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and A LM U T G A SSM A N N 1, 1Max Planck Institute for Meteorology, Hamburg, Germany;
2German Weather Service, Offenbach, Germany; 3Institute for Meteorology, Hamburg, Germany

(Manuscript received 29 January 2010; in final form 1 April 2011)

A B S T R A C T
The monitoring of conservation properties is essential for model development and for the investigation of the hy-
drological cycle. This is especially relevant for models that do not solve equations in flux form and do not apply a
finite volume discretization. The conservation properties of the mesoscale model COSMO are evaluated by using a
finite volume diagnostic approach. That is the subdomain budget of energy, water mass and total mass are diagnosed
in a control volume that can be placed at each site in the model domain and is independent of the grid size. Thus,
this diagnostic method has the major advantage that it can be applied to realistic simulations. The application of the
diagnostic method to the COSMO model reveals a good preservation of the water mass, but large errors in energy and
total mass conservation. The analysis shows to which extent errors in the treatment of thermodynamical processes,
numerical filters and moisture advection schemes contaminate the subdomain budgets. In this paper we will show that
the application of a saturation adjustment scheme under a fixed volume condition is required for models, which use
the non-hydrostatic equations and height-based coordinates. Also, a further extension of the model physics will be
introduced and discussed for a realistic test case.

1. Introduction

It is not sufficient to evaluate the results obtained by a numerical
weather prediction (NWP) model in comparison to in situ and
remote sensing data observations. Furthermore it is essential to
evaluate the physical adequacy of the model (e.g. the falsifi-
cation approach by Schlünzen, 1997). We devote this paper to
the diagnostics of conservation properties for mesoscale mod-
els that use limited domains. State of the art models are very
complex, as they are based on the non-hydrostatic compressible
equations, different discretization schemes, extensive physical
parameterizations and various artificial damping mechanisms.
Due to the complexity it has become a difficult task to ensure
physical constraints like conservation of total energy, Ertel’s po-
tential vorticity and mass. Nevertheless conservation properties
are very important and need to be diagnosed. For example, the
water mass budget plays an essential role for the evaluation of
the hydrological cycle.

In this paper we introduce a diagnostic method that deter-
mines the time evolution of mass and energy relative to sub-
domains using a finite volume approach. That is, we diagnose
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the quantities that should be conserved with respect to well-
defined control volumes (CVs), which are located at some place
in the model domain. Here we extend the approach of Doms
(2004), who was focusing solely on the moisture mass conser-
vation of the ‘Lokalmodell’ (today known as COSMO) (Doms
and Schaettler, 2002). In contrast to earlier studies by Bryan
and Fritsch (2002) and Satoh (2003) we will not investigate the
temporal evolution of mass and energy as integrated quantities
over the whole model domain, but we use a ‘local’ perspective
on the conservation properties as a benchmark for the physi-
cal parameterizations and dynamical cores of non-hydrostatic
models. The ‘local’ perspective provides the opportunity to as-
sess limited area models. These models come up with lateral
relaxation and upper damping zones, in which the conservation
properties are strongly violated. The motivation for our work
arises due to the fact that models like, for example, COSMO,
ARPS (Xue et al., 2000) and MM5 (Dudhia, 1993) do not apply
a flux form in the model equations, as it is done in the WRF
(Skamarock et al., 2005) or METRAS (Schlünzen et al., 1997)
model. Therefore, conservation is not supposed to be guaranteed
by the formulation.

In this paper we use one-dimensional advective tests to anal-
yse the errors of the diagnostic method that develop due to com-
putations on a discrete grid and flux reconstructions. We general-
ize the diagnostic method for the non-hydrostatic compressible
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708 R. PETRIK ET AL.

model COSMO, that is, we determine the budget equations of
the quantities water mass, total mass and energy. The diagnos-
tic method shows that large conservation errors are produced
during the simulation of thermodynamic processes. Therefore,
we investigate the magnitude and the source of the errors. We
figure out that non-hydrostatic models using a height-based co-
ordinate must use a saturation adjustment scheme under a fixed
volume approach to achieve conservation. Moreover, the diag-
nostic method shows that the standard diabatic equations of the
COSMO model are insufficient for the simulation of explicit
moist convection.

The paper is structured as follows. In Section 2, a diagnostic
method is introduced and it is tested in a simple advection test
bed. This method will be generalized to the COSMO model in
Section 3. In Section 4 the performance of the diagnostic method,
applied to the standard COSMO model, is shown using idealized
cases. In Section 5 we present a modified formulation of the
thermodynamics that are used in the COSMO model. In Section
6 we discuss idealized and realistic simulations using the model
physics introduced in Section 5. Summary and conclusions are
given in Section 7.

2. Description of the diagnostic method

The diagnostic tool is based on the general equation for a scalar
quantity ψ in integral form

∂

∂t

∫
V

ψ dV +
∫

∂V

fψ · dS =
∫

V

qψdV . (1)

This means that a quantity ψ in a volume V can be changed,
if a volume source qψ or a flux fψ across the boundaries of the
volume V occur. To investigate the impact of the model simulated
dynamical or physical processes on the subdomain budgets, the
fulfilment of eq. (1) needs to be checked. This can be done by
discretizing each term in this equation.

2.1. Numerical implementation

The expression (1) can be numerically approximated by (Bal-
dauf, 2008):∫

CV

ψ dV �
∑

GP ∈ CV

ψi,j,k Di,j,k �Vi,j,k , (2)

where Di,j,k is the Jacobian of the coordinate transformation,
and∫

∂V

fψ · dS �
∑

GP ∈ ∂V

fψ ;i∗,j∗,k∗ · �Si∗,j∗,k∗ , (3)

where i∗, j∗ and k∗ are the positions at the corresponding cell
faces. Equation (2) is also used to approximate the term on the
right-hand side of eq. (1). All approximations are second-order
approximations (Ferziger and Peric, 2002). We calculate the
expressions (2) and (3) in a well-defined CV containing the grid
points (GP) i ∈ [imin, imax], j ∈ [jmin, jmax] and k ∈ [kmin, kmax].

The fluxes fψ have to be reconstructed. Various interpolation
methods were tested to calculate the fluxes (refer to Table 1).
The formulas are given for a one-dimensional flux Fi+1/2 =
(u ψ)i+1/2 with a well-known normal velocity. Beside the upwind
(UDS) and the central difference method (CDS) a third-order
(QUICK) (e.g. Ferziger and Peric, 2002) and the Lax-Wendroff
scheme (LW) (Durran, 1999) are listed.

Due to real atmospheric conditions with sharp gradients the
various approximations possess a different quality. Therefore,
the behaviour of a budget diagnosis with various flux recon-
structions has to be investigated in idealized flow tests. We focus
exclusively on determining advective fluxes.

2.2. Test of the diagnostic tool with exact shifting

As a first test for the diagnostic tool, Baldauf (2008) proposed
to shift initial data functions with a constant velocity u0 through
a one-dimensional grid domain (ideal shifting algorithm). The
shifting process of a triangle ψtri(x) and a pulse function
ψpul(x)

ψtri(x) = MAX(−10|x + 0.25| + 1, 0) x ∈ [0, 1] ,

ψpul(x) = 1

1 + e60∗(|x−0.25|−0.12)
x ∈ [0, 1] (4)

is simulated inside a domain with 100 GP in the range x ∈ [0, 1]
with different Courant numbers μ. Figure 1 displays exemplarily
the shifting of the triangle. The functions in eq. (4) are shifted
through a CV, which is located in the middle of the domain. It
is bounded by the GP imin = 50 and imax = 65. The number of
shifting steps NT is calculated in such a way that the function
can fully pass through the CV. The CV budget is discretized by

Table 1. Flux reconstruction method and their order of spatial approximation

Method Accuracy Calculation formula

UDS 1 F UDS
i+1/2 = ui+1/2

2 (ψi + ψi+1) − |ui+1/2|
2 (ψi+1 − ψi )

CDS 2 F UDS
i+1/2 = ui+1/2

2 (ψi + ψi+1)

QUICK 3 F
QUICK
i+1/2 = ui+1/2

16 [9(ψi+1 + ψi ) − ψi−1 − ψi+2] − |ui+1/2|
16 [3(ψi+1 − ψi ) + ψi−1 − ψi+2]

LW 2 F LW
i+1/2 = ui+1/2

2 (ψi + ψi+1) − u2
i+1/2�t

2�x
(ψi+1 − ψi )
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Fig. 1. A triangle shifted one grid point within one time step (Courant
number μ = 1) through a discrete grid. The dashed lines indicate the
western and eastern boundary of the control volume.

using eqs. (2) and (3) and the flux interpolation methods listed in
Table 1. The temporal discretization is done by an Euler forward
method.

Due to inaccuracies on discrete grids the subdomain budget
of the quantity �n = ∑

GP ∈ CV ψn
i �xi is not perfectly balanced.

To quantify the budget errors the following residual values are
defined:

R = �n+1 − �n

�t
+ (

F n
imax+1/2 − F n

imin−1/2

)
,

IntR =
NT∑
n=1

|R|�t . (5)

Baldauf (2008) showed that even for a perfect shifting process
budget errors occur due to flux calculation errors (second term)
and volume artefacts (first term on the right-hand side of eq. 5).
Thus, the integrated residua IntR listed in Table 2 are mostly
nonzero. Although the shifting is perfect, the diagnostic method
does not interpret it as perfect. The measurement of the diagnos-
tic tool using the discretizations in eq. (5) are in contradiction
to what is going on during the exact shifting process. Only if
the Courant number equals one and the flux reconstruction is

Fig. 2. RE for an exact shifting of the pulse function using various
control volume sizes. Average over various budget diagnostics derived
from the flux reconstruction methods from Table 1. Values are highly
affected from the poor upwind scheme.

done by the UDS or the LW method, the budget error is zero.
The shortcomings of the low-order reconstruction schemes are
more pronounced, if the shifting process becomes slower or
the non-linear pulse function is used instead of the linear trian-
gle function. In this case, the higher order schemes offer lower
residua.

To simplify the understanding and comparison of various bud-
get errors, a relative error (RE) normalized with the temporal
average of �n is introduced (eq. 6):

RE = IntR

�n
t , �n

t = 1

NT

NT∑
n=1

�n . (6)

The sensitivity of this error on CV size is shown in Fig. 2 using
the pulse function. If the CV size increases the error RE de-
creases. Enlarging the CV size increases the volume much more
than the total surface area. The determination of the surface flux
integral is inaccurate due to flux reconstruction. The volume in-
tegral is not affected by flux reconstruction. This means that the
impact of inaccurate surface fluxes will reduce, if the CV gets
larger. To obtain reasonable results, the choice of the CV size
must be considered profoundly.

Additionally, the shift test was also extended to 2-D using a
slightly stretched grid to mimic the diverging coordinate lines, as
they occur in the geographical coordinate system. The integrated

Table 2. IntR for an exact shifting with control volume size of 15 grid points

Triangle Pulse

Method μ = 0.125 μ = 0.5 μ = 1 μ = 0.125 μ = 0.5 μ = 1

UDS 0.018 0.010 0 0.017 0.010 0
CDS 0.011 0.011 0.020 0.003 0.010 0.020
QUICK 0.011 0.011 0.020 0.002 0.010 0.020
LW 0.011 0.010 0 0.002 0.001 0

Note: Listed for triangle and pulse function with different Courant numbers μ and flux
reconstruction methods.
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residua are qualitatively the same as for the 1-D case, which
indicates the ability of the diagnostic method to work in more
than one dimension.

2.3. Test of the diagnostic tool with different numerical
advection algorithms

Due to the fact, that the NWP models apply a numerical inte-
gration scheme, the behaviour of the diagnostic tool is applied
to different numerical schemes, which compute the advection
of the above-mentioned functions (eq. 4 as initial conditions),
that is, the analogue to the pure shifting. The time integration is
done by a combination of the third-order Runge–Kutta method
(Wicker and Skamarock, 2002) used for the temporal discretiza-
tion and a first-order upstream, a second-order centred and a
fifth-order upstream method used for the spatial discretization:
RK3UP1, RK3CN2 and RK3UP5. The budget errors (5) are
evaluated with the forecasted values ψ̃n

i .
It is obvious that the measured numerical transport is not

entirely exact (Table 3). Consequently, the shifting with any
Courant number and test function reveals errors. The results for
the pulse function using the RK3UP5 scheme are nearly the
same as in the ideal shifting case. In case of the advection of the
triangle, the budget errors are lower than for the ideal shifting
(here not shown), because the volume artefacts mentioned in
Section 2.2 vanish in the numerical integration and also the
measurement by the diagnostic scheme is more in agreement
with the numerical advection. Therefore, the subdomain budgets
are better when monitoring the RK3UP5 scheme than the pure
analytical shifting.

We also test the numerical advection with spatial discretiza-
tions lower than fifth order, for example, RK3CN2 and RK3UP1
(Table 3, rows 2 and 3). We analyse how the accuracy of the nu-
merical scheme influences the measurement by the diagnostic
method. Indeed, the diagnostic tool is interpreting the simulation
of advection using the higher order schemes as much better than
using lower order schemes. The lower the spatial discretization
order is, the bigger the IntR is. Especially the very dissipative
scheme (RK3UP1) is measured with poor conservation proper-

Table 3. IntR for advection of a pulse function using different
numerical schemes

Numerical scheme UDS QUICK LW

RK3UP5, μ = 0.5 0.001 0.001 0.001
RK3CN2, μ = 0.5 0.011 0.010 0.000
RK3UP1, μ = 0.5 0.008 0.024 0.016

RK3UP5WN, μ = 0.5 0.026 0.019 0.021
RK2UP5, μ = 0.9 0.023 0.072 0.024

Note: Listed for different Courant numbers and flux reconstruction
methods. WN indicates white noise.

ties concerning the subdomain CV. If the advection is simulated
by RK3UP1 and the diagnostic method is using a UDS flux re-
construction for its measurement, then the behaviour of IntR is
different due to the coincidence between measuring method and
numerical advection scheme.

To simulate numerical artefacts and instabilities, the RK3UP5
solution is disturbed by white noise (RK3UP5WN, amplitude of
0.01) and a Runge–Kutta scheme of second order (RK2UP5)
(e.g. Durran, 1999, p. 53–54) is applied above its theoretical
stability threshold by using a Courant number of 0.9. In both
cases the IntR indicates detrimental solutions. The white noise
and also the unstable scheme RK2UP5 lead to significant higher
IntR values compared to the undisturbed solution RK3UP5. Ex-
amining the results for the white noise test, the reason for good
scores with the ‘RK3UP5’ solution is not only the perfect sym-
metry of the pulse function, but also the skills of the numerical
advection scheme.

In contrast to the IntR values of the subdomain analysis, the
temporal evolution of globally integrated ψ values does not
show any problem with the RK3UP5WN and the RK2UP5 inte-
gration.

2.4. Implications of tool tests for its application
to complex models

There is no unique discrete analogon to budget relation (1).
Results from pure shifting and advection tests reveal problems
in the budget diagnosis due to the discrete grid and the flux
reconstruction. To minimize errors originating from the diag-
nostic scheme itself, the CV size has to exceed a threshold that
needs to be at least 10 GP, as depicted in Fig. 2. In addition, we
conclude that the higher order reconstruction schemes QUICK
and LW (Table 1) are applicable for the following budget in-
vestigations with the COSMO model (we use the LW method
hereafter). For boundaries of CV close to the surface or the up-
permost model level higher order numerical schemes need to
be replaced by lower order methods when reconstructing the
fluxes.

Our approach of a budget diagnosis with respect to a specific
CV can be applied to those models, which apply a height-based
coordinate, even if those models contain complex numerical
structures. For instance, if a model is a vertical mass-coordinate
model, the CV is not fixed in space in the vertical, but in mass.
The interpretation of the budget may then be a bit different. In
order to adapt the diagnostic method to a new model one has
to consider two things. First, the diagnostic method has to be
adapted to the geometry (Section 3.2.1). Second, the diagnostic
method has to be adapted to the equations or to the conser-
vative variables derived from these equations (Sections 3.2.2–
3.2.4).

The diagnostic method is designed for model evaluation. It is
voluntarily chosen to be in contrast to the elaborated numerical
discretization of the model equations that might only partly be
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budget equations. This allows to detect errors resulting from the
model numerics itself.

3. Adaptation of the diagnostic method
to the COSMO model

3.1. Relevant model numerics for budget diagnostics

A short introduction into the formulation and the numerical
discretization of the COSMO is given in the Appendix. Here we
only address those model features, which will be relevant for the
application of the diagnostic method introduced in Section 2.

Due to the fact that the water mass plays a very important role,
we will perform sensitivity studies with respect to the moisture
transport schemes that are implemented in COSMO (Förstner
et al., 2006).

(i) An Eulerian flux-form scheme (BOTT) with a positive
definite version of Bott’s method (Bott, 1989) and a Strang-
splitting technique (chap. 3 Durran, 1999) used to solve the
multidimensional advection

(ii) A tri-cubic Semi-Lagrange (SL) advection scheme with
full 3-D tri-cubic interpolation within one time step and a mul-
tiplicative filling technique (e.g. Staniforth and Cote, 1991)

Moreover, we will study the influence of the numerical fil-
ter schemes on the subdomain budgets. The upper model do-
main is affected by a Rayleigh-damping layer, which extends
from the top of the domain (22 km) down to 13 km height.
A lateral relaxation zone is applied with a width of about
50 km. Furthermore, a fourth-order Laplacian horizontal dif-
fusion is applied to the prognostic variables (standard filter co-
efficient νl ≈ 1.25 × 1010 m4 s−1, operationally only applied at
the lateral boundaries). The damping of the horizontally prop-
agating sound waves is done using the horizontal divergence
damping proposed by Dudhia (1993) (standard filter coefficient
νd ≈ 6 × 104 m2 s−1).

Taking into account this model configuration, a budget anal-
ysis is only valid for a CV far away from the Rayleigh-damping
and lateral boundary zones.

3.2. Examination of the budget equations
for the COSMO model

The model equations of the COSMO are not in flux form. The
continuity equation is transformed to a pressure equation. There-
fore, the conservation properties are not explicitly ensured and
need to be investigated. We apply the diagnostic method of
Section 2 to the COSMO model. We focus on the subdomain
budgets for total mass, water mass and total energy, because they
are conservative variables in the equation system chosen for the
COSMO model. That means the volumic sources and sinks van-
ish, that is, the term on the right-hand side of eq. (1). Only the
temporal changes and the boundary fluxes related to the total

mass, water mass and total energy have to be determined, that
is, the terms on the left-hand side of eq. (1). Therefore, the op-
erators in eqs. (2) and (3) have to be transformed to terms of the
coordinate system used in the COSMO. We have to consider the
thermodynamic approximations and the macroscopic reference
velocity vector v used in the COSMO model.

3.2.1. Operators. To diagnose the conservation properties
following from eq. (1), one needs to define the volume element
(eq. 1) of a grid box in a terrain-following system (Baldauf,
2008):

Di,j,k �Vi,j,k = r2 cos ϕj

√
Gi,j,k�λ�ϕ�ζ , (7)

The surface integral on the left-hand side of eq. (3) transforms
to

∫
∂V

ψ v · dS

=
∫

∂Sϕ,ζ

ψu r
√

Gdϕ dζ +
∫

∂Sλ,ζ

ψv r cos ϕ
√

G dλ dζ

+
∫

∂Sλ,ϕ

r2 cos ϕ

(
Jλ

r cos ϕ
ψu + Jϕ

r
ψv − ψw

)
dλ dϕ .

(8)

dS is decomposed into dSλ,ϕ, dSϕ,ζ and dSλ,ζ , which are the
directed surface elements in the terrain-following coordinate
system used in COSMO. Each integral of eq. (8) is discretized
by the right-hand side of eq. (3). The values of ψ at the cell
face are obtained by reconstruction, which was discussed in
Section 2.

3.2.2. Water mass. Wacker and Herbert (2003) and Wacker
et al. (2006) studied the budget equations for partial densities
of a moist atmosphere, particularly incorporating sedimentation
fluxes. Following their approach, the budget of any water com-
ponent x can be formulated as

∂ρx

∂t
= −∇ · ρxvref − ∇ · Jref,x + σx − ∇ · Fx , (9)

where σx is the internal production rate, for example, cloud water
from a condensation process, and Fx is the turbulent mass flux.
Jref,x is the diffusion mass flux of the component x relative to the
macroscopic reference velocity vref .

To evaluate the water mass budget in the model runs, the bud-
gets of all partial masses ρx given in eq. (9) have to be summed
up except dry air (abbreviatory d). Applying the most sophisti-
cated cloud microphysics we consider six classes of water: water
vapour (x=v), cloud water (x=c), cloud ice (x=i), rain (x=r),
snow (x=s) and graupel (x=g). Using the Gaussian theorem the
budget for the water mass MW

MW =
∫

CV

∑
x 	=d

ρqx dV ≡
∫

CV
ρqW dV (10)
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in a pre-defined volume CV is given by

∂MW

∂t
= −

∫
∂CV

ρqWv · dSCV −
∫

∂S
λ,ϕ
CV

(Fv + Fc + Fi) dS
λ,ϕ
CV

+
∫

∂S
λ,ϕ
CV

a(Pr + Ps + Pg) dS
λ,ϕ
CV , (11)

where S
λ,ϕ
CV denotes the surfaces at the top and the bottom of

the CV. The water budget given by eq. (11) is checked by the
diagnostic method.

The sub-domain budget (11) is derived as follows:

(i) With respect to the COSMO model, the reference velocity
is chosen as a barycentric velocity of total air mixture, that is,

vref ≡ v =
∑ ρx

ρ
vx , ρ =

∑
ρx , ρx = ρ qx . (12)

(ii) The summation over all source rates σx vanishes to retain
the water mass conservation. The dry air source rate is zero.

(iii) We consider the strictly vertical directed mass fluxes of
diffusion and turbulence: Jref,x = Jxk and Fx = Fxk.

(iv) With respect to the precipitating particles, the vertical
components of the diffusion fluxes are approximated by the sedi-
mentation fluxes with mean terminal velocities: Jx = −Px, x =
r, s, g. The sedimentation fluxes cause a compensating lift of
all non-precipitating classes (the corresponding fluxes Jd, Jv, Jc

and Ji are defined by Catry et al., 2007). The summation over the
diffusion fluxes of the water species gives the third term on the
right-hand side of eq. (11). Parameter a is qd/(1 − qr − qs − qg).

(v) The turbulent transport of the precipitating particles is
disregarded: Fr = Fs = Fg = 0.

Taking the impact of water vapour evaporation and precipitation
into account, the barycentric velocity is not zero at the surface.
Although the Earth surface is impermeable for dry air, the dif-
fusive flux of water vapour Jv and the sedimentation flux of the
precipitating particles across the Earth surface account for a non-
vanishing barycentric velocity at ground (Wacker and Herbert,
2003): ws = (Jv − Pr − Ps − Pg)/ρd . Therefore, the turbulent
fluxes and precipitation rates of eq. (11) have to be multiplied
by a factor of ρ/ρd , if the lower surface of the CV is equal to
the Earth surface.

If one uses parameterized convection with mass flux schemes,
an investigation of the budget given by eq. (11) is somewhat
restricted in terms of the location of the CV in the three-
dimensional space. In this case only the bulk precipitation is
available and an analysis must be carried out for a CV with a
vertical extent from the model surface to the cloud top.

3.2.3. Total mass. The total mass budget can be derived from
expression (9) summing up over all components of the air mix-
ture. We use the reference velocity from eq. (12) and apply the
necessary mass control conditions

∑
Jref,x = 0 and

∑
Fx = 0

(Wacker et al., 2006). Then, the budget for the total mass M is

given by

∂

∂t

∫
CV

ρ dV ≡ ∂M

∂t
= −

∫
∂CV

ρv · dSCV . (13)

The total mass budget given by eq. (13) is checked by the diag-
nostic method.

As already mentioned in Section 3.2.2, the diffusive flux of
water vapour and the sedimentation fluxes of the precipitating
particles lead to a non-vanishing barycentric vertical velocity
at the ground. If we consider the total mass budget in eq. (13)
with respect to a CV, where the lower surface is equal to the
Earth surface, then the contribution to the mass flux at the Earth
surface (index s) reads explicitly:

+ ρs

ρd,s

∫
∂Ss

CV

(Jv − Pr − Ps − Pg)
∣∣
s

dSs
CV . (14)

Thus, the atmosphere loses mass, if precipitation is higher than
evaporation. Although the COSMO and any other model allow
for a diffusive water flux from the soil into the atmosphere, they
cannot describe the influence of the vertical boundary velocity
ws 	= 0 on the prediction of the prognostic variables (e.g. the
influence of ws on the surface pressure Wacker et al., 2006).
This leads to a lack in the mass conservation.

3.2.4. Energy. The combination of the hydro-
thermodynamical equations for temperature, pressure,
momentum and the budget equations for the mass fractions qx

(Steppeler et al., 2003, eqs. 1–5) gives the budget for energy
diagnostics (Gassmann and Herzog, 2008):

∂

∂t

∫
CV

ρEtdV

= −
∫

∂CV

(
ρEtv + ρv′′v′′ · v − pv + R + ρe′′v′′) · dSCV .

(15)

The energy budget given by eq. (15) is checked by the diagnostic
method.

The total mass-normalized energy Et = Km + � + e is the
sum of mean kinetic energy Km = (u2 + v2 + w2)/2, potential
energy � = gz and internal energy e. The mean turbulent kinetic
energy (TKE) is not considered for the energy budget given in eq.
(15). The TKE is used for the turbulence closure concept in the
COSMO to yield turbulent transfer coefficients for momentum
and heat. However only the transport of turbulent heat fluxes and
turbulent momentum fluxes influence the temporal evolution of
total energy.

We evaluate only the vertically directed radiation flux density
R = Rk. It describes the energy gain in the daytime and the
cooling of the atmosphere or the cloud backscattering by long-
wave radiation. The term ∇ · pv considers the rate at which
work is done by the pressure force (the contraction or ex-
pansion of a volume), which changes the internal energy. As
already known from mass treatment, surface integrals at the
ground must be treated with the barycentric velocity ws . Conse-
quently, the surface integral at the Earth surface (index s) given in

Tellus 63A (2011), 4



VALIDATION OF A MESOSCALE WEATHER PREDICTION MODEL 713

eq. (15) consists of

ρsEt,sws and ps ws . (16)

The first term describes, for instance, the input of latent energy
to the atmosphere due to strong evaporation fluxes (positive ws).
The second term describes the work done at the Earth surface
and used to expand the CV under the condition that ws 	= 0. We
name both effects an energy surface flux hereafter.

The internal energy e results from the common relation be-
tween pressure p and enthalpy h.

ρe = ρh − p , h =
∑

hiqi . (17)

The enthalpy changes during phase transitions, which is reflected
by the heat of vapourization lv , fusion lf and sublimation ls . The
expression for e and h are specified following thermodynamical
textbooks (e.g. Emanuel, 1994). However, under the condition
that different phases of water coexist in the atmosphere, no
unique formula for the enthalpy exists. We are following Satoh
(2003) to define the origin of the energy e.

In the COSMO model a simplified thermodynamic is ap-
plied. That is, lv, lf and ls are no longer temperature dependent,
rather they are fixed at their values at 0◦ C. This leads to an
underestimation of the sensible heat storage (Satoh, 2003). As
a consequence of Kirchhoff’s law of thermodynamics, the heat
capacities of vapour, liquid and frozen particles do not contribute
to the total cp and cv(cp � cpd and cv � cvd ). This leads to the
simplified, but still consistent, expression for the internal energy.

e = cvdT + lvqv − lf qf , es = cvdT , el = lvqv − lf qf .

(18)

es is the sensible and el the latent heat part of internal energy. The
negative sign in the latent heat part describes that latent energy
is stored in the water vapour and released by condensation and
freezing.

We have to point out here, that the energy budget diagnostic
must be consistent with the thermodynamical assumption in a
model. With respect to the COSMO model, the energy budget
given by eq. (15) has to be analysed with the internal energy
expression (18).

4. Investigation of subdomain budgets
for 3-D idealized cases

4.1. Definition of residual budget

For our following argumentations it is assumed, that the model
(index M) is not perfect and any budget is contaminated by a
residuum.

∂ψ

∂t

∣∣∣∣
M

= Fψ

∣∣
M

+ Rψ , (19)

where Fψ denotes fluxes and sources defined by the right-hand
side of the eq. (11), (13) and (15). If Rψ > 0, the model artifi-

cially gains mass or energy, whereas R < 0 means, the model
erroneously loses energy or mass.

As discussed in Section 2, the temporal discretization in the
budget equations is discretized by an Euler Forward method. All
required terms are evaluated in the model at the end of a time
step.

4.2. Experimental setup of the 3-D academic cases

As a first simple test case a single cell convection was cho-
sen for the analysis of the COSMO model. The pre-convective
hydrostatic balanced environment is defined by Weisman and
Klemp (1982). In order to overcome the convective inhibition
the convection is forced using a warm air bubble. The size and
amplitude of the bubble are defined by Weisman and Klemp
(1982).

The simulation is performed on a domain of 100 × 100 GP
with a horizontal grid size of nearly 1.9 km. We use 48 model
levels, which are vertically stretched to better resolve the bound-
ary layer. For simplification the Coriolis parameter is set to zero.
A short overview about the model configuration is given in
Table 4.

4.3. Case WKDRY: dry convection

We simulate a dry convection. Thus, any phase changes of wa-
ter vapour are prohibited. In this case qv might be interpreted
as a tracer. However it is not a real passive scalar, because it
contributes to the total density of the multiphase atmospheric
fluid and also influences the buoyancy of the fluid. In contrast
to Weisman and Klemp (1982), the initialized warm air bubble
has an amplitude of 10 K.

The thermal bubble rises explosively. Within 6 min its centre
reaches 3000 m height. The maximum vertical velocity is about
10 m s−1. The resulting pressure perturbations, in combination
with the motions caused by continuity reasons, lead to a rotation
in the y–z-plane (Fig. 3a).

Table 4. Configurations of the COSMO model for the performed
experiments

Experiment WKDRY WKRAIN REAL

Time step [s] 20 20 30
Resolution [km] 1.9 1.9 2.8
νl [m4 s−1] 1.25 · 1010 1.25 · 1010 0
νd [m2 s−1] 6 · 104 6 · 104 6 · 104

Moist. advec. BOTT BOTT BOTT + SL
Physics no cloud micro cloud micro +

turbulence +
radiation

Note: νl denotes the Laplacian filter coefficient and νd the divergence
damping coefficient.
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Fig. 3. Case WKDRY. (a) Vertical
cross-section at x = 50 with the centre of the
convective cell at the left boundary. Specific
water vapour (kg kg−1)(contour) and wind
vectors at t = 6 min. (b) As in (a), but at
t = 24 min. The thick line indicates the
northern boundary of CV.

Although the rising bubble was initialized with a 10 K temper-
ature perturbation in its centre, it loses its buoyancy very fast.
The resulting descending air cuts the updraft into two pieces,
that forms sharp wind fronts in the lower atmosphere. Figure
3b illustrates such a front 15 km to the north and 24 min after
initialization. During the first hour the bubble oscillates in a stat-
ically stable atmosphere because of the buoyancy force. Later
on, this process weakens.

The budget analysis was carried out for a CV with a horizontal
extent of 30 × 30 GP and 31 layers in the vertical from the
Earth’s surface to nearly 10 km height. The thermal bubble is
located in the centre of the CV. The total mass fluxes through
the boundaries of the volume are shown in Fig. 4. All the lateral

fluxes are the same due to the missing Coriolis force. The fluxes
are significantly influenced by gravity wave generation and show
a phase shift between the horizontal and vertical fluxes. An
upward mass flux at the top of the CV is associated with an
vertical integrated horizontal convergence and vice versa.

Since the bubble sucks the dense air underneath, that is, a
low-level convergence due to its buoyancy at the beginning of
the simulation, the total mass is increasing rapidly in the CV.
Figure 5a shows the subdomain budget of the total mass. It
can be seen that the positive mass change is well explained by
the mass fluxes computed at the lateral boundaries. That is the
horizontal convergence of mass near the surface is stronger than
the loss of mass aloft (Fig. 4). It is important to note, that the
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Fig. 4. Case WKDRY (�t = 20 s). Total mass fluxes through the
boundaries of the CV [kg s−1]. The term ‘Flux lateral’ is related to
only one single lateral boundary flux (north, south, west and east).

term ‘DivFlux_M’ in Fig. 5a summarizes the horizontal and
vertical part of the mass fluxes, that is, the mass divergence as a
three-dimensional quantity.

The spin-up phase is disturbed by vigorous oscillations in the
levels near the tropopause (12 km). The RE (eq. 6) in the sim-
ulation is about 7 × 10−5 and is considered small. The residual
curve is smaller than any physical tendency. The remaining error
might originate from the inaccuracy of our diagnostic method
(see Section 2).

The water mass is well conserved in the chosen CV (Fig. 5b).
The ascending air increases the mass of moist air and generates a
moisture flux convergence. At the time, when the gravity waves
and outflow structures reach the CV boundaries near the surface,
the convergence turns into a divergence. The BOTT advection
scheme produces oscillations at the beginning. They originate
from splitting errors associated with the multidimensionality of
the implemented BOTT-advection scheme (for efficiency rea-
sons the splitting steps in the different spatial directions in terms
of the Strang-splitting are reduced). If one takes into account the

virtual temperature to calculate the CAPE (convective available
potential energy Doswell and Rasmussen, 1994), the numerical
perturbation in qv means a 2 J kg−1 switch in every time step.
This is not significant in comparison to the absolute value, but
it could be relevant in weather situations with lower CAPE and
strong advection processes—for example, fronts in mountainous
regions.

4.4. Case WKRAIN: convection with precipitation

We push further the idealized tests and perform simulations
allowing for precipitation physics. A Warm Rain Kessler scheme
is used (Doms et al., 2002, Section 5.4) in order to consider the
autoconversion, accretion and evaporation of rain water. The
nucleation of cloud water from the vapour phase is done by
a standard saturation adjustment scheme. For more details we
refer the reader to Doms et al., 2002, (Section 5). The initial
atmospheric conditions are slightly modified in comparison to
CASE WKDRY. The surface temperature is Ts = 297K. The
CAPE is about 1000 J kg−1. The warm air bubble has an initial
temperature amplitude of 2 K.

The temporal evolution of the simulation at the centre of the
convection is shown in Fig. 6. The bubble does not rise as fast
as in the WKDRY case during the first minutes, because the
temperature excess in the bubble centre is divided by 5 in com-
parison to the previous run. However, once the condensation
starts, the bubble becomes much warmer thanks to the latent
heat release. The inflow of moist air is nearly two times stronger
than in the WKDRY run. The temperature excess in the centre
of the bubble reaches 5 K and the maximum vertical velocity is
17 m s−1 after 45 min. Above the equilibrium level the moist
air dries out and is causing an upper tropospheric outflow diver-
gence. When the formation of rain water starts, the liquid water
drag increases. This decelerates the flow into the updraft. Later
on, the sedimenting rain water reaches the ground. The precip-
itation intensifies reaching its maximum rate after 60 min. The

Fig. 5. Case WKDRY (�t = 20 s). Sub-domain budgets (kg s−1) of the CV. (a) Total mass budget (eq. 13) containing mass change (named ‘dMdt’),
divergence (‘DivFlux_M’) and residua (‘R’). (b) As in (a), but for the water mass budget (eqs. 10 and 11).

Tellus 63A (2011), 4



716 R. PETRIK ET AL.

Fig. 6. Case WKRAIN. Time-height cross
section of vertical velocity (m s−1) (contour)
and rain water content (kg kg−1) (shaded) at
the centre of the density current.

developing downdraft cuts off the inflow of moist and dense air
and the cell dies.

The total mass budget analysis for the case WKRAIN is pre-
sented in Fig. 7a using the same CV as in the case WKDRY.
Compared to the WKDRY simulation, the total mass budget
clearly shows residua with high negative values. The evolution
of the total mass is not explained by the mass fluxes which are
computed. One possible explanation is that the total mass, which
has been supposed conservative without any volumic sources or
sinks (right-hand side term of eq. 1 vanishes), is not conserved
by the model. That means ‘fictive’ and spurious volumic sources
or sinks exist inside the CV due to the discretization or the model
approximations. Another explanation is that some ‘fictive’ in-
flows or outflows into the CV are present in the model, which
should not exist. There is no divergent flux apparent during the

first half hour (the first 90 time steps), although the decrease in
total mass will imply it.

The error in total mass has its maximum at about 90 time steps.
At that time the highest amount of latent heat (positive diabatic
heating) is released inside the CV. Since the cloud formation pro-
cess is controlled by the standard saturation adjustment scheme,
it is supposed to be the main origin for the residual values. We
discuss this issue in the next Section.

During the second half of the first hour the residuum curve
becomes smaller. Its sign changes after 50 min simulation time
(150 time steps). At that time, the evaporation of rain water
becomes the dominant physical process and causes a negative
diabatic heating.

In order to prove whether the precipitation process also affects
the mass and energy conservation, we investigate the subdomain

Fig. 7. Case WKRAIN (�t = 20 s). Subdomain budgets of the CV. (a) Total mass budget (kg s−1) involving precipitation flux (named
‘Fluxsurf_RR’, eq. (14); (b) as in (a), but for the total energy (J s−1) budget involving the work done by the CV (‘DivFlux_pv’) and the energy
surface flux (‘Fluxsurf_E’, eqs. 15 and 16).
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Fig. 8. Case WKRAIN. Residua of the total mass (kg s−1) shown for
various locations of vertical extents of the control volume.

budgets of the total mass by dividing the standard CV into two
parts. The first part is located in the lower 2000 m, whereas the
second part extends vertically from 2000 m above the ground
up to the upper boundary of the standard CV at 10 000 m. The
residual curves concerning the standard CV, the lower and the
upper part are shown in Fig. 8. In contrary to the mass loss in
the middle and upper troposphere, an erroneous mass gain is
present in the lower atmosphere. Thus, the negative error inside
the cloud is partly compensated by the positive error below the
cloud. The error below the cloud implies a problem related to the
formulation of microphysical equations which will be discussed
in the next Section.

The errors in total mass are correlated with energy errors
(Fig. 7b). The total energy change is dominated by changes in
the internal energy (eq. 18), whereas the potential and kinetic
energy contribute only a small amount to the energy change.
The total energy decreases during the first half hour (first 90 time
steps). As depicted in Fig. 9, the energy fall is coupled to a strong
decrease of latent heat energy due to the condensation of water

Fig. 9. Case WKRAIN (�t = 20 s). The change in internal energy
(J s−1) integrated over the whole CV. The change is decomposed in the
sensible part and latent heat part of internal energy (eq. 18).

Fig. 10. Case WKRAIN (�t = 20 s). Sub-domain budget of the water
mass (kg s−1) concerning the CV. The precipitation flux is denoted by
‘Fluxsurf_RR’ (eq. 11).

vapour. The latent heat release leads to an increase of sensible
heat energy. However, the rise of sensible heat energy is damped
by the decrease in total mass and by the initiating evaporation
process below and at the top of the cloud. The change of total
energy, the energy divergence and the volumic work (third term
at the right-hand side of eq. 15) do not cancel each other during
the first 90 min.

Starting 30 min into the forecast, the energy subdomain budget
is governed by the change in latent heat energy due to moisture
convergence (Fig. 10) and the volumic work of the CV changing
the internal energy. Later on, the drying processes along the
cold outflow control the change in internal energy. At the end
of the simulation the diabatic heat sources are smaller and the
residuum of energy is nearly zero.

In contrast to the total mass and energy, the water mass is
well conserved (Fig. 10). The moisture divergence, the change
in water mass and the precipitation flux are compensating each
other. One reason for this good result is that the BOTT advection
algorithm is written in a conservative flux form and thus it is
preferred to have good conservation skills.

4.5. Sensitivity of subdomain budgets to moisture
advection schemes

In order to study the performance of the two moisture advec-
tion schemes implemented in the COSMO model, we analyse
the subdomain budgets concerning the simulation of the case
WKRAIN. We test the BOTT scheme and the Semi-Lagrange ad-
vection scheme (SL hereafter). The results are shown in Fig. 11
for the SL scheme (thick lines) and the BOTT scheme (thin
lines). Applying the SL scheme for moisture transport, the mois-
ture convergence induced by the density current is not as strong
as for the BOTT scheme. The maximum values of divergence
differ by 10% after 140 time steps. Nevertheless, the SL scheme
produces higher precipitation rates during the first hour. Using
the SL scheme we found a reduced generation of cloud water
in the mid troposphere which leads to less buoyancy in the up-
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Fig. 11. Case WKRAIN (�t = 20 s). Subdomain budget of the water
mass (kg s−1) concerning the CV. Mass change, mass divergence,
precipitation flux and residuum using the Semi-Lagrange scheme
(thick lines) and the BOTT advection scheme (thin lines). The RE is
given in the lower right.

draft channel relative to the BOTT scheme. This implies that
the entrainment, respectively the evaporation, at the lower cloud
edges is reduced and the sedimentation of rain water is enhanced
relative to the BOTT scheme.

It is beneficial for the SL scheme that it does not reveal split-
ting errors, whereas the RE in water mass conservation is about a
factor of two bigger than for the BOTT scheme (3.0 ×10−3 ver-
sus 1.6 ×10−3). Of course, the SL scheme is not (water-) mass
conserving. Only the global mass over the whole model domain
is conserved by a simple multiplicative filling technique (e.g.
Staniforth and Cote, 1991). We can speculate that the aforemen-
tioned filling technique is not conservative in terms of subdomain
water budgets.

4.6. Sensitivity of subdomain budgets to numerical filters

In order to test the influence of the numerical filter mecha-
nisms on the subdomain budgets, simulations are carried out in
the framework of a modified WKRAIN case. That is, the pre-
cipitation physics is switched off and the CAPE is reduced to
350 J kg−1 to prevent from strong wind gradients. We run the
model with and without Laplacian diffusion (‘diff’ and ‘nodiff’)
and horizontal divergence damping (‘damp’ and ‘nodamp’). The
standard experiment is ‘diff,damp’.

Clearly, the boundary fluxes are modified by the horizontal
diffusion and also by the divergence damping. However, the
budgets themselves are not significantly deteriorated. Simula-
tions without diffusion are affected from instabilities appearing
after the strong convection (beginning at time step 220). The
sub-domain budget of total mass (Fig. 12), which considers the
same CV as in the previous studies, is contaminated. The insta-
bility indicates an expected aliasing problem in the model due
to missing damping mechanism.

An important result is that the ‘nodiff,nodamp’ simulation
(Fig. 12, straight black line) is much more stable than the ‘nod-

Fig. 12. Case modified WKRAIN (�t = 20 s). The temporal evolution
of the residua (kg s−1) of the total mass budget. Results are shown for a
run with activated or switched off horizontal diffusion (nodiff, diff) and
divergence damping (nodamp, damp).

iff,damp’ simulation (Fig. 12, long dashed). After 200 time steps
the residual curve of the ‘nodiff,damp’ simulation is often far
away from zero and oscillates. This will increase the integrated
residua and therefore worsen the conservation.

As far as we investigated the convective test cases, a specific
feature of the SL advection scheme is its sensitivity to the diffu-
sion filter (not shown). There is a significant positive residuum
of the water mass conservation, if the diffusive filter is switched
off. For example, the RE is 1% using no filter and 0.3% using
the diffusion filter in the case WKRAIN.

In summary, the diagnostic method used in the cases WKDRY
and WKRAIN is very useful and shows limitations of the
COSMO model equations for the simulation of resolved con-
vection. To overcome these limitations we modify the model
equations and adapt the physical parameterizations to the mod-
ified equations. We introduce the model adaptations in the next
Section.

5. A modified saturation adjustment
and equation set for the COSMO model:
the COSMO-MSA

In the COSMO model the continuity equation is replaced by a
prognostic pressure equation. This does not imply a mass error.
However, the law of continuity is only fulfilled, if one uses the
complete pressure and temperature equation, e. g. the one of
Gassmann and Herzog (2008):

∂p′

∂t
= − (
v · ∇ζ

)
p′ + gρ0w − cp

cv

p∇ζ · 
v

+
(

cp

cv

− 1

)
Qh + cp

cv

Qm, (20)

∂T

∂t
= − (
v · ∇ζ

)
T − p′

ρcv

p∇ζ · 
v + 1

ρcv

(Qh + Qm) , (21)
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instead of the approximated ones applied in the COSMO model
(eqs. A1 and A2). The diabatic source term Qh contains the
heating rates due to radiation, turbulent sensible heat fluxes and
phase changes controlled by cloud microphysics. Qm means the
mass redistribution as a result of these diabatic processes:

Qm = RdT ρ
dα

dT
,

α =
(

Rv

Rd

− 1

)
qv − qc − qi − qr − qs − qg (22)

Due to the fact, that the equation sets (A1) and (A2) and (20)
and (21) differ from each other, modifications have to be in-
troduced to the COSMO model. A new saturation adjustment
technique has to be applied, which for example allows for the
adjustment of the pressure to temperature changes due to dia-
batic heat sources. This process is not considered in the standard
saturation adjustment scheme (it refers to eqs. A1 and A2). The
new saturation adjustment technique is presented in the follow-
ing Section. According to the simplified thermodynamics of the
COSMO model we will set the specific heat capacities cp and
cv to the constant values cpd and cvd .

5.1. A saturation adjustment scheme under fixed
volume condition

The saturation adjustment technique calculates the nucleation
rate Sce [kg kg−1 s−1] of cloud water from the vapour phase
and vice versa. The released latent heat contributes to the di-
abatic heat source Qh (eqs. 21 and 20). The parameterization
in COSMO is used for non-precipitating cloud types. If mixed-
phase and ice-phase clouds occur, cloud ice has to be included in
the adjustment technique (Lord et al., 1984). Such an extended
formulation is not used in the COSMO model. The nucleation
and depositional growth of cloud ice are separately formulated
in the microphysical schemes (Doms et al., 2002).

The standard saturation adjustment process (SA) is assumed
to be isobaric and changes the temperature in an atmosphere
at rest following the temperature eq. (A2) (Doms et al., 2002,
Section 5) in a consistent way. Applying the standard scheme
leads to a residuum in the continuity equation (applying the
eqs. A3, A1, A2 and 22 to the continuity equation), that is,

ρT RvS
ce

p
− lvρSce

T ρcpd

= −Qm

p
− Qh

T ρcpd

.

Using a saturation adjustment technique based on the mass and
energy consistent eqs. (20) and (21) we derive a new adjustment
for temperature and pressure (the MA approach), which differs

from the SA scheme as follows:

SA MA

∂T

∂tphy

= Qh

ρcpd

∂T

∂tphy

= 1

ρcvd

(Qh + Qm)

∂p

∂tphy

= 0
∂p

∂tphy

= cpd

cvd

(Qh + Qm) − Qh ,

(23)

where Qh = lvρdqc/dt = lvρSce denotes the latent heat release.
Qm = −T Rvρdqc/dt = −T RvρSce indicates the mass redistri-
bution of water species. The redefined values of cloud water,
vapour, temperature and pressure do not change the water con-
tent qT = qv + qc and the density. That is, the same mass re-
mains in the same volume, which is a fixed grid box size in the
model domain. In comparison to the SA scheme, the internal
energy e is also kept constant in the MA scheme:

ρ
de

dt
+ p∇ · v = ρcpd

dT

dt
− dp

dt
− lvρ

dqc

dt
. (24)

Thus, cloud water generation increases the sensible heat at the
expense of the latent heat cvδT = −lvδqv .

If other prognostic variables than p and T are present, the
adjustment principle will differ from (23). Satoh (2003) uses
the sensible part of internal energy and density for the forecast
and solves equations in terms of internal energy for the adjusted
temperature.

The MA approach considers two cases: the air parcels in a
grid box are saturated or not. Assuming that all the cloud water is
evaporated, the mixture content can be written as qT = qn

v + qn
c

before the adjustment process and qT = qn+1
v = qn

v + qn
c after

this process (time index n). Taking the temporally discretized
equation set (23) and using the equation of state, leads to a
temperature equation

T n+1 = T n
(
qdRd + qn

v Rv

) − cpT n + lvq
n
c(

qdRd + qn+1
v Rv

) − cp

. (25)

If the specific saturation humidity with respect to water vapour
qsat

v (T ) = psat
v (T )/(ρRvT ) at temperature T n+1 is higher than

qn+1
v , all water is contained as vapour and the result reads

qn+1
v = qn

v + qn
c , qn+1

c = 0,

pn+1 = ρRdT
n+1

{
1 +

(
Rv

Rd

− 1

)
qn+1

v − qx

}
, (26)

where qx denotes the remaining water species.
If supersaturation occurs, vapour and cloud water are in phase

equilibrium. The value for qn+1
v is limited to qsat

v (T n+1) and the
cloud water content can be obtained from the difference qn

v +
qn

c − qsat
v (T n+1). In this case the derived temperature relation

from set (23) is given by

qsat
v (T n+1)

[
RvT

n+1 − lv
]

+ T n+1
[
Rd (1 − qn

v − qn
c − qx) − cp

] + lv
[
qn

v + qn
c

]
= T n

[
qdRd + qn

v Rv

] − cpT n + lvq
n
c . (27)
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It offers a transcendental equation for temperature, that can be
solved with the Newton iteration method. Afterwards, the spe-
cific saturation humidity at time step n + 1 can be calculated
with T n+1 using the Taylor series expansion.

qsat
v (T n+1) = qn+1

v = qsat
v (T n) + ∂qsat

v

∂T

∣∣∣∣
n

(T n+1 − T n)

∂qsat
v

∂T
= −psat

v (T )

ρRvT 2
+ 1

RvT ρ

∂psat
v (T )

∂T
. (28)

psat
v is the saturation vapour pressure with respect to a water

surface. The relation for psat
v is given by the Magnus formula or

can be derived from the Clausius–Clapeyron equation.

5.2. Adaption of the physical core of the model

In order to apply the equations eq. (20) and (21) in COSMO we
have to adapt the model formulation to the integration of the Qh

and Qm terms. This has to be done not only for the saturation
adjustment, but for all physical parameterizations.

The diabatic tendencies computed by the physical parameter-
izations can be decomposed into cloud microphysics (‘cmp’),
radiation (‘rad’) and turbulence (‘tur’). The diabatic tendency
Qh is

Qh = Q
cmp
h + Qrad

h + Qtur
h . (29)

The integration procedure in the COSMO model is very elab-
orated with respect to the temporal coupling between the adia-
batic core and the physical parameterizations. We refer to Step-
peler et al. (2003), Doms and Schaettler (2002) and Doms et al.
(2002).

We modified the tendencies given by eq. (29) in the phys-
ical parameterizations in such a way that they coincide with
the eqs. (20) and (21). That is, Qh is additionally consid-
ered in the pressure equation and Qm is considered as a ten-

dency in the pressure and temperature equation. Qm is given by
eq. (22).

For simplification we do not consider the term Qtur
h in terms of

its influence on the pressure equation. Furthermore, the contri-
bution of Qm, which considers turbulent processes, is not taken
into account.

The modifications presented in Subsections 5.1 and 5.2 are
implemented in a new COSMO model named COSMO-MP.

6. Subdomain budgets using the modified model
COSMO-MP

6.1. Case WKRAIN: convection with precipitation

In order to study the influence of the new model version
COSMO-MP introduced in the previous Section on the model
simulations the case WKRAIN (see Section 4.4) is again con-
sidered. We perform the same subdomain budget analysis as
it was done in Section 4.4 using the diagnostic approach from
Section 2.

In Fig. 13 the total mass and energy budget is shown. Con-
sidering the first half hour of the model run, the COSMO-MP
simulates a mass and energy divergence that compensates the
occurring decrease of total mass and energy. As already men-
tioned in Section 4.4, the generation of cloud water is the main
process during the first 45 min (135 time steps). It is controlled
by the saturation adjustment. The modified adjustment imple-
mented in COSMO-MP does not adjust only the temperature
during phase transitions. It influences additionally the pressure
field due to diabatic heating. The resulting pressure gradients
between a cloudy and cloud-free grid box lead to an airflow.
Therefore, the phase transitions in a grid box modify the fluxes
at the boundaries of the grid cell. The MP scheme induces a
divergent flow and an expanding volume that is consistent to a
condensation, respectively heating, in the centre of the grid box.

Fig. 13. Case WKRAIN (�t = 20 s). Sub-domain budgets of the total mass and energy concerning the CV. (a) and (b) as in Figs 7a and 7b but
using the COSMO-MP model. For comparison, the residual curves and the RE of the standard model are given, named ‘R stdmod’ and ‘RE stdmod’,
respectively.
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Table 5. RE of energy and mass budget against the CAPE for case
WKRAIN

Mass Energy

CAPE COSMO COSMO-MP COSMO COSMO-MP

288 J kg−1 3.8 · 10−4 8.7 · 10−5 5.2 · 10−4 1.4 · 10−4

611 J kg−1 5.0 · 10−4 8.5 · 10−5 6.8 · 10−4 1.4 · 10−4

1037 J kg−1 6.7 · 10−4 8.9 · 10−5 9.3 · 10−4 1.7 · 10−4

Note: Values listed for standard model and COSMO-MP.

This has a positive impact on the total mass and energy budgets
(for comparison see Figs 13 and 7).

Using the diagnostics of subdomain budgets helps to quan-
tify the positive impact of the new physical formulation in the
COSMO-MP model. The residuum of total mass and energy
is significantly smaller in comparison to the standard COSMO
model. The RE is reduced by nearly one magnitude using the
COSMO-MP (the numbers in the lower right of the Fig. 13).
The improvement factor is increasing, if the amount of CAPE
in the atmosphere becomes bigger. In Table 5 the RE is listed in
dependence of the CAPE.

Not only the modified saturation adjustment, but also the
modified microphysical core of the COSMO-MP model has
a positive impact on the simulation. As already mentioned in
Section 4.4, in the course of the simulation the generation of
rain water and its evaporation in the lower troposphere will be
the dominant physical processes. Using the COSMO-MP in-
stead of the standard model, the cooling in the downdraft due to
evaporation of rain water does influence the pressure inside the
grid cells of the model. Induced by these pressure adjustments
the COSMO-MP simulates airflows in the evaporation regions,
but the standard model does not. Consequently, the standard
model erroneously gains mass in the lower atmosphere (Fig. 8),
whereas the COSMO-MP does not produce any significant er-
ror (for comparison see the residual curves named ‘R’ and ‘R
stdmod’ in Fig. 13a).

The COSMO-MP improves the conservation properties. The
implementations introduced in Section 5 qualifies the COSMO
model to simulate physical processes on scales of resolved con-
vection, which could not be handled by the model equations of
the standard COSMO. Nevertheless, there is one error which
remains in the model. The error is reflected by the imbalance
in the total mass and energy budget between time step 150 and
200 (Fig. 13). The assumption of a vanishing vertical velocity
normal to the ground results in an artificial mass gain by over-
estimating the positive pressure change near the surface (see the
discussion of Wacker et al., 2006).

The difference between the standard model and the COSMO-
MP in terms of the precipitation rate is shown in Fig. 14. The
COSMO-MP simulates less rain until 50 min compared to the

Fig. 14. Case WKRAIN. Precipitation rate (kg m−2 h−1) as a 16 grid
point average using the standard model (solid line) and the
COSMO-MP (dashed line).

standard model. Later on, the rain rates are slightly higher for
the COSMO-MP. The difference might originate from the modi-
fied saturation adjustment of COSMO-MP, which releases more
latent heat and increases the maximum vertical velocities rela-
tive to the standard adjustment (here not shown). That is, the
sedimentating rain water flux in subcloud layers is damped
by an enhanced intake of moist air, which drops the precip-
itation rate relative to the standard model. In the subsequent
process, the increased generation of cloud water leads to a
stronger precipitation rate using the COSMO-MP. Neverthe-
less, the RE of the water mass budget does not change signif-
icantly using the COSMO-MP model instead of the standard
model.

6.2. Case REAL: realistic test case

Our budget analysis is applied to a real test case to investigate
error magnitudes of an operational forecast. The high resolution
COSMO model (COSMO-DE, �x � 2.8 km) is nested into a
low resolution model version (COSMO-EU, �x � 7.6 km). A
forecast of 30 hours is performed for the 12th August 2002
starting at 0 UTC using the COSMO-MP model with BOTT
advection (BOTT-MP) and the standard model with BOTT-
advection (BOTT-SM). Additionally, we run the standard model
with SL advection (SL-SM).

6.2.1. Synoptic overview. On the investigated day heavy rain-
fall occurred in the region near the German Erzgebirge. A few
days later, a flash flood took place in the Erzgebirge, causing
heavy floods along the river Elbe.

The lee cyclone ‘ILSE’ developed during 11 August 2002 to
the south of the Alps and advected moist and warm air, originat-
ing from the Mediterranian Sea. ‘ILSE’ propagated as a so-called
Vb cyclone from Italy via the Czech Republic to Poland. At 12
a.m. on 12 August its centre was located in southwest Poland,
which is illustrated in Fig. 15a. Its occlusion separated the cold
air to the west from the moist and warm air to the east. Due to the
long lasting phase of orographic lifting and the almost stationary
location of ‘ILSE’ over southwestern Poland high amounts of
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Fig. 15. Real test case of 12 August 2002. (Left panel) COSMO-EU analysis at 12 UTC for the sea level pressure (hPa) (contour), the
column-integrated water vapour (kg m−2) (shaded) and the wind vector [m s−1] at 10 m height. (Right panel) high-resolution COSMO-DE forecast.
The 24 hour accumulated precipitation (kg m−2) (shaded) from 06 UTC of 12 August 2002 until 06 UTC of 13 August 2002. Additionally, the
contour line of 500 m height is displayed (gray line). The investigated control volumes (CV) are denoted by a black rectangle, numbers are the same
as used in the text.

precipitation occurred in the region of Erzgebirge (model result,
Fig. 15b). In Zinnwald-Georgenfeld 312 mm rain was measured
within 24 h (07-07 MEZ).

6.2.2. Subdomain budget analysis. The budget analysis is
carried out in different CVs, shown in Fig. 15b. Each CV has a
horizontal extension of 30 GP (80 km × 80 km) and extends from
the surface to 9.8 km height. The functionality of the diagnostic
tool for mountainous regions was already tested with an ideal
shifting inside the COSMO grid (Baldauf, 2008).

The first CV covers the region windward to the Erzgebirge
with Zinnwald-Georgenfeld in its centre. When the low reaches
the Erzgebirge, the moisture flux into CV-1 becomes stronger
than the outgoing moisture flux (8 UTC, Fig. 16a). This leads to a
3-D moisture flux convergence, which strengthens until 15 UTC.
High amount of precipitation occurs. Afterwards the low moves
eastwards in the forecast (slightly faster than it was observed)
and the precipitation rates decrease.

During the first hours of slight pre-frontal rain and convec-
tion, which is diagnosed by oscillations in the curves of water
mass change and water mass convergence, the water mass is
well conserved using all three model configurations (BOTT-MP,
BOTT-SM and SL-SM). During the strong precipitation event,
which is characterized by long phases of high precipitation and
convergence rates (from 10 UTC until midnight, Fig. 16a), the
performance is decreasing using BOTT-SM and SL-SM. The RE
is 23% using the BOTT-SM model (brown line, Fig. 16a) and
16% using the SL-SM model (grey line). From the point of view
of the subdomain diagnostics, both simulations lost a significant
part of the water mass in the CV-1 within 1 day 23% RE in water

mass are equal to 10 kg m−2 precipitable water. This might partly
explain, why the simulated precipitation differs from the obser-
vations in the Zinnwald region. In contrast to the ideal cases, the
SL advection performs better than the BOTT advection, which
might hint at the pros of an SL scheme in mountainous regions.
It produces no splitting errors, as well (straight residual curve,
Fig. 16a).

The water mass budget is much better using the BOTT-MP
configuration (blue line, Fig. 16a). The water mass loss during
the heavy precipitation event is significantly decreased. The RE
reduces to 8%. Due to the improvement in water mass conserva-
tion we further investigated the precipitation forecast. In Fig. 17
a comparison between observations and model results is shown.
The precipitation at Zinnwald–Georgenfeld is increased by 30%
using the BOTT-MP configuration instead of BOTT-SM. This
seems to be much more realistic, but we will not draw a conclu-
sion about the forecast skills of both models. Here we only want
to mention that the COSMO-MP simulation is physically con-
sistent. Moreover, we test the hypothesis of Dudhia (1993) about
the problem of an unrealistic warming of the middle and upper
troposphere due to the influence of diabatic effects on the pres-
sure concerning those models that apply a rigid lid condition.
However, we could not find a signal indicating the aforemen-
tioned problem when comparing the model with radio soundings
(here not shown).

The total mass and energy is not well conserved in the simu-
lations (see Figs 16c and 16d), but there is a big improvement in
the simulations using the BOTT-MP configuration (compare the
brown with the blue lines). Although the RE of total mass is 14%
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Fig. 16. Real test case of 12 August 2002. Subdomain budgets of the CV-1 in the region Zinnwald-Georgenfeld using the BOTT-MP scheme. The
residual curves and the RE of the BOTT-SM and the SL-SM model are denoted by ‘w. BOTT-SM’ and ‘w. SL-SM’. (a) Water mass budget (kg s−1)
involving precipitation flux (Fluxtop_RR) at the top of the CV and evaporation (Fluxsurf_Eva). (b) Diabatic heat sources (K s−1) of the temperature
eq. (21); splitted into parts concerning radiation (short-wave, long-wave), condensation (satadj) and cloud microphysical processes (micro). (c) Total
mass budget (kg s−1) involving evaporation (Fluxsurf_Eva). (d) Total energy budget (J s−1) involving the radiation (DivFlux_rad, eq. 16).

and the one of the energy is 19% using the BOTT-SM config-
uration, the residual values are much smaller using BOTT-MP.
The residua in the BOTT-SM simulation are almost larger than
any physical tendency, which means a big error.

Mass budget errors and diabatic heating are strongly related
(Fig. 16b). In addition to the latent heat release and latent heat
storage from phase changes (black and green line in Fig. 16b),
also radiative heating (red line) is relevant in the real simula-
tion. Therefore, errors in mass and energy conservation of the
BOTT-SM scheme can also be explained by shortcomings in
simulating the expansion and contraction of a CV by short-wave
and long-wave radiation. However we cannot investigate these
shortcomings, because the radiative forcing is smaller than the
cloud microphysical forcing (Fig. 16b) during the whole sim-
ulation. We only note, that the COSMO-MP model is able to
resolve these radiative processes. Nevertheless, minor errors are
still there when using the BOTT-MP. We speculate that the error
can be further reduced, if all physical temperature tendencies
are analysed for the real case and a solution is found to make
the computations in the dynamics and in the physics coherent
(according to eqs. 21 and 20).

The transport of turbulent sensible heat fluxes and turbulent
momentum fluxes (which influence the kinetic energy) do not
significantly contribute to the energy budget (eq. 15). They are
at least one dimension smaller than the radiative fluxes.

Beside the conservation analysis, the budget curves point out
processes like warm air advection or the formation of snow by
an increasing of (sensible internal) energy and the drying of air
masses by a decrease of (latent) energy.

We also investigated another region in South Brandenburg
(CV-2, here not shown), where high precipitation amounts oc-
curred (Fig. 15). Strong convective rain was formed in the after-
noon in the potentially unstable air mass at the occlusion of the
low. As already analysed for the CV-1, significant errors in the
water mass conservation occur during the period of strong con-
vective rain (BOTT-SM: mass loss of 11%, SL-SM: mass gain
of 10%). The water mass performance is much better applying
the BOTT-MP scheme (RE is 5%).

CV-3 is located to the south of Hamburg. In this region, physi-
cal processes are fully different (compare Fig. 18 and 16a). Only
slight precipitation is present at the beginning. Due to the impact
of a high propagating eastwards a divergent flow is developing
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Fig. 17. 24 hour accumulated precipitation from 06 UTC of 12 August
2002 until 06 UTC of 13 August 2002. Scatter plot of the observations
and model results using a BOTT-SM (crosses) and a BOTT-MP
(rectangles) configuration. Data set of 27 stations near the Erzgebirge.

Fig. 18. As in Fig. 16a, but for the region to the south of Hamburg
(CV-3). Note the different scaling of the ordinate.

in the morning drying-out the atmosphere, which is depicted in
Fig. 18. The clear sky short-wave radiation induces an evapo-
ration flux in the afternoon, that supplies water vapour for the
lower atmosphere and leads to small turbulent perturbations re-
flected by small-scale oscillations in Fig. 18. Mostly all water
mass changes and fluxes are balancing each other. The RE is
about 2–3% for all configurations. The differences of the RE are
small, because diabatic processes are mostly irrelevant. Only
the radiative heating contribute to small errors in total mass and
energy, which are less than 1% for all model configurations.

7. Conclusion and outlook

This work demonstrates the construction and application of a
‘evaluation approach’ by which the subdomain budgets of en-

ergy, water mass and total mass can be analysed in a pre-defined
CV. As a basic pre-requisite we investigate the diagnostic scheme
using different discretization methods in an idealistic test bed.
An ideal and numerical shifting of various test functions through
a CV has revealed errors originating from discrete grids and flux
reconstructions. We defined a configuration for our tool, that
minimizes these errors: a Lax–Wendrof or a third-order recon-
struction method and a CV size, that exceeds a critical value of
10×10×10 GP.

The evaluation method is applied to the mesocale model
COSMO. For this purpose we defined the budget equations
consistent to the physical formulation of the COSMO. With
determining the sources and sinks of mass and energy more
complex test cases have been investigated. A rising warm air
bubble (Weisman and Klemp, 1982) was used to evaluate the
conservation properties of COSMO. The simulations without
condensation showed good conservation properties. Slight de-
fects (RE in the order of 10−3%) occur due to the application
of an advective form of the discretized thermo-hydrodynamical
equations and due to splitting errors associated with the BOTT-
transport scheme.

Taking into account condensation and precipitation processes
lead to large errors for the subdomain budgets (RE of 0.1%
within 2 h) of total mass and its related quantity energy. These
imbalances are associated with the water mass redistribution
term and the diabatic term, which contributes to the latent heat
release in clouds and to the rain water evaporation in subcloud
layers (see also the benchmark of Bryan and Fritsch, 2002).
Neglecting these terms in the pressure equation suppresses a
balancing flow that is consistent with the heating or cooling in
the CV. Therefore, we formulated a new saturation adjustment
and we modified the equations concerning microphysical and ra-
diative process. These modifications were implemented in a new
COSMO model named COSMO-MP. We improved the mass and
energy conservation using the COSMO-MP model. We qualified
the model to simulate all relevant physical processes on scales
of resolved convection. This includes the correct representation
of gravity waves.

Regarding the water mass, we have diagnosed only a slight
impact of the large total mass and energy errors for the cases with
condensation and rain physics. Accordingly, the improvement of
the water mass conservation using the COSMO-MP model in-
stead of the standard model has been less effective (factor 2) in
comparison to the total mass. The investigation of the real test
case showed an improvement factor of 3, which reduces the er-
ror from 10 kg m2 to 3 kg m2 precipitable water within 24 hours.
Additionally, the BOTT scheme has performed better for the
Weisman–Klemp case than the SL scheme. The SL advection
scheme works particularly worse in case of switched off hori-
zontal diffusion (tends to a large positive bias of 1%), but seems
to be advantageous in mountainous regions.

In order to study the impact of non-physical damping schemes
on the subdomain budgets, we have carried out a sensitivity
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analysis concerning the frequently used horizontal diffusion and
divergence damping. These numerical techniques that stabilize
the model run, have not such a large impact as the physical errors.
An exception is the horizontal damping used without diffusion.
This configuration seems to be at the limit of stability and leads
to large REs.

Some aspects of our results confirm earlier studies, in which
the mass deficit due to neglecting some diabatic heat terms in
the equations was mentioned (e.g. Doms and Schaettler, 2002;
Bryan and Fritsch, 2002). We have shown that the sub-domain
analysis of model conservation properties can reveal insight into
the model qualities. With the ‘evaluation tool’ we provide the
possibility for diagnosing budgets in any sub-domain inside the
model domain. Thus, one can analyse realistic tet cases. We have
pointed out that the numerical schemes can impact the conser-
vation properties up to the order of 1 %. Furthermore, diabatic
processes were identified to be relevant for a reliable mass and
energy conservation in a numerical model. The physical treat-
ment of the diabatic processes can impact the conservation prop-
erties up to the order of 10 %. Since the diabatic processes are
quite generic and the related parameterizations are similar in
the COSMO and other NWP models, it is relevant to perform
similar evaluations for other models. This statement also holds
for those written in flux form.

Concerning the operational COSMO model, an alternative
formulation of the equations and physical parameterizations as
presented in this paper, might have an positive impact on the
model results. A saturation adjustment approach based on the
method presented here is tested and evaluated at the German
Weather Service in the framework of a pre-operational version.
Indeed, the preliminary studies indicate that the quality of the
forecast is improved compared to the standard operational model
(Baldauf and Blahak, personal communication).
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9. Appendix: Formulation of the COSMO model

9.1. Model description

The COSMO model (Doms and Schaettler, 2002; Doms et al.,
2002) is a compressible non-hydrostatic NWP model used for

operational forecasts on limited domains by several European
weather services. The model solves the non-hydrostatic primi-
tive equation system that approximates a shallow atmosphere
[following the Penn State-NCAR Mesoscale Model (MM5,
Dudhia, 1993)]. The prognostic variables are the pressure de-
viation p′ from the reference state, the temperature T , the three-
dimensional wind field v and the partial masses of the water
constituents qx . The dynamic equations of the COSMO model
are given in Steppeler et al. (2003, eqs. 9–15). The approxima-
tions used to derive the model equations are given in Doms and
Schaettler (2002). In the context of the paper we only want to
present the temperature and pressure equation:

∂p′

∂t
= − (
v · ∇ζ

)
p′ + gρ0w − cpd

cvd

p∇ζ · 
v, (A1)

∂T

∂t
= − (
v · ∇ζ

)
T − 1

ρcvd

(
p∇ζ · 
v) + Qh

ρcpd

. (A2)

∇ζ denotes the three-dimensional Nabla operator with respect
to terrain-following coordinates. The specific heat capacities of
moist air at constant pressure cpd and volume cvd are approxi-
mated to be valid for dry air. Qh summarizes the diabatic heat
sources originating from turbulent heat fluxes, radiation and
cloud mircophysics. The density ρ is derived from the equation
of state

p = ρ (Rdqd + Rvqv) T

= ρRd

{
1 +

(
Rv

Rd

− 1

)
qv − ql − qf

}
T , (A3)

where Rd and Rv denote the gas constants for dry air and water
vapour, respectively. The indices v, l and f stand for the water
vapour, the liquid water and the solid water phase.

An overview about the model grid and the numerical dis-
cretization is given in Steppeler et al. (2003). We have to note,
that the recent dynamical core of the model is discretized using a
third-order Runge–Kutta scheme (Wicker and Skamarock, 2002)
for time integration, which is combined with a time-splitting
method to separate between slow processes like advection and
fast processes related to fast wave propagation (as in Wicker
and Skamarock, 2002). By default, the horizontal part of the ad-
vection operator in the model equations (Steppeler et al., 2003,
eqs. 9–15) is discretized with fifth-order upwind scheme. The
vertical advection is treated implicitly using a Crank–Nicolson
scheme.

The recent cloud microphysical scheme considers six water
components: water vapour, cloud water, cloud ice, rain, snow
and ‘graupel’. The cloud microphysics are represented by a
bulk water-continuity model (Doms et al., 2002, Section 5). The
precipitation is treated prognostically in the COSMO model.
This allows for drifting the hydrometeors during their way to
the ground (Gassmann, 2002).

For simulations with grid spacing more than 5 km the deep
and shallow moist convection is parameterized by the Tiedtke
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mass flux scheme (Tiedtke, 1989). For model applications on the
meso-γ scale with grid spacings less than 5 km the deep moist
convection is explicitly resolved.

The turbulent fluxes are subgrid-scale processes and have
to be parameterized. A diagnostic level 2 closure (according to
Mellor/Yamada) and two different second-order closure schemes
(level 2.5), which apply the prognostic equation of the TKE, are
implemented in the COSMO. A more detailed overview on the
model physics is given in (Steppeler et al., 2003, section 4) and
an extensive description can be found in Doms et al. (2002).
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