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Abstract. The radioactive decay of radon and its progeny
can lead to ionization of air molecules and consequently
influence aerosol size distribution. In order to provide a
global estimate of the radon-related ionization rate, we use
the global atmospheric model ECHAM5 to simulate trans-
port and decay processes of the radioactive tracers. A global
radon emission map is put together using regional fluxes re-
ported recently in the literature. Near-surface radon concen-
trations simulated with this new map compare well with mea-
surements.

Radon-related ionization rate is calculated and compared
to that caused by cosmic rays. The contribution of radon and
its progeny clearly exceeds that of the cosmic rays in the mid-
and low-latitude land areas in the surface layer. During cold
seasons, at locations where high concentration of sulfuric
acid gas and low temperature provide potentially favorable
conditions for nucleation, the coexistence of high ionization
rate may help enhance the particle formation processes. This
suggests that it is probably worth investigating the impact
of radon-induced ionization on aerosol-climate interaction in
global models.

Correspondence to:K. Zhang
(kai.zhang@pnnl.gov)

1 Introduction

In recent years the impact of atmospheric ions on aerosol
formation and life cycle has attracted increasing attention
(see, e.g.,Yu and Turco, 2000; Lovejoy et al., 2004; Kulmala
et al., 2004; Kazil et al., 2006, among others). Atmospheric
ions can enhance the production of ultrafine aerosol particles
because they greatly stabilize small clusters against evapo-
ration (Ramamurthi et al., 1993; Lovejoy et al., 2004). In
addition, ions can attach to existing aerosol particles (either
neutral or charged), change their charge status, and thus the
coagulation rates (Clement and Harrison, 1992). Through
influence on aerosol number and size distribution, ions can
eventually exert an impact on the Earth’s climate.Kazil
et al. (2010) show that in the global aerosol-climate model
ECHAM5-HAM, charged H2SO4/H2O nucleation induces a
−1.15 W m−2 (global and annual mean) flux of shortwave
radiation at the top of the atmosphere via direct, semi-direct
and indirect aerosol effects. This value is considerably larger
than the fluxes caused by cluster activation (−0.235 W m−2)
and neutral H2SO4/H2O nucleation (−0.05 W m−2). In that
work only the galactic cosmic rays are considered when com-
puting the ionization rate. Although galactic cosmic rays
play a major role in the upper troposphere and lower strato-
sphere, over the oceans and in the polar regions, other natural
processes also cause ionization, the main contributors being
the radioactive decay of radon (222Rn), thoron (220Rn) and
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Fig. 1. (a) Radioactive decay of radon and its progeny. The half-
life, decay type and decay energy of each species are also listed.(b)
The simplified decay chain considered in our simulations.

merical model that reasonably represents radon-related trans-
port and decay processes. To this end a new global emission
map is compiled in this study, and the transport processes in
the ECHAM5 model are evaluated. The details are presented
in Sections 2 and 3. The simulated radon-related ionization
rate is discussed in Sect. 4. Conclusions are drawn in Sect. 5.

2 Model, emission data, and simulations

In this section we first explain why we only choose radon
and its progeny as ionization agents in this study. There-
after the newly derived global radon emission map is pre-
sented (Sect. 2.2). We then briefly introduce the ECHAM5
model (Sect 2.3) and document how radioactive decay and
the resulting ionization are implemented in the model (sec-
tions 2.4, 2.5, and 2.6). The numerical simulations are intro-
duced in Sect. 2.7.

2.1 Ionization agents

Since our primary interest lies in climate modelling on the
global scale, the focus of this study was chosen by two cri-
teria: first, the source of ionizing energy has to be strong
enough to cause a globally non-negligible effect; Second,
sufficient information needs to be available about the global
distribution of the radionuclide and its sources, so that robust
results can be obtained with our climate model. According to

these criteria, we have chosen the radon decay series as the
subject in this study.

Here we have deliberately excluded other well-known ra-
dionuclides for various reasons. For example,85Kr has a
long lifetime and fairly homogeneous background concentra-
tion worldwide, which makes it a continuous source of ion-
ization. Over the ocean, its activity concentration can exceed
that of radon. However, the decay energy of85Kr is relatively
low (mainly β decay, average energy 0.251 MeV), and the
activity concentration near land surface is much lower than
radon. The resulting ionization in the lower troposphere is
thus probably negligible compared to radon and cosmic rays.
Similarly, ionization caused by14C in CO2 is neglected due
to its low decay energy (0.156 MeV) and low activity concen-
tration (40 mBq m−3). The thoron decay chain could have
been another potential subject for our study. Although thoron
(220Rn) and its direct daughter216Po undergo essentially
complete decay below an altitude of several meters over land
(with half-lives being 56 s and 0.15 s, respectively), the next
decay product,212Pb, has a half-life of 10.6 hours. However,
it should be noted that the activity concentration of212Pb is
only about 1%–10% of that of radon. Moreover, there exists
the practical difficulty that information about thoron emis-
sion is very limited. To our knowledge there is no global map
available, which prevents us from obtaining reliable distribu-
tions of thoron and its progeny. Given all the considerations
above, we focus only on the radon-induced ionization in this
study.

2.2 Radon emission

Early studies have shown that the average continental radon
emission flux ranges from 0.7 to 1.2 atom cm−2 s−1

(Turekian et al., 1977; Lambert et al., 1982). Based on this
estimate, highly simplified emission fluxes have been used
in model intercomparison studies. For example, the World
Climate Research Program (WCRP) Cambridge Workshop
of 1995 (Rasch et al., 2000) specified a uniform continental
emission of 1 atom cm−2 s−1 between 60◦S and 60◦N, 0.5
atom cm−2 s−1 between 60◦N and 70◦N (excluding Green-
land), and zero flux elsewhere. On the other hand, Lee and
Feichter (1995) and Guelle et al. (1998) showed that tak-
ing into account regional gradient can lead to results more
consistent with the observed radon concentrations, especially
near the surface and at high latitudes. Conen and Robertson
(2002) proposed a northward decreasing source (linear de-
crease from 1 atom cm−2 s−1 at 30◦N to 0.2 atom cm−2 s−1

at 70◦N) without zonal gradient. This emission assumption
was tested with a global transport model by Robertson et al.
(2005). Before our work presented in this paper, the global
radon flux map by Schery and Wasiolek (1998) (hereafter
SW1998) was the only one that includes detailed regional in-
formation and seasonal variation over land surfaces. It has
been used in several studies of transport modelling (see, e.g.,
Koch et al., 2006; Hirao et al., 2008). (Goto et al. (2008)

Fig. 1. (a) Radioactive decay of radon and its progeny. The half-
life, decay type and decay energy of each species are also listed.(b)
The simplified decay chain considered in our simulations.

their progeny, as well as terrestrial gamma radiation (Harri-
son and Carslaw, 2003). Near the land surface, almost half of
the ionization of the air is related to radon, thoron and their
daughter products (Emsley, 2001).

Radon, the decay product of226Ra, is the most prominent
natural radionuclide in the surface air. It is a noble gas with
very low solubility in water. After being transpired into the
air, radon can be redistributed into the middle and upper tro-
posphere and over synoptic distance in the horizontal, due
to its half-life of 3.8 days. The radioactive decay of222Rn
and its progeny produces highly energeticα andβ particles
which ionize air molecules (Fig.1a). A previous laboratory
study byVohra et al.(1984) showed that under typical near-
surface conditions over land, ionization caused by radioac-
tive decay of radon series can cause significant enhancements
in particle formation. To find out whether it is necessary to
consider radon-related nucleation in global aerosol models,
we use the global climate model ECHAM5 to compare the
radon-related ionization rate with that caused by cosmic rays.

In order to obtain a realistic estimate of radon-related
ionization rate, one needs sufficiently accurate information
about radon emission flux on the global scale, as well as a nu-
merical model that reasonably represents radon-related trans-
port and decay processes. To this end a new global emission
map is compiled in this study, and the transport processes in
the ECHAM5 model are evaluated. The details are presented
in Sects.2 and3. The simulated radon-related ionization rate
is discussed in Sect.4. Conclusions are drawn in Sect.5.

2 Model, emission data, and simulations

In this section we first explain why we only choose radon
and its progeny as ionization agents in this study. Thereafter
the newly derived global radon emission map is presented
(Sect.2.2). We then briefly introduce the ECHAM5 model
(Sect.2.3) and document how radioactive decay and the re-
sulting ionization are implemented in the model (Sects.2.4,
2.5, and2.6). The numerical simulations are introduced in
Sect.2.7.

2.1 Ionization agents

Since our primary interest lies in climate modelling on the
global scale, the focus of this study was chosen by two cri-
teria: first, the source of ionizing energy has to be strong
enough to cause a globally non-negligible effect; Second,
sufficient information needs to be available about the global
distribution of the radionuclide and its sources, so that robust
results can be obtained with our climate model. According to
these criteria, we have chosen the radon decay series as the
subject in this study.

Here we have deliberately excluded other well-known ra-
dionuclides for various reasons. For example,85Kr has a long
lifetime and fairly homogeneous background concentration
worldwide, which makes it a continuous source of ioniza-
tion. Over the ocean, its activity concentration can exceed
that of radon. However, the decay energy of85Kr is rela-
tively low (mainlyβ decay, average energy 0.251 MeV), and
the activity concentration near land surface is much lower
than radon. The resulting ionization in the lower troposphere
is thus probably negligible compared to radon and cosmic
rays. Similarly, ionization caused by14C in CO2 is neglected
due to its low decay energy (0.156 MeV) and low activity
concentration (40 mBq m−3). The thoron decay chain could
have been another potential subject for our study. Although
thoron (220Rn) and its direct daughter216Po undergo essen-
tially complete decay below an altitude of several meters over
land (with half-lives being 56 s and 0.15 s, respectively), the
next decay product,212Pb, has a half-life of 10.6 h. However,
it should be noted that the activity concentration of212Pb is
only about 1 %–10 % of that of radon. Moreover, there exists
the practical difficulty that information about thoron emis-
sion is very limited. To our knowledge there is no global map
available, which prevents us from obtaining reliable distribu-
tions of thoron and its progeny. Given all the considerations
above, we focus only on the radon-induced ionization in this
study.

2.2 Radon emission

Early studies have shown that the average continental
radon emission flux ranges from 0.7 to 1.2 atom cm−2 s−1

(Turekian et al., 1977; Lambert et al., 1982). Based on this
estimate, highly simplified emission fluxes have been used
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Fig. 2. (a–c) Radon emission setups considered in this study.
The quantity shown is the annual mean atom number flux (unit:
atom cm−2 s−1). (d) Data source of the merged emission map
shown in(c). S1 stands forSchery and Wasiolek(1998) (scaled),
S2 forSchery and Huang(2004), G for Griffiths et al.(2010), Z for
Zhuo et al.(2008), and S3 forSzegvary et al.(2007).

Table 1. Regionally averaged annual mean radon emission flux over
land in the merged radon flux map.

Region Emission Flux
(atom cm−2 s−1)

Europe 0.62
China 1.41
Russia 0.39
USA 0.87
Australia 1.02
Others 0.92
Global (between 60◦ S and 60◦ N) 0.96

in model intercomparison studies. For example, the World
Climate Research Program (WCRP) Cambridge Workshop
of 1995 (Rasch et al., 2000) specified a uniform con-
tinental emission of 1 atom cm−2 s−1 between 60◦ S and
60◦ N, 0.5 atom cm−2 s−1 between 60◦ N and 70◦ N (exclud-
ing Greenland), and zero flux elsewhere. On the other hand,
Lee and Feichter(1995) andGuelle et al.(1998) showed that
taking into account regional gradient can lead to results more
consistent with the observed radon concentrations, especially
near the surface and at high latitudes.Conen and Robertson
(2002) proposed a northward decreasing source (linear de-
crease from 1 atom cm−2 s−1 at 30◦ N to 0.2 atom cm−2 s−1

at 70◦ N) without zonal gradient. This emission assumption
was tested with a global transport model byRobertson et al.
(2005). Before our work presented in this paper, the global
radon flux map bySchery and Wasiolek(1998) (hereafter
SW1998) was the only one that includes detailed regional in-
formation and seasonal variation over land surfaces. It has
been used in several studies of transport modelling (see, e.g.,
Koch et al., 2006; Hirao et al., 2008). (Goto et al.(2008)
showed limited results from a radon exhalation rate distri-
bution model, but without comprehensive evaluation.) One
of the weak points of the SW1998 map is the lack of over-
all normalization. The annual and global mean emission rate
over land (1.6 atom cm−2 s−1) is higher than that given by
many previous estimates (Schery and Wasiolek, 1998; Sch-
ery, 2004). Thus it is suggested (Schery 2009, personal com-
munication) that one could let the overall normalization be a
free parameter. For example,Koch et al.(2006) arbitrarily
reduced the emission by a factor of 0.5 in their work.

In the past years several research groups have derived de-
tailed radon flux maps for different regions using various
methods. For example,Szegvary et al.(2007) andSzegvary
et al. (2009) established a method for deriving radon emis-
sion from terrestrial gamma dose rate. The radon fluxes they
obtained are in good agreement with in situ measurements in
Finland and Hungary. Their flux map was applied in the TM5
atmospheric tracer model and improved the average model
predictions (Szegvary, 2007). Flux maps of Russia and USA
are now available from their website athttp://radon.unibas.ch

www.atmos-chem-phys.net/11/7817/2011/ Atmos. Chem. Phys., 11, 7817–7838, 2011
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Fig. 3. Location of surface radon measurements used in this study. See Table 2for further information of the sites. Colors indicate
observational sites in the five different regions that are analysed separately in Fig. 5.

– D: radioactive decay and ionization;

– C: cumulus convection.

The computation sequence can be summarized using the no-
tation of Williamson (2002) as follows:

ci (t+∆t) = C (D {T [ci (t−∆t)] ,A [ci (t−∆t)]})

(i = 1, 2, 3) . (2)

Large-scale advection and turbulence are computed first, us-
ing process splitting in Williamson’s terminology (or parallel
splitting according to Dubal et al., 2004). Thereafter the ra-
dioactive decay and cumulus convection are computed using
time splitting (sequential splitting). Note that the ECHAM5
model employs the leapfrog time stepping scheme, thus on
the r.h.s. of Eq. (2) we start from time stept − ∆t. This
means theci(t) and∆t on the r.h.s. of Eqs. (A5)–(A13) are
replaced byci(t−∆t) and2∆t, respectively.

2.7 Simulations

Numerical simulations are carried out for the period 1 Octo-
ber 1998–31 December 2003 forced by the AMIP II sea sur-
face temperature and sea ice cover (Taylor et al., 2000). The
model meteorology is constrained by the ERA40 reanalysis
(Uppala et al., 2005) using the nudging technique (Jeuken
et al., 1996). “Free” runs without nudging are also performed
and briefly discussed in section 3.3.

As already mentioned earlier, three simulations are per-
formed with different radon emission maps: one with the

WCRP1995 recommendation, one with the scaled Schery
and Wasiolek (1998) map, and the third with the new map
compiled in this study (Fig. 2). In the merged map, the global
average radon emission flux over land between 60◦ S and
60◦ N is around 0.96 atom cm−2 s−1 (Table 1). In the scaled
SW1998 map we have reset the flux over the oceans to zero,
because a preliminary simulation revealed that the constant
flux of 0.00417 atom cm−2 s−1 over the ocean caused unac-
ceptably high radon concentration at many locations.

In our simulations, the initial concentrations of all radioac-
tive species are set to zero. 3-hourly instantaneous tracer
concentrations and ionization rate are archived as well as the
monthly means. The first three months of the simulation pe-
riod are discarded as spin-up.

3 Radon concentration in the lower troposphere

In this section we present the simulated surface radon con-
centration, compare the results obtained using different emis-
sion maps, and evaluate the simulations against measure-
ments. For clarity, we emphasize again that in this paper
the amount of radon in the air is described by its activity
concentration and we use the unit mBq m−3 STP, i.e., mil-
libecquerel per cubic meter at the standard atmospheric con-
dition (273.15 K, 1013.25 hPa) to compare different sets of
data and model results. When discussing radon emission, we
follow the convention and use the atom number flux (unit:
atom cm−2 s−1).

Fig. 3. Location of surface radon measurements used in this study. See Table2 for further information of the sites. Colors indicate
observational sites in the five different regions that are analysed separately in Fig.5.

as well. Zhuo et al.(2008) published radon emission esti-
mates for China based on the soil226Ra content and a global
ecosystems database. The annual mean values given by their
idealized model range from 0.5 to 2.7 atom cm−2 s−1 at dif-
ferent locations. Furthermore,Griffiths et al.(2010) reported
a time-dependent map of radon flux density at high resolu-
tions for Australia. For the oceans,Schery and Huang(2004)
calculated radon flux from the surface wind speed and sea
water226Ra content using a gas transfer model.

Based on the studies mentioned above, we compile a new
global radon emission map in this work (Fig.2). The new
map uses theSzegvary et al.(2007) data for Europe, Rus-
sia and USA,Zhuo et al.(2008) for China, Griffiths et al.
(2010) for Australia (pre-release), and theSchery and Wasi-
olek(1998) map for other land areas but scaled by a factor of
1

1.6. TheSchery and Huang(2004) estimates are used for the
oceans. Table1 shows the annual mean regionally averaged
radon emission flux over land in this merged map. For in-
tercomparison, simulations are performed using this merged
map, the WCRP1995 recommendation, and the scaled (also
by a factor of 1

1.6) SW1998 map. The decision of using11.6
for the normalization instead of 2 as inKoch et al.(2006)
is somewhat arbitrary. The idea is that1

1.6 results in a land-
surface mean of 1 atom cm−2 s−1, which is the value used
for middle and low latitudes in the WCRP1995 protocol. On
the other hand, we do not make it a strict rule that all three
simulations must have the same global mean emission.

2.3 The climate model ECHAM5

ECHAM5 (Roeckner et al., 2003) is an atmospheric general
circulation model developed at the Max Planck Institute for

Meteorology. Its spectral transform dynamical core solves
the primitive equations in vorticity-divergence form. The
horizontal resolution used in this study is T63, which applies
a triangular truncation to the spherical harmonic series, and
resolves horizontal patterns up to wave number 63. The cor-
responding Gaussian grid, on which the grid-point computa-
tions including physics parameterizations are performed, has
approximately 2◦(latitude)× 2◦(longitude) grid size. In the
vertical, the model domain is unevenly divided into 31 layers
in pressure-based terrain following coordinate, with the high-
est computational level located at 10 hPa. Roughly speaking,
there are 6 layers below 850 hPa, 9 above 200 hPa, and 16 in
between. The standard time step for this model resolution is
12 min.

The large-scale advection of tracer species is handled by
the Lin and Rood(1996) flux-form semi-Lagrangian algo-
rithm, assuming piecewise parabolic sub-grid distribution.
Within the physics parameterization package, the turbulent
surface fluxes are calculated from the Monin-Obukhov simi-
larity theory (Louis, 1979). Vertical diffusion coefficients are
calculated as functions of turbulent kinetic energy (Brinkop
and Roeckner, 1995). The parameterization of cumulus con-
vection and convective transport of tracer is based on the bulk
mass flux concept ofTiedtke(1989), with further modifica-
tions byNordeng(1994).

2.4 Decay of the radon family in the model

The decay chain of radon is shown in Fig.1a. Half-lifes
and theα decay energy noted therein are collected from the
most recent Evaluated Nuclear Structure Data File (ENSDF).
Among the decay products,218Po and214Po have half-lifes

Atmos. Chem. Phys., 11, 7817–7838, 2011 www.atmos-chem-phys.net/11/7817/2011/



K. Zhang et al.: Lower tropospheric radon and ionization 7821

Table 2. Detailed information about the surface radon measurements used in this study. In the “Reference” column, DWD stands for
Deutscher Wetterdienst (German Weather Service), BfS for Federal Office for Radiation Protection of Germany, IPSL for Institut Pierre-
Simon Laplace, EML for DOE/Environmental Measurements Laboratory, and NCAR/EOL for National Center for Atmospheric Research
Earth Observing Laboratory. The right most column categorizes the data source: I: Data already used for model evaluation inZhang
et al.(2008); II: Data of the period 1955–1987 compiled by J. Feichter; III: New measurements from observers; IV: New data from recent
publications. Location of these site are also shown in Fig.3.

Site Location Type Period Reference Note

North America

Livermore, USA 121◦48′ W, 37◦42′ N Coastal 1965–1966 Lindeken(1966) I
Socorro, USA 106◦54′ W, 34◦06′ N Continental 1951–1956 Wilkening (1959) I
Cincinnati, USA 84◦30′ W, 39◦08′ N Continental 1959–1963 Gold et al.(1964) I
Bermuda Island, USA 64◦39′ W, 32◦22′ N Oceanic 1991–1996 EML (Hutter et al., 1995) I
Chester, USA 72◦30′ W, 41◦24′ N Continental 1977–1983 Jacob and Prather(1990) II
Sterling, USA 77◦25′ W, 38◦57′ N Continental 1966–1967 Hosler(1968) II
Washington D. C., USA 76◦54′ W, 38◦54′ N Coastal 11 yr Lockhart(1964) II
Grifon , USA 77◦40′ W, 35◦35′ N Continental 1997 NCAR/EOL;Bakwin et al.(1995) III

Europe

Hohenpeissenberg, Germany 11◦01′ E, 47◦48′ N Continental 1999–2005 DWD (Zellweger et al., 2006) I
Mace Head, Ireland 09◦54′ W, 53◦18′ N Coastal 1995–2001 IPSL (Ramonet et al., 2003) I
Helsinki, Finland 25◦00′ E, 60◦05′ N Continental 1968 Mattsson(1970) II
Joensuu, Finland 29◦27′ E, 62◦21′ N Continental 1968 Mattsson(1970) II
Kevo, Finland 27◦00′ E, 69◦00′ N Continental 1968 Mattsson(1970) II
Nurmijarvi,Finland 24◦24′ E, 60◦36′ N Continental 1967–1968 Mattsson(1970) II
Rovaniemi, Finland 25◦24′ E, 66◦18′ N Continental 1968 Mattsson(1970) II
Vaasa, Finland 21◦21′ E, 63◦04′ N Continental 1968 Mattsson(1970) II
Pallas, Finland 24◦20′ E, 67◦59′ N Continental 1996–2002 Hatakka et al.(2003) II
Paris, France 2◦12′ E, 48◦31′ N Continental 1955–1960 Servant and Tanaevsky(1961) II
Saclay, France 2◦04′ E, 48◦13′ N Continental 1956–1960 Servant and Tanaevsky(1961) II
Gif-sur-Yvette, France 2◦05′ E, 48◦25′ N Continental 2002–2010.07 Yver et al.(2009) III
Freiburg, Germany 7◦51′ E, 48◦00′ N Continental 1999–2001 BfS;Xia et al.(2010) III
Schauinsland, Germany 7◦54′ E, 47◦54′ N Continental 1999–2001 BfS;Xia et al.(2010) III
Milan, Italy 9◦11′ E, 45◦28′ N Continental 1997–1998 Sesana et al.(2006) IV
Erba, Italy 9◦13′ E, 45◦49′ N Continental 1997–1998 Sesana et al.(2006) IV
Heidelberg, Germany 8◦54′ E, 49◦24′ N Continental 1998 Chevillard et al.(2002) IV
Zingst, Germany 12◦42′ E, 54◦24′ N Continental 1998 Chevillard et al.(2002) IV
Lutjewad, Netherlands 6◦21′ E, 53◦24′ N Coastal 2006–2010 van der Laan et al.(2009) IV

Asia

Gosan, Korea 126◦12′ E, 33◦18′ N Oceanic 2001 Zahorowski et al.(2005) I
Hong Kong, China 114◦18′ E, 22◦12′ N Coastal 2001 Zahorowski et al.(2005) I
Beijing, China 116◦12′ E, 39◦36′ N Continental 1988–1992 Jin et al.(1998) I
Huhehaote, China 111◦42′ E, 40◦48′ N Continental 1988–1992 Jin et al.(1998) I
Changchun, China 125◦12′ E, 43◦54′ N Continental 1988–1992 Jin et al.(1998) I
Nanjing, China 118◦48′ E, 32◦00′ N Continental 1988–1992 Jin et al.(1998) I
Xi’an, China 108◦54′ E, 34◦18′ N Continental 1988–1992 Jin et al.(1998) I
Wuhan, China 114◦06′ E, 30◦36′ N Continental 1988–1992 Jin et al.(1998) I
Guiyang, China 106◦42′ E, 26◦36′ N Continental 1988–1992 Jin et al.(1998) I
Shanghai, China 121◦24′ E, 31◦12′ N Coastal 1988–1992 Jin et al.(1998) I
Fuzhou, China 119◦18′ E, 26◦06′ N Coastal 1988–1992 Jin et al.(1998) I
Bombay, India 72◦48′ E, 18◦54′ N Coastal 1966–1976 Mishra et al.(1980) I

South America, Australia, Africa

Para, Brazil 55◦00′ W, 02◦54′ S Continental 2000–2004 Martens et al.(2004) I
Chacaltaya, Bolivia 67◦36′ W, 15◦42′ S Continental 1958–1960 Lockhart(1960) II
Rio de Janeiro, Brazil 43◦12′ W, 23◦00′ S Continental 1958–1960 Lockhart(1960) II
Cape Grim, Tasmania 144◦41′ E, 40◦40′ S Coastal 2000–2001 Zahorowski and Whittlestone(1999) I
Cape Point, South Africa 18◦30′ W, 34◦21′ N Coastal 2000–2001 Brunke et al.(2004) III

Remote ocean and polar regions

Amsterdam Island, France 77◦32′ E, 37◦47′ S Oceanic 15 yr Polian et al.(1986) II
Crozet Island, France 51◦51′ E, 46◦27′ S Oceanic 15 yr Polian et al.(1986) II
Kerguelen, France 70◦18′ E, 49◦18′ S Oceanic 15 yr Polian et al.(1986) II
Mauna Loa, USA 155◦35′ W, 19◦32′ N Oceanic 2001 Zahorowski et al.(2005) IV
Macquarie Island, Austrilia 159◦00′ E, 54◦30′ S Oceanic 1987 Downey et al.(1990) IV
Mawson, Antarctica 62◦54′ E, 67◦42′ S Coastal 1999–2000 Whittlestone and Zahorowski(2000) IV
Dumont d’Urville, Antarctica 140◦00′ E, 66◦00′ S Coastal 1978–1979 Heimann et al.(1990) I
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much shorter than the time step of the climate model, thus
ignored as intermediate products. We assume222Rn decays
directly to214Pb and releases twoα particles with 11.71 MeV
decay energy (Fig.1b). Similarly,214Pb decays directly into
210Pb and releases oneα particle and oneβ particle, emitting
11.15 MeV energy. The decay of210Pb is ignored because it
happens very slowly (mostly not in the atmosphere but on the
ground) and produces negligible energy (0.064 MeV). In this
study we describe the abundance of radon and its progeny by
the activity concentration which is the product of atom num-
ber concentration and decay constant. The simplified decay
chain can be described by an ordinary differential equation
system and solved analytically (cf., e.g.,Vinuesa et al., 2007)
within each model time step (cf. Appendix A).

In the real atmosphere, radon decay initiates ion chemi-
cal reactions which can lead to the formation of nanometer-
sized charged clusters. Radon decay products can also at-
tach to existing particles (Porstend̈orfer, 1994; Papastefanou,
2008). Both the unattached and attached radon decay prod-
ucts are subject to dry and wet scavenging. Near the ground,
dry deposition of these decay products may play a role under
certain conditions. However,Lupu and Cuculeanu(1999)
showed that even above vegetated ground (where the dry de-
position velocity is supposed to be larger than above bare
ground), the effect of dry deposition on the concentration of
radon decay products above 5 m is relatively small compared
to the effect of turbulent mixing. Considering these results
and the fact that scavenging happens at time scales much
longer than the life-times of the progeny, we ignore this pro-
cess in our simulations.

2.5 Ionization

The production of one ion pair in the air consumes 35–36 eV
energy fromα particles (Valentine and Curran, 1958; Jesse,
1968; Papastefanou, 2008), or 32–34 eV fromβ particles
(Jesse, 1968; Papastefanou, 2008). In this study, we use the
value 35.6 eV forα particles and 32.5 eV forβ particles (Pa-
pastefanou, 2008). Using these numbers and the decay en-
ergy noted in Fig.1b, the time step mean ionization rateψ
(unit: cm−3 s−1) is diagnosed by

ψi = c̄i

(
nα
Eα,i

Eα,p
+nβ

Eβ,i

Eβ,p

)
, i=1,2,3. (1)

Herec̄i stands for the time step mean activity concentration
(unit: Bq m−3, equivalent to m−3 s−1) of speciesi during the
decay process (see Appendix A for detailed expression);nα
andnβ denote the number of released particles;Eα,i andEβ,i
stand for the corresponding decay energy (unit: eV);Eα,p
andEβ,p are the energy (unit: eV) needed for producing one
ion pair forα decay andβ decay, respectively.

The ionization rate induced by galactic cosmic rays is
computed as inKazil et al.(2010), which takes into account
the 11-yr cycle of solar activity.

2.6 Coupling of different processes

In ECHAM5 there are four processes directly affecting the
concentration of radon and its progeny. These are:

– A: large-scale advection;

– T : turbulent mixing (i.e., vertical diffusion) with radon
emission as surface boundary condition;

– D: radioactive decay and ionization;

– C: cumulus convection.

The computation sequence can be summarized using the no-
tation ofWilliamson(2002) as follows:

ci (t+1t)= C (D{T [ci (t−1t)] ,A[ci (t−1t)]})

(i= 1,2,3). (2)

Large-scale advection and turbulence are computed first, us-
ing process splitting in Williamson’s terminology (or parallel
splitting according toDubal et al., 2004). Thereafter the ra-
dioactive decay and cumulus convection are computed using
time splitting (sequential splitting). Note that the ECHAM5
model employs the leapfrog time stepping scheme, thus on
the r.h.s. of Eq. (2) we start from time stept −1t . This
means theci(t) and1t on the r.h.s. of Eqs. (A5)–(A13) are
replaced byci(t−1t) and 21t , respectively.

2.7 Simulations

Numerical simulations are carried out for the period 1 Octo-
ber 1998–31 December 2003 forced by the AMIP II sea sur-
face temperature and sea ice cover (Taylor et al., 2000). The
model meteorology is constrained by the ERA40 reanalysis
(Uppala et al., 2005) using the nudging technique (Jeuken
et al., 1996). “Free” runs without nudging are also performed
and briefly discussed in Sect.3.3.

As already mentioned earlier, three simulations are per-
formed with different radon emission maps: one with the
WCRP1995 recommendation, one with the scaledSchery
and Wasiolek(1998) map, and the third with the new map
compiled in this study (Fig.2). In the merged map, the global
average radon emission flux over land between 60◦ S and
60◦ N is around 0.96 atom cm−2 s−1 (Table1). In the scaled
SW1998 map we have reset the flux over the oceans to zero,
because a preliminary simulation revealed that the constant
flux of 0.00417 atom cm−2 s−1 over the ocean caused unac-
ceptably high radon concentration at many locations.

In our simulations, the initial concentrations of all radioac-
tive species are set to zero. 3-hourly instantaneous tracer
concentrations and ionization rate are archived as well as the
monthly means. The first three months of the simulation pe-
riod are discarded as spin-up.
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3 Radon concentration in the lower troposphere

In this section we present the simulated surface radon con-
centration, compare the results obtained using different emis-
sion maps, and evaluate the simulations against measure-
ments. For clarity, we emphasize again that in this paper
the amount of radon in the air is described by its activity
concentration and we use the unit mBq m−3 STP, i.e., mil-
libecquerel per cubic meter at the standard atmospheric con-
dition (273.15 K, 1013.25 hPa) to compare different sets of
data and model results. When discussing radon emission, we
follow the convention and use the atom number flux (unit:
atom cm−2 s−1).

3.1 Measurements

Zhang et al.(2008) used surface radon measurements at 28
sites to evaluate radon transport in a global model. In this
study we have extended that data set by including recent mea-
surements from observers and publications, as well as some
earlier data of the period 1955–1987. One site used inZhang
et al. (2008), Puy de Dome, is excluded here because it is
strongly affected by small-scale topography that can not be
resolved in climate models at the resolution we have chosen.
There are some studies in the literature which reported on an-
nual mean radon concentrations but without seasonal varia-
tion (e.g.,Lockhart et al., 1966; Nagaraja et al., 2003). These
data are not included in our analysis. Detailed information
about the measurements used in this study and their refer-
ences are given in Table2. The sites are shown in Fig.3. As
radon measurements at some locations were reported in other
units, they are converted to mBq m−3 STP. For quantitative
comparison between observation and simulation, model out-
put is linearly interpolated to the location of the observations.

It should be noted that the data listed in Table2 were
measured using different methods (e.g. one-filter method and
two-filter method). The difference between measured radon
concentrations by using different methods at the same loca-
tion could be a few ten percents under certain conditions (Xia
et al., 2010). The one-filter method, for example, needs an
assumption about the disequilibrium factor between counted
progeny and its precursor radon (Levin et al., 2002). The
disequilibrium factor depends on local meteorological con-
ditions and the height of the air inlet above ground and could
vary with time. For some measurement methods, it could
be possible, that the system can not separate thoron proge-
nies from radon progenies and the whole detected activity is
accounted to radon (C. Schlosser, personal communication,
2010). We should take these uncertainties into account when
comparing the model with measurements collected by using
different instruments.

3.2 Overview of model results

The scatter plots in Fig.4 provide a compact overview of the
model results in comparison with measurements. Each point
in the figure represents one seasonal or monthly mean at one
site. At the locations where measurements are available at
frequencies higher than monthly, we compute the monthly
mean before making the plot; at the places where only sea-
sonal data are available, we simply take the seasonal mean,
and average the model results accordingly.

On the whole, all three simulations agree reasonably well
with the observations. Taking into account all seasons and
sites, more than 70 % samples are consistent with observa-
tion within a factor of 2. The winter and summer results
are of similar quality. The outliers in Fig.4a and g indi-
cate the underestimation of radon concentrations at Dumont
d’Urville (especially in summer), which will be discussed
in Sect.3.4. Comparing the three columns in Fig.4, one
can see clearly that the merged emission map leads to bet-
ter results than the other two simulations. The correlation
between simulation and observation increases significantly.
The overestimated concentrations in the WCRP1995 and
scaled SW1998 simulations in the range between 4×102–
6×103 mBq m−3 STP are improved considerably.

To identify the reasons for the improvement, results in dif-
ferent regions are shown separately in Fig.5. In the Eu-
ropean regions southward of 60◦ N (excluding the Iberian
Peninsula), the WCRP1995 flux of 1 atom cm−2 s−1 is con-
siderably stronger than the other two emission setups (cf.
Fig. 2), thus in Fig.5a the green dots reveal clear overesti-
mation compared to the other two panels in the same row.
Over Scandinavia the WCRP1995 and SW1998 fluxes are
about 0.5 atom cm−2 s−1 at most grid points, which seems
still too high since almost all the pink markers in Fig.5a and
b lie outside the factor of 2 region. In contrast, the emissions
derived bySzegvary et al.(2007) from the terrestrial gamma
dose lead to much better results in this region (Fig.5c).

India and China are characterized by high radon emis-
sion and strong spatial gradient, in the soil and other soil
conditions such as soil wetness and temperature (Schery,
2004; Zhuo et al., 2008). The constant flux of WCRP1995
thus causes relatively low simulation-to-observation correla-
tion and a clear underestimate in surface radon concentra-
tion (Fig. 4d). The scaled SW1998 map results in a better
correlation, while the data fromZhuo et al.(2008) in China
(used in our merged map) provide the most realistic results in
the second row of Fig.4. A similar situation can be seen for
the United States, although biases associated with the scaled
SW1998 are positive. In South America the three simula-
tions are not very different. Our merged map uses the same
emission as the scaled SW1998 map, thus gives almost iden-
tical results; the WCRP1995 emission leads to reasonable,
although slightly overestimated surface concentration.
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Fig. 4. Scatter plots of the simulated and measured monthly or seasonal mean surface radon concentration (mBq m−3 STP) at the 51 sites
listed in Table 2 and shown in Fig. 3. The three columns correspond to simulations using the WCRP1995 recommended radon emission (left),
the SW1998 emission maps scaled by a factor of 1/1.6 (middle), and the new emission maps prepared during this study. The first row contains
results of all months/seasons (534 samples); The second row shows the 129 winter samples (DJF in the Northern Hemisphere, JJA in the
Southern Hemisphere), and the third row shows only the 135 summer samples (JJA in the Northern Hemisphere, DJF in the Southern
Hemisphere). The dashed lines indicate the range within a factor of 2 of themeasurements. Also shown in each panel are the percentage of
samples within this range (the P2 values) and the correlation coefficients between simulation and observation (theR values).

Fig. 4. Scatter plots of the simulated and measured monthly or seasonal mean surface radon concentration (mBq m−3 STP) at the 51 sites
listed in Table2 and shown in Fig.3. The three columns correspond to simulations using the WCRP1995 recommended radon emission (left),
the SW1998 emission maps scaled by a factor of 1/1.6 (middle), and the new emission maps prepared during this study. The first row contains
results of all months/seasons (534 samples); The second row shows the 129 winter samples (DJF in the Northern Hemisphere, JJA in the
Southern Hemisphere), and the third row shows only the 135 summer samples (JJA in the Northern Hemisphere, DJF in the Southern
Hemisphere). The dashed lines indicate the range within a factor of 2 of the measurements. Also shown in each panel are the percentage of
samples within this range (the P2 values) and the correlation coefficients between simulation and observation (theR values).

3.3 Nudged versus climatological simulations

As mentioned in the previous section, we have also per-
formed simulations without nudging the model meteorol-
ogy toward reanalysis. The main purpose is to evaluate the
ECHAM5 model’s ability in tracer transport in a case of
“free” simulation. It turns out that without nudging, the sim-

ulated radon concentration still compares well with the mea-
surements. To demonstrate this, we present in Fig.6 the com-
parison between simulated and observed monthly mean con-
centrations for all the sites shown in Fig.3. On the whole the
results are very similar to the nudged simulations (Fig.4).
The correlation coefficients and factor of 2 percentages are
slightly lower than in the nudged runs due to less accurate
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Fig. 5. Same as Fig. 4, but focusing on different regions. The four rows show results in (from top to bottom) Europe, China, the United
States and South America. All seasons are included. The marker colorsare consistent with Fig. 3.

Fig. 5. Same as Fig.4, but focusing on different regions. The four rows show results in (from top to bottom) Europe, China, the United
States and South America. All seasons are included. The marker colors are consistent with Fig.3.
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Fig. 6. Same as Fig. 4, but for the climatological simulations without nudging.Fig. 6. Same as Fig.4, but for the climatological simulations without nudging.

meteorological fields. However, there is no severe deteriora-
tion of the overall quality in any of the simulations.

3.4 Radon concentration at individual sites

The scatter plots discussed above are derived from seasonal
or monthly mean surface radon concentrations. The corre-
lation between simulation and observation is mainly deter-
mined by the model’s ability to reproduce the spatial distri-
bution of radon concentration at regional to global scales. In
this subsection we zoom in to individual sites to evaluate the
simulated temporal distribution and seasonal cycle by ana-
lyzing the box plots in Figs.7–10.

A box plot provides detailed information on distribution
statistics. The two whiskers attached to each box denote the
10th (lower) and 90th (upper) percentiles. The lower and
upper hinges are the 25th and 75th percentiles, respectively,
which bound the middle half of the population. The middle
hinge and the dot are the population median and mean, re-
spectively. In the figures, boxes are drawn for all samples at
the site, and for each season separately. The observed dis-
tribution is shown in black; simulation with the WCRP1995
emission is shown in green, the scaled SW1998 map in blue,
and the merged map in red. The simulated distributions are
derived from 3-hourly model output. The observed distri-
butions are derived from the original high frequency data if
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Fig. 7. Box plots showing the simulated and observed distribution of surface radon concentration at six sites in Europe. The two whiskers
of each box denote the 10th (lower) and 90th (upper) percentiles. Hinges from bottom to top are the 25th, 50th, and 75th percentiles,
respectively. Seasonal and annual means are indicated by dots. Thegray areas indicate magnitude of the equivalent radon concentration that
would lead to the same ionization rate as caused by galactic cosmic rays. Thelower and upper boundaries of the gray areas correspond to
the 10th and 90th percentiles, respectively. See paragraph 3 of Sect. 3.4 for further details.

Fig. 7. Box plots showing the simulated and observed distribution of surface radon concentration at six sites in Europe. The two whiskers
of each box denote the 10th (lower) and 90th (upper) percentiles. Hinges from bottom to top are the 25th, 50th, and 75th percentiles,
respectively. Seasonal and annual means are indicated by dots. The gray areas indicate magnitude of the equivalent radon concentration that
would lead to the same ionization rate as caused by galactic cosmic rays. The lower and upper boundaries of the gray areas correspond to
the 10th and 90th percentiles, respectively. See paragraph 3 of Sect.3.4for further details.

available. At the sites where only monthly or seasonal mean
can be obtained, the seasonal mean is plotted.

Following Kazil et al. (2010) we have diagnosed in our
simulations the ion production caused by galactic cosmic
rays (GCR). Assuming that in the near-surface layer radon
and its progeny are in equilibrium, one can easily determine
(see, e.g.,Laakso et al., 2004) the radon activity concentra-
tion that would result in the same ionization rate (hereafter
referred to as equivalent radon concentration). In Figs.7–10,
the lower and upper boundaries of the filled gray areas are
the 10th and 90th percentiles of the equivalent radon con-
centrations. Note that these reference percentiles are not de-

rived from data at each single site, but rather from the 3-
hourly model output at all surface grid points with altitude
lower than 2000 m. (Locations of surface elevation higher
than 2000 m are excluded because they are exposed to much
stronger GCR than lower altitudes, thus feature considerably
higher ionization rate. In our study there are no measure-
ments from such high elevations, except for those measured
at Mauna Loa.) It should also be noted that in reality radon
and its progeny are not always in equilibrium. The wide
range of disequilibrium in individual measurements (see, e.g.
Anspaugh et al., 2000) implies a degree of uncertainty in
our estimate of the equivalent radon concentration described
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Fig. 8. Same as Fig. 7 but for six sites in China.

but also the characteristic shapes of the concentration distri-
bution. The strongly asymmetric distributions at Cape Grim
and Cape Point are well captured. This indicates that both the
variations in large scale circulation and the radon emission in
source regions are reasonably represented in the model.

Kerguelen and Crozet are also remote ocean sites, but fea-
ture extremely low radon concentration because of their lo-
cation in the Southern Ocean. At these two sites we again
see a strong sensitivity to emission. Over the ocean, both the
WCRP1995 recommendation and the modified SW1998 map
have zero radon flux, while the merged emission map uti-
lizes the space- and time-dependent estimates of Schery and
Huang (2004). In the storm track over the Southern Ocean,
the surface radon flux are relatively large due to strong sur-
face winds. In the region 40◦ S–60◦ S, 0◦ E–180◦, the annual
mean exceeds 0.005 atom cm−2 s−1 (cf. Fig. 1 in Schery and
Huang, 2004). Although the flux is very weak compared to

that over the continents, taking it into account does improve
the results over the remote oceans significantly (Fig. 10, row
3).

Simulating radon concentration at Dumont d’Urville in
Antarctica has always been a difficult task (see, e.g.,
Heimann et al., 1990; Taguchi et al., 2002; Josse et al.,
2004). When assuming zero local emissions, radon con-
centration at this site is completely determined by long-
range transport. This is what happens in the simulation us-
ing the WCRP1995 emission setup. Note that WCRP1995
specified zero emission also over the oceans, thus all the
radon atoms over Antarctica originate from other conti-
nents. In this simulation we get not only unacceptably low
concentrations at Dumont d’Urville and Mawson, but also
wrong seasonal cycles that completely disagree with obser-
vations (see green boxes in the last row of Fig. 10). The
scaled SW1998 map and the merged emission assume a con-

Fig. 8. Same as Fig.7 but for six sites in China.

above. On the other hand, equilibrium factors between 0.5
and 0.7 are regarded as typical byAnspaugh et al.(2000) for
outdoor environment, and the value 0.6 was recommended
(see points 122 and 123 of Annex B therein). In other words,
in a typical outdoor environment, the actual potential alpha
energy concentration related to the short-lived progeny is
about 50 %–70 % of the value that would prevail in the equi-
librium case. Under such condition, the equivalent radon
concentrations, corresponding to the cosmic ray ionisation
rate, will be underestimated by (roughly) a factor of 2. One
should bear this uncertainty in mind when interpreting the
box plots in Figs.7–10.

The panels in Fig.7 confirm our findings from the scat-
ter plots that over Europe, the WCRP1995 emission is on
the high side, while the merged map leads to most realistic
results. At Freiburg, Schauinsland, Hohenpeissenberg, Gif-

sur-Yvette, and Lutjewad, where continuous and high fre-
quency data (German Federal Office for Radiation Protec-
tion, Zellweger et al., 2006; Yver et al., 2009; van der Laan
et al., 2009) allow for derivation of the concentration distri-
bution, the simulated concentration populations agree quite
well with measurements. One can also see in these panels
that the seasonal variation of radon concentration is well sim-
ulated. It is worth noting that according to any of the emis-
sion maps in Fig.2, Europe and Russia feature the lowest
fluxes among all the continental areas (except for the ice-
covered Greenland and Antarctica). Even so, the observed
and simulated radon concentration often exceeds the 90th
percentile of the equivalent concentration derived from the
GCR-induced ionization.
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Fig. 9. Same as Fig. 7 but for three sites in the United States.

stant flux of 0.00417 atom cm−2 s−1 over Antarctica all year
round, which results in a much better seasonal cycle in the
simulated radon concentration, although the values are now
on the high side. We have performed an additional experi-
ment using the merged emission map, but set the radon flux
over Antarctica to zero. Compared to WCRP1995, this sim-
ulation has non-zero fluxes over the Southern Oceans (Sch-
ery and Huang, 2004), which, through transport, can affect
Antarctica. It turns out that the concentrations at Dumont
d’Urville and Mawson become slightly higher than in the
WCRP1995 simulation (not shown), but there is no essen-
tial improvement either in the magnitude of the concentra-
tion or in its seasonal cycle. This indicates that (at least in
the ECHAM5 model) transport from the ocean and remote
continents alone can not explain the observed radon con-
centration over Antarctica. Local emissions need to be in-

cluded. Ideally one should replace the constant radon flux of
0.00417 atom cm−2 s−1 by some detailed map with horizon-
tal and seasonal variation. This can not be achieved now due
to severe lack of measurements in this region.

3.5 A brief summary on model evaluation

From the analysis presented in this section, we see that the
ECHAM5 model performs reasonably well in simulating the
lifecycle and global distribution of radon. Using the most
up-to-date emission estimates, we are able to reproduce the
main features of the temporal and spatial distribution of the
surface radon concentration. At most of the sites shown in
Fig. 3, model results agree not only qualitatively but also
quantitatively well with measurements. On the one hand,
there is still quite some room for improvement, for exam-
ple, by compiling even more detailed and accurate emission
maps, and by enhancing the model resolution so as to bet-
ter resolve the atmospheric circulation and surface properties
at scales smaller than 200 km; On the other hand, the sim-
ulations shown here are reasonable, and compare well with
other models (see, e.g., Dentener et al., 1999; Taguchi et al.,
2002; Hauglustaine et al., 2004; Koch et al., 2006, among
others). This provides a solid base for estimating the radon-
related ionization rate.

4 Radon-related ionization

In this section we present the simulated ionization rate
caused by radon and its progeny. In the simplified decay
chain (Fig. 1b) there are three sources of ionizing radia-
tion: the decay of222Rn, 214Pb and214Bi. Since the life-
times of the two daughters are relatively short compared to
the model time step (12 min), their concentrations are not
strongly affected by transport, but rather determined by how
much radon is locally availably for radioactive decay. Thus
the global distribution of the resulting ionization closely re-
sembles that of radon concentration (not shown). For brevity,
in the following we will refer to the radon-related ionization
rate (i.e., variableψ in Eqn. 1) as IPRR.

4.1 Global distribution

Figure 11 displays the annual and seasonal mean IPRR in the
surface layer simulated with different radon emission data.
The highest ionization rates appear where there is strong
emission and stable boundary layer. In boreal winter, the
suppressed vertical transport due to increased atmospheric
stability leads to high IPRR over 9 cm−3 s−1 (Fig. 11d–f).
The summer ionization rates are considerably lower due to
the ventilation effect of convective transport (Fig. 11g–i).

Discrepancies among the three columns in Fig. 11 indicate
the impact of radon emission. The scaled SW1998 map leads
to stronger ionization over West US and Europe than in the
other two simulations, while in China the IPRR is highest

Fig. 9. Same as Fig.7 but for three sites in the United States.

Figure8 shows results at six Chinese sites.1 In the south-
ern (e.g., Hongkong, Wuhan) and western (e.g., Xi’an) part
of China, the simulated mean concentrations agree better
with observations when theZhuo et al.(2008) emissions are
applied (see left column in Fig.8). Note that the concen-
trations are typically at the order of 5000 mBq m−3 STP or
higher, implying ionization rates of 3.2 pairs cm−3 s−1 STP
or stronger. Furthermore, it is worth noting that the selected

1The measurements from Hongkong (Zahorowski et al., 2005)
were collected at Hok Tsui, an ACE-Asia (Aerosol Characteriza-
tion Experiment in East Asia ) network site. Data of the five in-
land cities were taken fromJin et al.(1998), each sample of which
was the average of measurements collected over bare soil at several
outdoor locations in the same city. The individual locations were
characterized by typical regional features in terms of soil type and
meteorological conditions. These measurements thus represent typ-
ical radon concentrations in the corresponding regions.

cities are located in the East Asian monsoon region. The fact
that the ECHAM5 model reasonably reproduces the seasonal
cycle of surface radon concentration indicates that the East
Asian monsoon circulation and its effect on large scale tracer
transport is well represented by the model.

From Fig.9 we see again that the SW1998 emission, even
though scaled down by a factor of 1.6, is too high in the USA.
The inter-city differences suggest that taking into account the
regional gradient in radon flux improves the results in gen-
eral.

In Fig. 10, results are presented for eight coastal and re-
mote ocean sites. Bermuda and Mauna Loa are typical exam-
ples of remote ocean sites, while Cape Grim and Cape Point
are coastal sites, all strongly affected by horizontal transport.
At these sites the model is able to reproduce not only the cor-
rect magnitude and seasonal cycle of the population mean,
but also the characteristic shapes of the concentration distri-
bution. The strongly asymmetric distributions at Cape Grim
and Cape Point are well captured. This indicates that both the
variations in large scale circulation and the radon emission in
source regions are reasonably represented in the model.

Kerguelen and Crozet are also remote ocean sites, but fea-
ture extremely low radon concentration because of their lo-
cation in the Southern Ocean. At these two sites we again
see a strong sensitivity to emission. Over the ocean, both
the WCRP1995 recommendation and the modified SW1998
map have zero radon flux, while the merged emission map
utilizes the space- and time-dependent estimates ofSchery
and Huang(2004). In the storm track over the Southern
Ocean, the surface radon flux are relatively large due to
strong surface winds. In the region 40◦ S–60◦ S, 0◦ E–180◦,
the annual mean exceeds 0.005 atom cm−2 s−1 (cf. Fig. 1 in
Schery and Huang, 2004). Although the flux is very weak
compared to that over the continents, taking it into account
does improve the results over the remote oceans significantly
(Fig. 10, row 3).

Simulating radon concentration at Dumont d’Urville in
Antarctica has always been a difficult task (see, e.g.,
Heimann et al., 1990; Taguchi et al., 2002; Josse et al.,
2004). When assuming zero local emissions, radon con-
centration at this site is completely determined by long-
range transport. This is what happens in the simulation us-
ing the WCRP1995 emission setup. Note that WCRP1995
specified zero emission also over the oceans, thus all the
radon atoms over Antarctica originate from other conti-
nents. In this simulation we get not only unacceptably low
concentrations at Dumont d’Urville and Mawson, but also
wrong seasonal cycles that completely disagree with obser-
vations (see green boxes in the last row of Fig.10). The
scaled SW1998 map and the merged emission assume a con-
stant flux of 0.00417 atom cm−2 s−1 over Antarctica all year
round, which results in a much better seasonal cycle in the
simulated radon concentration, although the values are now
on the high side. We have performed an additional experi-
ment using the merged emission map, but set the radon flux
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Fig. 10. Same as Fig. 7 but for coastal and oceanic sites. Most panels in this figure do not have a gray box in them because at these sites the
radon family induces much less ionizing energy than the cosmic rays. Thegray box is therefore literally off the chart.

Fig. 10. Same as Fig.7 but for coastal and oceanic sites. Most panels in this figure do not have a gray box in them because at these sites the
radon family induces much less ionizing energy than the cosmic rays. The gray box is therefore literally off the chart.

over Antarctica to zero. Compared to WCRP1995, this sim-
ulation has non-zero fluxes over the Southern Oceans (Sch-
ery and Huang, 2004), which, through transport, can affect
Antarctica. It turns out that the concentrations at Dumont
d’Urville and Mawson become slightly higher than in the
WCRP1995 simulation (not shown), but there is no essen-
tial improvement either in the magnitude of the concentra-
tion or in its seasonal cycle. This indicates that (at least in

the ECHAM5 model) transport from the ocean and remote
continents alone can not explain the observed radon con-
centration over Antarctica. Local emissions need to be in-
cluded. Ideally one should replace the constant radon flux of
0.00417 atom cm−2 s−1 by some detailed map with horizon-
tal and seasonal variation. This can not be achieved now due
to severe lack of measurements in this region.
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Fig. 11. Simulated annual and seasonal mean near-surface ionization rate induced by radon decay series (IPRR, unit: cm−3 s−1).

when the Zhuo et al. (2008) emission is applied (Fig. 11c, f,
i). These are all consistent with what we have seen in Fig. 2.
Considering the model evaluation results in Sect. 3, the IPRR
given by the merged emission map is probably the most ac-
curate in the above-mentioned regions. It is worth noting that
panels d–f of Fig. 11 reveal large discrepancies over Russia
as well. There the SW1998 emission map gives the high-
est IPRR among the three simulations (Fig. 11e), while the
Szegvary et al. (2007) emission corresponds to the lowest
values (Fig. 11f). Due to lack of long-term observation, we
are not yet able to judge the quality of the simulations in this
area. Nevertheless differences between the two panels are
still informative because they provide an (although far from
conclusive) estimate about the uncertainty of the IPRR in this
area.

It would be useful if we could compare the simulated
radon-induced ionization rate with some direct ionization
rate measurements (e.g, Gagné et al., 2010). However, un-
like the radon concentration, the ionization rate induced by
the radon family can not be directly measured but has to be
derived. One way is to subtract the external ionization from
the observed total amount and attribute the residual to the

radon family, assuming that there is no other radionuclide in
the air. The second and often used method is to compute
the radon-induced ionization rate from the activity concen-
trations of radon and its progeny. The problem here is that
not all the daughters can be directly measured. Before com-
puting the ionization rate, one has to first derive the activity
concentration of these unmeasurable daughters by assuming
a certain equilibrium factor (Anspaugh et al., 2000) for the
decay chain. Both of the two methods need additional in-
formation of other ionization agents and assumptions made
would bring additional uncertainty. Therefore, we are not
able to get accurate measurements of radon-induced ioniza-
tion rate and use them to evaluate the model directly.

Figure 12 presents the annual and seasonal mean IPRR
in the lower troposphere in terms of zonal mean over land
area, and compares them with the GCR-induced ionization.
The radon-related ionization, primarily determined by radon
emission and transport, shows a completely different pat-
tern compared to the GCR-induced counterpart. The radon-
related ionization is more concentrated in the lower tropo-
sphere and in middle- and low-latitude areas, where its mag-
nitude clearly exceeds the GCR-induced ionization (Fig. 12,

Fig. 11. Simulated annual and seasonal mean near-surface ionization rate induced by radon decay series (IPRR, unit: cm−3 s−1).

3.5 A brief summary on model evaluation

From the analysis presented in this section, we see that the
ECHAM5 model performs reasonably well in simulating the
lifecycle and global distribution of radon. Using the most
up-to-date emission estimates, we are able to reproduce the
main features of the temporal and spatial distribution of the
surface radon concentration. At most of the sites shown in
Fig. 3, model results agree not only qualitatively but also
quantitatively well with measurements. On the one hand,
there is still quite some room for improvement, for exam-
ple, by compiling even more detailed and accurate emission
maps, and by enhancing the model resolution so as to bet-
ter resolve the atmospheric circulation and surface properties
at scales smaller than 200 km; On the other hand, the sim-
ulations shown here are reasonable, and compare well with
other models (see, e.g.,Dentener et al., 1999; Taguchi et al.,
2002; Hauglustaine et al., 2004; Koch et al., 2006, among
others). This provides a solid base for estimating the radon-
related ionization rate.

4 Radon-related ionization

In this section we present the simulated ionization rate
caused by radon and its progeny. In the simplified decay
chain (Fig. 1b) there are three sources of ionizing radia-
tion: the decay of222Rn, 214Pb and214Bi. Since the life-
times of the two daughters are relatively short compared to
the model time step (12 min), their concentrations are not
strongly affected by transport, but rather determined by how
much radon is locally availably for radioactive decay. Thus
the global distribution of the resulting ionization closely re-
sembles that of radon concentration (not shown). For brevity,
in the following we will refer to the radon-related ionization
rate (i.e., variableψ in Eqn.1) as IPRR.

4.1 Global distribution

Figure11displays the annual and seasonal mean IPRR in the
surface layer simulated with different radon emission data.
The highest ionization rates appear where there is strong
emission and stable boundary layer. In boreal winter, the
suppressed vertical transport due to increased atmospheric
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Fig. 12. Left column: simulated zonal mean ionization rate over the continents caused by the radioactive decay of radon and its progeny
(IPRR, unit: cm−3 s−1); Middle column: as in the left column but caused by galactic cosmic rays (IPRC, unit: cm−3 s−1); Right column:
the contribution of radon and its progeny to the total (IPRR+ IPRC) ionization rate. All panels correspond to the simulation performed with
the merged emission map.

right most column). It should be noted that in boreal winter,
very high ionization rates appear between 20◦ N and 50◦ N
(Fig. 12d). The major contributor to these maxima in the
zonal mean is the high IPRR in Asia (China, Myanmar, and
north of India) and the US, as can be seen from the east-west
cross section in Fig. 13. These regions are known to be asso-
ciated with relative high near-surfaceSO2 andH2SO4 con-
centrations as well as nucleation rates (see, e.g., Figs. 1–2 in
Yu et al. (2008)), especially in cold seasons whenSO2 emis-
sions are strong and the stable atmospheric boundary layer
traps the species in the surface layer. Under such conditions,
the coexistence of high ionization rate may help further en-
hance the particle formation prcesses.

4.2 Ionization rate and ambient temperature

Temperature andH2SO4 concentration are generally be-
lieved as the two most important factors controlling the start
and end of nucleation events (see, e.g, Yu, 2010). In this sub-
section we intend to look into the coexistence of ionization
with these parameters. Due to the fact that we did not switch
on aerosol and chemistry processes in the simulations, con-
centrations ofH2SO4 are not available. Thus only the ambi-
ent temperature is analyzed here.

Figure 14 shows the joint probability density distribution

(PDF) of air temperature and radon-related ionization ratein
different regions (China, Europe, North America, and Rus-
sia, as indicated in Fig. 11e-f by dashed black lines). The
PDFs are computed for the lowest model level using the 3-
hourly data in winter (DJF). According to the evaluations in
the previous section, the simulation using the merged radon
emission is the most accurate in China, Europe, and North
America. Therefore only this simulation is shown for these
regions (Fig. 14a–c).

The most prominent feature in the first row of Fig. 14
is that ionization is much stronger over China and asso-
ciated with lower temperature. The PDF of temperature
peaks around 260 K. At this temperature, ionization rate of
15 cm−3 s−1 is not at all uncommon (Fig. 14a). In extreme
cases, the ionization rate can even reach 50 cm−3 s−1 at tem-
peratures as low as 250 K (not shown). If there is abundant
sulfuric acid gas, chargedH2SO4/H2O nucleation may be
strong and significantly influence the aerosol size distribu-
tion. In the US, ionization is also strong, and peaks around
0◦C (Fig. 14b). Europe, on the other hand, features very low
ionization rate which probably has very limited influence on
nucleation. The second row of Fig. 14 shows the joint PDF in
Russia for all three simulations since it is not clear which one
is more accurate. Although the simulated ionization rates are
lower than in China and the US, the effect of low temperature

Fig. 12. Left column: simulated zonal mean ionization rate over the continents caused by the radioactive decay of radon and its progeny
(IPRR, unit: cm−3 s−1); Middle column: as in the left column but caused by galactic cosmic rays (IPRC, unit: cm−3 s−1); Right column:
the contribution of radon and its progeny to the total (IPRR+ IPRC) ionization rate. All panels correspond to the simulation performed with
the merged emission map.

stability leads to high IPRR over 9 cm−3 s−1 (Fig. 11d–f).
The summer ionization rates are considerably lower due to
the ventilation effect of convective transport (Fig.11g–i).

Discrepancies among the three columns in Fig.11indicate
the impact of radon emission. The scaled SW1998 map leads
to stronger ionization over West US and Europe than in the
other two simulations, while in China the IPRR is highest
when theZhuo et al.(2008) emission is applied (Fig.11c, f,
i). These are all consistent with what we have seen in Fig.2.
Considering the model evaluation results in Sect.3, the IPRR
given by the merged emission map is probably the most ac-
curate in the above-mentioned regions. It is worth noting that
panels d–f of Fig.11 reveal large discrepancies over Russia
as well. There the SW1998 emission map gives the high-
est IPRR among the three simulations (Fig.11e), while the
Szegvary et al.(2007) emission corresponds to the lowest
values (Fig.11f). Due to lack of long-term observation, we
are not yet able to judge the quality of the simulations in this
area. Nevertheless differences between the two panels are
still informative because they provide an (although far from
conclusive) estimate about the uncertainty of the IPRR in this
area.

It would be useful if we could compare the simulated
radon-induced ionization rate with some direct ionization
rate measurements (e.g,Gagńe et al., 2010). However, un-

like the radon concentration, the ionization rate induced by
the radon family can not be directly measured but has to be
derived. One way is to subtract the external ionization from
the observed total amount and attribute the residual to the
radon family, assuming that there is no other radionuclide in
the air. The second and often used method is to compute
the radon-induced ionization rate from the activity concen-
trations of radon and its progeny. The problem here is that
not all the daughters can be directly measured. Before com-
puting the ionization rate, one has to first derive the activity
concentration of these unmeasurable daughters by assuming
a certain equilibrium factor (Anspaugh et al., 2000) for the
decay chain. Both of the two methods need additional in-
formation of other ionization agents and assumptions made
would bring additional uncertainty. Therefore, we are not
able to get accurate measurements of radon-induced ioniza-
tion rate and use them to evaluate the model directly.

Figure 12 presents the annual and seasonal mean IPRR
in the lower troposphere in terms of zonal mean over land
area, and compares them with the GCR-induced ioniza-
tion. The radon-related ionization, primarily determined by
radon emission and transport, shows a completely differ-
ent pattern compared to the GCR-induced counterpart. The
radon-related ionization is more concentrated in the lower
troposphere and in middle- and low-latitude areas, where
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Fig. 13. Height-longitude cross section of the 20◦ N–50◦ N mean
ionization rate over land caused by radon and its progeny. The re-
sults are obtained using the newly merged radon emission map.

may play a role and still leads to significant particle forma-
tion if other conditions of nucleation are fulfilled.

It should be pointed out that with Fig. 14 we only pre-
sented a very preliminary analysis showing that radon-related
ionization may play a significant role in new particle forma-
tion at particular locations. In order to obtain more concrete
results on the actual impact of such ionization, one should
actually include the radon-related ionization in an aerosol-
climate model and carry out sensitivity studies, because inre-
ality the nucleation processes are highly complex and nonlin-
ear, and not yet well understood. For example, in this section
we analyzed only boreal winter although nucleation events
are often observed to peak in spring and fall (e.g., Laakso-
nen et al., 2008). It would be interesting to carry out simula-
tions with the ECHAM5-HAM model (Stier et al., 2005) to
find out whether the radon-family plays a role (at least in this
particular model) in the phenomena.

5 Conclusions

In this study global simulations are performed with the
ECHAM5 model to simulate radon activity in the lower tro-

posphere and its effect on ion production. The decay chain
of radon in the model is simplified by removing short-lived
radon daughters. The solution of the decay equation is com-
puted analytically within each model time step, and cou-
pled with tracer transport caused by advection, cumulus con-
vection and turbulent mixing. The radon-related ionization
rate is estimated based on the activity concentration of radon
and its daughter species, and well-accepted values of the de-
cay/ionization energy.

Based on recent reports in the literature on radon emission,
an up-to-date global radon emission map is compiled with
regional details and seasonal variation. The simulated radon
activity concentration is evaluated against surface radonmea-
surements at 51 locations. Results show that the global
model ECHAM5 can reasonably reproduce the variations of
surface radon concentrations observed at various locations.
On the whole, the newly compiled emission map leads to
better results compared to the WCRP1995 protocol and the
widely used SW1998 map. The merged map is not only
helpful for this study, but probably also useful for other re-
searchers working on numerical modelling of radon trans-
port and the transport and deposition processes of210Pb (e.g.,
Balkanski et al., 1993).

The radon-related ionization rate is computed and com-
pared with the GCR-ionization rate. It is found that in boreal
winter, the suppressed vertical transport due to increasedat-
mospheric stability leads to seasonal mean IPRR as high as
9 cm−3 s−1. In middle- and low-latitude continental areas,
the zonal mean radon-induced ionization rate clearly exceeds
the GCR-induced counterpart in the near-surface levels up to
800 m elevation. At many continental sites, the observed and
simulated surface radon activity concentration often occurs
well above the 90th percentile of the equivalent concentra-
tion derived from the GCR-induced ionization. Further anal-
ysis on the joint PDF of ionization rate and temperature show
that in China and USA, strong radon-related ionization of-
ten occur in winter at low ambient temperature, which may
help enhance theH2SO4/H2O nucleation when other factors
such asH2SO4 concentration and relative humidity are in
favorable conditions. Based on results from this study we
conclude that it will be useful to extend the work of Kazil
et al. (2010) and carry out a follow-up study with the aerosol-
climate model ECHAM5-HAM to investigate the effect of
radon-related ionization on nucleation, as well as the con-
sequences in aerosol size distribution, cloud properties,and
climate effect.

One of the products of this study, the monthly mean radon-
induced ionization rates simulated by our model, are pro-
vided as a supplement of this paper which is freely available
from the journal website. Ionization rates at higher temporal
resolution, as well as the merged radon emission maps, can
be provided to interested researchers upon request.

Fig. 13. Height-longitude cross section of the 20◦ N–50◦ N mean
ionization rate over land caused by radon and its progeny. The re-
sults are obtained using the newly merged radon emission map.

its magnitude clearly exceeds the GCR-induced ionization
(Fig. 12, right most column). It should be noted that in bo-
real winter, very high ionization rates appear between 20◦ N
and 50◦ N (Fig.12d). The major contributor to these maxima
in the zonal mean is the high IPRR in Asia (China, Myanmar,
and north of India) and the US, as can be seen from the east-
west cross section in Fig.13. These regions are known to be
associated with relative high near-surface SO2 and H2SO4
concentrations as well as nucleation rates (see, e.g., Figs. 1–
2 in Yu et al. (2008)), especially in cold seasons when SO2
emissions are strong and the stable atmospheric boundary
layer traps the species in the surface layer. Under such condi-
tions, the coexistence of high ionization rate may help further
enhance the particle formation prcesses.

4.2 Ionization rate and ambient temperature

Temperature and H2SO4 concentration are generally be-
lieved as the two most important factors controlling the start
and end of nucleation events (see, e.g,Yu, 2010). In this sub-
section we intend to look into the coexistence of ionization
with these parameters. Due to the fact that we did not switch

on aerosol and chemistry processes in the simulations, con-
centrations of H2SO4 are not available. Thus only the ambi-
ent temperature is analyzed here.

Figure14 shows the joint probability density distribution
(PDF) of air temperature and radon-related ionization rate in
different regions (China, Europe, North America, and Rus-
sia, as indicated in Fig.11e–f by dashed black lines). The
PDFs are computed for the lowest model level using the 3-
hourly data in winter (DJF). According to the evaluations in
the previous section, the simulation using the merged radon
emission is the most accurate in China, Europe, and North
America. Therefore only this simulation is shown for these
regions (Fig.14a–c).

The most prominent feature in the first row of Fig.14
is that ionization is much stronger over China and asso-
ciated with lower temperature. The PDF of temperature
peaks around 260 K. At this temperature, ionization rate of
15 cm−3 s−1 is not at all uncommon (Fig.14a). In extreme
cases, the ionization rate can even reach 50 cm−3 s−1 at tem-
peratures as low as 250 K (not shown). If there is abundant
sulfuric acid gas, charged H2SO4/H2O nucleation may be
strong and significantly influence the aerosol size distribu-
tion. In the US, ionization is also strong, and peaks around
0◦C (Fig.14b). Europe, on the other hand, features very low
ionization rate which probably has very limited influence on
nucleation. The second row of Fig.14shows the joint PDF in
Russia for all three simulations since it is not clear which one
is more accurate. Although the simulated ionization rates are
lower than in China and the US, the effect of low temperature
may play a role and still leads to significant particle forma-
tion if other conditions of nucleation are fulfilled.

It should be pointed out that with Fig.14 we only pre-
sented a very preliminary analysis showing that radon-related
ionization may play a significant role in new particle forma-
tion at particular locations. In order to obtain more concrete
results on the actual impact of such ionization, one should
actually include the radon-related ionization in an aerosol-
climate model and carry out sensitivity studies, because in re-
ality the nucleation processes are highly complex and nonlin-
ear, and not yet well understood. For example, in this section
we analyzed only boreal winter although nucleation events
are often observed to peak in spring and fall (e.g.,Laakso-
nen et al., 2008). It would be interesting to carry out simula-
tions with the ECHAM5-HAM model (Stier et al., 2005) to
find out whether the radon-family plays a role (at least in this
particular model) in the phenomena.

5 Conclusions

In this study global simulations are performed with the
ECHAM5 model to simulate radon activity in the lower tro-
posphere and its effect on ion production. The decay chain
of radon in the model is simplified by removing short-lived
radon daughters. The solution of the decay equation is
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Fig. 14. Joint (bivariate) probability density distribution (PDF) of air temperature and radon-related ionization rate (IPRR) in different
regions: (a) China (20◦ N–50◦ N, 75◦ E–120◦ E); (b) Europe (40◦ N–75◦ N, 10◦ W–40◦ E); (c) USA (30◦ N–50◦ N, 120◦ W–70◦ W); (d–
f) Russia (50◦ N–80◦ N, 40◦ E–180◦ E). These regions are indicated by dashed black frames in Fig. 11. Labels next to the color bar are
intensities of the PDF (unit:%). The PDFs are computed for the near-surface from the 3-hourly model output in winter months (DJF).
Marginal area with white color indicate missing values. Note that scales of thetemperature coordinate in(a–c) are not the same as those in
(d–f).

Appendix A

Analytical solution of the decay chain

The simplified decay chain system (Fig. 1b) can be described
by an ordinary differential equation system with four un-
knowns (in activity concentration form):

dc1

dt
= −λ1c1, (A1)

dc2

dt
=
λ1

λ2
c1 − λ2c2, (A2)

dc3

dt
=
λ2

λ3
c2 − λ3c3, (A3)

dc4

dt
=
λ3

λ4
c3, (A4)

where c1, c2, c3, and c4 are the activity concentration of
222Rn, 214Pb, 214Bi, and 210Pb, respectively, andλ1, λ2,
λ3, andλ4 are the corresponding decay constants. For each
model time step (∆t = 12min), the analytical solution of the

decay chain att+∆t reads

c1(t+∆t) = c1(t)e
−λ1∆t , (A5)

c2(t+∆t) = c2(t)e
−λ2∆t + χ21η12c1(t) , (A6)

c3(t+∆t) = c3(t)e
−λ3∆t + χ21χ31η13c1(t)

+χ32η23 (c2(t)− χ21c1(t)) (A7)

where

χij =
λi

λi − λj
, (A8)

ηij = e−λi∆t − e−λj∆t . (A9)

By integrating Eqs. (A5)–(A7) fromt to t+∆t, the time-step
average concentration can be obtained:

c̄1 = θ1c1(t) , (A10)

c̄2 = θ2c2(t) + χ21 (θ1 − θ2) c1(t) , (A11)

c̄3 = θ3c3(t) + χ21χ31 (θ1 − θ3) c1(t)

+χ32 (θ2 − θ3) (c2(t)− χ21c1(t)) . (A12)

where

θi =
λi − e−λi∆t

λi ∆t
. (A13)

Fig. 14. Joint (bivariate) probability density distribution (PDF) of air temperature and radon-related ionization rate (IPRR) in different
regions: (a) China (20◦ N–50◦ N, 75◦ E–120◦ E); (b) Europe (40◦ N–75◦ N, 10◦ W–40◦ E); (c) USA (30◦ N–50◦ N, 120◦ W–70◦ W); (d–
f) Russia (50◦ N–80◦ N, 40◦ E–180◦ E). These regions are indicated by dashed black frames in Fig.11. Labels next to the color bar are
intensities of the PDF (unit: %). The PDFs are computed for the near-surface from the 3-hourly model output in winter months (DJF).
Marginal area with white color indicate missing values. Note that scales of the temperature coordinate in(a–c) are not the same as those in
(d–f).

computed analytically within each model time step, and cou-
pled with tracer transport caused by advection, cumulus con-
vection and turbulent mixing. The radon-related ionization
rate is estimated based on the activity concentration of radon
and its daughter species, and well-accepted values of the de-
cay/ionization energy.

Based on recent reports in the literature on radon emission,
an up-to-date global radon emission map is compiled with
regional details and seasonal variation. The simulated radon
activity concentration is evaluated against surface radon mea-
surements at 51 locations. Results show that the global
model ECHAM5 can reasonably reproduce the variations of
surface radon concentrations observed at various locations.
On the whole, the newly compiled emission map leads to
better results compared to the WCRP1995 protocol and the
widely used SW1998 map. The merged map is not only
helpful for this study, but probably also useful for other re-
searchers working on numerical modelling of radon trans-
port and the transport and deposition processes of210Pb (e.g.,
Balkanski et al., 1993).

The radon-related ionization rate is computed and com-
pared with the GCR-ionization rate. It is found that in bo-
real winter, the suppressed vertical transport due to increased

atmospheric stability leads to seasonal mean IPRR as high
as 9 cm−3 s−1. In middle- and low-latitude continental areas,
the zonal mean radon-induced ionization rate clearly exceeds
the GCR-induced counterpart in the near-surface levels up to
800 m elevation. At many continental sites, the observed and
simulated surface radon activity concentration often occurs
well above the 90th percentile of the equivalent concentra-
tion derived from the GCR-induced ionization. Further anal-
ysis on the joint PDF of ionization rate and temperature show
that in China and USA, strong radon-related ionization of-
ten occur in winter at low ambient temperature, which may
help enhance the H2SO4/H2O nucleation when other factors
such as H2SO4 concentration and relative humidity are in
favorable conditions. Based on results from this study we
conclude that it will be useful to extend the work ofKazil
et al.(2010) and carry out a follow-up study with the aerosol-
climate model ECHAM5-HAM to investigate the effect of
radon-related ionization on nucleation, as well as the con-
sequences in aerosol size distribution, cloud properties, and
climate effect.

One of the products of this study, the monthly mean radon-
induced ionization rates simulated by our model, are pro-
vided as a supplement of this paper which is freely available

Atmos. Chem. Phys., 11, 7817–7838, 2011 www.atmos-chem-phys.net/11/7817/2011/



K. Zhang et al.: Lower tropospheric radon and ionization 7835

from the journal website. Ionization rates at higher temporal
resolution, as well as the merged radon emission maps, can
be provided to interested researchers upon request.

Appendix A

Analytical solution of the decay chain

The simplified decay chain system (Fig.1b) can be described
by an ordinary differential equation system with four un-
knowns (in activity concentration form):

dc1

dt
= −λ1c1, (A1)

dc2

dt
=
λ1

λ2
c1−λ2c2, (A2)

dc3

dt
=
λ2

λ3
c2−λ3c3, (A3)

dc4

dt
=
λ3

λ4
c3, (A4)

where c1, c2, c3, and c4 are the activity concentration of
222Rn, 214Pb, 214Bi, and 210Pb, respectively, andλ1, λ2,
λ3, andλ4 are the corresponding decay constants. For each
model time step (1t = 12 min), the analytical solution of the
decay chain att+1t reads

c1(t+1t) = c1(t)e
−λ11t , (A5)

c2(t+1t) = c2(t)e
−λ21t +χ21η12c1(t), (A6)

c3(t+1t) = c3(t)e
−λ31t +χ21χ31η13c1(t)

+χ32η23(c2(t)−χ21c1(t)) (A7)

where

χij =
λi

λi−λj
, (A8)

ηij = e−λi1t −e−λj1t . (A9)

By integrating Eqs. (A5)–(A7) from t to t+1t , the time-step
average concentration can be obtained:

c̄1 = θ1c1(t), (A10)

c̄2 = θ2c2(t)+χ21(θ1−θ2)c1(t), (A11)

c̄3 = θ3c3(t)+χ21χ31(θ1−θ3)c1(t)

+χ32(θ2−θ3)(c2(t)−χ21c1(t)). (A12)

where

θi =
λi−e

−λi1t

λi1t
. (A13)

Since the decay of210Pb is ignored, its concentration is not
computed in the model.

Supplement related to this article is available online at:
http://www.atmos-chem-phys.net/11/7817/2011/
acp-11-7817-2011-supplement.pdf.

Acknowledgements.The authors thank F. Conen and T. Szegvary
for providing their radon flux maps, and S. Rast for preparing the
nudging data and making the internal review. We are also grateful
to S. Schery, S. Whittlestone, C. Schlosser, J.-F. Vinuesa, and
the two anonymous reviewers for their very helpful comments.
The German BfS, French RAMCES, and Australian ANSTO
monitoring networks are acknowledged for providing the new
radon measurements used in this study. This work was jointly
supported by the Max Planck Society and the EUCAARI project.
All simulations were performed at the German Climate Computing
Center (Deutsches Klimarechenzentrum GmbH, DKRZ).

The service charges for this open access publication
have been covered by the Max Planck Society.

Edited by: M. Schulz

References

Anspaugh, L., Bennett, B., Bouville, A., Burkart, W., Cox, R.,
Croft, J., Hall, P., Leenhouts, H., Muirhead, C., Ron, E.,
Savkin, M., Shrimpton, P., Stather, J., Thacker, J., and
Wrixon, A.: Exposures from natural radiation sources, ANNEX
B of Sources and effects of ionizing radiation, UNSCEAR 2000
Report to the General Assembly, Tech. Rep. E.00.IX.3, United
Nations Scientific Committee on the Effects of Atomic Radia-
tion, New York, USA, 2000.

Bakwin, P. S., Zhao, C., Ussler, W., Tans, P. P., and Quesnell, E.:
Measurements of carbon dioxide on a very tall tower, Tellus B,
47, 535–549, 1995.

Balkanski, Y. J., Jacob, D. J., Gardner, G. M., Graustein, W. C., and
Turekian, K. K.: Transport and residence times of tropospheric
aerosols inferred from a global three-dimensional simulation of
Pb., J. Geophys. Res., 98, 20573–20586, 1993.

Brinkop, S. and Roeckner, E.: Sensitivity of a general circula-
tionmodel to parameterizations of cloud-turbulence interactions
inthe atmospheric boundary layer, Tellus A, 47, 197–220, 1995.

Brunke, E. G., Labuschagne, C., Parker, B., Scheel, H. E., and Whit-
tlestone, S.: Baseline air mass selection at Cape Point, South
Africa: application of222Rn and other filter criteria to CO2, At-
mos. Environ., 38, 5693–5702, 2004.

Chevillard, A., Ciais, P., Karstens, U., Heimann, M., and
Schmidt, M.: Transport of222Rn using the regional model
REMO: a detailed comparison with measurements over Europe,
Tellus B, 54, 850–871, 2002.

Clement, C. F. and Harrison, R. G.: The charging of radioactive
aerosols, J. Aerosol Sci., 23, 481–504, 1992.

Conen, F. and Robertson, L. B.: Latitudinal distribution of radon-
222 flux from continents, Tellus B, 54, 127–133, 2002.

Dentener, F., Feichter, J., and Jeuken, A.: Simulation of222Radon
using on-line and off-line global models, Tellus B, 51, 573–602,
1999.

Downey, A., Jasper, J. D., Gras, J. J., and Whittlestone, S.:
Lower tropospheric transport over the Southern Ocean, J. Atmos.
Chem., 11, 43–68, 1990.

Dubal, M., Wood, N., and Staniforth, A.: Analysis of parallel ver-
sus sequential splittings for time-stepping physical parameteriza-
tions, Mon. Weather Rev., 132, 121–132, 2004.

www.atmos-chem-phys.net/11/7817/2011/ Atmos. Chem. Phys., 11, 7817–7838, 2011

http://www.atmos-chem-phys.net/11/7817/2011/acp-11-7817-2011-supplement.pdf
http://www.atmos-chem-phys.net/11/7817/2011/acp-11-7817-2011-supplement.pdf


7836 K. Zhang et al.: Lower tropospheric radon and ionization

Emsley, J.: Nature’s building blocks: an A–Z guide to the elements,
Oxford University Press Inc., New York, USA, 354–355, 2001.
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can Institute of Physics, Buzios, Brazil, 407–410, 2008.

Hosler, C. R.: Urban-rural climatology of atmospheric radon con-
centration, J. Geophys. Res., 73, 1155–1166, 1968.

Hutter, A. R., Larsen, R. J., Maring, H., and Merrill, J. T.:222Rn
at Bermuda and Mauna Loa: local and distant sources, J. Ra-
dioanal. Nucl. Ch., 193, 309–318, 1995.

Jacob, D. J. and Prather, M. J.: Radon-222 as a test of convective
transport in a general circulation model, Tellus B, 42, 118–134,
1990.

Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Balkanski, Y. J.,
Beagley, S. R., Bergmann, D. J., Blackshear, W. T., Brown, M.,
Chiba, M., Chipperfield, M. P., Grandpré, J., Dignon, J. E., Fe-
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