moon or earth. They are defined by their respective astronomical arguments or
Doodson coefficients which describe the frequency of each partial tide (see Appendix A.2). A
description of the theoretical derivation of partial tidesthrough harmonic analysis can be found
in Bartels (1957). The resulting elevations and velocitiesare attributed to the period of the
specific partial tide and can be represented by amplitude andphase values. Results which relate
to partial tides will be referred to as ”frequency-domain”.

The path on the right-hand side of Figure 2.1 characterises the novel approach with complete
forcing which is the focus of this work. With the newly implemented ephemerides module
(Section 2.2.2), the model calculates the position of the tide-generating bodies, the moon and
sun, determines their complete tidal potential of second degree (see Section 2.2) and uses this
total forcing to drive the ocean module of TiME. As these real-time results can only be repre-
sented in the form of time-series, they will be referred to asbelonging to the ”time-domain”.
By extracting the frequencies of certain partial tides fromthese time-series through a harmonic
analysis, the results of the real-time forcing can be transferred from the time-domain to the
frequency-domain.

The methods used for comparing model results with measurements are described in Section 2.5.
The methodology for investigating the tides’ influence on the earth rotation parameters can be
found in Section 2.6.

2.1 Ocean Module

The main part of TiME is a barotropic ocean model based on the Navier-Stokes-equations. The
equations of motion and continuity define the horizontal velocitiesu (zonal) andv (meridional)
in m

s
and the sea surface elevationζ in m (Zahel, 1970; Seiler, 1989).

∂u

∂t
− f · v =

γ

a cosφ
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u
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+
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∂ζ

∂t
−
(

∂(H · u)
a cosφ · ∂λ +

∂(H · v)
a · ∂φ

)
= 0 (2.3)

These include the Coriolis parameterf = 2Ω sinφ, the mean angular velocity of the earth
Ω = 7.292 × 10−5 rad

s
, the mean radius of the eartha, the bottom friction coefficientr and the

total depth of the water columnH = d+ ζ (whered is the undisturbed depth). The influence of
the tides of the solid earth on the tidal potential is defined by the Love numbersk = 0.302 and
h = 0.612 resulting in the factorγ.

γ = 1 + k − h (2.4)

The tidal forcingsΦx andΦy are calculated by the astronomic module of TiME and will be
discussed in Section 2.2.

The effect of load and self-attraction of water massesΦLSA is taken into account in a parame-
terised form (Accad and Pekeris, 1978) defined as

ΦLSA = g · ε · ζ (2.5)

eventually leading to the “reduced gravity”g′

g′ = (1 − ε) · g (2.6)

referring to the gravitational accelerationg = 9.806m
s2

. Values ofε are in the range of about
0.08 to 0.12 (Parke, 1982). Calculating the full LSA-effect(e.g. Zahel, 1978) is very expen-
sive in computational time. Müller (2003) gives a detaileddescription of the computational
requirements for the calculation of normal modes of eigen-oscillations of a global 1◦-ocean
when including the full effect. It can be expected that a similar computational effort would also
be needed for calculations of ocean tides. As Chapter 3 will illustrate, TiME is at the upper
limit of computational feasibility. Fortunately, experiments with the parameterised form of the
LSA-effect have shown that this approach is a good approximation (Parke, 1982; Seiler, 1989;
Müller, 2003). This study focuses on the implications of ocean tides and the earth rotation on a
global scale and the parameterised LSA-effect can be regarded as sufficient for this purpose.

Turbulent effects are prescribed in the eddy-viscosity termsRλ andRφ.

Rλ =
AH
a2

[
∂2u

cos φ · ∂λ2
+
∂2u

∂φ2
− tanφ

∂u

∂φ
− (1 + tan2 φ)u− 2 tanφ

∂v

∂λ

]
(2.7)

Rφ =
AH
a2

[
∂2v

cosφ · ∂λ2
+
∂2v

∂φ2
− tanφ

∂v

∂φ
− (1 + tan2 φ)v − 2 tanφ

∂u

∂λ

]
(2.8)

The eddy-viscosity-coefficientAH will be discussed in Section 3.5.

The ocean module was taken in large parts from the partial tide model of Seiler (1989) which
is based on the equations of Zahel (1977) (Equations 2.1 - 2.3) and utilises a semi-implicit
algorithm as described in Backhaus (1983). The resolution has been changed from the original
one degree (Seiler, 1989) to a series of higher resolving versions. The user can now choose
between resolutions of 20, 15, 10 or 5 minutes based on eitherthe GEBCO (IOC et al., 2003) or
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ETOPO topographies (NOAA, 1988). Although the simulationsfor this study were performed
on the high-performance computer of the DKRZ (Deutsches Klimarechenzentrum) the 5 minute
resolution version of TiME is still at the upper limit of manageable run times. Chapter 3 will
describe improvements implemented for the model performance.

The equations of Seiler (1989) were reformulated in a slightly different semi-implicit numerical
scheme (Backhaus, 1985) which has the general form

(
U

V

)n+1

= R1 ·
(
U

V

)n
− R2 · g′ ·

(
ζ
x

ζ
y

)n+ 1
2

+ ∆t ·
(
X

Y

)
(2.9)

with the Coriolis rotation matricesR1 andR2.

R1 =

(
α β

−β α

)
, R2 =

1

f
·
(

β γ

−γ β

)

The indexn refers to the former time-step,n+ 1 to the following andn+ 1
2

to the intermediate
time-step of the semi-implicit scheme. The rotation matrices are defined byα = cos(f∆t),
β = sin(f∆t) andγ = 1 − α. The termsX andY include the remaining parts of Equa-
tions 2.1 and 2.2.ζ

x
andζ

y
represent the meridional and zonal derivatives, respectively.

The main difference between the algorithms of Backhaus (1983) and Backhaus (1985) is that
now the pressure gradient is also included in the Coriolis rotation (matrixR2). Note that earlier
the Coriolis rotation was defined byβ = f and that theα-term ofR1 was not included (Equa-
tions 2.1 and 2.2). The advantages of the new scheme will be illustrated in Section 3.1 and the
full formulation of the difference equations can be found inAppendix A.1.1.

2.2 Astronomic Module

Ocean tides mainly develop due to the gravitational forces of the moon and sun and can be
formulated as the second degree astronomical tidal potential V2 (Bartels, 1957):

V2 = G(%) ·
( c
R

)3

·
[
(1 − 3 sin2 δ)(1 − 3 cos2 φ)−

sin(2φ) sin(2δ) cos τ+

cos2 φ cos2 δ cos(2τ)
]

(2.10)

whereG(%) is the gravitational constant,% = 6371.221 km the mean radius of the earth,R the
geocentric distance,c the greater half axis of the orbit,δ the declination, andφ the geographical
latitude. The local hour angleτ is related to the right ascensionα of the respective celestial
body through

τ = Tsid − α = TGsid + λ− α (2.11)

whereλ is the geographical longitude,Tsid the local sidereal time andTGsid the Greenwich
sidereal time. For the lunar tidal potential, the gravitational constant is given withG(%) =
26206 cm

2

s2
and the solar tidal potential isGS(%) = 0.46051 ·G(%) (Bartels, 1957).
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The three terms of Equation 2.10 represent different groupsof spherical harmonics and define
the tidal bands:

1. the zonal term reflecting the long-period tides, i.e. fortnightly to annual;

2. the tesseral term describing the band of diurnal tidal constituents; and

3. the sectorial term comprising the semi-diurnal tides.

From Equation 2.10 there are now two approaches for forcing an ocean tide model, both
of which are options within TiME. The traditional forcing utilises single partial tides (Sec-
tion 2.2.1) whereas real-time forcing incorporates the full lunisolar tidal potential (Section 2.2.2).

2.2.1 Partial Tide Forcing

Each of the three tidal bands from Equation 2.10 can be brokenup into partial tides. The
equation for the partial tide forcing reads

Φ(λ, φ, t) = kptGm(φ) cos(σptt+mλ) (2.12)

with the tidal frequencyσpt and a specific constant for any partial tidekpt. The zonal wavenum-
berm is determined by the respective tidal band (m = 0 for long-period,m = 1 for diurnal and
m = 2 for semi-diurnal tides). The geodetic functionGm(φ) is given by

G0(φ) = G ·
(

3

2
cos2(φ) − 1

)
, G1(φ) = G · sin(2φ) , G2(φ) = G · cos2(φ).

The main advantage of using partial tides is the characteristics of fixed periods. Once the ocean
tide model has adjusted to the constantly perturbing force,e.g. theM2-tide, the system will
respond in the exact same way every subsequent period. It is straightforward to perform such
simulations and the analyses. In remote sensing and field campaigns, the fixed periods of the
partial tides allow the most significant tides to be extracted from collected series of sea surface
elevation measurements.

2.2.2 Complete Lunisolar Forcing

In order to perform real-time simulations with the completelunisolar tidal potential, the exact
positions of the moon and sun with respect to the centre of theearth have to be known. The
module for the complete lunisolar forcing utilised in TiME has been taken from Thomas (2001)
and Hellmich (2003) where a detailed description of the theory, the computational calculations
and a thorough validation of the module are provided.

The module independently describes the orbits of both the moon and earth according to an algo-
rithm based on fundamental angles. Hellmich (2003) discusses the advantages of this algorithm
compared with an alternative one based on Kepler’s orbital elements by evaluating the results
with the data-set DE200 of numerical ephemerides provided by the Jet Propulsion Laboratory
(JPL). Celestial coordinates are formulated in an equatorial system with the earth as its cen-
tre and an equatorial plane spanning the x- and y-directionsand the earth’s axis defining the
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Figure 2.2: The ecliptic is defined by the earth’s orbit around the sun; the equatorial plane
by the earth’s equator, i.e. normal to the axis of the earth’srotation. The
intersection of these planes marks the line between the autumnal and vernal
equinox. The latter is also known as the Aries pointΥ and is the reference
point for the right-ascensionα (see Figure 2.3) (after Montenbruck, 1987).

z-direction (Fig. 2.2). The position of any celestial body is then perfectly defined by its decli-
nation, right ascension and actual distance (Fig. 2.3). Theearth’s rotation is taken into account
through the local hour angle (Equation 2.11).

With the ephemerides module defining these four values for both the moon and sun for every
model time-step the complete tidal forcing on any point on the globe can be calculated with
Equation 2.10 directly. As TiME is discretised on a spherical global Arakawa-C grid (Arakawa
and Lamb, 1977), the potential has to be divided into a zonal and a meridional component. The
tidal acceleration as computed in the module (Bartels, 1957; Hellmich, 2003) reads

Φx(φ, λ, t) = −G(%)

%
·
( c
R

)3

·
[
sin(2φ)(1 − 3 sin2 δ)+

2 cos(2φ) sin(2δ) cos τ+

sin(2φ) cos2 δ cos(2τ)
]

(2.13)

Φy(φ, λ, t) = 2 · G(%)

%
·
( c
R

)3

· [sinφ sin(2δ) sin τ−

cos φ cos2 δ cos(2τ)
]
. (2.14)

The advantage of the full forcing is that all partial tides from the second degree tidal potential
are included simultaneously and thus can be regarded as representing the complete dynamics.
This also allows for non-linear interactions between partial tides which leads to the formation
of shallow-water tides (see Chapter 4.3). These are not directly forced by the lunisolar tidal
potential. They mainly form in areas of low water depth wherethe non-linear terms of the



19

Figure 2.3: The position of the celestial bodies moon and sunhave to be formulated in re-
lation to the spherical notation of the earth, i.e. in relation toφ andλ. Within
an imaginary sphere with infinite radius around the earth allvectors pointing
north will meet at the celestial north pole (left). Inserting Figure 2.2 into this
celestial sphere (where the equatorial plane intersects with the celestial equa-
tor) defines the position ofΥ and the ecliptic (middle). The right-ascension
α describes the angle fromΥ along the celestial equator and the declination
δ the angle along the great circle towards the celestial northpole (right) (after
Struve, 1962).

shallow-water equations in TiME gain importance in comparison with the open ocean. By
adding or subtracting the astronomical arguments of the partial tides involved, the resulting
frequency of the respective shallow-water tide can be determined. Any combination of partial
tides is possible (see Appendix A.2). The most significant ones are the fourth-diurnal ”com-
pound tides” which result from the addition of two semi-diurnal tides, e.g. theMS4-tide results
from interactions ofM2 +S2. The interaction of theM2 with itself results in the special case of
a compound tide, the ”overtide”M4.

2.3 Geodetic Module

The geodetic module calculates the kinetic and potential energy within the system, the oceanic
tidal angular momentum (OTAM, Section 2.3.1), and instantaneous angular momentum budgets
(IAMB, Section 2.3.2).

2.3.1 Oceanic Tidal Angular Momentum

Sea surface elevations and ocean currents both affect the oceanic angular momentum. Sea
surface heights cause variations in the oceanic tensor of inertia and therefore directly influence
the earth’s rotational behaviour (rotational angular momentum). The effect of the ocean currents
is due to motion relative to the body-fixed frame (relative angular momentum).
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The oceanic tidal angular momentum can be written as (Seiler, 1991):

→

M = Θ· →

ω +
→

M rel (2.15)

whereΘ is the oceanic tensor of inertia and
→

ω the rotation vector of the earth. Formulated on
a body-fixed reference frame withx andy spanning the equatorial plane andz being the axial
component this leads to:

Mx = −Ω a2

∫

A

ζ cosφ sinφ cosλ dA+ a

∫

A

H (v sinλ− u sinφ cosλ) dA (2.16)

My = −Ω a2

∫

A

ζ cosφ sinφ sinλ dA− a

∫

A

H (v cosλ− u sinφ sinλ) dA (2.17)

Mz = Ω a2

∫

A

ζ cos2 φ dA+ a

∫

A

Hu cosφ dA. (2.18)

For real-time simulations with the complete lunisolar forcing, instantaneous values can be cal-
culated (time-domain). This approach, however, does not provide closed periods. OTAM can
also be recalculated after harmonic analysis (Section 2.4)for extracted partial tides (frequency-
domain).

2.3.2 Instantaneous Angular Momentum Budgets

For the investigation of the instantaneous angular momentum budgets, the balance equations of
angular momentum can be formulated as (Seiler, 1991):

d
→

Mrel

dt
+
d

→

MΘ

dt
+ Ω ×Mrel =

→

Lrel +
→

Lcor = −
(
→

Lpr +
→

Ltid +
→

Lfr

)
(2.19)

where
→

Lrel and
→

Lcor describe the torques due to acceleration and Coriolis force.
→

Lpr denotes the

pressure torque,
→

Ltid the tidal torque and
→

Lfr the frictional torque.

As the current algorithm also applies the Coriolis rotationto the pressure gradient term (R2 of
Equation 2.9), Equation 2.19 should be slightly reformulated as

→

Lrel +
→

Lcor = −
(
→

Lpc +
→

Lpr +
→

Ltid +
→

Lfr

)
(2.20)

where
→

Lpc includes the ”rotated part” of the pressure gradient. However,
→

Lpc is negligibly small

compared to the remaining torques making it irrelevant whether it should be attributed to
→

Lcor or
→

Lpr. Similarly, a small quantity of
→

Lrel would, in contrast with Seiler (1991) now be attributed

to
→

Lcor due to theα-terms ofR1 in Equation 2.9. It is more convenient to look at the total
→

Ls=
→

Lrel +
→

Lcor.

The individual torques are calculated from their respective terms in Equations 2.1 and 2.2 (here
represented asfx andfy) by integrating over the volume of the ocean and dividing every torque
into body-fixed components.
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Lx = a

∫

A

H (fy sin λ− fx sinφ cosλ) dA (2.21)

Ly = −a
∫

A

H (fy cosλ− fx sin φ sinλ) dA (2.22)

Lz = a

∫

A

Hfx cos φ sinλ dA (2.23)

In this study, the frictional torque contains the terms of eddy-viscosity and bottom friction; the
pressure torque includes the reduction due to LSA and the rotated pressure torque mentioned
above.

In the real-time simulations with the complete forcing, thebalance equations can only be bal-
anced in the time-domain. In the frequency-domain, the tidal torque cannot be determined. For
example, the tidal torque derived from the tidal potential of theM2 partial tide will not be bal-
anced with the heights and currents of theM2 extracted from the real-time simulations due to
interactions with other partial tides (see Chapter 4). Theoretically, the balance equation for the
frequency-domain should be formulated as Equation 2.24.

→

L
eph

tid = −
∑

pt

(
→

L
pt

rel +
→

L
pt

cor +
→

L
pt

pr +
→

L
pt

pc +
→

L
pt

fr

)
(2.24)

2.4 Harmonic Analysis

The results of experiments with the complete lunisolar tidal potential are real-time values and
do not form fixed periods such as is the case for the partial tide simulations. However, the
frequencies included in the time-series of the sea surface elevations and ocean currents can be
derived from the astronomical tidal potential. Therefore,in the special case of ocean tides, the
classical Fourier analysis can be replaced by a harmonic analysis with a discrete number of
well-defined partial tide frequencies. To this end, the time-series to be analysed can be regarded
as having the form (Emery and Thompson, 1998)

x(tn) = x+
M∑

pt=1

[Apt cos (2πσpttn) +Bpt sin (2πσpttn)] + xr(tn) (2.25)

whereσpt is the respective tidal frequency,x the mean value of the record andxr(tn) the residual
time series. The desired values of amplitudeCpt and phaseφpt of the respective partial tide are
then derived via

Cpt =
√
A2
pt +B2

pt

φpt = tan−1 (Bpt/Apt) .

The calculation requires a(M + 1) × (M + 1) matrixD containing the selected frequencies
and a(M + 1) data vectory. The vectorz = D−1 · y returns the values ofApt andBpt (for a
detailed description see Emery and Thompson (1998)).
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The selection of determinable partial tides depends on two criteria: the relative significance of
the given tide and the resolvability of two ”neighbouring” frequencies. Considering a time-step
of one hour, the resolvability is determined by the length ofthe time-seriesT with the criterion
(Emery and Thompson, 1998)

T >
1

|σpt1 − σpt2 |
. (2.26)

The two predominant partial tidesM2 andS2 can be unambiguously distinguished with a time-
series of 14.7 days. The longer the time-series the more constituents can be resolved, including
long-period tides. The fortnightly tideMsf for example can be extracted from any time-series
longer than 14.8 days,Mm (monthly) after 31.8 days andMf (fortnightly) after 182.6 days
(Emery and Thompson, 1998).

Experiments conducted for this study demonstrated that allpartial tides listed in Bartels (1957)
(including the solar annual tideSa) should be unambiguously distinguishable with a time-series
of at least 366 days. The generation of an artificial time-series following Equation 2.27 and
subsequent harmonic analysis of the same constituents confirmed this.

x(tn) =
M∑

pt=1

Cpt cos (2πσpttn − φpt) (2.27)

Experiments reveal that only if the constituents were absolutely identical in both generation and
analysis is an identical solution achieved. Small variations such as extracting onlyMe = 60
constituents from a time-series generated withMg = 61 constituents produces small differences
between start-values and end-values. The accuracy of the results increases as more resolvable
constituents are included in the analysis.

For this study, time-series of 400 days length with a time-step of 30 minutes were recorded
from each simulation (5, 10, 15 and 20 minute resolution). Two different harmonic analyses
were performed. For the evaluation (103 ”wet points”) all astronomic tides described in Bartels
(1957) were included in order to get the best possible extraction of the diurnal and semi-diurnal
tides (see Section 3.6).

Further analyses contained the entire global fields of sea surface elevation and currents. For
simulations performed with the 5 minute resolution, this means more than 6 Mio wet points for
all three variablesζ , u andv. As the computational time of the harmonic analysis increases as
the square of the number of constituents (Emery and Thompson, 1998), the number of primary
astronomical partial tides considered was reduced and onlya selection of the most significant
compound and overtides were included (see Appendix A.2).
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2.5 Statistical Methods

Correlation coefficients and RMS-residua (root mean square) were calculated for simulation
results compared with measurement data. The complex-valued sea surface elevation of a partial
tide can be described as

ζpt = Apt · ei·σpt·t · e−i·φpt (2.28)

whereApt andφpt are the amplitude and phase values andi =
√
−1. The correlation coefficient

is defined as

rxy =

∑n
i=1

[(
ζai − ζa

)
·
(
ζbi − ζb

)]

√
∑n

i=1

(
ζai − ζa

)2 ·
∑n

i=1

(
ζbi − ζb

)2
(2.29)

with a andb referring to the compared data sets.ζ denotes to the respective mean value of the
n samples. The RMS-residuum is calculated as

RMS =

√√√√ 1

n
·

n∑

i=1

(
ζai − ζbi

)2
. (2.30)

For correlation coefficients sufficiently close to 1, a complex linear regression method (Huf-
schmidt, 1995) can be applied to ascertain whether a systematic error is observed when com-
paring the two data sets.

Based on a least squares method, the complex linear regression searches for the functionf that
fullfills

n∑

i=1

(
f (ζai ) − ζbi

)2
= min (2.31)

and can be described as

f (ζa) = m · ζb + c (2.32)

with

m = |m| · e−i·Ψ (2.33)

c = |c| · e−i·Θ (2.34)

describing the amplitude factor|m|, the phase correctionΨ and the correction to the zero-point
c (with amount|c| and directionΘ). A detailed description can be found in Hufschmidt (1995).

A perfect fit of two independent data sets would be characterised by a correlation coefficient
and an amplitude factor of value 1 and a RMS-residuum and a phase correction of value 0.
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2.6 Earth Rotation Parameters

Variations in the oceanic tidal angular momentum produce changes in the earth’s rotation through
interactions of the oceans with the solid earth. The resultsof the ocean tide simulations and the
oceanic angular momentum were calculated for both the time-domain and frequency-domain,
so the earth rotation parameters can be investigated in bothdomains.

The rotation of the earth can be regarded as changes in the orientation of an earth-fixed system
Γ within a space-fixed systemΠ. With ei (i = x, y, z) defining the orthogonal axes of the
respective systems the earth’s rotation can be formulated as (Seitz, 2004, after Richter (1995)):

eΓi = R · eΠi (2.35)

whereR is the rotational matrix which can be divided into a precession matrixP , a nutation
matrixN , a matrixS describing the rotation along the angle of the appearant Greenwich sidereal
time, and a matrixW for the wobble or polar motion (Seitz, 2004).

eΓi = W · e∆i
eΓi = W · S · eΘi

eΓi = W · S ·N · eΞi
eΓi = W · S ·N · P · eΠi (2.36)

Every part of the matrixR refers to a different system:∆ denotes the terrestrial equatorial
system,Θ the true celestial equatorial system andΞ the mean celestial system. The true celestial
system refers to the celestial ephemeris pole (CEP).

The precession describes the variations in the orientationof the earth’s axis with respect to the
ecliptic pole (normal to the ecliptic plane shown in Figure 2.2). Due to the precession the Aries
point Υ moves along the ecliptic with a full period around the celestial sphere taking about
25,800 years (platonic year). The nutation is caused by periodic variations in the orbits of the
moon and earth. It consists of a combination of several constituents with different amplitudes
and frequencies between 5 days and 18.6 years. The last two matrices,W andS, describe the
influence of the earth rotation parameters.

The variations of the earth’s rotation computed in this study refer to the CEP and in the frequency-
domain follow Gross (1993) who investigated the earth rotation parameters (ERP) on the basis
of the results of Seiler (1991) - which is the main precursor model of TiME. A number of mea-
surement studies refer to this method of calculation and aretherefore suitable for comparison
(including Sovers et al., 1993; Herring and Dong, 1994; Gipson, 1996; Rothacher et al., 1998).

This approach determines the variations in the length of dayand polar motion separate from
each other - the axial component of the OTAM,Mz (Equation 2.18), being responsible for the
former and the two equatorial components,Mx andMy (Equations 2.16 and 2.17), for the latter.
For the polar motion - or wobble - the free core nutation and the Chandler wobble are taken into
account as the most significant variations of the earth rotation (Gross, 1993).
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A uniform rotation in the absence of any external torques canbe formulated as

→

ω0=




0
0
Ω



 ,
→

I0=




A 0 0
0 A 0
0 0 C



 (2.37)

whereA andC determine the least and greatest principal moments of the earth’s inertia. As the
changes in the earth’s rotation∆

→

ω0 due to external torques are small in comparison toA and
C they can be formulated by the linearised Liouville equations (Munk and MacDonald, 1960):

∆
→

ω0= Ω ·




m1

m2

m3



 (2.38)

m1 −
·

m2

σCW
= ψ1 , m2 −

·

m1

σCW
= ψ2 ,

·

m3=
·

ψ3

with
·

mi= dmi/dt and the complex-valued frequency of the Chandler wobble:

σCW =
2π

TCW
·
(

1 +
i

2 ·Q

)
(2.39)

with TCW = 434.45 sd (sidereal days) and the damping constantQ = 170 (Wilson and Vicente,
1980). The excitation functionsψi can be written as (Wahr, 1982)

ψ1 =
1.12 ·

(
Ω · ∆MΘ

x +
d∆MΘ

y

dt

)
+ 1.61 ·

(
Ω · ∆M r

x +
d∆Mr

y

dt

)

Ω2 · (C − A)
(2.40)

ψ2 =
1.12 ·

(
Ω · ∆MΘ

y + d∆MΘ
x

dt

)
+ 1.61 ·

(
Ω · ∆M r

y + d∆Mr
x

dt

)

Ω2 · (C − A)
(2.41)

ψ3 = −0.756 · Ω · ∆MΘ
z + Ω · ∆M r

z

Ω2 · Cm
(2.42)

whereCm is the greatest principal moment of inertia of the earth’s crust and mantle,MΘ
x,y,z the

rotational andM r
x,y,z the relative angular momentum (Section 2.3.1).

Variations in the length of day∆Λ(t) or in universal time (UT1) are defined as

∆Λ(t) = −Λ0 · ψ3(t) ,
d∆UT1

dt
= −ψ3(t) (2.43)

with the nominal length of dayΛ0 = 86, 400 s. In the frequency-domain, the variations can be
formulated as

∆UT1 = Apt cos(σpt − φpt).
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The complex-valued variation in the orientation of the earth’s axis is defined byp(t) = pmx(t)−
i · pmy(t) where the y-component is positive towards 90◦W. In the frequency-domain, Gross
(1993) determines the variations with respect to CEP as

p(σpt) =

[
2.554 × 10−4 Ω

σfcn − σpt
+ 2.686 × 10−3 Ω

σcw − σpt

]
·
MΘ

x + i ·MΘ
y

AΩτ

+

[
6.170 × 10−4 Ω

σfcn − σpt
+ 1.124

Ω

σcw − σpt

]
·
M r

x + i ·M r
y

AΩ
(2.44)

whereσfcn = −1.0023203 cpsd (cycles per sidereal day) is the frequency of the free core
nutation (FCN), andτ = Ω2a5/(3GA) with the mean radius of the eartha and the universal
gravitational constantG.

The variations of polar motionp(t) due to the constant force of a well-defined frequency results
in an elliptical motion which can be described by a prograde (p) and a retrograde (r) circular
movement defined by amplitudeA and phaseα values (Gross, 1993).

p(t) = Ap · ei·αp · ei·σ·t + Ar · ei·αr · e−i·σ·t (2.45)

In the time-domain, it is preferential to illustrate the variations in polar motion with the effective
angular momentum functions (EAM) (Barnes et al., 1983). They are related toψ as

ψc = χc − i ·
·

χc
Ω

(2.46)

wherec indicates the complex-valued notation of the equatorial components. Zharkov et al.
(1996) give a measure for polar motion with the so-calledχ-functions.

χc =
1.12 ·

(
MΘ

x + i ·MΘ
y

)
+ 1.61 ·

(
M r

x + i ·M r
y

)

Ω · (C −A)
(2.47)

Compared to theψ-notation (Equations 2.40 and 2.41) theχ-functions do not include the ac-
celeration terms (d∆M

dt
) which is very convenient for the calculations.
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Chapter 3

Model Performance and Evaluation

The precursor models of TiME used a coarser spatial resolution of 1◦. The newly implemented
high resolution of 1/12 of a degree globally required modifications in the modules that were
adapted for TiME (Chapter 2) to ensure the feasibility of thesimulations. The three major
changes introduced to the model set-up will be discussed in this chapter:

1. a more stable treatment of the Coriolis term (Section 3.1);

2. modifications of the iteration scheme (Section 3.2); and

3. a two-step poleward zonal resolution decrease in the northernmost latitudes (Section 3.3).

As simulations with the old algorithm could not be performedon a significantly higher resolu-
tion these changes were tested on a 1◦-set-up before increasing the resolution. The model code
was partly reworked in order to secure optimal vectorisation on the high-performance computer
system (Section 3.4).

An independent set of pelagic measurements of tidal elevations has been compiled by Le Provost
(1995). It serves as a standard data set for evaluating oceantide models and has been used for
the evaluation of TiME. It includes 103 stations in the open ocean (Fig. 3.1) which are charac-
terised by the amplitude and phase values of up to 13 selectedpartial tides. As the stations have
been compiled considering the shortcomings of coarser ocean models, the improvements of the
fine resolution of the new model will not necessarily producea better correlation. The model
has been tuned withM2-only simulations for the four selected resolutions (Section 3.5) before
evaluating the simulations performed for this study (Section 3.6).

3.1 Coriolis Term

TiME’s direct precursor, the partial tide model of Seiler (1989), used an adaption of the semi-
implicit numerical scheme of a barotropic shelf ocean model(Backhaus, 1983). Backhaus
(1983) already discussed the possibility of a more stable treatment of the Coriolis term (after
Wais, unpublished) but did not include it in the scheme yet. The refined description of the semi-
implicit numerical scheme can be found in a successive work describing a three-dimensional
baroclinic shelf ocean model (Backhaus, 1985). This schemewas adapted for the barotropic
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Figure 3.1: Locations of the 103 pelagic measurements of theMEOM data set
(Le Provost, 1995).

model TiME. In general, the new scheme not only rotates the velocities (as in the previous
approach) but also rotates the pressure gradient term (Section 2.1 and Appendix A.1.1).

In order to investigate the stability of the new and old scheme and their dependency on the
model set-up,M2-only simulations were performed on a series of different time-steps for both
the new (red) and old (blue) algorithms (Fig. 3.2). The kinetic energy was calculated as global
integration of the simulated ocean currents (u andv) and the potential energies represents the
sea surface elevations (ζ).

For the smallest time-step of Figure 3.2 both algorithms calculate similar energy values. By
gradually increasing the time-step from a few seconds to almost 7 minutes, both the kinetic and
the potential energy have higher values in case of the simulations with the old algorithm. The
kinetic energy has been increased by roughly 20% from3 to 3.6 · 1024 g·cm2

s2
. The time-step

dependency is eliminated with the new scheme as the amounts of kinetic and potential energy
remain at nearly constant values no matter which modelling time-step has been chosen. This
clearly demonstrates the stability gained from the new algorithm.

3.2 Iteration Scheme

The semi-implicit algorithm used in this study requires an iterative calculation of the sea sur-
face elevations which is done by successive over-relaxation (SOR, e.g. Press et al., 1987). As
the algorithm has been reworked (see Section 2.1), the SOR-scheme had to be modified as well
and was taken in parts from the one formulated in the Hamburg Shelf Ocean Model (Ham-
SOM) which utilises a similar numerical scheme (Pohlmann, 1996). The SOR-problem can be
formulated after Backhaus (1985):
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Figure 3.2: Reduced time-step dependency of the numerical scheme (timestep in min-
utes; energies ing·cm

2

s2
).

Figure 3.3: Experiments with different relaxation parametersω of Equation 3.1.

Figure 3.4: Experiments with different values forρ of Equation 3.3.
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wherek denotes the iteration step andω the relaxation parameter. For an illustration of how
to calculateB, C and the coefficientsci the reader is referred to Backhaus (1985) and Ap-
pendix A.1.1 of this study. The SOR-problem is formulated ona so-called chess-board-scheme
leading tok+1-indices of the directly neighbouringζ-points. Figure 3.3 shows results from the
experiments with different values forω. The residuum was calculated asR =

∑
A

|∆ζk−1−∆ζk|.

Depending on the desired accuracy of the results, the bestω to ensure the fastest iteration is1.2
to 1.3 (for the first iteration steps simulations withω-values of1.0 or 1.1 are faster converging
but these results would be of too low accuracy).

In order to improve convergence, two further alterations were introduced. First, as tidal ele-
vations are fairly regular and predictable in the sign and value of changes from one time-step
to the next, one might begin the iteration with a ”first guess”∆ζnfg as a starting value of the
iteration (Maier-Reimer, pers. comm.).

∆ζnfg = 2 · ∆ζn−1 − ∆ζn−2 (3.2)

Second, a Chebyshev acceleration has been implemented using a ”flexible” relaxation parameter
ωk (after Press et al., 1987, and Maier-Reimer, pers. comm.).

ω
1
2 = 0.5

ω1 = 1

ωk+
1
2 =

1√
1 − ρ2·ωk

4

ω∞ −→ ωoptimal (3.3)

The parameterρ basically defines to whichωoptimal the flexibleω will converge. Consequently,
the results from the experiments with different values forρ (Figure 3.4) reveal a similar pattern
as Figure 3.3. The simulations withρ = 0.6 will lead to aωoptimal of about1.2 andρ = 0.7 to
aωoptimal of about1.3. In the following, either a constant value ofω = 1.3 or a flexibleω with
ρ = 0.7 have been used.

Comparing the different alterations (Figure 3.5) reveals that the new algorithm converges signif-
icantly faster than the old one. Experiments with a time-step of about 4 minutes were performed
with the old (dashed black) and the new (solid black) numerical scheme. The first guess (red)
and the flexible relaxation parameter (green) were introduced separately and in combination
(purple). The introduction of a first guess seems to replace the first 15 to 20 iteration steps and
has a strong effect on reducing iteration time. The flexibleω gives slightly better results for
only the first 30 iterations.

Experiments with different convergence criteria of∆ζ , i.e. the desired accuracy of the iteration,
were performed with the old numerical scheme for two different time-steps: about 4 minutes



31

Figure 3.5: Convergence of the iteration scheme.

(green) and about 6.5 minutes (black) (Fig. 3.6). Experiments with the new scheme incorporated
both the first guess and the flexibleω and utilised the same time-steps (blue and red). Note that
the old algorithm iterated in blocks of 20 iterations beforeinvestigating whether the criterion is
matched.

Simulations with the old algorithm on a time-step of about 4 minutes (green) show that iter-
ation time roughly increases by another block of 20 iterations with every order of magnitude
in decrease of the criterion. For simulations with a time-step of about 6.5 minutes the number
of iterations increases dramatically. For the new scheme (blue and red) the number of itera-
tions needed to match a certain accuracy only increases by 3 to 5 per order of magnitude of
the criterion. This clearly reveals the improved convergence of the new scheme and its reduced
time-step dependency. Eventually, a criterion of10−7 cm has been chosen for the experiments
performed for this study.

3.3 Poleward Resolution Changes

The numerical equations of the ocean module are formulated on a spherical grid, so the actual
meridional distance (north-south-direction) between twoneighbouring grid points has a con-
stant value of about 10 kilometres at 5 minute resolution. Inthe zonal (east-west) direction the
grid narrows towards the poles. As the minimum distance between two grid points constrains
the largest possible time-step with which the model can be run, the grid of the North Pole region
had to be altered so that the smallest distance does not fall below 2 kilometres. The problem
was solved by decreasing the zonal resolution by a factor of two towards the North Pole at two
latitudes of the user’s choice. The principle of the resolution change follows Zahel (1970) and
was formulated for the numerical scheme of TiME. At the NorthPole itself the system of equa-
tions is tied together by a polar cap represented by a single sea surface elevation grid point and
is variable in size.
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Figure 3.6: Experiments with different convergence criteria.

The equations of motion and continuity of the ocean part are formulated as finite-difference
equations in the semi-implicit scheme. Their application at the latitudes of the resolution change
and at the polar cap are described in detail in Appendix A.1.2and A.1.3.

The resolution change towards the North Pole has been testedon an ”aqua planet” which is
an artificial globe with the southern hemisphere completelycovered by land and the northern
hemisphere covered by water with a uniform depth of 500 metres. Three different experiments
were conducted:

A) constant zonal resolution of 4◦;

B) zonal resolution of 1◦ changing to 2◦ at 66.5◦N and further to 4◦ at 76.5◦N; and

C) as in B except that resolution changes occur at 76.5◦N and 82.5◦N.

The meridional resolution has a constant value of 1◦ and the polar cap a radius of 2.5◦ in all
three simulations. All three experiments were forced with theM2 partial tide. Figure 3.7 shows
the amplitude and phase values of the three set-ups A, B and C.The results reveal that the
resolution changes do not disrupt the pattern. No phase distortion occurs at the boundaries.

Figure 3.8 illustrates the differences between the three simulations. The maximum difference
in amplitudes are found in A-B and A-C with differences of up to 0.1 cm in areas south of
the location of the resolution changes of B and C. Almost no changes remain in B-C. This
supports the interpretation that the changes in A-B and A-C are due to the different resolutions
(with their respective parameterisations) and not due to the numerical solution of the boundary
problem at the latitudes of the resolution change. No changes in amplitude due to reflections at
the resolution changes are visible.

Set-up C was chosen for the simulations of this study so that the resolution changes are as far
north as possible. As the South Pole is covered by land, it does not require a resolution change
nor a polar cap.
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Figure 3.7:M2 amplitudes and cotidal lines (in hours) for three differentset-ups (A, B
and C) of an ”aqua planet”. The plots show the North Pole area from 59◦N to
90◦N. The inset images indicate the position of the resolution change with a
white circle.

3.4 Overall Model Performance

When TiME is run on 5’ resolution with the complete lunisolarforcing and with a time-step of
2 minutes, it needs about 6 GB of storage space and 30 minutes of CPU-time (central processing
unit) to simulate one calendar day. Within the DKRZ-system,only simulations of up to four
hours of CPU time are permitted (for non-parallelised models). Hence, a ”chain-job” structure
has been implemented where only five days of simulation are performed within one batch job
in order to provide some head room for any irregularities. A full simulation of 366 days (so that
all partial tides can be extracted) takes about 183 hours of CPU-time.

The model spends more than 65% of the total CPU-time in the SOR-scheme, which stresses
the importance and necessity of the modifications in the iteration scheme implemented in TiME
(Section 3.2). As the simulations are carried out on a vectorcomputer, vectorisation of the
calculations is essential for the model performance. The average vector length of TiME is about
243 (with 256 being an optimal value) and the vector operation rate is 99.6% (100% would
mean a perfect vectorisation).

3.5 Adjustments of Model Parameters

The equations of motion in TiME (Equations 2.2 and 2.1) include a number of parameterisa-
tions: namely the bottom friction (coefficientr), the influence of earth tides (Love Numbers),
the effect of load and self-attraction (ε), and the eddy-viscosity (AH). Following the investiga-
tions of Seiler (1989) and Thomas (1996), only the eddy-viscosity has been used as a tuning
parameter (keepingr = 0.003 andε = 0.1).

The value ofAH determines the influence and importance of the eddy-viscosity within the
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Figure 3.8: Differences in amplitudes and phases between the aqua planet simulations A,
B and C.

equations of motion. This term, describing the horizontal exchange of water masses, is designed
to parameterise small scale processes taking place within amodel grid box and is consequently
dependent on the spatial dimensions of the grid. Equations 2.7 and 2.8 already include a latitude
dependency through

Am = AH , Az = AH · cosφ.

TuningAH requires some experimentation. Figure 3.9 shows comparisons between a series of
M2-only simulations with different resolutions and different AH-values compared to the ST103
data set (Le Provost, 1995, Fig. 3.1).AH-values higher or lower than the ones plotted in the
figure lead to numerical instability. For the 5’-resolutionsimulation (red) the range of numerical
stable values ofAH lies between5 and45 · 103 m2

s
.

Most free numerical ocean tide models, i.e. those not assimilating data, have a tendency towards
overestimating the heights of most partial tides. It is likely that some frictional processes are not
included in the equations of the models leaving too much energy in the system (Egbert et al.,
2004). As eddy-viscosity is an important frictional term and helps dampen the sea surface
elevations, it is not surprising that the largestAH-values produce the best RMS-values. The
correlation coefficients indicate that the best results areachieved with slightly reduced values
of AH . In general, the results show very good to excellent correlation with measurements.

A linear regression analysis of these experiments reveals several systematic trends. Figure 3.9
(middle) shows a general improvement of both amplitude factors and phase corrections with
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Figure 3.9: RMS-values and correlation coefficients for different model resolutions and
eddy-viscosities compared with the ST103-data (top). Linear regression: Am-
plitude factors and phase corrections (middle) and zero-point correction (bot-
tom). The numbers indicate the respectiveAH-value (x · 103m2

s
).
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increasingAH-values, corresponding with the RMS-value-trends (top). The same holds for
the amount of the zero-point correction|c| (bottom). The valueΘ determines the direction of
the zero-point correction and is centred around 180◦. Deviation from 180◦ leads to a loss in
correlation (top) and may indicate a systematic shift in phases.

As a general impression, the higher-resolving versions of TiME (15’ to 5’) are less dependent
on the choice ofAH . As a compromise between the best RMS-value and the best correlation
coefficient, anAH-value of3 × 104 m2

s
for the 5’ resolution has been chosen. The values of the

lower-resolving versions of TiME have then been chosen so that they produce results that agree
best with the results of the next higher-resolving ones leading to5×104 m2

s
for 10’, 7.5×104 m2

s

for 15’, and10 × 104 m2

s
for 20’.

3.6 Evaluation of Model Results

Simulations of four other partial tides have been performed(S2, N2, O1 andP1). From the
results of simulations with the complete lunisolar tidal potential, all 13 partial tides considered
in the MEOM data set were determined through harmonic analysis and compared analogously.

Figure 3.10 (top) shows RMS-values and correlation coefficients of the five partial tide runs as
well as the extracted partial tides. Only results of the 10’ and 5’ resolutions are plotted as they
are the most important ones for this study. With values ofrxy > 0.88 throughout, the correlation
with the pelagic data set can be described as very good.

The RMS-values are relatively high, especially for the two main tidesM2 andS2, which can
be related to the tendency towards overestimation of most free models mentioned above. The
M2-tides extracted from the full forcing simulations are evenhigher than the partial tides. There
is, however, no visible general trend when comparing partial tide simulations with full forcing
simulations (see e.g.S2-results). Instead, the resolution of the respective simulation seems to
be more significant since often the partial 5’ (green points)closely pair with the complete 5’
(red) and the partial 10’ (blue) with the complete 10’ (black).

Most amplitude factors (Fig. 3.10, middle) are within 1.0 and 1.4 showing the expected tendency
towards overestimation. Phase corrections predominantlyhave negative values suggesting that
the simulated tidal waves have a slight lead compared to the measurements. The higher resolu-
tion improves the values in phase correction for a number of partial tides (Q1, O1, N2, M2, K1

andS2), but can not be regarded as a systematic trend as also the opposite can be observed (K2,
L2 andP1).

In general, comparisons with the pelagic measurements of the ST103 data-set show that the
oscillation system can be regarded as well-captured by the model for all 13 diurnal and semi-
diurnal partial tides considered. The model has a tendency towards overestimating sea surface
heights.
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Figure 3.10: RMS-values and correlation coefficients for different partial tides and differ-
ent resolutions (top). Linear regression: Amplitude factors and phase correc-
tions (middle) and zero-point corrections (bottom).



38



39

Chapter 4

Ocean Tide Simulations

The oscillation system of the ocean tides as represented by the new model TiME will be dis-
cussed with examples of the influence of bathymetry and spatial resolution (Section 4.1) and
the influence of the complete forcing as compared to the traditional partial tide forcing (Sec-
tion 4.2).

A global description of non-linear shallow-water tides is given in Section 4.3, a result of imple-
menting the complete tidal potential of second degree in a high-resolving ocean model.

4.1 Influence of Bathymetry and Resolution

TiME has been run with two different bathymetries (GEBCO or ETOPO, see Figure 4.1) and
four different resolutions (5’, 10’, 15’ and 20’). TheM2-only simulations discussed in Sec-
tions 3.5 and 3.6 indicate that no significant improvement inthe description of the global os-
cillation system can be expected for the open ocean with an increase of resolution. Rather, the
implementation of higher resolution is expected to show themost significant improvements in
shelf areas and possibly in some regions of the open ocean.

Figure 4.1: Bathymetries of 5’ resolution: GEBCO (left) andETOPO (right). Excerpted
from global bathymetry showing the Southern Ocean between Australia, New
Zealand and Antarctica.
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Figure 4.2: Amplitudes and phases (in degrees) ofM2-only simulations with the GEBCO
bathymetry with 20’ resolution (left) and 5’ resolution (right). Excerpted re-
gion of global simulation same as in Figure 4.1.

Figure 4.3: Amplitudes and phases of anM2-only simulation with data assimilation on
60’ resolution taken from Zahel et al. (2000). Excerpted region of global
simulation same as in Figure 4.1.

The latter is shown to be the case with one interesting large scale feature improved via in-
creased resolution. Almost all ”free” models, i.e. withoutany data assimilated, describe an
amphidromic point of theM2 in the Southern Ocean south of Australia1. Measurements, how-
ever, have shown that theM2 travels westward throughout the entire region (Cartwrightet al.,
1979). Data assimilation models correct this inaccuracy displayed by free models (e.g. Zahel,
1995) and consequently mark this region with a pronounced dynamic residual (Zahel et al.,
2000).

Model simulations with TiME display this feature correctlysimply by increasing the resolution
based on the GEBCO bathymetry (Fig. 4.2). The excerpts shownin the figure stem from global
M2-only simulations on 20’ and 5’ resolution. The oscillationsystem east and west of the part

1An amphidromic point, or amphidrome, is a point with almost no tidal elevation. It is the centre of a rotational
wave pattern of the respective partial tide and is marked as aconjunction of phase lines (e.g. Pond and Pickard,
1983).
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of the Southern Ocean between Australia and Antarctica is essentially the same for both reso-
lutions. Only the direction of the tidal wave off the southern coast of Australia is reversed. The
general oscillation pattern generated with 5‘ resolution matches the results of the data assimi-
lation models excepting that the wave as described by TiME propagates faster. For comparison
see Figure 4.3 where results from Zahel et al. (2000) are shown. The cotidal line of 90 degrees
at the southern tip of New Zealand corresponds well with Figure 4.2. Some 360 degrees later,
with theM2-tide travelling westward, the next cotidal line of 90 degrees leads the data assimila-
tion model by about 60 degrees. Note that the amplitudes in the results of the data assimilation
model are significantly lower than in the results of TiME withthe GEBCO topography. This
can be explained with the dissipative nature of the dynamic residuals introduced due to the
assimilation of data (Zahel et al., 2000).

Figure 4.4: Amplitudes and phases ofM2-only simulations with the ETOPO bathymetry
with 20’ resolution (left) and 5’ resolution (right). Excerpted region same as
in Figure 4.1.

Repeating the experiments with the ETOPO bathymetry and an otherwise identical model set-
up produces Figure 4.4. Two statements can be made: 1) Amplitudes are remarkably higher
then in Figure 4.2; 2) The amphidromic point does not disappear with the resolution increase.

Experiments with ”mixed” topographies, i.e. replacing given regions of the ETOPO bathymetry
with the respective part of the GEBCO bathymetry and vice-versa in various dimensions, were
performed. They revealed that the presence of the amphidromic point does not seem to be
governed by the immediate regional topography. The desiredchange is only achieved when
almost the entire Southern Ocean is described by the GEBCO topography.

This demonstrates that the exact locations of amphidromes can be quite sensitive to changes in
the model set-up and that they are determined by the general oscillation system.

In order to explain the differences in amplitudes between the GEBCO and ETOPO bathymetries,
a thorough investigation of the raw data and algorithms applied for the generation of the maps
would be required, which is beyond the scope of this study. Generally, the GEBCO bathymetry
is ”rougher” and the ETOPO ”smoother”. Because the results obtained with GEBCO correlate
better with measurements (not shown) and in light of the improvement indicated in Figure 4.2
this bathymetry has been chosen as more suitable for TiME.
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4.2 Influence of the Complete Forcing

With the implementation of the complete lunisolar tidal potential, all partial tides from the
second degree harmonics are included in the real-time simulations, allowing for interactions
between partial tides. In the following, the tides extracted from the real-time simulations will
be compared with the results from the partial tide forcings.

The principal solar diurnal tideP1 will serve as the first example. It is shown as modelled using
partial tide forcing (Figure 4.5, top) and as extracted froma simulation with complete forcing
(Figure 4.5, middle). The simulations agree well with each other in their description of the
global oscillation system.

The propagation of this tide in the Southern Ocean is characterised by a circumpolar Kelvin
wave. The cotidal line of 0◦ is roughly at 0◦ longitude, the 180◦ line is at 180◦ longitude and
the cotidal line of 270◦ is located at 90◦E. This shows that the Kelvin wave travels with a quite
uniform speed and a wavenumber ofm = 1 around Antarctica without being much disturbed
by the Drake Passage (between Antarctica and South America). Parts of the wave are deflected
into the Atlantic and Pacific Ocean. The propagation in the Atlantic Ocean is determined by
two cyclonic amphidromes. Amplitudes are relatively low compared to the other ocean basins
because the Atlantic is not favourable to resonance for theP1 (Zahel and Müller, 2005).

The Pacific Ocean is governed by a set of three amphidromic points, leading to a constant anti-
clockwise propagation along the coasts from equatorial South America to East Asia. In the
Northern Pacific theP1 can reach amplitudes of up to 15 cm in the open ocean. In the adjacent
seas of the Western Pacific the highest amplitudes are found with more than 60 cm. The Pacific
is connected to the Southern Ocean by a Kelvin wave around NewZealand and an amphidrome
near the Fiji-Islands. The Indian Ocean is characterised byan anti-clockwise amphidrome just
south of India and roughly at the equator. The highest amplitudes are found in the Sea of Arabia
with up to 15 cm. A second amphidrome at about 45◦S and 60◦E connects the Indian to the
Southern Ocean.

As Figure 4.5 (top and middle) only shows every sixteenth data point of the 5’ resolution some
”distorted” looking cotidal lines (e.g. at 45◦S, 70◦E and 45◦S, 175◦W) indicate that at these
locations the oscillation system is significantly influenced by regional bathymetry. Apart from
these distortions, the global propagation pattern compares reasonably well with the results from
other tidal models that also include a more detailed description of global oscillation systems
(e.g. Schwiderski, 1981; Seiler, 1989).

Taking a closer look at the distortions southeast of New Zealand demonstrates the significance
of the local topography (Figure 4.6). The amplitudes and phases (top) represent an excerpt
of Figure 4.5 (middle). The patterns of the oscillation system resemble the ones calculated
by Walters et al. (2001, Fig. 7 therein) with a regional barotropic ocean tide model forced by
satellite altimetry data at the boundaries. In detail, however, the model results differ quite
substantially.

The distribution of flow transport (Figure 4.6 (bottom)) shows the greatest values around 175◦E,
57◦S at the break of the New Zealand Plateau. Müller (in review)has recently shown that a
topographic vorticity mode with a period of 32.56 hours exists in this area and that this mode
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Figure 4.5: Amplitudes and phases (in degrees) of theP1 with partial tide forcing (top)
and extracted from simulation with complete forcing (middle) and their dif-
ferences in amplitudes (bottom).
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Figure 4.6: Amplitudes and phases (in degrees) of theP1 southeast of New Zealand (top)
and transport ellipses (bottom). Water depths are shown in grey shading. A
”legend” tidal ellipse has been added to the figure in the upper left corner. It
represents a current characterised byU = V = 10m

2

s
andφU = 90◦ andφV =

0◦. Cyclonic tidal ellipses are drawn in red (i.e. clockwise inthe southern and
ant-clockwise in the northern hemisphere).
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Figure 4.7: Differences in phases (in degrees) betweenP1-only forcing (Fig. 4.5, top) and
P1 extracted from complete forcing simulation (Fig. 4.5, middle).

Figure 4.8: Conceptual explanation of a shift in the position of an amphidromic point as
represented by phase differences (in degrees). The amphidrome A (black) is
shifted to the right (or eastward) to B (red). The differencedφ = φA − φB
produces a distinct colour pattern. The line with 0◦ differences (shown in
white) indicates the line of shift. The distance of shift is indicated by the
size of the blue and red ”plumes”. The direction depends on the sense of the
respective amphidrome. The example shows a clockwise propagation shifted
to the right (or eastward), producing positive values in theupper (northern)
part. An anti-clockwise amphidrome moved to the left (or westward) would
produce the same pattern. Examples can be found in Fig.4.7 off the Namibian
coast (roughly at 10◦E, 20◦S) and near Galapagos (roughly at the equator and
90◦W).
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affects the eigen-oscillation of 31.73 hours in the circum-antarctic Kelvin wave. This eigen-
oscillation is the most significant constituent of most tides of the diurnal band including theP1

(Zahel and Müller, 2005).

The differences in amplitudesdApt = Aptpt−Aephpt (Fig. 4.5, bottom) and phasesdφpt = φptpt−φephpt
(Fig. 4.7) of theP1-tide show positive values (red) where the results from the partial tide forcing
have higher values. In the open ocean, the two simulations generally agree with each other. The
most significant differences in amplitudes and phases are found in extended shelf areas. The
difference in amplitudes (Fig. 4.5, bottom) lies between 0.0 and 1.0 cm throughout almost the
entire ocean basins with a few areas of negative values up to -1.0 cm. In case of theP1-tide
this is most pronounced in the adjacent seas of the western Pacific from northern Australia to
Kamchatka and Alaska with differences in amplitudes of up to± 20 cm. Smaller differences
in amplitudes are found in the adjacent seas of the North Atlantic, namely the Labrador Sea
and the North Sea, where also considerable changes in the phases can be observed (Fig. 4.7).
Phase values generally differ between± 5◦. Some distinct point-centred colour patterns can be
seen which are related to a shift in the locations of amphidromes (Fig. 4.8), e.g. west of the
Namibian coast (roughly at 10◦E, 20◦S).

In order to demonstrate the significant differences in oscillations in shelf areas, three different
shelf regions and three partial tides will be shown:

1. theO1-tide in the North Sea, English Channel and parts of the NorthAtlantic (Figure 4.9);

2. theN2-tide on the Patagonian Shelf and parts of the South Atlantic(Figure 4.10); and

3. theM2-tide in the Bohai and Yellow Sea and parts of the Western Pacific (Figure 4.11).

All three areas include extended shelf regions which are located in the immediate vicinity of an
ocean and where high tidal amplitudes are observed. Note that the depth of the southern North
Sea (Fig. 4.9), the eastern Yellow Sea and Bo-hai (Fig. 4.11)is only a few metres for large parts.
TheO1 is the strongest diurnal and theM2 the strongest semi-diurnal tide. The Patagonian Shelf
(Fig. 4.10) is known to experience pronounced resonance forsemi-diurnal tides and with theN2-
tide a comparably weaker partial tide has been chosen. The three shown combinations of partial
tide and shelf region may serve as illustrative examples where the changes are pronounced but
not extreme, which means that a large number of other combinations would have been possible.
All results shown are excerpted from global 5’ simulations.All partial tide charts extracted
from real-time series stem from one single simulation with complete forcing.

4.2.1 TheO1-Tide in the North Sea Area

The principal lunar diurnalO1 is the strongest tide of the diurnal tidal band. Figure 4.12 shows
the propagation of theO1 in the North Sea. The wave travels from the North Atlantic across the
Scotland-Faeroe-Ridge into the North Sea, and then anti-clockwise along the British and Dutch
coasts into the German Bight. The highest amplitudes with more than 40 cm are found along
Britain’s east coast. TheO1 also travels from the North Atlantic northward into the Irish Sea
and eastward into the English Channel.
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Figure 4.9: Bathymetry showing 1) North Atlantic, 2) North Sea, 3) English Channel,
4) Irish Sea, 5) Scotland-Faeroe-Ridge, and 6) German Bight.

Figure 4.10: Bathymetry showing 1) South Atlantic, 2) Southern Ocean, 3) Drake Passage,
4) Falkland Islands, 5) Southern Patagonian Shelf, and 6) Northern Patago-
nian Shelf.

Figure 4.11: Bathymetry showing 1) Pacific Ocean, 2) East China Sea, 3) Yellow Sea,
4) Bo-Hai, 5) Sea of Japan, and 6) Korean Strait.
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a b

c d

Figure 4.12: Amplitudes and phases of theO1 in the North Sea area with partial tide
forcing (a) and complete forcing (b) and differences in amplitudes (c) and
phases (d).

The amplitudes of this tide in the Atlantic are generally higher in the simulations with complete
forcing by a few centimetres (Fig. 4.12c). On the shelf areas, however, the full forcing results in
considerably lower values. The strongest reduction in elevations can be found in the southwest-
ernmost corner of the North Sea. Reduced from 40 cm (partial)to 20 cm (full), the amplitude
is halved by interactions within the complete tidal dynamics. Further reductions are observed
in the Irish Sea, the English Channel and the German Bight.

The difference in phases (Fig. 4.12d) shows that theO1 partial tide leads the extractedO1 by
some 10 degrees in the North Atlantic. In the shelf regions, there are relatively small differ-
ences in the phases except for a shift of the location of the amphidromic point in the southern
North Sea. Following the conceptual explanation provided in Figure 4.8, the anti-clockwise
amphidrome as extracted from the complete forcing simulation has been moved northeastward
towards the Danish coast compared to the results of the partial tide forcing simulation.
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a b

c d

Figure 4.13: Amplitudes and phases of theN2 on the Patagonian Shelf with partial tide
forcing (a) and complete forcing (b) and differences in amplitudes (c) and
phases (d).

4.2.2 TheN2-Tide in the Patagonian Shelf Area

TheN2-tide is the larger lunar elliptic semi-diurnal constituent of first degree and flows onto
the Patagonian Shelf partly from the Southern Ocean and partly from the Pacific Ocean through
the Drake Passage (Fig. 4.13). TheN2 experiences, like most semi-diurnal tides, pronounced
resonance on the Patagonian Shelf due to favourable dimensions of the ocean basins. Ampli-
tudes here can exceed 1 m, which is quite substantial for thisotherwise comparably weak partial
tide. The wave propagates further northwards along the South American east coast with an am-
phidrome at around 47◦S, 64◦W where parts of theN2 from the South Atlantic joins with the
northward propagation.

The differences in amplitudes between the results of the twoforcings are minimal in the deep
ocean part (Fig. 4.13c) with±1 cm. The differences on the shelf, however, can reach up to
30 cm near the coast. For the region south of 47◦S this means a reduction by about 1/3, north of
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c d

Figure 4.14: Amplitudes and phases of theM2 in the Yellow Sea with partial tide forc-
ing (a) and complete forcing (b) and differences in amplitudes (c) and
phases (d).

47◦S by 1/2. The differences in phases (Fig. 4.13d) reveal a slight tendency towards a lead of
the extracted partial tide in the open ocean. The amphidromeon the Northern Patagonian Shelf
has moved eastward towards the Argentinian coast, while theone south of the Falkland Islands
shifted slightly to the west.

4.2.3 TheM2-Tide in the Yellow Sea Area

The principal lunar tideM2 is the most dominant partial tide. TheM2-tide propagates from the
Pacific Ocean along the Japanese coast into the Yellow Sea andtravels further as a continuous
wave front northwestward into the Bohai Sea (Fig. 4.14). Thehighest amplitudes are up to 2 m
at the Korean coast.

Major differences in amplitudes are found along the Korean coast and the Chinese coast between
25◦N and 35◦N (Fig. 4.14c). The amplitude differences can locally exceed 20 cm and reveal a
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reduction of 10 to 20%. Note that the area of the Korean Straitand northernmost East China Sea
is high in absolute amplitudes (Fig. 4.14a and b) with almostno differences observed between
partial and full forcing (Fig. 4.14c). Differences in phases are generally less then± 5 degrees.

4.2.4 Interpretation

As an overall impression, the accordance of partial tide andcomplete forcing in describing the
respective oscillation systems is striking. This demonstrates that the partial tides investigated
are well captured by the new approach and that the applied harmonic analysis works properly.
Clearly, the main differences are found in regions of shallow waters where the respective partial
tides reach high amplitudes.

The three regional examples demonstrate the significance ofnon-linearities within the tidal
oscillation system. TheO1-tide in the North Sea is an example of a strong diurnal tide in
an area which is not necessarily prone to resonance. The second example shows theN2-tide
on the Patagonian Shelf, i.e. a relatively weaker semi-diurnal partial tide in an environment
strongly influenced by resonance. Both show reductions in amplitudes of up to 50% when using
complete forcing instead of partial tide forcing. The thirdexample, theM2-tide in the Yellow
Sea, shows a strong semi-diurnal tide in an area which is characterised by strong resonance.
The reduction in amplitudes is less compared to the other twoexamples, yet still significant
with differences of up to 20%.

A great deal of these changes can be attributed to the formation of shallow-water tides due to
non-linear interactions between partial tides.

4.3 Shallow-Water Tides

In contrast to astronomical tides, shallow-water tides do not describe a certain aspect of the rel-
ative motion of a tide-generating celestial body. Consequently, they can not be directly derived
from the astronomical tidal potential as formulated in Equation 2.10. This also means that they
can not be included in schemes that apply partial tide forcing. The non-linear differential equa-
tions in the oceanic module of TiME allow for the formation ofshallow-water tides in areas of
low water depth by interactions between partial tides. Withthe new approach of the complete
forcing, all partial tides of the the second degree tidal potential are included. With the imple-
mentation of the high resolution of 5 minutes globally, the shelf areas where shallow-water tides
generate are resolved.

Any combination of astronomical tides is possible, and the resulting ”compound tides” can be
described by adding (or subtracting) the respective astronomical arguments. This phenomenon
also precisely defines the frequencies of the shallow-watertides, and, consequently, they can be
included in the harmonic analysis (Section 2.4). In this study, the most important shallow-water
tides have been considered (Table A.2).

In the following, one selected compound tide resulting fromthe interaction of the partial tides
described in Section 4.2 and the principal lunar tideM2 will be shown as illustrative examples.
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Figure 4.15: Amplitudes and phases ofMO3 in the North Sea area.

Figure 4.16: Transport ellipses ofMO3 in the North Sea area. Water depths are shown in
grey shading. A ”legend” tidal ellipse has been added to the figure in the lower
right corner. It represents a current characterised byU = V = 1m

2

s
andφU =

90◦ andφV = 0◦. Cyclonic tidal ellipses are drawn in red (i.e. clockwise in
the southern and ant-clockwise in the northern hemisphere).
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4.3.1 TheMO3-Tide in the North Sea Area

The interaction ofO1 +M2 results in the third-diurnal tideMO3. The frequency is determined
by

σM2 + σO1 = σMO3 (4.1)

with σM2 = 29.984104 ◦/h andσO1 = 13.943036 ◦/h this results inσMO3 = 42.927140 ◦/h
and gives a period of about 8 hours and 23 minutes.

The highest amplitudes of theMO3 in the North Sea (Fig. 4.15) are found essentially in the same
areas as the ones where the biggest amplitude differences between partial and complete forcing
are observed (Fig. 4.12). TheMO3 reaches its highest values of up to 6 cm along the coasts of
the British Isles. A similar anti-clockwise path is observed for theMO3 in the southern North
Sea, as for theO1 (Fig. 4.12) albeit with a different speed. Also, the amphidrome at 4◦E, 57◦N
indicates that theMO3 does not flow across the Scotland-Faeroe-Ridge into the northern North
Sea (as it was the case with theO1) but rather in the opposite direction, i.e. from the Scottish
east coast northward out into the North Atlantic. Other amphidromes form in the Southern
North Sea (4◦E,55◦N), German Bight (7◦E,55◦N), English Channel (1◦W,50◦N) and south of
Ireland (7◦W,51◦N).

In the deeper areas of the North Atlantic, theMO3 contributes almost nothing to the sea surface
elevations. The cotidal lines, however, suggest a quite distinctive propagation of a wave with
the analysed frequency. Flow transports describe the volumes of water that are being moved
due to currents and are shown for theMO3 in the North Sea in Figure 4.16.

The transport of partial tides with fixed periods can be represented by amplitude and phase
values. Ocean transport pattern can therefore be describedby a tidal ellipse with the solid line
indicating the transport current at 0◦ and the elliptic line indicating the change in direction and
amount of the tidal transport over 360◦ (i.e. a full period).

Most of the transport of theMO3 can be found in the North Atlantic part of the excerpt (Fig-
ure 4.16). This is confirmation that while shallow-water tides predominantly form in shelf areas
theMO3 indeed propagates through the open ocean, albeit as comparably weak currents with
transports only locally exceeding 1m2/s. In contrast, the partial tideM2 can transport up to
500m2/s over large regions of the Atlantic. The highest values of theMO3 transport can be
seen along the shelf breaks and near the Iceland-Faeroe-Ridge (at the top-edge of Figure 4.16).
Relatively strong currents are also observed in the Irish Sea. The values in the North Sea itself
are low as water depth is less then 50 metres over large parts.

4.3.2 TheMN4-Tide in the Patagonian Shelf Area

The amplitudes and phases of the fourth diurnal tideMN4 (M2 +N2) are shown for the Patag-
onian Shelf (Fig. 4.17). Again, the highest amplitudes (up to 10 cm) are clearly associated with
the regions that display the strongest reduction due to the implementation of the complete forc-
ing (Fig. 4.13). TheMN4 has an amphidromic point on the Patagonian Shelf itself (at roughly
52◦S, 67◦W) where the wave propagates clockwise. After moving northward along the coast, it
leaves the shallow waters and spreads out into the South Atlantic. Though the amplitude values
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Figure 4.17: Amplitudes and phases ofMN4 on the Patagonian Shelf.

Figure 4.18: Transport ellipses ofMN4 on the Patagonian Shelf, as in Fig. 4.16 except
that as this is in the southern hemisphere the ”legend” tidalellipse (upper left
corner) now is cyclonic (red).
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seem to level off at further distances, the very uniform phase propagation suggests that the wave
is still detectable far out in the open ocean.

This finding can be verified by the description of the water transport (Fig. 4.18) where the
propagation of theMN4 into the South Atlantic is demonstrated by large ellipses. In contrast to
theMO3 in the North Sea (Fig. 4.16) transport values on the shelf itself are quite pronounced.
As flow transport is the product of depth and velocity and the Patagonian Shelf is characterised
by shallow waters, this indicates that the described compound tide reaches substantial velocities
on the Patagonian Shelf. The largest values of flow transportcan again be found at the shelf
break (e.g. 64◦W, 55◦S).

4.3.3 TheM4- and 2SM2-Tide in the Yellow Sea Area

The third example is of the interaction of theM2 with itself, theM4 compound tide, an example
of an ”overtide” (Fig. 4.19). TheM4-overtide in the Yellow Sea basically redraws the picture
of theM2 with a doubled speed: the main propagation is northward in the Yellow Sea with
amplitudes of up to 10 cm at the Korean coast into the Bohai Sea. TheM4, however, exhibits
its highest values in the inner Yellow Sea while theM2 has a pronounced maximum at the
southern end of the Yellow Sea and the East China Sea (Fig. 4.14). The transports shown in
Figure 4.20 show northwestward propagation into the Bohai Sea, northward propagation into
the Sea of Japan and throughflow between the Pacific Ocean and the East China Sea. Overtides
are the only shallow-water tides that can also be captured bya numerical model that is forced
by a single partial tide and applies non-linear shallow water equations. Consequently, it is not
related to the differences seen in Figure 4.14.

Compound tides can be formed by adding the fundamental arguments of the astronomical par-
tial tides, and can also be formed by subtraction or combinations of both. One remarkable
feature of this phenomenon is that some combinations will have similar or identical arguments
as an astronomical partial tide. For example, the compound tide 2MS2 = M2 + M2 − S2 has
an identical frequency as the variational lunar tideµ2 (Bartels, 1957). In a slightly different
combination, though,S2 +S2 −M2 results in the semi-diurnal shallow-water tide2SM2 which
has no corresponding astronomical counterpart.

Similar to theM2 andM4, the 2SM2 also travels through the Yellow Sea along the Korean
coast, where the highest amplitudes of more than 4 cm are found, into the Bohai (Fig. 4.21).
The areas of highest amplitudes of the2SM2 are the same as the areas with highest differences
in Figure 4.14, i.e. at the Korean westcoast and western partof the Yellow Sea.

A conspicuous phenomenon can be seen in the westernmost partof the East China Sea (at about
122◦E, 29◦N): the2SM2 has a pronounced maximum of about 2 cm and the phase lines seem
to spread out in a concentric way from this location. This mayindicate that parts of the2SM2

are generated directly at the coastline by interactions ofM2 with S2 and that the2SM2 moves
off the coast into the East China Seas afterwards.

The compound tide also travels across the Korean Strait intothe Sea of Japan where it forms an
amphidrome. The cotidal line of 270◦ in the Pacific Ocean south of Japan shows that the2SM2

propagates eastward into the East China Sea. This suggests that this part of the tide has not
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Figure 4.19: Amplitudes and phases ofM4 in the Yellow Sea.

Figure 4.20: Transport ellipses ofM4 in the Yellow Sea area as in Fig. 4.16.
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Figure 4.21: Amplitudes and phases of2SM2 in the Yellow Sea.

Figure 4.22: Transport ellipses of2SM2 in the Yellow Sea area as in Fig. 4.16.
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been formed in the Yellow Sea but rather is an already existing component of the tidal currents
moving southward along the coastlines of the Western Pacific.

The transport ellipses (Fig. 4.22) confirm the eastward flow in the Pacific Ocean south of Japan,
the northward propagation across the Yellow Sea into the Bohai. The strongest transport can
be found in the Korean Strait and in the narrow straits between the archipelago of the Ryukyu
Islands dividing the East China Sea from the Pacific Ocean, where transport can reach values
of up to 1m2

s
.

4.3.4 Sixth- and Eighth-Diurnal Tides

Given the harmonic analysis performed for this study, a few sixth-diurnal and eighth-diurnal
tides (periods of about 3 and 4 hours) were also included in this analysis. Their formation
is analogue to the ones described in the examples above. Representations of the2MS6 on
the Patagonian Shelf and the3MS8 in the North Sea can be found in Appendix A.3. The
significance of the shallow-water tides decreases with increasing frequency. The two shown
compound tides barely exceed amplitudes of 2 cm. The resultsdo, however, document that
these tides are captured by the model and that they can also betraced far out in the open ocean.
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Chapter 5

Angular Momentum and the Earth’s
Rotation

The influence of the tidal oscillation system (Chapter 4) on the rotational behaviour of the earth
will be analysed. The new real-time approach offers two different ways for the investigations.
First, the complete effect of the tidal oscillation system from the lunisolar tidal potential of sec-
ond degree can be described. Second, every extracted partial tide can be described separately in
the frequency-domain. Section 2.4 gives a description of the selection criteria and the procedure
for this harmonic analysis. Some additional partial tides were also investigated by a harmonic
analysis of the the time-series of the angular momentum calculated from the simulations with
complete forcing (Table A.2).

The advantage of the representation in the frequency-domain are fixed periods. The results
for any partial tide are time-invariant and can be presentedin a more comprehensive form.
Furthermore, they can be compared to results from measurements and other models related to
partial tides.

The description of the oceanic tidal angular momentum (Section 5.1) is followed by the analysis
of the instantaneous angular momentum budgets (Section 5.2). Energy dissipation due to eddy-
viscosity and bottom friction and their long-term effects on the earth’s rotation will be discussed
(Section 5.3) and the influence of the ocean tides on the earthrotation parameters, i.e. length of
day and polar motion, is investigated (Section 5.4).

5.1 Oceanic Tidal Angular Momentum

The oceanic tidal angular momentum (AM) is influenced by tidal elevations and currents and
is divided into rotational and relative angular momenta (Section 2.3.1). Rotational, relative and
total AM for 21 days in June 2002 for the x-, y- and z-components is shown in Figure 5.1.
The time-series reveals a pronounced fortnightly cycle in the amount of AM in both rotational
and relative angular momentum as well as in all three components. The highest values in the
excerpt of Figure 5.1 are found in the y-component around June 14 2002 with a range of−6 -
4 ·1025 kg·m2

s
for relative and±4 ·1025 kg·m2

s
for rotational angular momentum. The total angular

momentum reaches maxima of−6 - 8 · 1025 kg·m2

s
.
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Figure 5.1: Relative and rotational angular momentum in1025 kg·m2

s
calculated by TiME

with 5’ resolution for the equatorial components x and y and the axial com-
ponent z (time-domain).

The y-component of the relative AM,M r
y (Equation 2.17), is dominated by semi-diurnal vari-

ations. Every second semi-diurnal peak is reduced due to diurnal variations. This effect is
stronger for negative values ofM r

y where the difference of two neighbouring semi-diurnal peaks

can be up to2 · 1025 kg·m2

s
.

The y-component of the rotational AM,MΘ
y , is dominated by diurnal variations. Throughout

large parts of the time-series, these diurnal oscillationsare asymmetric: the time-span from
peaks of positive value to negative ones is considerably shorter than the time-span from negative
to the subsequent peak of positive value. Note that the ratioof the time-span of decreasing
values against the time-spans where values ofMΘ

y increase is nearly1 : 3. This means that
the curve can also be interpreted as a semi-diurnal variation where every third and fourth semi-
diurnal peak simply does not develop.

The total of relative and rotational AM is dominated by semi-diurnal variations which also vary
from one neighbouring peak to the next. The highest values are observed when relative and
rotational AM have their respective positive maxima in phase with each other. As the ”absent”
semi-diurnal peaks inMΘ

y occur simultaneously with the absolute maximum peaks inM r
y , rel-

ative and rotational AM are out of phase and consequently result in reduced values in total AM.
This constellation results in the phenomenon that even though relative AM has stronger negative
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than positive peaks, the total AM reveals stronger positivethan negative peaks. In general,M r
y

is more significant thanMΘ
y especially during periods of low amplitudes (e.g. June 4-8)where

M tot
y

∼= M r
y .

Values of AM of the x- (±4 · 1025 kg·m2

s
) and z-component (−4 - 6 · 1025 kg·m2

s
) are generally

lower than for the y-component.M r
x is (as forM r

y ) dominated by semi-diurnal variations with
diurnal variations producing an inequality of neighbouring peaks. Again, the rotational AMMΘ

x

is influenced by diurnal tides more strongly than isM r
x . The influence of the semi-diurnal tides

is more pronounced forMΘ
x than forMΘ

y . M r
z reveals a similar pattern asM r

x andM r
y in the

combination of diurnal and semi-diurnal variations. ForMΘ
z , an off-set of about1 · 1025 kg·m2

s

towards positive values is visible. This can be attributed to the effect of long-period tides, most
likely the influence of the semi-annual tideSsa and the annual tideSa.

The fornightly patterns displayed by all three components (x, y and z) result from the fortnightly
partial tides, e.g.Mf andMSf , and the superimposition of semi-diurnal and diurnal partial
tides, e.g. the combination ofM2 andS2 leads to a fortnightly cycle with highest values when
the two tides are in phase.
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Figure 5.2: Amplitudes of total angular momentum in1025 kg·m2

s
calculated by TiME with

5’ resolution (frequency-domain). Note that both axes use alogarithmic scale.
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Table 5.1: Relative (M r) and Rotational (MΘ) Angular Momentum of Long-Period Tides

tide model Mr
x Mr

y Mr
z MΘ

x MΘ
y MΘ

z

Sa T 0.001 264◦ 0.001 220◦ 0.001 314◦ 0.003 346◦ 0.004 155◦ 0.302 331◦

Ssa T 0.012 290◦ 0.008 262◦ 0.016 31◦ 0.027 10◦ 0.024 220◦ 1.912 0◦

S 0.011 278◦ 0.007 280◦ 0.009 89◦ 0.026 6◦ 0.012 259◦ 1.851 2◦

MSm T 0.011 306◦ 0.007 313◦ 0.012 69◦ 0.004 60◦ 0.011 304◦ 0.390 11◦

Mm T 0.057 309◦ 0.038 317◦ 0.073 73◦ 0.020 78◦ 0.053 301◦ 1.854 12◦

S 0.062 315◦ 0.037 326◦ 0.074 91◦ 0.043 58◦ 0.059 340◦ 1.945 11◦

MSf T 0.021 296◦ 0.020 317◦ 0.027 105◦ 0.011 235◦ 0.043 269◦ 0.374 1◦

Mf T 0.225 355◦ 0.158 12◦ 0.339 104◦ 0.111 128◦ 0.220 11◦ 4.330 37◦

S 0.127 333◦ 0.092 0◦ 0.286 98◦ 0.093 118◦ 0.112 25◦ 3.324 16◦

Values shown are amplitudes (Ai) in 1024 kgm2

s
and phases (φi) in degrees.

Results from TiME with 5’ resolution and complete forcing (T).
Comparisons with the results of Seiler (1991) (S).

As the representation of AM in the time-domain (Figure 5.1) is not convenient for comparisons
with measurements or results of other models, it is preferential to investigate AM for individual
partial tides in the frequency-domain. Figure 5.2 shows results of the partial tides which were
extracted via harmonic analysis of the entire global fields of sea surface elevations and currents
(see Section 2.3). Amplitudes range from1020 - 1026 kg·m2

s
and periods from 3 hours to one year

are represented.

The most dominant tides are the semi-diurnal and diurnal partial tides. The four most significant
of each of the tidal bands (M2, S2, K2, andN2 andK1, O1, P1 andQ1, respectively) exceed
1024 kg·m2

s
in total AM in all three components. The less important partial tides (T2,L2 and2N2)

are lower by roughly one order of magnitude. Partial tides ofthe long-period tidal band are
most dominant in the axial componentMz where they can also exceed1024 kg·m2

s
in amplitude

(Mf ,Mm andSsa). Their values inMx andMy are lower by at least one order of magnitude.

The high-frequency shallow-water tides on the left-hand sides of Figure 5.2 are even less sig-
nificant, rarely exceeding1022 kg·m2

s
(namely2SM2, M4, MS4, MN4, MO3, andSO3). With

increasing period, the shallow-water tides become more important. The most dominant shallow-
water tide is the semi-diurnal tide2SM2, followed by the fourth-diurnal and the third-diurnal
tides. The eighth-diurnals reach1021 kg·m2

s
and have values five orders of magnitude lower than,

for example, the predominant semi-diurnal tides.

In the following, the results of this study will be describedin more detail and compared 1) with
the model results from Seiler (1991), which is a 1◦ partial tide model and the precursor of TiME,
and 2) with results from the data assimilation model of Zahelet al. (2000) which also utilises
1◦ resolution. These two models were selected because they aresimilar to the presented model
TiME in the basic principles and equations. Differences in the results of angular momentum
will reflect on the differences of the general approaches, i.e. a high-resolving real-time model
compared with a coarser-resolving partial tide model and a data assimilation model.
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Table 5.2: Relative (M r) and Rotational (MΘ) Angular Momentum of Diurnal Tides

tide model Mr
x Mr

y Mr
z MΘ

x MΘ
y MΘ

z

Q1 T 0.077 281◦ 0.047 246◦ 0.194 77◦ 0.176 349◦ 0.344 194◦ 0.144 98◦

Z 0.049 306◦ 0.068 214◦ 0.147 117◦ 0.109 339◦ 0.256 218◦ 0.073 128◦

O1 T 0.424 292◦ 0.416 163◦ 0.945 101◦ 0.453 326◦ 1.728 211◦ 0.592 138◦

S 0.204 262◦ 0.185 112◦ 0.851 114◦ 0.489 14◦ 1.533 217◦ 0.516 107◦

Z 0.225 299◦ 0.409 210◦ 0.644 124◦ 0.474 328◦ 1.153 219◦ 0.190 144◦

P1 T 0.143 295◦ 0.248 190◦ 0.275 128◦ 0.189 320◦ 0.488 231◦ 0.065 206◦

S 0.037 275◦ 0.169 213◦ 0.240 145◦ 0.251 351◦ 0.371 228◦ 0.047 183◦

Z 0.175 280◦ 0.258 191◦ 0.245 132◦ 0.161 309◦ 0.458 223◦ 0.044 47◦

K1 T 0.466 300◦ 0.808 196◦ 0.883 136◦ 0.599 327◦ 1.539 239◦ 0.173 224◦

S 0.182 234◦ 0.380 202◦ 0.653 143◦ 0.637 358◦ 1.134 221◦ 0.076 125◦

Z 0.514 286◦ 0.785 198◦ 0.735 135◦ 0.477 308◦ 1.387 222◦ 0.162 44◦

Values shown are amplitudes (Ai) in 1025 kgm2

s
and phases (φi) in degrees.

Results from TiME with 5’ resolution and complete forcing (T).
Comparisons with the results of Seiler (1991) (S) and Zahel et al. (2000) (Z).

5.1.1 Long-Period Tidal Band

Amplitude (A) and phase values (φ) of selected partial tides of the long-period band are pre-
sented in Table 5.1 (results from real-time simulations of TiME are marked with ”T”). The
rotational AMMΘ

z has the highest values for all tides (0.3 - 4.3 · 1024 kgm2

s
). This is due to the

fact that with decreasing frequencies, the oscillation system of the long-period tides get closer
to the equilibrium tide (Seiler, 1989). In theSsa-tide, for example, this is shown by the very
low amplitude values inM r and a phase value ofMΘ

z of 0◦. The results of theSsa are in very
good agreement with the results of Seiler (1991) (S). Only values ofMΘ

y differ considerably in
the two models. The same holds for comparisons of theMm-tide where the main differences
are found inMΘ

x . Long-period tides are very large scale features within theoceanic oscillation
system and they can be captured by a relatively coarse model.The agreement of the data of the
partial tide model with the results of the real-time model shows that the long-period tides are
well-captured by simulations with TiME and that they can indeed be correctly extracted by the
harmonic analysis (even with a time-series of only 400 days).

The results of the fortnightly tideMf are less consistent with the coarser resolving partial tide
model. They agree well in the order of magnitude of amplitudes and phases of the respective
components, but the results of TiME are generally higher in amplitude by a factor of 1.5 to 2
and, with the exception ofMΘ

y , lead the Seiler-model by some 10◦ to 20◦.

5.1.2 Diurnal Tidal Band

Results of the angular momenta of four selected partial tides of the diurnal band -Q1, O1, P1

andK1 (Table 5.2) - show a clear dominance ofMΘ
y . This is in accordance with the interpre-

tations of results in the time-domain (Fig. 5.1) where the rotational AM in the y-component
was characterised by diurnal variations. The amplitudes ofMΘ

y are usually higher by at least a
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factor of 2 compared to the other five components of the AM. Note that the phase values ofMΘ
y

all lie comparably close to each other (around 220◦).

The results of the angular momentum of the diurnal tideQ1 are generally higher in amplitude
than the results of the data assimilating model of Zahel et al. (2000) (Z), with the exception of
M r

y (Table 5.2). Phases differ by±40◦.

Results of TiME for theO1-tide have been compared to the model results of both Seiler (1991)
and Zahel et al. (2000). In general, theO1-amplitudes calculated with the partial tide model S
agree better with the data assimilation model Z and the high-resolving real-time model T calcu-
lates higher values. An exception isM r

y where T and Z produce an almost identical amplitude.
For the amplitudes of the three most significant components (Arz, A

Θ
y andAΘ

z ) of theO1, the
two free models (T and S) are close to each other and differ considerably from the constrained
model Z. Regarding the phase values, however, T and Z give a better fit (φrx, φ

r
y, φ

Θ
x andφΘ

z ).

Amplitudes of theP1-tide’s AM calculated in this study are in very good agreement with the
results of the data assimilation model Z. Only in the z-component, S and Z are relatively closer
to each other and T shows higher values. Phases are generallyin very good agreement for all
three models, except forφΘ

z where the results differ by up to 150◦. AsAΘ
z has lower values than

the other components by almost an order of magnitude, this difference is of minor significance.

Similar observations can be made for theK1-tide. The high-resolving real-time model T is in
considerably better agreement with the data assimilation model Z than the coarser-resolving
partial tide model S. Exception is againφΘ

z of the similarly weakMΘ
z -term. Note that the

partial tide model S is substantially lower than both T and Z in its amplitude values (Arx, A
r
y,

AΘ
y andAΘ

z ).

5.1.3 Semi-Diurnal Tidal Band

In the semi-diurnal tidal band,M r clearly dominates overMΘ (Table 5.3). The y-component
M r

y has the highest amplitudes and confirms the interpretationsmade in the time-domain (Fig.5.1),
excepting for theN2-tide, whereM r

z is strongest.

All three models agree quite well with each other in the description of theN2. The real-time
model T is generally closer to the data assimilation model Z than S (M r

x ,M r
z ,MΘ

y andMΘ
x ).

Results for the principal lunar tideM2 reflect the overestimation of free tidal models discussed
earlier (Sections 3.5 and 3.6). This effect is even more pronounced in T than in S (Arx, A

Θ
y and

AΘ
z ). The data assimilation model Z calculates maximum angularmomenta for bothAry andArz

with about1.7 · 1025 kgm2

s
, while S calculates a distinct maximum inArz and T inAry with about

3 · 1025 kgm2

s
(the respective other component reaching2.1 · 1025 kgm2

s
). All three models agree

well in their phase values with Z slightly leading T leading S.

Results of theS2-tide also reveal a tendency towards overestimation of the free models (T and S)
as compared to the data assimilation model (Z). T and S agree well in the amplitudes of the
equatorial components of relative and rotational AM (Arx, A

r
y, A

Θ
x andAΘ

y ) and have higher
values than Z sometimes by a factor of more than 2. In the axialcomponentsArz andAΘ

z ,
however, the new model T agrees better with the data assimilation model Z. There is very good
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Table 5.3: Relative (M r) and Rotational (MΘ) Angular Momentum of Semi-Diurnal Tides

tide model Mr
x Mr

y Mr
z MΘ

x MΘ
y MΘ

z

2N2 T 0.013 232◦ 0.035 163◦ 0.062 324◦ 0.023 320◦ 0.007 112◦ 0.010 210◦

µ2 T 0.020 220◦ 0.052 156◦ 0.062 308◦ 0.022 324◦ 0.006 22◦ 0.004 247◦

N2 T 0.194 216◦ 0.356 143◦ 0.388 315◦ 0.165 335◦ 0.039 262◦ 0.089 51◦

S 0.098 167◦ 0.274 158◦ 0.543 320◦ 0.189 307◦ 0.045 95◦ 0.019 68◦

Z 0.164 248◦ 0.259 164◦ 0.343 319◦ 0.130 349◦ 0.034 228◦ 0.072 262◦

M2 T 1.877 239◦ 3.052 158◦ 2.112 314◦ 0.874 0◦ 0.455 323◦ 0.907 68◦

S 1.241 201◦ 2.139 150◦ 3.056 312◦ 0.824 328◦ 0.264 301◦ 0.824 97◦

Z 1.039 261◦ 1.737 165◦ 1.735 323◦ 0.517 15◦ 0.339 295◦ 0.662 81◦

L2 T 0.063 275◦ 0.094 187◦ 0.053 318◦ 0.018 49◦ 0.018 344◦ 0.028 91◦

T2 T 0.064 298◦ 0.096 205◦ 0.067 341◦ 0.014 58◦ 0.023 9◦ 0.030 126◦

S2 T 1.128 300◦ 1.694 206◦ 1.168 342◦ 0.243 62◦ 0.412 11◦ 0.514 128◦

S 1.085 275◦ 1.545 189◦ 1.866 338◦ 0.282 27◦ 0.402 329◦ 0.792 130◦

Z 0.439 306◦ 0.890 202◦ 0.737 350◦ 0.128 46◦ 0.284 6◦ 0.302 120◦

K2 T 0.349 320◦ 0.527 225◦ 0.351 1◦ 0.072 86◦ 0.134 31◦ 0.155 147◦

Z 0.124 310◦ 0.252 205◦ 0.202 352◦ 0.030 45◦ 0.083 10◦ 0.081 123◦

η2 T 0.022 356◦ 0.036 257◦ 0.021 27◦ 0.003 162◦ 0.011 74◦ 0.008 188◦

2SM2 T 0.011 308◦ 0.014 211◦ 0.010 345◦ 0.002 143◦ 0.003 359◦ 0.004 141◦

Same as Table 5.2.

agreement between T and Z in all phase values which are considerably closer to each other
than the ones calculated by S. The very good agreement between T and Z demonstrates the
importance of the model’s resolution as compared with the coarser, poorer agreeing S.

Comparisons of the results for theK2-tide with Z result in a similar picture. While the values
agree well in the phases, the amplitudes are generally higher in T by approximately a factor
of 2.

The less significant semi-diurnal astronomic partial tides, 2N2, µ2, L2, T2 andη2, are lower in
amplitude by one or two orders of magnitude than e.g. theM2. Their dominant components are
alsoM r

y andM r
z . The semi-diurnal shallow-water tide2SM2 is even a bit lower in amplitude,

yet still reaches values of1 · 1023 kgm2

s
in all three components of relative AM. This is quite re-

markable considering that compound tides are not directly forced by the lunisolar tidal potential
but form purely due to non-linearities in shallow-waters.

5.1.4 High-Frequency Shallow-Water Tides

The angular momenta of selected high-frequency shallow-water tides are listed in Table 5.4.
Note that the amplitudes are given in1022 kgm2

s
as compared to1025 in the tables for the short-

period astronomical tides (Tables 5.2 and 5.3). In general,third- and fourth-diurnal tides differ
by three orders of magnitude fromM2 andS2, sixth-diurnal by four, and eighth-diurnals by five
orders of magnitude.
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Table 5.4: Relative (M r) and Rotational (MΘ) Angular Momentum of Shallow-Water Tides

tide model Mr
x Mr

y Mr
z MΘ

x MΘ
y MΘ

z

MO3 1.017 87◦ 1.312 356◦ 1.618 281◦ 0.432 266◦ 0.842 192◦ 0.075 26◦

SO3 0.858 193◦ 2.000 138◦ 0.994 347◦ 0.406 12◦ 0.604 296◦ 0.042 349◦

MK3 0.718 201◦ 0.114 113◦ 0.361 326◦ 0.497 329◦ 0.565 264◦ 0.353 328◦

MN4 0.764 320◦ 1.137 231◦ 1.225 66◦ 0.249 44◦ 0.167 182◦ 0.388 148◦

M4 2.942 356◦ 3.788 265◦ 3.603 122◦ 0.930 92◦ 0.310 259◦ 0.609 215◦

MS4 0.840 61◦ 1.842 356◦ 0.446 197◦ 0.719 136◦ 0.250 326◦ 0.449 83◦

MK4 0.320 42◦ 0.449 3◦ 0.292 138◦ 0.249 162◦ 0.022 16◦ 0.144 124◦

M6 0.289 135◦ 0.899 315◦ 0.505 240◦ 0.102 246◦ 0.506 206◦ 0.049 264◦

2MS6 0.263 269◦ 0.470 280◦ 0.459 229◦ 0.129 337◦ 0.059 137◦ 0.063 20◦

2MK6 0.102 283◦ 0.128 314◦ 0.108 257◦ 0.029 343◦ 0.025 104◦ 0.025 61◦

M8 0.024 49◦ 0.057 32◦ 0.023 341◦ 0.008 178◦ 0.005 48◦ 0.009 108◦

3MS8 0.077 99◦ 0.065 87◦ 0.036 131◦ 0.007 264◦ 0.002 260◦ 0.014 149◦

3MK8 0.025 137◦ 0.005 29◦ 0.012 38◦ 0.005 123◦ 0.012 341◦ 0.006 318◦

Same as Table 5.2, except that amplitudes (Ai) are in1022 kgm2

s
.

M r clearly dominates overMΘ as variations of the sea surface elevation due to shallow-water
tides are limited to restricted areas in shelf regions whereas their currents can be traced even in
the open ocean with considerable values in flow transport (Section 4.3). The highest amplitudes
are calculated forM r

y for most of the shallow-water tides listed, with the exception of theMO3

which has its maximum inM r
z and theMK3, 3MS8 andMK3 with maxima inM r

x . The most
significant high-frequency shallow-water tide is theM4-overtide withAry = 3.8 · 1022 kgm2

s
and

Arz = 3.6 · 1022 kgm2

s
.

5.2 Instantaneous Angular Momentum Budgets

The balance of instantaneous angular momentum budgets (Section 2.3.2) is shown in Figure 5.3
for a period of ten days in June 2002. The torque due to relative motion and the Coriolis
force, here summarised as the left-hand side’s totalLs (Equation 2.19), is mostly balanced by
the pressure torqueLpr. For the axial component z this relationship is most pronounced with
Ls ∼= −Lpr and the frictional torqueLfr and the tidal torqueLtid being negligibly small. In
the equatorial components x and y,Lfr remains very small and can thus be neglected whereas
Ltid is getting more significant, albeit still relatively small compared toLs andLpr. The results
are similar to the findings of Seiler (1991) where results fortheM2, K1 andMf are shown in
Figures 8-10 therein.

The highest values within the selected time-series of Figure 5.3 are found in the y-component.
Ls ranges between−6 - 4 · 1021 kg·m2

s
and is mostly balanced byLpr with −4 - 6 · 1021 kg·m2

s
.

Ltid only reaches roughly1 · 1021 kg·m2

s
. The values for the x-component are lower by almost an

order of magnitude, however,Ltid has a stronger relative influence in x than in y or z.

The same combination of semi-diurnal and diurnal variations are seen as in Figure 5.1, resulting
in the inequality of neighbouring peaks. Note that the positive-valued peaks ofLpr are greater
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Figure 5.3: Instantaneous Angular Momentum Budgets in1021 kg·m2

s
calculated by TiME

with 5’ resolution (time-domain). The figure shows the torquesLs, Lpr, Ltid
andLfr for a time-span of ten days.

than the negative-valued ones and that the inequality of neighbouring peaks is more pronounced
for the positive peaks. This is most conspicuous in the y-component. The same holds forLtid
which has positive peaks roughly every 24 hours.Ltid also reveals an off-set towards positive
values, an effect of the long-period tides.

The greater significance ofLpr compared withLtid reflects the character of the eigenoscillations.
Seiler (1991) has shown that the resonantly oscillating system of the semi-diurnal and diurnal
tides is characterised byLs ∼= −Lpr whereas the long-period tides are characterised byLtid ∼=
Lpr reflecting a state near the equilibrium tide. The complete system described by Figure 5.3
is dominated by the oscillation behaviour of the partial tides involved and only a small amount
can be directly attributed to the tide-generating forces.

5.3 Energy Dissipation and Tidal Friction

The frictional torqueLfr is not significant in the instantaneous angular momentum budgets
(Section 5.2). Frictional terms rather gain importance in the energy budgets, as they are the
main cause for energy dissipation and drivers for tidal friction.

Tidal friction is directly related to a secular deceleration of the earth’s rotation due to momentum
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transfer from the earth-moon-system to the lunar orbit (Kagan and Sündermann, 1996, and

references therein). The dissipated tidal energy (-
·

E) is related to the tidal acceleration of the
lunar mean longitude (-

·

nM ) by

− ·

nM=
3 · (MM +ME)

MM ·ME · c2M · (Ω − nM)
· (−

·

E) (5.1)

whereMM andME are the masses of moon and earth, respectively,cM the mean distance
between moon and earth,Ω the mean angular velocity of the earth andnM the mean angular
velocity of the moon. According to Kepler’s third law (Equation 5.2) an acceleration in the
motion of the lunar orbit

·

nM will result in an increase of the the earth-moon distance
·

cM .

− ·

nM=
3 · nM
2 · cM

· ·

cM (5.2)

A detailed discussion of the relationship between tidal friction and lunar acceleration can be
found in Kagan and Sündermann (1996). The distance betweenthe earth and the moon can be
derived in different ways, ranging from interpretations ofancient reports on solar eclipses (e.g.
Stephenson, 1978) to modern measurements by lunar laser ranging (e.g. Newhall et al., 1990).

Kagan and Sündermann (1996) list results for -
·

nM and -
·

E in Table I therein, and more recently
Chapront et al. (2002) added new measurement results for

·

nM in Table 6 therein. These values
range between 21 - 52 arcseconds per century2 (as/cy2) for -

·

nM , or 2.6 and 5.2 Terawatts (TW)

for -
·

E. Yet the most recent measurement values seem to agree on a significantly smaller range
of about 24 - 26as/cy2 for

·

nM or a total dissipation rate of about 3 TW.
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Figure 5.4: Energy dissipated due to eddy-viscosity and bottom friction in 1012kgm2/s3

(1 TW) calculated by TiME with 5’ resolution (time-domain).Daily means
are plotted for one calendar year (June 2002 - June 2003).

The energy dissipated by eddy-viscosity, (
·

Eev), and by bottom friction, (
·

Ebf ), within the mod-
elling approach of TiME is shown in Figure 5.4 for a time-spanof one year (June 2002 -
June 2003) as daily averaged values. Note that by averaging over a day, there is always part
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of the most dominant partial tideM2 missing, so the values should be treated with care. Aver-
aging over cycles ofM2 would lead to a similar imbalance as all the other tidal constituents’
periods would not be closed.

Instantaneous real-time values, however, give a measure ofthe total amount of dissipated energy
and its variation within a year’s time. Fortnightly, monthly and semi-annual variations are
clearly visible, which can be attributed to both long-period tides and to the superimposition of
daily and subdaily partial tides. Eddy-viscosity is only slightly stronger than bottom friction,
with the two having about the same values (1 - 5 TW). Calculations of the yearly averages give
·

Eev = 2.6 TW,
·

Ebf = 2.2 TW or a total of
·

ET = 4.8 TW.

Not all of the energy dissipated due to the lunisolar tides has an effect on the moon’s angular
velocity, though. As tidal friction is a phenomenon of the earth-moon-system only, only the dis-
sipation of the lunar part can be considered in the relation of Equation 5.1. Simulations withM2

partial tide forcing with TiME (5’ resolution) produce
·

Eev= 2.0 TW and
·

Ebf= 1.6 TW lead-

ing to a value of
·

ET= 3.6 TW . Assuming that the principal lunar tideM2 contributes to about
88% of the total dissipation rate (Sündermann and Brosche,1978), this leads to an estimate of

total tidal friction of about
·

E= 4.1 TW . This value lies within the range of measurements.
Compared to the recent agreement on about 3 TW, however, it ishigher by 30%.

Egbert and Ray (2000) estimate the dissipation of theM2 with their data assimilation model
to amount up to 2.4-2.5 TW. Taking the factor0.88 into account, this would lead to a value of
2.7-2.8 TW for total tidal frictional and is reasonably close to the measurements.

In order to better investigate the total energy dissipated by ocean tides contributing to tidal
friction in the time-domain, a simulation over a full lunar node (about 18.6 years) forced by the
lunar tidal potential only would be preferable, as all partial tides would be closed. The only
restriction would be that the interactions between lunar and solar tides would not be taken into
account.

5.4 Earth Rotation Parameters

The effects of the ocean tides on variations in the earth’s rotation were calculated in both the
time- and frequency-domains. The instantaneous values of relative and rotational angular mo-
mentum (see Fig. 5.1) were taken for the calculation of theχ-functions (Equation 2.47). For
the representation in the frequency-domain, the results ofrelative and rotational angular mo-
mentum given in Tables 5.1-5.4 were used for calculation of the earth rotation parameters. The
time-series ofM r

i andMΘ
i (Fig. 5.1) were harmonically analysed directly in order to extract

additional partial tides. In total, all partial tides derived from the second degree lunisolar tidal
potential listed in Bartels (1957) have been analysed (Tables A.1 and A.2).

Results in the frequency-domain will be compared to measurements of the earth rotation pa-
rameters. Variations of semi-diurnal and diurnal tides aredescribed by Sovers et al. (1993),
Herring and Dong (1994) and Gipson (1996) from VLBI measurements and Rothacher et al.
(1998) from GPS measurements. Results of the ocean tide models used for comparison in Sec-
tion 5.1 will not be shown here (excepting the variations in UT1 due to the long-period tides).
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The results of the variations in the length of day and in UT1 ofZahel et al. (2000) are listed in
Table 3 therein. The OTAM calculated by Seiler (1991) were analysed by Gross (1993) and are
listed in Tables 2 and 3 therein.

Results in the frequency-domain can be represented as amplitude- and phase-values or as cosine-
and sine-values. In the following, the amplitude-phase notation will be used. In order to com-
pare the model results with available measurements, some cosine-sine notated values had to be
transformed. In oceanography, the tidal argument of any partial tide is normally given by the
Doodson variables while geodetic studies usually refer to Woolard arguments. Depending on
the notation, phase values may have to be corrected by valuesof 180◦ or ±90◦ before compar-
ing model results with measurements. The specific names of individual partial tides may differ
or in some cases are not given at all. See Appendix A.4 for conversions and transformations
performed for this study.

The effects of ocean tides on the earth’s rotation can be separated into variations of the rotational
speed, quantified as either changes in the length of day or as variations in Universal Time (UT1)
(Section 5.4.1), and variations in the orientation of the earth’s rotational axis (polar motion)
(Section 5.4.2).

5.4.1 Variations in the Length of Day and Universal Time

Variations in the length of day (∆LOD) are calculated to be up to one millisecond (1000µsec)
within the time-span shown in Figure 5.5. As∆LOD only depends onψ3 (Equation 2.43)
which is defined byM r

z andMΘ
z , Figure 5.5 essentially redraws the time-series ofMz in Fig-

ure 5.1 (bottom), except that the effect ofMΘ
z is considered to be about 3/4 weaker thanM r

z

(Equation 2.42). The time-series shows the same combination of semi-diurnal, diurnal and
fortnightly variations as well as the off-set towards positive values due to the semi-annual and
annual tides as seen in Figure 5.1.

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
−800

−600

−400

−200

0

200

400

600

800

1000

days in June 2002

∆ 
LO

D
 [µ

s]

relative
rotational
total (rel. + rot.)

Figure 5.5: Variations in the length of day inµsec calculated by TiME with 5’ resolution
(time-domain) for one fortnight in June 2002.

The variations in UT1 in the frequency-domain for long-period tides, diurnal, semi-diurnal and
some shallow-water tides are shown in Tables 5.5 - 5.8.
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Table 5.5: Variations in UT1 caused by Long-Period Tides

Sa Ssa Sta MSm Mm MSf

rel 1.32 224◦ 7.61 300◦ 0.45 315◦ 1.05 338◦ 5.30 343◦ 1.06 15◦

Θ 220.69 241◦ 698.71 269◦ 29.59 282◦ 24.85 280◦ 102.22 282◦ 11.07 271◦

tot 221.96 241◦ 705.20 269◦ 29.96 282◦ 25.42 282◦ 104.82 284◦ 10.9 276◦

K 115.00 280◦

S/G 676.58 272◦ 108.01 284◦

Mf mf MStm Mtm mtm MSqm

rel 12.30 14◦ 2.64 21◦ 0.68 36◦ 2.35 16◦ 0.73 15◦ 0.34 42◦

Θ 118.37 307◦ 29.89 322◦ 3.59 314◦ 12.06 295◦ 3.83 297◦ 1.60 315◦

tot 123.60 312◦ 31.30 326◦ 3.73 324◦ 12.63 306◦ 4.04 307◦ 1.65 326◦

K 114.90 295◦

S/G 92.85 292◦ 38.44 292◦

Values shown areAu [µsec] andφu [◦].
Variations calculated by TiME due to relative (rel), rotational (Θ) and total angular momentum (tot = rel +Θ).
Comparisons with Kantha et al. (1998) (K) and Seiler (1991) as calculated by Gross (1993) (S/G).

Long-Period Tides

The effects of long-period tides are clearly dominated by the effect ofMΘ (marked asΘ).
The influence ofM r (rel) is about two orders of magnitude lower for partial tides with very
low frequencies (Sa, Ssa andSta) and one order of magnitude lower for those with shorter
periods (Mf andmf ). This reflects the interpretation that the longer the period, the closer
the oscillation system of the partial tide is to the equilibrium tide (see Section 5.1 and Seiler
(1991)).

The semi-annual and annual solar tidesSsa andSa have the strongest effect on UT1 of the long-
period tides with 705 and 222 microseconds (µsec) followed by the monthly and fortnightly
lunar tidesMm andMf with about 100µsec.

Comparisons with results from Gross (1993) (S/G) show that the results of TiME for the long-
period tides are in very good agreement with the partial tidemodel of Seiler (1991), excepting
the fortnightly tideMf . Comparisons with the data assimilation model of Kantha et al. (1998)
(K) show a very good agreement of all three ocean tide models for the monthly tideMm.
The results of K for theMf perfectly agree with S/G in the phase value but produce higher
amplitudes which agree better with the results of this study.

Diurnal Tides

Results of∆UT1 of partial tides of the diurnal tidal band are compared with measurements by
Sovers et al. (1993) (S), Herring and Dong (1994) (H), Gipson(1996) (G) and Rothacher et al.
(1998) (R) in Table 5.6. All four measurement studies investigated at least the most significant
diurnal partial tides (Q1,O1, P1 andK1).

The strongest diurnal variations in UT1 are caused by theO1-tide with an amplitude of about
38µsec. Measurements show relatively lower values of 21 - 24µsec. Phase values of the model
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Table 5.6: Variations in UT1 caused by Diurnal Tides

2Q1 σ1 q1 Q1 %1 o1 O1 τ1

rel 0.62 338◦ 0.77 338◦ 0.76 326◦ 5.76 347◦ 1.07 353◦ 4.08 18◦ 26.90 11◦ 0.23 16◦

Θ 0.37 343◦ 0.48 336◦ 0.50 345◦ 3.23 8◦ 0.58 18◦ 2.02 53◦ 12.75 48◦ 0.24 37◦

tot 0.99 340◦ 1.25 337◦ 1.24 333◦ 8.85 354◦ 1.61 2◦ 5.85 29◦ 37.90 23◦ 0.46 27◦

S 6.64 37◦ 21.40 39◦

H 5.30 36◦ 23.63 47◦

G 0.89 27◦ 0.98 24◦ 5.90 26◦ 1.25 29◦ 4.28 37◦ 22.54 37◦

R 2.38 15◦ 1.25 29◦ 1.08 22◦ 6.05 22◦ 0.78 50◦ 4.26 39◦ 22.77 39◦

o′1 M1 χ1 π1 P1 S1 K1 km1

rel 1.99 4◦ 0.44 157◦ 0.42 25◦ 0.41 28◦ 7.29 38◦ 0.17 64◦ 23.32 46◦ 3.12 32◦

Θ 0.65 61◦ 0.17 216◦ 0.13 82◦ 0.07 95◦ 1.31 116◦ 0.06 153◦ 3.46 134◦ 0.62 117◦

tot 2.40 17◦ 0.55 172◦ 0.50 37◦ 0.45 36◦ 7.67 47◦ 0.18 83◦ 23.66 54◦ 3.23 43◦

S 7.16 27◦ 15.50 13◦

H 2.92 38◦ 7.07 33◦ 2.22 54◦ 18.95 20◦

G 0.71 82◦ 1.00 53◦ 0.22 27◦ 5.99 28◦ 2.37 28◦ 18.54 30◦ 2.56 31◦

R 1.63 11◦ 1.61 353◦ 2.72 126◦ 6.80 26◦ 2.94 305◦ 20.35 26◦ 2.77 26◦

ψ1 ϕ1 ϑ1 J1 SO1 OO1 oo1 ν1

rel 0.19 35◦ 0.33 37◦ 0.24 52◦ 1.22 53◦ 0.22 33◦ 0.99 75◦ 0.23 136◦ 0.14 93◦

Θ 0.02 116◦ 0.06 108◦ 0.02 270◦ 0.12 276◦ 0.06 69◦ 0.34 6◦ 0.11 70◦ 0.06 73◦

tot 0.19 42◦ 0.36 46◦ 0.23 48◦ 1.14 49◦ 0.26 40◦ 1.16 59◦ 0.30 116◦ 0.20 86◦

S
H 1.53 79◦ 2.60 106◦ 2.20 3◦ 1.22 99◦ 1.58 252◦

G 1.20 335◦ 1.04 73◦ 0.63 72◦ 0.41 14◦

R 2.42 330◦ 0.28 225◦ 0.89 63◦ 1.43 78◦ 0.92 77◦ 1.08 304◦

Same as Table 5.5.
Comparisons with Sovers et al. (1993) (S), Herring and Dong (1994) (H), Gipson (1996)) (G), and Rothacher et al. (1998) (R).

results and measurements are in good agreement. The difference between the model results of
TiME (T) and G is 14◦ and the measurements themselves differ by up to 10◦.

The results of theK1- and theP1-tide are in even better agreement with measurements. For both
partial tides, the rotational angular momentum is out of phase with relative angular momentum
and much lower in amplitude. Thus the total AM stays almost atthe values of the relative
AM. For theQ1-tide, relative and rotational AM are in phase so that the total adds up to an
amplitude in∆UT1 of 8.9µsec which is again higher than the 5.3 - 6.6µsec indicated by the
measurements.

Two variational tides of the major diurnalsO1 andK1, the o1 and km1, are found to have
a significant effect on∆UT1 of about 6µsec and 3µsec , respectively. The measurements
reported in G and R give slighlty lower amplitudes. Phase values are in very good agreement.

In comparison to G, good agreement can also be found for%1, π1 andOO1 and general agree-
ment in amplitudes but increasing differences in phases canbe seen for2Q1, q1, oo1 andJ1.
Comparisons with R show similar agreement for these partialtides except forπ1 and2Q1. T
and R calculate an identical amplitude forσ1 and differ by more than 50◦ in phase values.
General agreement of T and R is found foro′1 while G differs both in amplitude and phase.
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Table 5.7: Variations in UT1 caused by Semi-Diurnal Tides

3N2 ε2 2N2 µ2 N2 ν2 γ2 α2

rel 0.16 219◦ 0.32 223◦ 0.88 234◦ 0.88 218◦ 5.42 225◦ 0.98 225◦ 0.05 211◦ 0.08 227◦

Θ 0.06 67◦ 0.11 78◦ 0.11 120◦ 0.04 157◦ 0.94 321◦ 0.20 322◦ 0.02 307◦ 0.02 342◦

tot 0.11 206◦ 0.23 207◦ 0.85 227◦ 0.90 216◦ 5.41 235◦ 0.98 236◦ 0.06 233◦ 0.08 243◦

S 3.05 221◦

H 3.22 240◦

G 0.85 249◦ 0.81 210◦ 3.86 239◦

R 0.98 246◦ 0.67 243◦ 4.39 246◦ 0.73 254◦

m2 M2 β2 δ2 λ2 L2 km2 2T2

rel 1.34 231◦ 28.94 224◦ 0.09 223◦ 0.03 186◦ 0.24 214◦ 0.71 228◦ 0.35 273◦ 0.04 255◦

Θ 0.44 347◦ 9.39 338◦ 0.03 342◦ 0.01 305◦ 0.09 348◦ 0.29 1◦ 0.12 50◦ 0.01 39◦

tot 1.21 250◦ 26.48 243◦ 0.08 244◦ 0.02 215◦ 0.19 234◦ 0.56 250◦ 0.27 291◦ 0.03 270◦

S 18.17 235◦

H 17.92 233◦

G 0.58 59◦ 18.28 237◦ 0.14 135◦

R 0.67 63◦ 17.29 247◦ 0.45 27◦

T2 S2 R2 K2 km′

2 ζ2 η2 km′′

2

rel 0.89 251◦ 15.45 252◦ 0.17 69◦ 4.64 271◦ 1.45 256◦ 0.06 274◦ 0.27 297◦ 0.08 347◦

Θ 0.30 36◦ 5.15 38◦ 0.06 215◦ 1.54 57◦ 0.49 42◦ 0.02 93◦ 0.08 98◦ 0.01 145◦

tot 0.67 266◦ 11.60 267◦ 0.13 84◦ 3.46 285◦ 1.09 271◦ 0.04 274◦ 0.20 305◦ 0.06 352◦

S 5.22 266◦ 2.75 251◦

H 8.60 269◦ 1.00 217◦ 3.79 282◦ 0.32 252◦ 0.36 56◦

G 7.84 264◦ 2.55 281◦ 0.71 278◦

R 0.63 252◦ 7.72 266◦ 0.94 148◦ 3.11 236◦ 0.94 238◦

Same as Table 5.6.

Big differences in amplitudes and phases are found foro′1, ψ1, ϕ1, M1 andν1. The two latter
ones were included in three measurement studies - H, G, and R -which diverge from each other
by comparable amounts as the model T does. Obviously, the results become more tentative the
less significant the extracted partial tides are.

Four additional diurnal partial tides were analysed which are not documented in the literature.
The influences ofτ1, χ1, ϑ1 andSO1 on ∆UT1 are relatively small, with amplitude values
between 0.2 - 1.2µsec.

TheS1 is both an astronomical tide (the elliptic tide of first orderof K1s) and a ”meteorolog-
ical” tide (which is excited by tidal variations in the atmosphere). As no atmospheric data are
considered within the model approach, no meteorological tides are captured by the model which
most probably explains the discrepancy between model results and measurements.

Semi-Diurnal Tides

TiME calculates relative angular momentum to be the dominant term for variations in UT1 of
the semi-diurnal tidal band for all partial tides listed in Table 5.7. As the influences of relative
and rotational angular momentum are out of phase for all partial tides, the total influence results
in lower amplitude values than for relative AM alone.
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Table 5.8: Variations in UT1 caused by Shallow-Water Tides

2SM2 MQ3 MO3 SO3 MK3 SP3 SK3 K3

rel 132.2 255◦ 7.5 144◦ 15.0 191◦ 9.0 257◦ 3.3 236◦ 0.5 145◦ 5.2 268◦ 1.4 247◦

Θ 42.1 51◦ 0.3 60◦ 0.5 296◦ 0.3 258◦ 2.4 240◦ 0.1 34◦ 1.1 339◦ 1.2 6◦

tot 95.3 266◦ 7.6 142◦ 14.8 193◦ 9.3 257◦ 5.7 237◦ 0.5 134◦ 5.6 279◦ 1.3 301◦

3MS4 MN4 M4 SN4 3MN4 MS4 MK4 S4

rel 1.4 354◦ 8.5 336◦ 24.7 32◦ 0.6 136◦ 1.7 309◦ 3.0 107◦ 2.0 48◦ 0.6 132◦

Θ 0.5 354◦ 2.0 58◦ 3.2 125◦ 0.3 322◦ 0.3 0◦ 2.3 353◦ 0.7 34◦ 0.6 91◦

tot 1.9 354◦ 9.0 349◦ 24.7 39◦ 0.2 127◦ 1.8 316◦ 2.9 62◦ 2.7 44◦ 1.2 112◦

2MN6 M6 MSN6 MNK6 2MS6 2MK6 2SM6 MSK6

rel 0.81 113◦ 2.31 150◦ 0.56 90◦ 0.64 86◦ 2.07 139◦ 0.49 166◦ 0.54 187◦ 0.38 222◦

Θ 0.06 53◦ 0.20 174◦ 0.06 217◦ 0.03 215◦ 0.21 290◦ 0.08 331◦ 0.02 302◦ 0.04 85◦

tot 0.84 109◦ 2.46 151◦ 0.53 95◦ 0.62 89◦ 1.89 142◦ 0.41 170◦ 0.54 189◦ 0.35 217◦

3MN8 M8 2MSN8 2MNK8 3MS8 3MK8 2(MS)8 2MSK8

rel 0.11 173◦ 0.08 251◦ 0.05 331◦ 0.06 95◦ 0.12 40◦ 0.04 308◦ 0.11 118◦ 0.09 143◦

Θ 0.03 306◦ 0.02 18◦ 0.03 24◦ 0.06 137◦ 0.04 58◦ 0.02 228◦ 0.04 149◦ 0.10 257◦

tot 0.09 187◦ 0.07 266◦ 0.07 350◦ 0.06 99◦ 0.16 45◦ 0.05 288◦ 0.14 126◦ 0.08 139◦

Same as Table 5.5, except thatAu are shown in nsec.

The influence of the four major semi-diurnal partial tides (N2, M2, S2 andK2) on the varia-
tions in UT1 is in very good agreement with the four measurement studies. The amplitudes
calculated by the model ofN2, M2 andS2 are generally higher than the ones derived from
measurements. The strongest influence on semi-diurnal variations in UT1 is caused by theM2

where measurements calculate an amplitude of about 17-18µsec whereas the model calculates
26 µsec. In contrast, the amplitude ofK2 lies within the range of the measurements and is in
excellent agreement with the values from Herring and Dong (1994). Phase values of all four
major semi-diurnal tides show exceptionally good agreement.

Besides these dominant partial tides, few semi-diurnal constituents effect∆UT1 with ampli-
tudes greater than 1µs. 2N2, µ2, ν2, T2 andkm′

2 are in very good to excellent agreement with
the results of G and R.m2, L2 andη2 are in the same order of magnitude as the measurements.
OnlyR2 andkm′′

2 strongly diverge between results of the model and H and R.

Shallow-Water Tides

The influence of shallow-water tides on UT1 is several ordersof magnitude less than the ma-
jor astronomical tides described above and is given in nanoseconds (nsec) in Table 5.8. The
strongest effect is caused by the semi-diurnal compound tide2SM2 with about 95 nsec. Of the
third-diurnal tides, theMO3 has the strongest influence with 15 nsec and, out of the fourth-
diurnals, theM4-overtide with 25 nsec. They are followed by theSO3 andMN4 both resulting
in variations in UT1 by about 9 nsec. For comparison, the weakest influence of the astronomic
partial tides listed in Tables 5.5-5.7 is caused by theδ2 with 20 nsec (0.02µsec). The most
influential shallow-water tide for∆UT1 out of the sixth-diurnals isM6 with 2.5 nsec and out of
the eighth-diurnals3MS8 with about 0.2 nsec.
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5.4.2 Polar Motion

The effect of the ocean tides on the orientation of the earth’s axis depends on the equatorial
components x and y of the rotational and relative angular momentum (see Figure 5.1) and is
characterised by the excitation functionsψ1 andψ2 (Equations 2.40 and 2.41).

In the time-domain, the effect of ocean tides on polar motion(PM) is preferentially described by
the effective angular momentum functionsχ (Equation 2.47). Figure 5.6 presents a time-span
of six weeks in 2002 with three pronounced fortnightly cycles indicated by the change from
red to blue. These fortnightly cycles are similar to the onesshown for the angular momentum
(Figure 5.1).

The inequality of the neighbouring semi-diurnal peaks in the angular momenta results in two
alternating main oscillations in polar motion, one reaching values of up to 6µas inχy and
the other one of up to 3µas. On the negative axis, both oscillations result in about -4 µas.
Figure 5.7 shows the same time-series in two dimensions as anoutline of the excitation so that
the two main oscillations are clearly distinguishable in a quasi elliptic form.

The ellipses vary in their dimensions, an effect of the fortnightly cycles described earlier. These
ellipses are the result of the superimposition of a number ofelliptic periodic motions, each
one excited by a partial tide. The effect of any partial tide on polar motion can therefore be
described by an ellipse which can be further divided into a prograde (p) and a retrograde (r)
circular movement. Referring to the given frequency of a partial tide, these are then represented
by amplitudes (Ap andAr) and phases (φp andφr). The semi-major axis of the ellipse is defined
byAp + Ar, the semi-minor axis byAp − Ar.

In the following, the modelled effects of the ocean tides on polar motion will be described in
more detail in the frequency-domain and compared to measurements. The effect was calculated
following Gross (1993) where the Chandler wobble and the free core nutation were taken into
account. Amplitudes are given in fractions of an arcsecond (1◦ = 3600 as) with a variation
in polar motion of one milliarcsecond (1 mas) correspondingto roughly 3 cm on the earth’s
surface.

Long-Period Tides

Angular momenta of the long-period tides are strongly dominated by the axial rotational AM
MΘ

z (Table 5.1) which produce the main variations in UT1 (Table 5.5), yet variations in the
equatorial components are also significant enough to have a considerable effect on polar motion
(Table 5.9). The most influential tides are the annualSa and the semi-annualSsa. The former
results in a maximum variation of up to 140µas (prograde) and the latter 120µas (retrograde).
Both are dominated by the influence of rotational AM (MΘ).

Ssa andSa are followed by the fortnightly tideMf with 100µas in the amplitude of prograde
polar motion and the monthlyMm with 46µas (also prograde). In contrast toSa andSsa, they
are dominated by relative AM (M r).
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Figure 5.6: The effect of ocean tides on polar motion calculated from theχ-functions in
microarcseconds (µas) produced by TiME. The figure shows a time-span of
six weeks in 2002 (indicated by the blue and red colours).
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Figure 5.7: The effect of ocean tides on polar motion as in Figure 5.6, with the time-
dimension collapsed into this 2-D representation.

Table 5.9: Effect of Long-Period Tides on Polar Motion

Sa Ssa Sta MSm

rel 35.09 306◦ 5.55 279◦ 68.27 292◦ 44.48 314◦ 2.97 310◦ 3.37 316◦ 9.20 264◦ 7.09 340◦

Θ 174.98 145◦ 12.59 280◦ 108.72 115◦ 77.23 342◦ 5.48 67◦ 5.69 349◦ 3.51 339◦ 5.68 40◦

tot 142.28 149◦ 18.14 280◦ 40.82 121◦ 118.49 332◦ 4.92 34◦ 8.71 337◦ 10.66 283◦ 11.04 6◦

Mm MSf Mf mf

rel 42.54 262◦ 32.89 345◦ 10.38 278◦ 6.65 350◦ 87.48 214◦ 61.61 35◦ 23.52 196◦ 13.94 42◦

Θ 17.02 350◦ 24.34 43◦ 10.41 351◦ 7.31 344◦ 25.36 281◦ 58.01 110◦ 6.86 240◦ 15.83 119◦

tot 46.29 283◦ 50.17 9◦ 16.76 315◦ 13.94 347◦ 100.07 228◦ 95.03 71◦ 28.85 206◦ 23.39 83◦

MStm Mtm mtm MSqm

rel 4.12 198◦ 2.47 45◦ 13.74 209◦ 7.36 35◦ 3.68 185◦ 1.01 342◦ 1.61 180◦ 1.13 33◦

Θ 1.38 268◦ 1.88 132◦ 5.11 235◦ 10.85 143◦ 2.59 121◦ 4.34 211◦ 0.46 183◦ 0.40 279◦

tot 4.77 213◦ 3.16 81◦ 18.47 216◦ 11.07 103◦ 5.34 159◦ 3.76 223◦ 2.07 180◦ 1.03 12◦

Results calculated by TiME of effects due to relative (rel),rotational (Θ) and total angular momentum (tot = rel +Θ).
Values shown areAp [µas],φp [◦], Ar [µas] andφr [◦] for the respective partial tide.
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Gross (1993) (Table 2 therein) has investigated the tidal effect on polar motion based on the
angular momenta given in Seiler (1991). The new predictionsfrom this study formf , Mm
andSsa are in very good agreement with this earlier work. Results for the amplitudes of the
Mf -tide, however, are doubled in the new approach while still agreeing in the phase values.

There is a large difference in the calculated effect on polarmotion by measurements and dif-
ferent models, especially for the fortnightly tides (Grosset al., 1997). The higher amplitudes
of Mf calculated by TiME for prograde polar motion agree well withthe results from Desai
(1996, cited in Gross et al. (1997)) who used an ocean model utilising estimates from altimetric
sea surface height measurements. The higher amplitudes of retrograde polar motion agree well
with the results from measurements (Gross et al., 1997). Note that Gross et al. (1997) have
recalculated the results for theχ-functions and that the aforementioned comparisons are only
tentative. This good agreement with these measurements andthe Desai-Model suggest that
TiME represents theMf better than Seiler (1991).

Diurnal Tides

The effect of the partial tides of the diurnal tidal band on polar motion are shown in Table 5.10
as results derived from relative and rotational angular momenta (Section 5.1) calculated by the
model. For comparison, results of measurements are added (Sovers et al. (1993, S), Herring
and Dong (1994, H), Gipson (1996, G) and Rothacher et al. (1998, R)).

The free core nutation has a nearly diurnal retrograde frequency and is in resonance with the
diurnal partial tides. In the calculations, the denominator σfcn − σpt of Equation 2.45 moves
towards zero and leads to increasing values in the amplitudes of retrograde polar motionAr.
This resonance phenomenon creates difficulties in the determination of quasi-diurnal retrograde
polar motion from measurements so this term is normally omitted in measurement studies.

The results of three of the main diurnal partial tides (Q1, O1 andP1) are in extraordinary good
agreement with the measurements from H forAp andφp. TheK1-tide, which has the strongest
effect on the prograde quasi-diurnal polar motion with an amplitude of about 180µas is in good
agreement with G.

The variational tideso1 andkm1 again prove to be relatively influential on the earth rotation
parameters (see Section 5.4.1) with prograde amplitudes of29 and 26µas. The values are in
excellent agreement with G and R.

Among the smaller partial tides, good agreements are found for σ1, %1, M1, J1 andOO1 and
general agreement is achieved forq1 andoo1. T is in excellent agreement with R for2Q1 while G
differs substantially. Weak agreement is observed forψ1, ϕ1 andν1 with H, G and R. Similar to
the results of UT1, the measurement studies also differ substantially in their respective estimates
of the effect of these weaker partial tides.

The model calculates an amplitude for prograde polar motionof about 1.5µas for theS1. This
refers to the contribution of the astronomicalS1. The measured values of 23-54µas likely
represent the meteorologicalS1 which is not included in the model.

The values in amplitudes of retrograde polar motion are highest for partial tides with frequencies
near the free core nutation (e.g.P1, K1, km1). An amplitude of 11.5 mas (milliarcseconds)
calculated for theK1 would result in polar motion of roughly 35 cm on the earth’s surface.
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Table 5.10: Effect of Diurnal Tides on Polar Motion

2Q1 σ1 q1 Q1

rel 3.19 6◦ 5.12 316◦ 3.79 3◦ 5.90 316◦ 2.68 311◦ 2.33 298◦ 14.21 298◦ 24.44 301◦

Θ 5.88 135◦ 5.09 309◦ 6.98 135◦ 5.62 308◦ 7.21 131◦ 1.98 288◦ 50.53 107◦ 16.26 305◦

tot 4.57 103◦ 10.19 312◦ 5.31 102◦ 11.49 312◦ 4.53 131◦ 4.29 293◦ 36.66 103◦ 40.68 303◦

S 49.00 54◦

H 34.79 72◦

G 14.87 42◦ 7.28 16◦ 6.08 81◦ 30.81 77◦

R 4.12 104◦ 6.08 81◦ 6.32 72◦ 34.79 72◦

%1 o1 O1 τ1

rel 2.47 278◦ 4.52 298◦ 10.16 178◦ 24.76 276◦ 60.14 179◦ 167.86 273◦ 0.48 111◦ 3.09 263◦

Θ 9.11 98◦ 2.46 308◦ 32.31 61◦ 8.06 133◦ 205.25 68◦ 54.48 126◦ 2.31 67◦ 1.10 122◦

tot 6.65 98◦ 6.96 302◦ 29.09 79◦ 18.91 261◦ 192.12 85◦ 125.59 259◦ 2.67 74◦ 2.34 245◦

S 132.00 54◦

H 199.01 63◦

G 7.21 56◦ 27.51 71◦ 145.15 72◦

R 25.96 74◦ 137.09 74◦

o′1 M1 χ1 π1

rel 6.20 142◦ 17.96 259◦ 1.48 339◦ 4.19 46◦ 1.31 119◦ 3.83 279◦ 1.34 107◦ 4.21 277◦

Θ 12.61 70◦ 34.22 111◦ 2.94 278◦ 73.70 259◦ 2.62 51◦ 9.44 131◦ 2.45 49◦ 42.26 131◦

tot 15.69 92◦ 21.29 137◦ 3.88 297◦ 70.20 261◦ 3.33 72◦ 6.50 149◦ 3.34 69◦ 38.84 134◦

S
H 5.00 127◦

G 2.83 315◦

R 10.44 17◦ 11.31 315◦ 14.87 110◦

P1 S1 K1 km1

rel 23.12 99◦ 71.86 285◦ 0.55 64◦ 1.62 312◦ 74.11 91◦ 191.18 291◦ 10.60 98◦ 24.88 277◦

Θ 43.01 38◦ 1034.38 141◦ 1.08 7◦ 42.11 169◦ 134.53 30◦ 11649.29 148◦ 18.59 46◦ 1710.77 133◦

tot 57.95 58◦ 976.87 144◦ 1.46 26◦ 40.83 171◦ 182.58 51◦ 11496.21 149◦ 26.42 64◦ 1690.57 133◦

S 69.00 92◦ 134.00 51◦

H 60.22 54◦ 23.41 110◦ 152.20 61◦

G 47.54 68◦ 28.86 104◦ 173.54 63◦ 23.71 62◦

R 77.62 68◦ 53.76 137◦ 168.43 58◦ 22.47 58◦

ψ1 ϕ1 ϑ1 J1

rel 0.59 105◦ 4.53 281◦ 1.18 103◦ 4.82 283◦ 0.84 94◦ 3.38 286◦ 3.94 95◦ 17.30 289◦

Θ 1.06 43◦ 523.89 318◦ 1.95 32◦ 132.19 319◦ 1.48 26◦ 12.81 327◦ 7.71 23◦ 56.33 330◦

tot 1.43 64◦ 527.62 317◦ 2.59 58◦ 136.11 318◦ 1.95 49◦ 15.51 319◦ 9.65 46◦ 70.30 320◦

S
H 10.63 229◦ 16.76 107◦ 21.93 246◦

G 3.61 34◦ 10.05 174◦ 7.21 34◦

R 45.88 344◦ 6.08 81◦ 7.07 352◦

SO1 OO1 oo1 ν1

rel 1.19 117◦ 4.10 292◦ 5.98 86◦ 21.14 307◦ 1.45 30◦ 4.69 7◦ 1.33 44◦ 3.57 340◦

Θ 1.99 356◦ 6.72 321◦ 7.81 346◦ 29.93 342◦ 1.88 281◦ 6.32 45◦ 0.99 294◦ 3.45 3◦

tot 1.71 33◦ 10.52 310◦ 8.94 27◦ 48.70 328◦ 1.97 325◦ 10.42 29◦ 1.36 1◦ 6.88 351◦

S
H 22.02 39◦ 18.44 347◦

G 10.82 34◦ 4.47 153◦ 3.61 56◦

R 14.14 45◦ 8.49 45◦ 7.07 315◦

Same as Table 5.9.
Comparisons with Sovers et al. (1993) (S), Herring and Dong (1994) (H), Gipson (1996)) (G), and Rothacher et al. (1998) (R).
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The excellent agreement of TiME’s results with the measurement data clearly shows how useful
this modelling approach is, as it can provide this data for many more partial tides than the
measurement campaigns can capture.

Semi-Diurnal Tides

As the frequencies of the partial tides of the semi-diurnal tidal band do not resonate with the
free core nutation, measurements are available for both prograde and retrograde polar motion
(Table 5.11).

In general, TiME produces higher amplitudes for the main semi-diurnal tides than the ones
given by the measurements. The strongest effect on diurnal PM is caused by theM2 with about
117µas (prograde) and 443µas (retrograde) while measurements result in 22-67µas and 256-
265µas. Phase values are in better agreement, though they also differ by 20◦ in retrograde polar
motion.

TheS2-tide differs in amplitudes by a factor of 1.3 to 3 compared tomeasurements and shows
excellent agreement in phase values. TheN2 is in excellent agreement with measurements.

The amplitude of retrograde polar motion due to theK2-tide is in good agreement with S;
H and G, however, give substantially lower values.K2 phases of retrograde PM are in very good
agreement. The modelled prograde PM of theK2 is calculated to be 13µas while measurements
range higher with 23 - 39µas. Model results are out of phase with measurements.

Out of the less significant semi-diurnals, onlyµ2 andν2 are in relatively good agreement with G
and R. Note, however, that several semi-diurnal partial tides in H, G and R give cosine- or sine-
values of 0 for prograde and retrograde polar motion, and were therefore not taken into account
in Table 5.11. Comparisons with results of H, G and R of theR2-tide show that measurements
can differ considerably from each other.

Shallow-Water Tides

The effect of the non-linear shallow-water tides on polar motion is again weaker by orders of
magnitude than the major astronomical tides (Table 5.12 lists amplitudes in nanoarcseconds).
The most influential compound tide2SM2, however, is in the same range as the less significant
semi-diurnal partial tides (Table 5.11) with amplitudes ofabout 0.3µas (prograde) and 2.1µas
(retrograde). In general, the influence due to relative angular momentum is stronger than the
one due to rotational angular momentum. In most cases, the two effects are out of phase.

All third- and fourth-diurnal tides listed have considerably higher values for retrograde ampli-
tudes than prograde ones. The strongest areSO3,MO3,MK3 andSK3 with Ar of 70-136 nas
andM4, MS4, MN4 andMK4 with Ar of 37-356 nas. The influence on polar motion is even
less significant for the sixth-and eighth-diurnals. In mostcases,Ar is again higher thanAp,
yet not as pronounced as in the third- and fourth-diurnals. The most significant ones areM6,
2SM6, 2MN6 and2SM6 with Ar of 10-29 nas and3MS8, 2(MS)8, 3MN8 andM8 with Ar of
2-3 nas.
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Table 5.11: Effect of Semi-Diurnal Tides on Polar Motion

3N2 ε2 2N2 µ2

rel 0.36 106◦ 0.76 257◦ 1.06 108◦ 1.76 245◦ 2.43 94◦ 5.05 247◦ 3.75 100◦ 7.49 239◦

Θ 0.28 228◦ 0.18 306◦ 0.69 229◦ 0.56 329◦ 2.06 207◦ 1.81 303◦ 2.09 222◦ 1.53 334◦

tot 0.32 154◦ 0.88 266◦ 0.92 148◦ 1.91 262◦ 2.49 144◦ 6.24 261◦ 3.16 133◦ 7.51 251◦

S
H
G 5.00 127◦

R 3.61 236◦ 3.16 198◦

N2 ν2 γ2 α2

rel 18.89 109◦ 57.06 227◦ 3.61 113◦ 11.37 226◦ 0.59 143◦ 2.28 207◦ 0.39 136◦ 1.63 213◦

Θ 9.84 211◦ 17.58 338◦ 1.73 210◦ 3.46 341◦ 0.14 268◦ 0.64 358◦ 0.09 247◦ 0.47 349◦

tot 19.43 138◦ 53.40 245◦ 3.81 140◦ 10.36 243◦ 0.52 156◦ 1.75 218◦ 0.37 148◦ 1.33 227◦

S 23.00 125◦ 37.00 267◦

H 16.97 135◦ 48.05 282◦

G 13.89 120◦ 42.01 269◦ 6.32 198◦ 17.49 301◦

R 15.65 153◦ 44.10 266◦ 4.47 117◦ 3.16 198◦

m2 M2 β2 δ2

rel 5.13 76◦ 18.60 266◦ 127.55 98◦ 505.95 244◦ 0.37 90◦ 1.45 249◦ 0.29 351◦ 0.65 5◦

Θ 2.42 192◦ 2.93 40◦ 53.04 212◦ 101.76 17◦ 0.19 203◦ 0.23 12◦ 0.25 170◦ 0.31 214◦

tot 4.61 104◦ 16.69 273◦ 116.75 122◦ 443.10 254◦ 0.35 119◦ 1.34 257◦ 0.05 358◦ 0.41 343◦

S 22.00 57◦ 265.00 273◦

H 58.01 91◦ 265.19 272◦

G 2.24 297◦ 67.12 115◦ 261.23 272◦

R 2.83 315◦ 65.12 133◦ 256.00 270◦

λ2 L2 km2 2T2

rel 1.22 99◦ 5.89 257◦ 3.15 80◦ 15.78 276◦ 1.21 41◦ 5.78 317◦ 0.15 73◦ 0.74 301◦

Θ 0.24 253◦ 1.14 49◦ 0.56 211◦ 2.89 61◦ 0.40 170◦ 0.97 93◦ 0.05 226◦ 0.13 85◦

tot 1.01 105◦ 4.91 263◦ 2.81 89◦ 13.51 283◦ 1.00 59◦ 5.12 325◦ 0.10 87◦ 0.64 308◦

S
H 6.40 39◦

G
R 5.00 307◦ 3.61 124◦

T2 S2 R2 K2

rel 3.24 72◦ 15.94 296◦ 57.17 72◦ 280.53 298◦ 0.64 256◦ 3.11 115◦ 18.08 54◦ 86.81 317◦

Θ 1.10 223◦ 2.84 83◦ 19.72 225◦ 50.36 87◦ 0.22 50◦ 0.57 265◦ 6.29 210◦ 16.00 109◦

tot 2.34 85◦ 13.63 303◦ 40.61 84◦ 238.81 304◦ 0.45 269◦ 2.64 121◦ 12.62 66◦ 73.10 323◦

S 21.00 73◦ 174.00 303◦ 32.00 160◦ 62.00 286◦

H 12.17 99◦ 119.54 304◦ 13.89 330◦ 10.30 299◦ 39.32 173◦ 30.53 328◦

G 7.07 135◦ 129.54 303◦ 3.61 56◦ 20.62 337◦

R 18.38 45◦ 12.37 194◦ 31.06 86◦ 130.51 301◦ 16.12 120◦ 13.00 67◦ 23.35 133◦ 43.01 269◦

km′

2 ζ2 η2 km′′

2

rel 5.84 69◦ 28.11 302◦ 0.31 55◦ 1.47 295◦ 1.39 27◦ 5.58 350◦ 0.46 318◦ 1.84 56◦

Θ 1.97 225◦ 5.17 95◦ 0.07 233◦ 0.22 110◦ 0.51 196◦ 1.11 163◦ 0.21 155◦ 0.34 253◦

tot 4.11 80◦ 23.65 308◦ 0.24 55◦ 1.25 296◦ 0.90 33◦ 4.48 352◦ 0.26 305◦ 1.52 52◦

S
H 7.81 230◦ 2.24 117◦ 8.06 330◦

G 6.71 333◦

R 7.07 135◦

Same as Table 5.10.
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Table 5.12: Effect of Shallow-Water Tides on Polar Motion

2SM2 MQ3 MO3 SO3

rel 331.6 85◦ 2397.6 304◦ 14.9 21◦ 57.9 16◦ 20.6 277◦ 162.0 87◦ 94.3 111◦ 18.7 218◦

Θ 150.0 319◦ 314.4 112◦ 9.8 142◦ 26.5 235◦ 22.8 62◦ 69.1 276◦ 11.5 309◦ 53.6 20◦

tot 273.3 58◦ 2091.6 306◦ 13.0 62◦ 41.0 351◦ 13.2 359◦ 94.6 80◦ 83.4 109◦ 136.4 224◦

MK3 SP3 SK3 K3

rel 28.5 155◦ 125.7 202◦ 15.7 229◦ 36.3 94◦ 52.2 39◦ 97.1 276◦ 16.5 25◦ 50.1 297◦

Θ 11.8 305◦ 55.3 342◦ 4.7 40◦ 9.3 264◦ 11.3 207◦ 31.0 72◦ 6.8 195◦ 12.4 77◦

tot 19.2 172◦ 90.2 225◦ 11.2 233◦ 27.2 98◦ 41.2 42◦ 70.2 287◦ 9.8 33◦ 41.3 308◦

3MS4 MN4 M4 SN4

rel 24.3 318◦ 34.9 302◦ 19.4 36◦ 98.8 321◦ 43.8 11◦ 346.6 355◦ 15.3 262◦ 19.1 43◦

Θ 5.1 122◦ 3.2 48◦ 14.7 117◦ 7.5 2◦ 39.8 71◦ 36.3 73◦ 4.8 62◦ 7.2 74◦

tot 19.5 323◦ 34.2 307◦ 26.2 70◦ 104.5 323◦ 72.4 39◦ 356.1 1◦ 10.9 271◦ 25.6 52◦

3MN4 MS4 MK4 S4

rel 10.4 258◦ 10.7 259◦ 57.9 255◦ 132.8 78◦ 17.8 222◦ 35.2 72◦ 12.3 148◦ 8.8 220◦

Θ 3.4 69◦ 1.6 73◦ 26.9 24◦ 31.4 118◦ 8.9 13◦ 10.2 158◦ 4.4 271◦ 6.1 188◦

tot 7.0 263◦ 9.1 260◦ 46.2 282◦ 158.2 86◦ 10.9 246◦ 37.2 88◦ 10.5 168◦ 14.4 207◦

2MN6 M6 MSN6 MNK6

rel 14.2 9◦ 17.7 7◦ 32.4 333◦ 32.4 63◦ 5.5 355◦ 3.8 308◦ 5.1 13◦ 5.4 334◦

Θ 0.9 44◦ 1.2 199◦ 2.0 323◦ 3.7 262◦ 1.1 220◦ 1.2 286◦ 0.4 174◦ 0.4 230◦

tot 15.0 11◦ 16.5 6◦ 34.4 332◦ 29.0 60◦ 4.8 345◦ 4.9 303◦ 4.7 14◦ 5.3 330◦

2MS6 2MK6 2SM6 MSK6

rel 19.7 324◦ 16.8 338◦ 6.8 290◦ 3.9 354◦ 6.2 299◦ 8.5 28◦ 4.4 275◦ 4.8 49◦

Θ 4.0 182◦ 3.2 310◦ 1.3 182◦ 0.4 280◦ 1.6 134◦ 1.6 339◦ 1.1 105◦ 1.0 352◦

tot 16.7 315◦ 19.6 334◦ 6.5 279◦ 4.0 349◦ 4.6 294◦ 9.6 21◦ 3.3 272◦ 5.4 40◦

3MN8 M8 2MSN8 2MNK8

rel 0.7 234◦ 1.3 72◦ 1.4 213◦ 1.7 103◦ 1.0 149◦ 1.3 104◦ 0.1 53◦ 0.6 74◦

Θ 0.1 347◦ 0.2 102◦ 0.1 325◦ 0.3 163◦ 0.1 358◦ 0.1 197◦ 0.0 119◦ 0.2 47◦

tot 0.7 239◦ 1.5 76◦ 1.4 217◦ 1.9 110◦ 0.9 146◦ 1.3 110◦ 0.2 60◦ 0.8 67◦

3MS8 3MK8 2(MS)8 2MSK8

rel 2.3 126◦ 2.8 133◦ 0.5 39◦ 0.8 133◦ 1.8 40◦ 1.8 200◦ 0.9 22◦ 1.1 212◦

Θ 0.1 293◦ 0.2 280◦ 0.2 313◦ 0.3 86◦ 0.1 260◦ 0.2 149◦ 0.1 179◦ 0.2 152◦

tot 2.2 127◦ 2.7 135◦ 0.6 17◦ 1.0 120◦ 1.7 38◦ 2.0 196◦ 0.8 25◦ 1.2 205◦

Same as Table 5.10, except that amplitudes are given in nas.
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Shallow-water tides are a unique feature of the new model TiME. So far, they have not been
included in any measurement study of the earth rotation parameters. They will be above the
detection limit of VLBI and GPS measurements in the near future. Recently, geodetic measure-
ments have found variations with periods of 3 to 8 hours in both GPS and VLBI measurements
in the order of magnitude of microseconds (Nastula et al., 2004). It has been debated whether
these variations have a real physical origin or whether theyare artefacts of the methodology.
Results of this study can rule out that the high-frequency non-linearities within the ocean tide
system could be responsible for these variations.

5.4.3 Correlation with Measurements

In the following, the results of this study for the semi-diurnal and diurnal tides have been com-
pared with the measurement studies that include a large number of partial tides (Tables 5.6, 5.7,
5.10 and 5.11). These are the results of VLBI-measurements from Herring and Dong (1994)
and Gipson (1996) as well as the results of GPS-measurementsfrom Rothacher et al. (1998).
RMS-values and correlation coefficients (rxy) have been calculated for the results of∆UT1
(Table 5.13) and polar motion (Table 5.14). The three measurement studies have also been
compared with each other.

Following the description in Section 2.5, amplitude and phase values have been treated as
complex-valued numbers and prograde and retrograde polar motion as two independent data.
Some less significant partial tides are only described by oneor two measurement studies. Yet
these tides are also of particular interest for this study, which aims at a complete description of
the oscillation system. For every cross-comparison, all partial tides described by the respective
data sets have been considered, leading to varying numbersn.

The comparisons of the results of∆UT1 in Table 5.13 show an excellent agreement of all four
studies with correlation coefficients of≥ 0.90. Comparisons of the measurement studies with
each other give RMS-values of 1.5 - 2.5µsec while the comparisons of the results of this study
with measurements give 4.4 - 6.4µsec. Comparisons of the results for polar motion (Table 5.14)
reveal a similar picture with correlation coefficients of≥ 0.92. The effect of the ocean tides

Table 5.13: Correlation of Results for∆UT1

H G R T
n rxy rms n rxy rms n rxy rms n rxy rms

H 13 0.98 1.88 16 0.97 2.46 17 0.90 6.43

G 13 0.98 1.88 26 0.98 1.45 25 0.95 4.61

R 16 0.97 2.46 26 0.98 1.45 31 0.93 4.39

T 17 0.90 6.43 25 0.95 4.61 31 0.93 4.39

Comparisons of TiME (this study) (T), Herring and Dong (1994) (H),
Gipson (1996) (G), and Rothacher et al. (1998) (R).

RMS-values are given inµsec.
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Table 5.14: Correlation of Results for Polar Motion

H G R T
n rxy rms n rxy rms n rxy rms n rxy rms

H 18 0.98 20.47 21 0.95 28.58 24 0.92 57.30

G 18 0.98 20.47 28 0.97 17.02 30 0.96 47.99

R 21 0.95 28.58 28 0.97 17.02 38 0.95 43.88

T 24 0.92 57.30 30 0.96 47.99 38 0.95 43.88

Comparisons of TiME (this study) (T), Herring and Dong (1994) (H),
Gipson (1996) (G), and Rothacher et al. (1998) (R).

RMS-values are given inµas.

on polar motion calculated by TiME differs from the measurement studies with RMS-values of
44 - 58µas. The measurement studies compared with each other give values of 17 - 29µas.
TiME produces the smallest RMS-values in comparison with Rothacher et al. (1998) for both
∆UT1 and polar motion and the highest correlation coefficients in comparison with Gipson
(1996).

In general, the results show that the effect of the complete oscillation system of ocean tides on
the earth’s rotation has been well-captured by the novel modelling approach.
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Chapter 6

Conclusions and Outlook

The objective of this study was to develop an unconstrained ocean model in order to investigate
the complete effect of ocean tides on the earth’s rotation. The key aspect was the transition from
a traditional partial tide approach to a real-time approach. To this end, a new astronomical mod-
ule calculating the exact position of the moon and earth has been implemented into a barotropic
ocean tide model. This module operates independently, i.e.the module calculates the respective
orbits from fundamental angles and determines the completelunisolar tidal potential of second
degree for every model time-step.

No satellite or other data of the sea surface elevations havebeen assimilated. In this way, the
model utilises only the current physical understanding of the orbits of the moon and earth and
the ocean’s response on the gravitational forces. This leaves the ocean topography as the only
dependent data input. The spatial resolution has been chosen to be as high as computationally
feasible. Chapter 2 of this study describes the basic equations of the modules making up the
Tidal Model forced by Ephemerides (TiME) and the analytical methods applied for the study.

6.1 Conclusions

The improvements implemented in the original 1◦ ocean model in order to ensure the feasibil-
ity for the simulations on the high resolution of 5’ globallyare described in Chapter 3. This
required an alteration of the numerical semi-implicit scheme. A pronounced dependency of
the energy within the modelled system on the time-step has been abolished. Along with the
newly implemented algorithm, the iteration-scheme has been reworked in order to ensure fast
convergence.

A two-step poleward zonal resolution change has been implemented because convergence used
to be slowest towards the North Pole and because the smallestactual mesh size of the modelling
grid constraints the largest possible modelling time-step. The solution was tested on an artificial
aqua planet with uniform water depth. No structural disturbance of the oscillation pattern and
no reflections at the latitudes of resolution change were observed.

The model has been tuned with the parameterAH , which determines the prescription of turbu-
lent effects within a model grid box, by comparison with a standard data set of pelagic mea-
surements. The model has been evaluated for results of five partial tides calculated with the
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traditional partial tide forcing and with partial tides extracted from simulations with the novel,
full-forcing approach. The simulations tend to overestimate the oscillation system, a common
and expected feature of most unconstrained ocean tide models. The predicted oscillation system
is in very good agreement with measurements, with correlation coefficients of> 0.88 for all
partial tides investigated.

Chapter 4 describes examples of the oscillation system produced by TiME. One conspicuous
result of the resolution change is the shift of theM2 amphidromic point south of Australia (one
of the improvements of data assimilation models) with high resolution and using the GEBCO
bathymetry. This effect is not produced by TiME when utilising the ETOPO bathymetry and
does not seem to be governed by the local topography, but rather by the general oscillation sys-
tem. The experiments reveal the important role of bottom topography in the model simulations.

Results from partial tide forcings were compared with results of partial tides extracted via har-
monic analysis. The most significant differences in both amplitudes and phases are found at
the ocean margins, particularly in extended shelf areas where amplitudes are highest. Regional
examples of selected partial tides show that utilising the complete lunisolar forcing reduces the
amplitudes of certain partial tides by up to 50%.

These differences can be attributed to non-linear interactions between partial tides, leading to
the formation of shallow-water tides. With the novel approach used in TiME global charts of
numerically predicted shallow-water tides were produced for the first time. These tides can be
captured because: 1) all partial tides are included simultaneously, 2) the model is formulated
with non-linear shallow-water equations, and 3) shelf areas are well represented due to the high
resolution.

Shallow-water tides (SWT) can reach amplitudes of up to 20 cmlocally. The spatial distribution
of maxima in the sea surface elevations of the SWT can be associated with the areas where the
biggest differences (between the forcing approaches) in the astronomical partial tides are found.
The spatial distribution of flow transport reveals that the SWT, after their formation in shallow
waters, propagate into the open ocean and should therefore be regarded as a global phenomenon.
Transports can reach values of around1 m2/s in the open ocean.

Global results for rotational and relative angular momentum have been compared with a coarser
resolving partial tide model and a data assimilation model in Chapter 5. In general, the high-
resolving real-time model agrees better with the data assimilation model then the partial tide
model does. This agreement is best for the phase values. Amplitude values, however, are still
significantly overestimated (with a factor of up to 2) for several partial tides, including the
dominant semi-diurnalsM2 andS2.

Rotational angular momentum (AM) dominates over relative AM for long-period tides. With
decreasing periods relative AM gains importance. This alsoholds for the angular momenta of
the high-frequency shallow-water tides. This confirms the interpretation of the significance of
their flow transport in the open ocean (described in Chapter 4).

Comparisons of the torques of different processes show thatthe system is clearly dominated
by resonantly excited oscillations: the torques due to relative motion is essentially balanced
by the pressure torque and only a small portion is directly attributed to the gravitational tidal
forces. The frictional torque is negligible within instantaneous angular momentum budgets, yet
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frictional terms are significant in energy budgets. The energy dissipated due to eddy-viscosity
and bottom friction is the main driver of tidal friction which results in a secular acceleration of
the mean lunar angular velocity.

The total amount of energy dissipated by the entire oscillation system of ocean tides is calcu-
lated by TiME to be 4.8 TW. Estimates of the energy dissipatedby theM2-tide calculated by
TiME with the old partial tide approach gives 3.6 TW. The contribution of the ocean tides on

tidal friction is estimated to be
·

E = 4.1 TW, which lies within the range of published measure-
ment results. Most recent measurements, however, agree on amuch lower value of about 3 TW,
which is related to a secular lunar acceleration of about 25as/cy2.

As well as this long-term effect of tides on the earth’s rotation, the ocean tide oscillation systems
also causes rapid variations in the earth rotation parameters (ERP). They can be determined
by the changes in rotational and relative angular momentum described earlier. Variations in
Universal Time (UT1) and polar motion (PM) due to ocean tideshave been investigated in
relation to the celestial ephemeris pole (CEP) and comparedto other studies including VLBI
and GPS measurements and results from data assimilation models.

Results are generally in very good agreement for the dominating partial tides from long-term
periods to semi-diurnals. Agreement decreases with the decreasing significance of the respec-
tive partial tide, which is also true for comparisons of measurement results with each other.
The general tendency of the unconstrained model to overestimate the oscillation system is also
reflected in the amplitudes of∆UT1 and in the effect on PM.

Comparisons with measurements of the ERP show significant improvements in TiME as com-
pared to the coarse-resolving partial tide model. The real-time approach offers the opportunity
for a large number of constituents to be studied without extra effort so that most partial tides
described in the literature have been included in this study. Some less significant partial tides,
which had not been included in any modelling study so far, arein excellent agreement with
results from both VLBI and GPS measurements with correlation coefficients of 0.90 - 0.96.

A selection of non-linear shallow-water tides were included in the investigations of the earth
rotation parameters. Variations in both UT1 and PM are aboutthree orders of magnitude lower
than the major astronomical partial tides. Their effects should be above the detection limit of
modern measuring methods within the near future as their values are only a bit lower than the
less significant semi-diurnal and diurnal partial tides which are already included in measurement
campaigns.
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6.2 Outlook

As the accuracy of geodetic measurements is being improved and more and more data are
acquired through satellite altimetry, there is a growing interest in smaller scale ocean tides. For
the earth rotation parameters, this means that a larger number of constituents can be detected
and hopefully in the near future this will involve the non-linear shallow-water tides. The model
study offers a foundation for these new measurements to be compared with.

Satellite altimetry is currently moving part of its focus towards coastal and shelf areas. Data are
usually more sparse in the vicinity of land than for the open ocean because they are more often
disturbed by clouds. Cross-comparisons of TiME’s results with satellite and tide gauge data for
the Patagonian Shelf and the North Sea had been initiated butcould not be conducted within
the time-frame of this study and are a future application of this work. Especially, the theoretical
predictions of shallow-water tides are of particular interest (e.g. Andersen, 1999).

The results of angular momentum and the tidal effect on the earth’s rotation were only investi-
gated on a global scale in this study. As the spatial resolution of TiME is considerably higher
than most other global tidal models, a more detailed analysis to study the respective influence
of selected regions may reveal further insight into the dynamics. The contribution of certain
shelf sea areas to tidal friction is one interesting example.

This study has used the lunisolar tidal potential of second degree as a forcing of the ocean tide
model. Knowing the position of the moon and sun, it would be possible and straightforward
to also include the tidal potential of third degree. This would include additional partial tides,
e.g. theM3 which is of similar importance as the weaker short-period tides of this study, and
were already included in measurement campaigns (Haas and W¨unsch, 2006).

One of the processes not described in the current set-up of TiME is the conversion of tides into
internal tides which might add to vertical mixing (Egbert and Ray, 2000). There are approaches
to parameterise that effect for barotropic models (Jayne and St. Laurent, 2001). For the present
study, it seemed too early to test this new approach, which isreportedly quite sensitive to the
model set-up. The parameterisation was also developed for amuch coarser modelling grid and
only takes 5’ resolution into account for an estimate of the roughness of the bottom topography.
However, it will be worth following the on-going research ase.g. Egbert et al. (2004) have
recently produced promising results with this parameterisation. As internal tides form due to
baroclinic processes, which are at the moment still not fully described, it would be preferential
to formulate them within a baroclinic ocean model.

In the presented study, the earth rotation parameters, i.e.changes in the length of day and polar
motion, were calculated as decoupled effects. Also, the main variations in polar motion, i.e. free
core nutation and Chandler wobble, were taken into account in the calculation, albeit without
allowing for feedbacks of these free oscillations with the forced oscillations due to the ocean
tides. These assumptions are a valid approximation with sufficient accuracy for the purpose of
this study. However, studying the effect of the complete tidal dynamics described by TiME in
combination with a non-linear gyro-model for the earth’s rotation like DyMEG (Seitz, 2004)
may provide further insight into the dynamics.

One final application is using TiME’s description of the oscillation system given in this study
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as boundary data for other ocean models. Global charts of 33 partial tides are available in
four different resolutions (5’, 10’, 15’ and 20’) for sea surface elevations and tidal currents as
amplitude and phase values. The instantaneous velocity andelevation fields are available for
the time-span from June 2002 until June 2003 every 1/2 hour.

In conclusion, this novel approach to describe the ocean tides offers a range of opportunities for
studies of the ocean tide dynamics and their complete effecton the earth’s rotation.
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Appendix A

A.1 System of Equations (Finite Differences)

Applying the semi-implicit numerical scheme of Backhaus (1985) in TiME required restructur-
ing of the system of equations from the original scheme used in Seiler (1989) who applied the
semi-implicit scheme of Backhaus (1983). In the following,the general system (Section A.1.1),
the solution for the resolution change (Section A.1.2) and the polar cap (Section A.1.3) will be
described.

A.1.1 General System

Equation 2.9 formulated in finite differences reads:

Un+1
ij = Hx

ij · F x
ij

[
α · unij + β · vnij + ∆tXn

ij − P x
ij

]
(A.1)

V n+1
ij = Hy

ij · F y
ij

[
α · vnij − β · unij + ∆tY n

ij − P y
ij

]
(A.2)

wherei is the index for the longitudinal direction (from W to E) andj for the latitudinal one (S
to N); vnij andunij are the averaged zonal velocity at theu-point and the meridional velocity at
thev-point, respectively, andF is the bottom friction function.

F =
H

H + r · ∆t
√
u2 + v2

(A.3)

The pressure gradientP is formulated as:

P x
ij =

g′

fa




β
(
ζ

(1/2)
(i+1)j − ζ

(1/2)
ij

)

∆λ cosu φj
+
γ
(
ζ

(1/2)
i(j+1) + ζ

(1/2)
(i+1)(j+1) − ζ

(1/2)
i(j−1) − ζ

(1/2)
(i+1)(j−1)

)

4∆φ



 (A.4)

P y
ij =

g′

fa




β
(
ζ

(1/2)
ij − ζ

(1/2)
i(j−1)

)

∆φ
−
γ
(
ζ

(1/2)
(i+1)j + ζ

(1/2)
(i+1)(j−1) − ζ

(1/2)
(i−1)j − ζ

(1/2)
(i−1)(j−1)

)

4∆λ cosv φj



 (A.5)

with ζ (1/2) = 0.5(ζn + ζn+1) representing the elevation at the intermediate time-step.The
equation of continuity reads:
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ζn+1
ij = ζnij −

∆t

a cosu φj

[
U

(1/2)
ij − U

(1/2)
(i−1)j

∆λ
+
V

(1/2)
i(j+1) cosv φ(j+1) − V

(1/2)
ij cosv φj

∆φ

]
. (A.6)

Inserting Equations A.1 and A.2 into Equation A.6 leads to the iteration problem of∆ζ =
ζn+1 − ζn:

∆ζij =
1

1 + c5
·
[
c1∆ζ(i−1)(j+1) + c2∆ζi(j+1) + c3∆ζ(i+1)(j+1) + c4∆ζ(i−1)j+

c6∆ζ(i+1)j + c7∆ζ(i−1)(j−1) + c8∆ζi(j−1) + c9∆ζ(i+1)(j−1) +B + C
]

(A.7)

with the coefficientsci

c1 = −bx(i−1)j − byi(j+1)

c2 = −bx(i−1)j + bxij − axi(j+1)

c3 = byi(j+1) + bxij

c4 = byij + ax(i−1)j − byi(j+1)

c5 = axij + ax(i−1)j + ayij + ayi(j+1)

c6 = axij + byi(j+1) − byij

c7 = byij + bx(i−1)j

c8 = ayij − bxij + bx(i−1)j

c9 = −bxij − byij

defined by

hxij =
g′∆tHx

ijF
x
ij

4fa∆λ cosu φj

axij = hxij
β

a∆λ cosu φj

bxij = hxij
γ

4a∆φ

hyij =
g′∆tHy

ijF
y
ij

4fa∆φ

ayij = hyij
β cosv φj

a∆φ cosu φj

byij = −hyij
γ

4aλ cosu φj

and the termsB andC representing the explicit pressure gradient and the perturbation term:
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B = 2
[
c1ζ

n
(i−1)(j+1) + c2ζ

n
i(j+1) + c3ζ

n
(i+1)(j+1) + c4ζ

n
(i−1)j+

c5ζ
n
ij + c6ζ

n
(i+1)j + c7ζ

n
(i−1)(j−1) + c8ζ

n
i(j−1) + c9ζ

n
(i+1)(j−1)

]
(A.8)

C =
∆t

2a cosu φj

[
Û(i−1)j − Ûij

∆λ
+
V̂ij cosv φj − V̂i(j+1) cosv φ(j+1)

∆φ

]
(A.9)

with

Ûij = Hx
ij

[
unij + F x

ij

(
αunij + βvnij + ∆tXn

ij

)]

V̂ij = Hy
ij

[
vnij + F y

ij

(
αvnij − βunij + ∆tY n

ij

)]
.

For the regions with lower zonal resolution the system is essentially the same (only replacing
∆λ by 2∆λ or 4∆λ).

A.1.2 Zonal Resolution Change

The resolution changes at the latitudesb andB = b + 1. For the longitudinal indices, only
every secondζ-point in b has a direct meridional neighbour inB. In the following, the indexi
is an uneven integer defined asi = 2I − 1. The pressure gradient terms within the equations of
motion (A.1 and A.2) for the bordering latitudes read:

P x
ib =

g′

fa




β
(
ζ

(1/2)
(i+1)b − ζ

(1/2)
ib

)

∆λ cosu φb
+
γ
(
1.5ζ

(1/2)
IB + 0.5ζ

(1/2)
(I+1)B − ζ

(1/2)
i(b−1) − ζ

(1/2)
(i+1)(b−1)

)

4∆φ





P x
(i+1)b =

g′

fa




β
(
ζ

(1/2)
(i+2)b − ζ

(1/2)
(i+1)b

)

∆λ cosu φb
+
γ
(
0.5ζ

(1/2)
IB + 1.5ζ

(1/2)
(I+1)B − ζ

(1/2)
(i+1)(b−1) − ζ

(1/2)
(i+2)(b−1)

)

4∆φ





P x
IB =

g′

fa




β
(
ζ

(1/2)
(I+1)B − ζ

(1/2)
IB

)

2∆λ cosu φb
+
γ
(
ζ

(1/2)
IB+1 + ζ

(1/2)
(I+1)(B+1) − 2ζ

(1/2)
(i+1)(b)

)

4∆φ





P y
IB =

g′

fa




β
(
ζ

(1/2)
IB − ζ

(1/2)
ib

)

∆φ
−
γ
(
ζ

(1/2)
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(1/2)
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(1/2)
(I−1)B − 2ζ

(1/2)
(i−1)b

)

8∆λ cosv φB





whileP y
ib is formulated analogue toP y

ij. The equations of continuity are:

ζn+1
ib = ζnib −

∆t

a cosu φb

[
U

(1/2)
ib − U

(1/2)
(i−1)b

∆λ
+
V

(1/2)
IB cosv φB − V

(1/2)
ib cosv φb

∆φ

]
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(i+1)b = ζn(i+1)b −
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a cosu φb

[
U

(1/2)
(i+1)b − U

(1/2)
ib
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+

0.5(V
(1/2)
IB + V

(1/2)
(I+1)B) cosv φB − V

(1/2)
(i+1)b cosv φb

∆φ

]
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while ζn+1
IB follows ζn+1

IJ . This leads to a slightly altered formulation of the iteration problem.
For uneven integersi in latitudeb it is formulated as:

∆ζib =
1

1 + c5
·
[
c1∆ζ(I−1)B + c2∆ζIB + c3∆ζ(I+1)B + c4∆ζ(i−1)b+

c6∆ζ(i+1)b + c7∆ζ(i−1)(b−1) + c8∆ζi(b−1) + c9∆ζ(i+1)(b−1) +B + C
]

(A.10)

with

c1 = −0.5bx(i−1)b − byIB
c2 = −1.5bx(i−1)b + 1.5bxib − axIB
c3 = byIB + 0.5bxib
c4 = byib + ax(i−1)b − byIB
c5 = axib + ax(i−1)b + ayib + ayIB
c6 = axib + byIB − byib
c7 = byib + bx(i−1)b

c8 = ayib − bxib + bx(i−1)b

c9 = −bxib − byib

C =
∆t

2a cosu φb

[
Û(i−1)b − Ûib

∆λ
+
V̂ib cosv φj − V̂IB cosv φ(j+1)

∆φ

]

.

For even integersi + 1 at latitudeb, 12 coefficients are needed and the iteration problem is
formulated as:

∆ζ(i+1)b =
1

1 + c5
·
[
c1∆ζIB + c2∆ζ(I+1)B + c3∆ζ(I+2)B + c4∆ζib+

c6∆ζ(i+2)b + c7∆ζi(b−1) + c8∆ζ(i+1)(b−1) + c9∆ζ(i+2)(b−1)+

c10∆ζ(I−1)B + c11∆ζ(i−1)b + c12∆ζ(i+3)b) +B + C
]

(A.11)
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with

c1 = 0.5bx(i+1)b − 1.5bxib + 0.5ayIB − 0.5by(I+1)B

c2 = 1.5bx(i+1)b − 0.5bxib + 0.5byIB + 0.5ay(I+1)B

c3 = 0.5by(I+1)B

c4 = by(i+1)b + axib − 0.5ayIB

c5 = ax(i+1)b + axib + ay(i+1)b + 0.5by(I+1)B − 0.5byIB

c6 = ax(i+1)b − 0.5ay(I+1)B − by(i+1)b

c7 = by(i+1)b + bxib

c8 = ay(i+1)b − bx(i+1)b + bxib

c9 = −bx(i+1)b − by(i+1)b

c10 = −0.5byIB
c11 = −0.5byIB
c12 = 0.5by(I+1)B

C =
∆t

2a cosu φb

[
Ûib − Û(i+1)b

∆λ
+
V̂(i+1)b cosv φj − 0.5(V̂IB + V̂(I+1)B) cosv φ(j+1)

∆φ

]
.

For the first latitude of the lower zonal resolutionB, the iteration problem becomes:

∆ζIB =
1

1 + c5
·
[
c1∆ζ(I−1)(B+1) + c2∆ζI(B+1) + c3∆ζ(I+1)(B+1) + c4∆ζ(I−1)B+

c6∆ζ(I+1)B + c7∆ζ(i−1)b + c8∆ζib + c9∆ζ(i+1)b +B + C
]

(A.12)

with

c1 = −bx(I−1)B − byI(B+1)

c2 = −bx(I−1)B + bxIB + ayI(B+1)

c3 = byI(B+1) + bxIB

c4 = byIB + ax(I−1)B − byI(B+1)

c5 = axIB + ax(I−1)B + ayIB + ayI(B+1)

c6 = axIB + byI(B+1) − byIB

c7 = byIB + 2bx(I−1)B

c8 = ayIB
c9 = −2bxIB − byIB

C =
∆t

2a cosu φb

[
Û(I−1)B − ÛIB

2∆λ
+
V̂IB cosv φj − V̂I(B+1) cosv φ(j+1)

∆φ

]
.
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A.1.3 Polar Cap

The North Pole is represented by a polar cap with the elevation ζP and the radius∆φc reaching
until a latitude with indexp. This alters the pressure gradient termsP x

i(p−1) andP y
ip in the

equations of motion.

P x
i(p−1) =

g′

fa




β
(
ζ

(1/2)
(i+1)(p−1) − ζ

(1/2)
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)
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+
γ
(
2ζ

(1/2)
P − ζ

(1/2)
i(p−2) − ζ

(1/2)
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)
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



P y
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fa




β
(
ζ

(1/2)
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(1/2)
i(p−1)

)
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−
γ
(
ζ

(1/2)
(i+1)(p−1) − ζ

(1/2)
(i−1)(p−1)

)

4∆λ cosv φp





The equations of continuity read:

ζn+1
i(p−1) = ζni(p−1) −

∆t

a cosu φ(p−1)

[
U

(1/2)
i(p−1) − U

(1/2)
(i−1)(p−1)

∆λ
+
V

(1/2)
ip cosv φp − V

(1/2)
i(p−1) cosv φ(p−1)

0.5(∆φ+ ∆φc)

]

ζn+1
P = ζnP − ∆tS

A

∑

i

V
(1/2)
ip

with S = a sin(∆φc)∆λ andA = 2πa2(1− cos(∆φc)). The iteration problem for the northern-
most latitudep− 1 is solved through:

∆ζi(p−1) =
1

1 + c5
·
[
c2∆ζP + c4∆ζ(i−1)(p−1) + c6∆ζ(i+1)(p−1)+

c7∆ζ(i−1)(p−2) + c8∆ζi(p−2) + c9∆ζ(i+1)(p−2) +B + C
]

(A.13)

with

C =
∆t

a cosu φ(p−1)

[
Û(i−1)(p−1) − Ûi(p−1)

2∆λ
+
V̂i(p−1) cosv φ(p−1) − V̂ip cosv φ(p)

∆φ+ ∆φc

]

c2 = −2bx(i−1)(p−1) + 2bxi(p−1) + ayip
c4 = byi(p−1) + ax(i−1)(p−1) − byip

c5 = axi(p−1) + ax(i−1)(p−1) + ayi(p−1) + ayip

c6 = axi(p−1) + byip − byi(p−1)

c7 = byi(p−1) + bx(i−1)(p−1)

c8 = ayi(p−1) − bxi(p−1) + bx(i−1)(p−1)

c9 = −bxi(p−1) − byi(p−1)



97

The polar cap is formulated as:

∆ζP =
1

1 + c5

∑

i

[
c7∆ζ(i−1)(p−1) + c8∆ζ(p−1) + c9∆ζ(i+1)(p−1)

]
+B + C (A.14)

with

C =
∆tS

2A

∑

i

V̂ip

c5 =
∑

i

ayip

c7 = byip
c8 = ayip
c9 = −byip.
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A.2 Partial Tides

Table A.1: Partial Tides Extracted from Real-Time Simulations.

Coefficient Doodson Argument Frequency
Tide kpt Number t s h p ps N φ σpt [◦/hour] Origin1)

Sa 0.01176 056 554 0 0 1 0 -1 0 0 0.041067 S
Ssa 0.07287 057 555 0 0 2 0 0 0 0 0.082137 S
MSm 0.01587 063 655 0 1 -2 1 0 0 0 0.471521 M
Mm 0.08254 065 455 0 1 0 -1 0 0 0 0.544375 M
MSf 0.01370 073 555 0 2 -2 0 0 0 0 1.015896 M
Mf 0.15642 075 555 0 2 0 0 0 0 0 1.098033 M

Q1 0.07216 135 655 1 -3 1 1 0 0 -90◦ 13.398661 M
O1 0.37689 145 555 1 -2 1 0 0 0 -90◦ 13.943036 M
P1 0.17554 163 555 1 0 1 0 0 0 -90◦ 14.958931 S
K1m 0.36233 165 555 1 0 1 0 0 0 +90◦ 15.041069 M
K1s 0.16817 165 555 1 0 1 0 0 0 +90◦ 15.041069 S

2N2 0.02301 235 755 2 -4 2 2 0 0 0 27.895355 M
µ2 0.02777 237 555 2 -4 4 0 0 0 0 27.968208 M
N2 0.17387 245 655 2 -3 2 1 0 0 0 28.439730 M
M2 0.90812 255 555 2 -2 2 0 0 0 0 28.984104 M
L2 0.02567 265 455 2 -1 2 -1 0 0 +180◦ 29.528479 M
T2 0.02479 272 556 2 0 -1 0 1 0 0 29.958933 S
S2 0.42286 273 555 2 0 0 0 0 0 0 30.000000 S
S2m 0.00072 273 555 2 0 0 0 0 0 0 30.000000 M
K2m 0.07858 275 555 2 0 2 0 0 0 0 30.082137 M
K2s 0.03648 275 555 2 0 2 0 0 0 0 30.082137 S
η2 0.00643 285 455 2 1 2 -1 0 0 0 30.626512 M

2SM2 - 291 555 2 2 -2 0 0 0 0 31.015896 2 × S2 −M2

MO3 - 345 555 3 -4 3 0 0 0 -90◦ 42.927140 M2 +O1

SO3 - 363 555 3 -2 1 0 0 0 -90◦ 43.943036 S2 + O1

MK3 - 365 555 3 -2 3 0 0 0 +90◦ 44.025173 M2 +K1

MN4 - 445 655 4 -5 4 1 0 0 0 57.423834 M2 +N2

M4 - 455 555 4 -4 4 0 0 0 0 57.968208 2 ×M2

MS4 - 473 555 4 -2 2 0 0 0 0 58.984104 M2 + S2

MK4 - 475 555 4 -2 4 0 0 0 0 59.066242 M2 +K2

M6 - 655 555 6 -6 6 0 0 0 0 86.952313 3 ×M2

2MS6 - 673 555 6 -4 4 0 0 0 0 87.968208 2 ×M2 + S2

2MK6 - 675 555 6 -4 6 0 0 0 0 88.050346 2 ×M2 +K2

M8 - 855 555 8 -8 8 0 0 0 0 115.936417 4 ×M2

3MS8 - 873 555 8 -6 6 0 0 0 0 116.952313 3 ×M2 + S2

3MK8 - 875 555 8 -6 8 0 0 0 0 117.034450 3 ×M2 +K2

1) Solar (S) or lunar (M) tidal potential; for shallow-water tides: the combination of astronomical partial tides.
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Table A.2: Additional Partial Tides.

Coefficient Doodson Argument Frequency
Tide kpt Number t s h p ps N φ σpt [◦/hour] Origin1)

Sta 0.00427 058 554 0 0 3 0 -1 0 0 0.123204 S
mf 0.06481 075 565 0 2 0 0 0 -1 0 1.100240 M

MStm 0.00569 083 655 0 3 -2 1 0 0 0 1.569554 M
Mtm 0.02995 085 455 0 3 0 -1 0 0 0 1.642408 M
mtm 0.01241 085 465 0 3 0 -1 0 -1 0 1.644614 M
MSqm 0.00478 093 555 0 4 -2 0 0 0 0 2.113929 M

2Q1 0.00955 125 755 1 -4 1 2 0 0 -90◦ 12.854286 M
σ1 0.01153 127 555 1 -4 3 0 0 0 -90◦ 12.927140 M
q1 0.01360 135 645 1 -3 1 1 0 1 -90◦ 13.396455 M
ρ1 0.01371 137 455 1 -3 3 -1 0 0 -90◦ 13.471514 M
o1 0.07105 145 545 1 -2 1 0 0 1 -90◦ 13.940830 M
τ1 0.00491 147 555 1 -2 3 0 0 0 +90◦ 14.025173 M
o′1 0.01065 155 455 1 -1 1 -1 0 0 +90◦ 14.487410 M
M1 0.02964 155 655 1 -1 1 1 0 0 +90◦ 14.496694 M
χ1 0.00566 157 455 1 -1 3 -1 0 0 +90◦ 14.569548 M
π1 0.01029 162 556 1 0 -2 0 1 0 -90◦ 14.917865 S
S1 0.00423 164 556 1 0 0 0 -1 0 +90◦ 15.000002 S
k1m 0.07182 165 565 1 0 1 0 0 -1 +90◦ 15.043275 M
ψ1 0.00423 166 554 1 0 2 0 -1 0 +90◦ 15.082135 S
φ1 0.00756 167 555 1 0 3 0 0 0 +90◦ 15.123206 S
ϑ1 0.00566 173 655 1 1 -1 1 0 0 +90◦ 15.512590 M
J1 0.02964 175 455 1 1 1 -1 0 0 +90◦ 15.585443 M
SO1 0.00492 183 555 1 2 -1 0 0 0 +90◦ 16.056964 M
OO1 0.01623 185 555 1 2 1 0 0 0 +90◦ 16.139102 M
oo1 0.01039 185 565 1 2 1 0 0 -1 +90◦ 16.141308 M
ν1 0.00311 195 455 1 3 1 -1 0 0 +90◦ 16.683476 M

3N2 0.00259 225 855 2 -5 2 3 0 0 0 27.350980 M
ε2 0.00671 227 655 2 -5 4 1 0 0 0 27.423834 M
ν2 0.03303 247 455 2 -3 4 -1 0 0 0 28.512583 M
γ2 0.00273 253 755 2 -2 0 2 0 0 +180◦ 28.911251 M
α2 0.00314 254 556 2 -2 1 0 1 0 +180◦ 28.943038 M
m2 0.03386 255 545 2 -2 2 0 0 1 +180◦ 28.981898 M
β2 0.00276 256 554 2 -2 3 0 -1 0 0 29.025171 M
δ2 0.00107 257 555 2 -2 4 0 0 0 0 29.066242 M
λ2 0.00670 263 655 2 -1 0 1 0 0 +180◦ 29.455625 M
k2m 0.00643 265 655 2 -1 2 1 0 0 0 29.537763 M
2T2 0.00101 271 557 2 0 -2 0 2 0 0 29.917866 S
R2 0.00354 274 554∗ 2 0 1 0 -1 0 +180◦∗ 30.041067 S
k′2m 0.03423 275 565 2 0 2 0 0 -1 0 30.084343 M
ζ2 0.00123 283 655 2 1 0 1 0 0 0 30.553656 M
k′′2m 0.00168 295 555 2 2 2 0 0 0 0 31.180170 M

MQ3 - 335 655 3 -5 3 1 0 0 -90◦ 42.382765 M2 +Q1

SP3 - 381 555 3 0 -1 0 0 0 -90◦ 44.958931 S2 + P1

SK3 - 383 555 3 0 1 0 0 0 +90◦ 45.041069 M2 +K1

K3 - 385 555 3 0 3 0 0 0 +90◦ 45.123206 K2 +K1

3MS4 - 437 555 4 -6 6 0 0 0 0 56.952313 3 ×M2 − S2

SN4 - 463 655 4 -3 2 1 0 0 0 58.439730 S2 −N2

3MN4 - 465 455 4 -3 4 -1 0 0 0 58.512583 3 ×M2 −N2

S4 - 491 555 4 0 0 0 0 0 0 60.000000 2 × S2

2MN6 - 645 655 6 -7 6 1 0 0 0 86.407938 2 ×M2 +N2

MSN6 - 663 655 6 -5 4 1 0 0 0 87.423834 M2 + S2 +N2

MNK6 - 665 655 6 -5 6 1 0 0 0 87.505971 M2 +N2 +K2

2SM6 - 691 555 6 -2 2 0 0 0 0 88.984104 2 × S2 +M2

MSK6 - 693 555 6 -2 4 0 0 0 0 89.066242 M2 + S2 +K2

3MN8 - 845 655 8 -9 8 1 0 0 0 115.392042 3 ×M2 +N2

2MSN8 - 863 655 8 -7 6 1 0 0 0 116.407938 2 ×M2 + S2 +N2

2MNK8 - 865 655 8 -7 8 1 0 0 0 116.490075 2 ×M2 +N2 +K2

2(MS)8 - 891 555 8 -4 4 0 0 0 0 117.968208 2 ×M2 + 2 × S2

2MSK8 - 893 555 8 -4 6 0 0 0 0 118.050316 2 ×M2 + S2 +K2

1) Solar (S) or lunar (M) tidal potential; for shallow-water tides: the combination of astronomical partial tides.
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A.3 Additional Shallow-Water Tides

Figure A.1: Amplitudes and phases of the2MS6 on the Patagonian Shelf.

Figure A.2: Amplitudes and phases of the3MS8 in the North Sea area.



101

A.4 Notation of ERP

In Section 5.4 the results of this study where compared to measurements and shown as ampli-
tudes and phases. The cited measurement studies, however, usually present results as cosine-
and sine-values, i.e. ascospt = Apt · cosφpt andsinpt = Apt · sinφpt. For this study, the values
have been recalculated to be presented in the amplitude/phase-notation. Values incospt and
sinpt of value 0 have been omitted. The amplitudes are obtained through

Apt =
√
cos2

pt + sin2
pt (A.15)

and the phases by

φpt = tan−1 (cospt + sinpt) + φa (A.16)

whereφa refers to theφ in the argument of the given partial tides listed in Tables A.1 and A.2.
Furthermore, phase values for both prograde and retrogradepolar motion of the semi-diurnal
tides listed in Herring and Dong (1994), Gipson (1996) and Rothacher et al. (1998) had to be
corrected by180◦.

Gipson (1996) describes the transformation of Doodson variables (normally used in ocean tide
studies) into Woolard arguments (normally used in measurement studies). Performing this con-
version revealed that the diurnal tideN1 referred to in Gipson (1996) and Rothacher et al. (1998)
is identical with the partial tideπ1 in Bartels (1957) and this study. The same holds forη1 which
is calledν1 in their study. It also helped labelling the partial tides inHerring and Dong (1994)
which have not been specificly labelled.
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Bartels, J.: Gezeitenkräfte, Handbuch der Physik, Band XLVIII, Geophysik II, 1957.

Cartwright, D., Zetler, B., and Hamon, B.: Pelagic tidal constants, IAPSO Publ. Scient., 30,
1979.

Chao, B. and Ray, R.: Oceanic tidal angular momentum and Earth’s rotation variations, Prog.
Oceanog., 40, 399–421, 1997.
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