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Abstract

Large uncertainties in estimates of the Earth’s climate sensitivity remain. This

dissertation explores and discusses several approaches to narrow the range in

climate sensitivity estimates.

The use of volcanic eruptions to constrain climate sensitivity estimates is tested

with ensemble simulations of the last millennium, with volcanic radiative forcing

based on reconstructions. More than 45 strong eruptions, all larger than Mt.

Pinatubo, or more than 10000 years of volcanic activity such as present in the

past thousand years, would be necessary to obtain a range of climate sensitivity

estimates that is narrower than the most recent IPCC estimates. This conclusion

is based on the assumption that the response is directly related to equilibrium cli-

mate sensitivity, and in this way circumvents complications of linking the climate

response following large volcanic events to climate sensitivity. If this assumption

is relaxed, the number of volcanoes needed to obtain accurate estimates of climate

sensitivity is likely even higher.

The uncertainty in climate sensitivity estimates may be analyzed in terms of

the contributions of feedbacks from individual physical processes in the climate

system using feedback quantification methods. Results of a feedback assessment

depend on the method chosen and the period over which feedbacks are derived.

The sampling errors can be large when averaging periods are too short. This is

especially true for the cloud feedback, which is highly variable in space and time.

Temporal variability, such as the year-to-year variability, can be as large as the

inter-model spread in a given feedback from the CMIP3 multi-model ensemble.

Even in our simulations, where many sources of natural variability are neglected,

and where the forcing is rather homogeneous as exerted by the carbon dioxide

concentration doubling, multi-year averages are necessary to get a reliable esti-

mate of the simulated cloud feedback. Considering the large natural variability

and relatively small, and spatially heterogeneous forcing present in the real world,

this implies that using observations to constrain feedbacks, in particular the cloud

feedback, is a challenging task.

Another option to better constrain climate sensitivity is to weigh model pro-

jections according to measures of model fidelity. This has failed so far, largely

because climate sensitivity could not be related to aggregate measures of skill in

current ensembles of model simulations. Here we show that measures of model

fidelity that are effective at narrowing the distribution of future projections still

may be a poor measure of the likelihood that a model will provide an accurate

estimate of climate sensitivity. Two ensembles of climate model simulations are



considered in this analysis: an ensemble obtained by perturbing parameters in a

single model and the CMIP3 multi-model ensemble, containing the majority of the

worlds climate models. The single model ensemble reproduces many aspects of

the multi-model ensemble, including the distributions of skill in simulating cloud

related properties, the distribution of climate sensitivity, and the relation between

the simulated climate sensitivities and cloud feedbacks. By restricting error mea-

sures to sub-tropical marine cloud regimes tighter relationships between climate

sensitivity and model error can be identified, allowing to narrow the distribution

of climate sensitivity in the simple ensemble. This relationship, however, does

not carry into the multi-model ensemble. This suggests that model weighting

based on statistical relationships alone is insufficient, and that structural errors

in climate models are still too large to obtain reliable climate sensitivity estimates

by attributing weights to individual models.

Finally, a possibility to more directly evaluate climate models with observations is

outlined. The use of data assimilation allows to identify which fast processes lead

to a drift from the observed state. This is done on short time scales rather than

by evaluating long-term statistics of results of those processes. As fast processes

are the largest contributor to the uncertainty in model-based estimates of climate

sensitivity this is a promising way towards a better understanding of the climate

system and a more reliable quantification of its response to perturbations.
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Chapter 1

Introduction

How sensitive is the Earth’s climate system to perturbations? To accu-

rately answer this question we require a detailed understanding of many interact-

ing physical, chemical and biological processes that act on various time and space

scales. Despite large advances in all involved fields, crucial parts of the climate

system remain poorly understood, and the uncertainty in estimates of climate

sensitivity is therefore large.

The complex problem of quantifying the sensitivity of the Earth’s climate is

generally approached with a measure called equilibrium climate sensitivity : the

change in global mean surface temperature following a doubling in atmospheric

carbon dioxide (CO2) concentrations. This simple and useful measure represents

a fundamental characteristic of the climate system with which many other aspects

of climate change scale. Its value depends crucially on the different feedbacks that

take place within the climate system in response to an imposed climate forcing.

Obtaining a better estimate of climate sensitivity requires a good understanding

of the interplay between forcing, response and feedbacks.

1.1 Forcing, feedbacks and climate sensitivity

The concept of forcing, feedbacks and climate sensitivity describes the response of

the climate system to changes in boundary conditions which affect the radiation

budget of the Earth. Such a change is called radiative forcing (∆F ) and can be

initiated naturally, for instance by changes in the solar irradiation or by volcanic

eruptions, or due to an anthropogenic impact, such as changes in atmospheric

CO2 concentrations. The radiative forcing leads to a change in net energy flux,

∆R, into the climate system, measured as the difference of incoming and outgoing

radiation at the top-of-atmosphere (ToA). The mean temperature of the climate

system adjusts, as to restore the radiation balance at the ToA. A positive (neg-

ative) forcing leads to a warming (cooling), so that the atmosphere emits more

(less) energy out to space in the infrared part of the electromagnetic spectrum.
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Chapter 1 Introduction

The concept of forcing, feedbacks and climate sensitivity is summarized in the

following energy budget equation:

∆R = ∆F − λ∆TS (1.1)

where λ, the feedback parameter, represents all processes that change their radia-

tive impact following a change in the surface temperature (∆TS). These feedback

processes can amplify or dampen the initial perturbation and comprise the largest

uncertainties in estimating the climate system’s sensitivity. The concept of equi-

librium climate sensitivity is introduced when Equation 1.1 is applied to two

stationary climate states, where one has doubled atmospheric CO2 concentra-

tions.

The first estimates of equilibrium climate sensitivity were based on calcula-

tions by Arrhenius (1896) (5.5 K) and Callendar (1938) (2 K). More recently,

comprehensive numerical models of the Earth system are employed that can be

integrated under constant boundary conditions until a new stationary state is

reached. However, the range in equilibrium climate sensitivity estimates from en-

sembles of climate models, often treated as the uncertainty in climate sensitivity,

has not changed much from the first climate model results of Charney (1979) to

the state-of-the-art climate models: giving a range of 2.1 to 4.4 K (Randall et al.

2007). Although equilibrium climate sensitivity is a useful metric to compare

and test climate models, because it is relatively easy to derive, extrapolating this

concept to the real world has proven difficult for various reasons (Knutti et al.

2008).

First, the climate system is driven by radiative forcings from different compo-

nents of the system which change continuously. The different forcing components

interfere and it is difficult to quantify them. Second, the inertia of the world’s

oceans buffer the forcing imposed, leading to long time scales (from decades to

centuries) that are necessary to approach a stationary state. Finally, because

of observational uncertainties the detection of a response to a comparably small

forcing, when compared to the response to a forcing induced by instantaneously

doubled CO2 concentrations, remains a challenging task.

1.2 Outline of Thesis

This thesis uses the above concepts to discuss in four self-contained chapters

the challenges in obtaining a narrower range in estimates of equilibrium climate

sensitivity.

In Chapter 2 ensemble simulations of the last millennium, with boundary con-

ditions derived from reconstructions, are used to test how many volcanoes are
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1.2 Outline of Thesis

necessary to obtain narrower estimates of climate sensitivity. In this ensemble of

model integrations the stratospheric aerosol forcing due to many volcanic erup-

tions is imposed, with each eruption being different in magnitude and location,

and each forcing being imposed at a different climate state. Climate sensitivity is

derived by assuming that it relates directly to the response of the climate system

to volcanic forcing. It is discussed how many volcanoes, and with what intensity

of radiative forcing, are necessary to obtain a range of climate sensitivity esti-

mates, comparable to the one given by the multi-model ensemble of the Coupled

Model Inter-comparison Project phase-3 (CMIP3; Meehl et al. 2007). Parts of

this chapter are already published in Climate of the Past1 and are reproduced

with adjustments to serve the purpose of this chapter. The study presented in

this chapter is in preparation for submission to Geophysical Research Letters.

Chapter 3 is dedicated to the feedback parameter λ and its different com-

ponents. A variety of methods have been developed to isolate specific feedback

mechanisms in climate models, raising the question as to how sensitive the results

of such analyses are to the methods employed, which is explored here. Further-

more, the spatial and temporal variability of each physical feedback process is

analyzed to estimate the averaging time necessary to minimize the sampling er-

ror. This chapter will be submitted to Climate Dynamics2.

Chapter 4 constructs a single-model perturbed-physics ensemble where only

cloud parameterization parameters are perturbed and demonstrates how this en-

semble reproduces many aspects of the CMIP3 multi-model ensemble. For this

perturbed-physics ensemble, an observational constraint on climate sensitivity is

derived, which, however, is not applicable to the multi-model ensemble. What

this implies for the interpretation of results from multi-model ensembles such as

used for the IPCC report is discussed in detail. This chapter is re-submitted after

revisions to the Journal of Climate3 and is reproduced with editorial adjustments.

Chapter 5 gives a detailed outlook on possible next steps to evaluate models and

potentially link processes to climate sensitivity by employing data assimilation.

A technical description is given and first results are shown, which show potential

1Jungclaus, J. H., S. J. Lorenz, C. Timmreck, C. H. Reick, V. Brovkin, K. Six, J. Segschneider,

M. A. Giorgetta, T. J. Crowley, J. Pongratz, N. A. Krivova, L. E. Vieira, S. K. Solanki, D.

Klocke, M. Botzet, M. Esch, V. Gayler, H. Haak, T. J. Raddatz, E. Roeckner, R. Schnur,

H. Widmann, M. Claussen, B. Stevens, and J. Marotzke, 2010: Climate and carbon-cycle

variability over the last millennium. Climate of the Past, 6, 723–737, doi:10.5194/cp-6-723-

2010.
2Klocke, D., J. Quaas, M. Giorgetta, B. Stevens, Assessment of different feedback metrics, to

be submitted to Climate Dynamics, 2011.
3Klocke, D., R. Pincus, J. Quaas, On constraining estimates of climate sensitivity with present-

day observations through model weighting, re-submitted after revisions to Journal of Cli-

mate, 2011.
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Chapter 1 Introduction

for future use in the spirit of the problems outlined in the previous chapters. A

summary and conclusion of the main findings as well as an outlook are given in

Chapter 6.
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Chapter 2

How many volcanoes would be

necessary to better constrain

climate sensitivity?1

In this chapter the possibility of better constraining climate sensitiv-

ity from volcanic forcings is explored by using ensemble simulations of

the last millennium with a comprehensive earth system model, includ-

ing all known forcings. Circumventing the complications associated

with deriving climate sensitivity from volcanic eruptions, we assume

here that the response to the short pulse forcing is linearly related

to climate sensitivity. We use the ensemble mean of many different

volcanic forcing realizations in many different states of the climate sys-

tem to estimate for various thresholds of forcing intensity how many

volcanic eruptions would have to be observed to yield an estimate of

climate sensitivity that is narrower than the one currently obtained

from multi-model ensembles. Few volcanoes with a strong radiative

forcing are better suited for deriving a stronger composite normalized

response than many weak volcanic events. To obtain a comparable

range of climate sensitivities as given by the multi-model ensemble of

CMIP3, more than 45 volcanoes, all larger than Mt. Pinatubo (the

eruption with the largest radiative impact in the last century) are

needed. If the frequency of large volcanic eruptions remains compa-

1Part of this chapter is already published in: Jungclaus, J. H., S. J. Lorenz, C. Timmreck, C.

H. Reick, V. Brovkin, K. Six, J. Segschneider, M. A. Giorgetta, T. J. Crowley, J. Pongratz,

N. A. Krivova, L. E. Vieira, S. K. Solanki, D. Klocke, M. Botzet, M. Esch, V. Gayler, H.

Haak, T. J. Raddatz, E. Roeckner, R. Schnur, H. Widmann, M. Claussen, B. Stevens, and J.

Marotzke, 2010: Climate and carbon-cycle variability over the last millennium. Climate of

the Past, 6, 723–737, doi:10.5194/cp-6-723-2010. The results most relevant to this chapter -

i.e. concerning the climate sensitivty constraint, are still unpublished and are in preperation

for submission as Klocke et al. to Geophysical Research Letters.
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Chapter 2 How many volcanoes?

rable to the last millennium, more than 10000 years are necessary to

derive a tighter range of climate sensitivity from responses following

volcanic eruptions, that is, assuming that forcing and response relate

linearly to equilibrium climate sensitivity.

2.1 Introduction

The metric commonly used to measure the response of the earth climate system

to an external forcing is equilibrium climate sensitivity, the change of the global

mean surface temperature after doubling CO2. This metric is generally used for

climate models, which can be integrated until a new equilibrium is reached (Bony

et al. 2006; Randall et al. 2007). Over the last decades every new generation of

multi-model ensembles produced comparable ranges of climate sensitivity (for

the current generation of climate models the range is 2.1 to 4.4 K; Randall et al.

2007). Different approaches have been explored to estimate climate sensitivity

from observations of the changing climate over the instrumental period since the

beginning of the industrialization (e.g. Forster and Gregory 2006; Gregory et al.

2002), but uncertainties in the forcing and in measuring the global mean surface

temperature change make it so far impossible to confine the range of climate

sensitivity (Wigley et al. 1997).

One possibility to observe the climate response to an external forcing are vol-

canoes. Volcanoes can strongly perturb the climate with short (negative) pulse

forcings. Large volcanoes inject SO2 and other sulphuric gases into the strato-

sphere. Those gases oxidize and can form sulphate aerosols, which impact the

radiation budget by reflecting short-wave radiation back to space and to a lesser

extent warm the atmosphere through absorption of long-wave radiation. The re-

sulting net effect is a reduction in top-of-atmosphere (ToA) downward radiative

fluxes, leading to a cooling of the climate system. This negative forcing to the

climate system can dominate all other forcings on short time-scales so that cli-

mate variability over the last millennium was dominated by large volcanic events

(Jungclaus et al. 2010, see also Figure 2.1b and 2.2).

Volcanic radiative forcing is distinct from other natural forcings to the climate

system. The forcing is short lived (a few years), with a strong and rather hetero-

geneous distribution in space and time, leading to characteristics different from

the climate system’s response to greenhouse gas forcing. On short time scales the

system never approaches an equilibrium and feedbacks may differ from the ones

expected at equilibrium. Further, observations from space are contaminated and

uncertainties are larger, when volcanic aerosols are present in the atmosphere,

and unforced variability is large on various time-scales leading to difficulties in

10



2.2 Ensemble simulations of the last millennium

measuring the response of the climate system to volcanoes alone. Hansen et al.

(1997) argue that the Earth system’s sensitivity to volcanic eruptions is not a

good measure of equilibrium climate sensitivity and that volcanoes do not pro-

vide a good constraint. Important feedbacks that determine equilibrium climate

sensitivity do not come into play, as the equilibrium response is not fully devel-

oped on the short time scale of the pulse forcing (Hansen et al. 1984). In this

study, this problem is circumvented by simply assuming a linear relationship, and

its influence on the conclusions will be discussed.

The response to volcanic forcing is relatively weak, because a large portion is

quickly buffered by heat release of the upper ocean and the nonlinear relation

of the response to equilibrium climate sensitivity hampers constraining climate

sensitivity estimates (Wigley et al. 2005; Boer et al. 2007). Nevertheless, the ob-

served response to a volcanic eruption can be usefully compared to climate model

simulations, in terms of evaluating fast responses (Soden et al. 2002; Yokohata

et al. 2005; Bender et al. 2010).

A further difficulty in analyzing responses to volcanic forcing arises when sepa-

rating the weak surface temperature signal from the noise due to natural variabil-

ity. To get a clear response independent of the state of the system one could use

a composite volcanic response (e.g. Hansen et al. 1997; Mass and Portman 1989),

but volcanic events with significant impact on ToA radiation are seldom and

the only major volcanic eruption in the satellite era with reliable global satellite

observation was Mt. Pinatubo in June 1991.

Here we make use of the large number of volcanic forcings generated with

an ensemble of millennium-timescale simulations with one climate model. We

estimate, for different thresholds of eruption strength, how many volcanoes would

be sufficient to statistically separate the response from the background variability.

We describe the model simulations of the last millennium in section 2.2, which

include hundreds of volcanoes exerting forcings differing in strength, location, and

- through the use of a large ensemble - also in the climate state they perturb. In

section 2.2.1 we describe the calculation of radiative forcing from effective radius

and aerosol optical depth time series. This is followed by creating a composite

volcano whose influence on the simulated climate is described in section 2.3. We

conclude this chapter by estimating how many volcanoes of a certain strength

would lead to tighter estimates of climate sensitivity.

2.2 Ensemble simulations of the last millennium

This study is based on ensemble simulations of the last millennium (from 800

– 2000 AD) with an Atmosphere-Surface-Ocean-Biogeochemistry earth system

11



Chapter 2 How many volcanoes?

model as conducted by Jungclaus et al. (2010) at the Max Planck Institute for

Meteorology (MPI-M). The earth system model consists of the atmospheric com-

ponent ECHAM5 (Roeckner et al. 2003), the ocean model MPIOM (Marsland

et al. 2003), and modules for land vegetation (JSBACH; Raddatz et al. 2007)

and ocean bio-geochemistry (HAMOCC; Wetzel et al. 2006) including the full

interactive carbon cycle. The atmosphere model ECHAM5 is run at a spectral

resolution of T31 (∼3.75◦ x 3.75◦ spatial resolution), with 19 vertical levels and a

model top at 10 hPa. The ocean model MPIOM uses a conformal mapping grid

with a horizontal grid spacing of 3.0◦ and 40 unevenly spaced vertical levels.

The ensemble consists of one 3000-year control simulation with constant 1860

boundary conditions, eight simulations which are forced with reconstructions of

the last millennium and one simulation forced with only volcanic aerosol recon-

structions. The forced ensemble member simulations are started from different

initial conditions derived from the control simulation. The external forcing data

sets consist of the total solar irradiation (TSI), volcanic forcing considering aerosol

optical depth (AOD) and effective radius (Reff) distributions, land use change,

and anthropogenic greenhouse gas and aerosol emissions.. Five ensemble mem-

bers are forced with a weaker TSI variability of 0.1% of the standard TSI value of

1367 Wm-2 between the Maunder minimum and present-day TSI, while three en-

semble members are forced with a higher TSI variability of 0.25% (Figure 2.1a).

All other external forcings are identical between the eight ensemble members.

This gives in total nine ensemble members with the identical volcanic forcing,

each run for 1200 years.

The volcanic radiative effects are taken into account by time series of AOD at

0.55 µm and Reff , which are included in the on-line radiative transfer calculations

when volcanic aerosols are present. The data is specified on three zonal bands

for the northern hemisphere (north pole to 30◦N), tropics (30◦N to 30◦S) and

southern hemisphere (30◦S to south pole) with a time resolution of ten days.

AOD estimates (Crowley et al. 2008) are based on a correlation between sulfate

concentrations found in Antarctic ice cores and satellite observations after the

Mt. Pinatubo eruption (Sato et al. 1993). For each eruption Reff growth and

decay rates are based on satellite observations of Mt. Pinatubo (Sato et al. 1993).

Eruptions with a global-mean AOD exceeding 0.2 (Mt. Pinatubo AOD was about

0.15) are empirically scaled by comparison with the theoretical calculations for

very large eruptions (Pinto et al. 1989). In the vertical, AOD is spread over

three stratospheric model levels between 20 and 86 hPa, with a maximum AOD

at 50 hPa. Sensitivity experiments for the model response to the Mt. Pinatubo

eruption in June 1991 yield an average global mean surface temperature response

(about 0.4 K for a global monthly mean net forcing of -2.33 Wm-2) comparable

to observations. Timmreck et al. (2009) have shown for the 1258 “unknown”

12



2.2 Ensemble simulations of the last millennium
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Figure 2.1: Radiative forcing (∆F , Wm-2) at the top-of-atmosphere displayed as

annual means (a) for the greenhouse-gas forcing (CO2, light blue), land-cover change

(albedo effect only, green), and solar forcing (red for the standard simulations and

dark blue for simulations with enhanced solar variability), and (b) for volcanic forcing

displayed with a different axis. Anomalies from solar irradiation and CO2 variations

are calculated w.r.t. their pre-industrial control mean (1367 Wm-2 and 280.02 ppm,

respectively). The radiative forcing from volcanic aerosol injections and land-cover

changes are calculated off-line relative to a control year (after Jungclaus et al. 2010).

volcanic eruption that a shift of the volcanic aerosol size distribution toward

larger particles reduces the cooling effect for large eruptions by an increase of

the long-wave radiative forcing and improves the consistency with temperature

reconstructions. For details of the other forcing data sets, we refer to Jungclaus

et al. (2010) and the references therein, as they are not essential to this study.

The comparison of the impact of different external forcings in the “millen-

nium” experiments yields that the variability is dominated by volcanic eruptions
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Figure 2.2: Evolution of simulated temperature over the last 1200 years: Northern

Hemisphere 2m land temperature anomalies w.r.t. the 1961–1990 mean for weak solar

forcing (red) and strong solar forcing (blue) in comparison with the range of reconstruc-

tions (gray scale, redrawn from Jansen et al. 2007). Black horizontal lines indicate the

control experiment mean and its 5th–95th percentile range. Time series are smoothed

by a 31-yr running mean. Crosses at the right axis denote the ensemble means (annual

average) at the end of the simulation (2005) (after Jungclaus et al. 2010).

decreasing the net radiation at the top-of-atmosphere (Figure 2.2; Jungclaus et al.

2010). The most severe eruption occurred in 1258, with a global monthly mean

net radiative forcing of -5.13 Wm-2, and the second most severe was the Tambora

eruption in 1815 with a net radiative forcing of -4.85 Wm-2, both leading to a

distinct cooling in all ensemble members (Figure 2.2). The 1991 eruption of Mt.

Pinatubo was the strongest volcanic eruption in recent decades, but only the 14th

largest eruption in the simulations used here. In the 1200 simulated years, 66%

of the time volcanic aerosols are present in the atmosphere, with a mean volcanic

forcing over this period of -0.16 Wm-2, leading to a colder mean climate in the

forced simulations in comparison to the control simulation indicated by the black

horizontal line in Figure 2.2. Longer cool periods like in the 19th century (Figure

2.2) are caused by clusters of larger volcanic events leading to a mean forcing

of -0.31 Wm-2 for this century, while the preceding 18th century with the weak-

est century-averaged forcing of -0.04 Wm-2 was warmer in all ensemble members.

The averaged volcanic forcing exceeds all other forcing in the preindustrial period
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2.3 Composite forcing and response

in the ensemble simulations at any time except for the stronger solar forcing in

some periods and the anthropogenic greenhouse gas forcing towards the end of

the 20th century (Figure 2.1a).

2.2.1 Volcanic radiative forcing

In the simulations described in section 2.2, AOD and Reff are prescribed in the

radiative flux calculations, similar to the TSI variability and land cover changes.

From the model output only the radiative effect, but not the radiative forcing can

be derived. The diagnostic ToA radiative fluxes also include responses by other

radiation relevant processes to the presence of volcanic aerosols. The effective ra-

diative forcings (Figure 2.1a, b) are calculated off-line with the isolated ECHAM5

radiative transfer code following the Wetherald and Manabe (1988) approach for

calculating radiative feedbacks. The radiative forcing at the top-of-atmosphere

is defined as the change in radiative fluxes at the top-of-atmosphere due to the

change in one single variable x. All other variables are taken from one reference

year of the control simulation and do not change from year to year. The radiative

flux calculation is done once without the presence of volcanic aerosols and once

including them. The difference of those two calculations yields the change in

radiative fluxes due to the presence of volcanic aerosols alone.

The forcings here are all defined instantaneously and do not allow for any

atmospheric adjustment. For CO2 concentration, the forcing is calculated in bins

of CO2 changes with respect to the average CO2 concentrations of the control run

(280.08 ppm). Land-cover-change related radiative forcing reflects only the effect

of changing surface albedo and is calculated relative to the period of 800 to 850

AD from the experiment with land-cover-changes as the only forcing. Volcanic

forcing introduces the strongest disturbances in terms of amplitude, but these

are short-lived events. If the volcanic forcing time series was smoothed by, for

example, a 30-year running mean, the amplitude would be of similar magnitude

as the other forcings. However, the volcanic forcing is, in fact, concentrated in

individual years rather than spread out over decades to centuries (see Figure

2.1a).

2.3 Composite forcing and response

The seasonal cycle of each global monthly mean quantity in every ensemble mem-

ber time series is removed to isolate the volcano signals. For every individual

volcano the peak forcing (Fmax) is determined and two years before and ten years

after Fmax are selected for the composite volcano. To further separate the signal

from the long term natural variability, the average over three years preceding the
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beginning of each volcanic event is subtracted and to avoid interfering volcanoes,

only eruptions are selected without other volcanic events three years before and

five years after Fmax. In the last five years of the composite interference of vol-

canoes with an Fmax of 25% of the selected volcano are allowed in order keep a

large sample size. The composite forcing, ToA radiation imbalance, surface tem-

perature response and ocean heat release are shown in Figure 2.3, all normalized

by the peak forcing before averaging to make individual volcanoes comparable.

A threshold for the minimum absolute forcing (Fmin) is defined for volcanoes

considered in the composites in order to obtain a clean signal. All volcanoes

never exceeding -0.1 Wm-2 in monthly global mean net forcing are excluded from

the analysis. Weaker eruptions do not, even averaged over a large sample size,

separate from the natural variability. If included in the analysis, the weak volca-

noes increase the noise, delude the signal and make the interpretation harder. In

Figure 2.3 different choices of the minimum threshold are indicated by the color

strengths. Table 2.1 gives the corresponding number of volcanoes used to derive

the composite response for the different thresholds. The normalized response

strength and associated time scale with the response depends on the choice of

the threshold.

The net ToA radiative forcing builds up within about one year and decays over

about five years back to zero (Figure 2.3a). The short-wave component of the

forcing is about twice as large as the long-wave component, which is of opposite

(positive) sign. The ToA radiative imbalance in Figure 2.3b is comparable to the

forcing. The absolute magnitude of each component is smaller indicating contri-

butions to the radiative fluxes at ToA by the response of the system via physical

feedbacks. This is most prominent in the LW component which approaches the

stationary state slower than the LW forcing. The volcanic aerosol effect decreases,

but the atmospheric state is altered to adjust to the perturbation. The decrease

in global mean surface temperature leads to less outgoing LW radiation and re-

sults in a positive net ToA radiative flux anomaly three to five years after Fmax

of up to ∼ 10% of Fmax.

The surface temperature response in Figure 2.3c lags the forcing by 12 to

24 months depending on the strength of the forcing and adjusts back to the

equilibrium temperature slower than the radiative flux perturbations decays. The

forcing is damped by ocean heat release resulting in a maximal global mean

surface temperature anomaly of 0.13 K (Wm-2)-1 in the composite, when allowing

only forcings larger -3.0 Wm-2. This is only a fraction of the equilibrium climate

response of 0.86 K (Wm-2)-1 for this model version.

The ocean responds immediately to the forcing by releasing heat to the at-

mosphere that is of the same order of magnitude as the forcing (Figure 2.3d),

even exceeding the forcing for the largest eruptions. This delays and weakens the
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Figure 2.3: Composite of the temporal evolution (monthly mean values with the sea-

sonal cycle removed) of the top-of-atmosphere radiative forcing (a), radiative imbalance

(b), surface temperature response (c) and ocean heat release H (d) from ten ensemble

simulations of the last millennium. All quantities are normalized by the maximum

forcing of each volcano before averaging. Color coding indicates the threshold of the

minimum forcing. Lightest color considers all volcanoes with a forcing larger than -

0.1 Wm-2 and then the threshold increases in steps of 0.5 Wm-2 from -0.5 to -3.0 Wm-2.

surface temperature response. Following the ToA net radiation imbalance, the

ocean heat release turns into an ocean heat uptake from three to five years after

Fmax in the composite of up to ∼ 10% of the maximum heat release.
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Chapter 2 How many volcanoes?

2.4 How many versus how strong volcanoes?

As discussed in section 2.1, estimating equilibrium climate sensitivity from vol-

canic eruptions has proven difficult. Here, we simply assume that the transient

climate response after volcanic eruptions linearly relates to the equilibrium cli-

mate sensitivity, and ask whether even in such a simplified framework volcanoes

could help constrain climate sensitivity.

Figure 2.3 shows that few large volcanic events give a stronger normalized aver-

age response than if many smaller events are included in the composite response.

Furthermore, the strongest surface temperature response is reached later after

Fmax if the composite only includes larger eruptions. This behavior is also illus-

trated in Figure 2.4 which shows statistics for seven minimum forcing thresholds

(Fmin) given in Table 2.1.

Figure 2.4 shows how responses converge, when the forcing is large in contrast

to many samples of weaker volcanoes. 18 months after Fmax the medians of

different Fmin agree best. We linearly relate this median normalized response to

the equilibrium climate sensitivity of the ECHAM5 model (3.27 K). The derived

scaling factor is also used to scale the upper and lower quartile of the responses

to obtain a range of “climate sensitivity” estimates, shown in Table 2.1. By

definition the mean of the range is close to the equilibrium climate sensitivity of

the model, but the range depends on the characteristics of the response. This in

turn depends on the location of the volcanoes, the strength of the forcing and the

state of the climate system.

Considering only volcanoes with an absolute net forcing larger than 3.0 Wm-2

gives a range of “equilibrium climate sensitivity” closest to, but still larger than

the range of estimates from the CMIP3 climate model ensemble (2.1 - 4.4 K;

Randall et al. 2007). This estimate is based on a sample of 45 volcanoes with five

different characteristics, perturbing the climate in nine different states for each

eruption. Allowing for weaker forcing to increase the sample size leads to a larger

range of responses, especially if considering volcanoes with an absolute forcing

smaller than 0.5 Wm-2 (see also Table 2.1).

Given the frequency of occurrence of volcanic eruptions with climate impact

as in the last 1200 years, more than 10000 years, or alternatively about 45 volca-

noes that have an impact larger than Mt. Pinatubo, would be needed to derive a

range in estimated climate sensitivity comparable to the current range of climate

sensitivities provided by IPCC. Even if such a large sample of volcanoes was to

occur, the fact that climate sensitivity does not scale linearly with the following

response, and observations carry many uncertainties, it seems unlikely that this

range can be further narrowed with the use of volcanoes in the future. We con-

clude that the climate system’s response following volcanic eruptions is a poor
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Figure 2.4: Statistics of the global monthly mean surface temperature (∆Ts) response

after volcanic eruptions normalized by the maximum forcing (Fmax) of each volcano for

12 and 6 months before the peak forcing and 6, 12, 18 and 24 months after the peak

forcing. The box center line indicates the median, the box boundaries the upper and

lower quartile and the whiskers show the upper and lower decentiles. Color intensity

indicates the minimum global mean volcanic forcing threshold, increasing with color

intensity (-0.1, -0.5, -1.0, -1.5, -2.0, -2.5, -3.0 Wm-2, in accordance with decreasing the

sample size (see Table 2.1))

surrogate for climate change.
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Table 2.1: Minimum forcing of considered volcanoes (Fmin), number of volcanoes in

the simulation ensemble above this threshold, maximum mean normalized response

18 months after the peak forcing, the range of “climate sensitivity” to which 50% of

responses to a volcanic event belong. This is based on the simple assumption that the

response would linearly relate to the equilibrium climate sensitivity.

Fmin [Wm-2] #Volcanoes ∆Ts

Fmax

[K/Wm-2] range of “climate sensitivity” [K]

-0.1 648 0.081 -4.08 – 9.58

-0.5 351 0.087 -0.82 – 6.09

-1.0 216 0.096 0.05 – 5.10

-1.5 153 0.109 0.95 – 4.99

-2.0 90 0.109 0.95 – 4.97

-2.5 72 0.115 1.14 – 4.98

-3.0 45 0.120 1.31 – 4.76

20



Chapter 3

Assessment of different feedback

metrics1

We quantify physical radiative feedbacks for idealized climate simu-

lations using four different methods. The results differ between the

methods and differences are largest for the cloud feedback. The spatial

and temporal variability of each feedback are used to estimate the av-

eraging scale necessary to satisfy the feedback concept of one constant

global mean value. We find that the year-to-year variability of each

feedback process in this single model is comparable to the model-

to-model spread in feedback strength of the CMIP3 ensemble. The

strongest spatial and temporal variability is in the short-wave compo-

nent of the cloud feedback. In our simulations, where many sources

of natural variability are neglected, long-term averages are necessary

to get a reliable feedback estimates. Considering the large natural

variability and relatively small forcing present in the real world, as

compared to the forcing imposed by doubling CO2 concentrations in

the simulations, implies that using observations to constrain feedbacks

is a challenging task and requires reliable long-term measurements.

3.1 Introduction

Climate models still give a wide range of surface temperature responses to the

same idealized external forcing, for example a doubling the CO2 concentrations

(Solomon et al. 2007). Most of these differences arise from physical processes,

which are usefully conceptualized as feedbacks and can be isolated through a

feedback analysis (Cess et al. 1990; Colman 2003; Soden and Held 2006). A

variety of methods have been developed to isolate specific feedback mechanisms

1This chapter will be submitted to Climate Dynamics: Klocke, D., J. Quaas, M. Giorgetta,

B. Stevens, Assessment of different feedback metrics, Climate Dynamics, 2011.
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in climate models, raising the question as to how sensitive the results of such an

analysis are to the methods employed (e.g. Colman 2003; Soden and Held 2006).

In stationarity, the global mean surface temperature, Ts, does not change

(∆Ts

∆t
= 0) and the top-of-atmosphere radiation (ToA), R, is in balance (∆R

∆t
= 0),

if averaged over a sufficiently long period ∆t. If an external forcing, F , is imposed,

for example through a change in greenhouse gas concentrations, the radiative bud-

get at ToA is in imbalance. The climate system responds by changing its mean

temperature to radiate excessive energy back into space, in order to return to

equilibrium (sometimes called “Planck” feedback). The change in temperature

affects other temperature dependent climate processes. If those processes in turn

have an effect on the radiation budget (and hence on temperature), they are re-

ferred to as climate “feedbacks”, analogous to the feedback definition in electronic

circuits. Those feedbacks can have amplifying (positive feedback) and dampening

(negative feedback) effects on the initial perturbation to the ToA radiation bud-

get. This feedback concept is summarized in Equation 3.1, where the feedback

parameter λ (in units of Wm-2K-1) includes all physical feedback processes plus

their mutual interactions. ∆Ts is the change in global mean surface tempera-

ture. For a forcing from a doubling of the atmospheric CO2 concentration, this

temperature change is often referred to as the equilibrium climate sensitivity.

∆R = ∆F − λ∆Ts (3.1)

Physical feedbacks can be linked to quantities that change in response to a change

in global mean surface temperature. The relevant physical quantities we will focus

on in this study are the temperature, water vapor, surface albedo in snow and

ice regions, and clouds. Other feedbacks due to biogeochemical processes are not

considered here (e.g., Friedlingstein et al. 2006).

The feedback factor λ can be formally defined as

λ =
∂R

∂Ts
=

∑

x

∂R

∂x

∂x

∂Ts
+ φ

(

∂2
)

≈

∑

x

λx (3.2)

with λx =
∂R

∂x

∂x

∂Ts
(3.3)

where x denotes individual feedback processes. The second-order term and all

higher-order terms represent the interactions between different feedbacks. In a

linear approximation, which may be considered valid for doubled CO2

conditions and the associated temperature changes (Boer and Yu 2003), these

interactions are neglected.
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3.1 Introduction

Four physical feedback processes have been identified. The total physical feed-

back factor λ can be separated, under the assumption of linearity, into a temper-

ature (λT), water vapor (λWV), surface albedo (λA) and a cloud (λC) component:

λ = λPL + λLR + λWV + λA + λC (3.4)

The temperature feedback contribution (λT) to the total feedback can be fur-

ther separated into a contribution by the Planck response λPL, or a homogeneous

change in temperature, and a contribution by the change in the tropospheric tem-

perature lapse rate λLR, which measures the rate at which temperature decreases

with height (λT = λPL + λLR). The Planck response is the most fundamental

feedback, characterized by the temperature dependence of the long-wave (LW)

emission, where the emitted energy is proportional to the fourth power of the

temperature, σT 4 (σ being the Stefan-Boltzmann constant) and is often referred

to as the “no feedback” response.

The linearization in equation 3.2 is useful to disaggregate contributions of indi-

vidual processes to the overall feedback and to estimate their relative importance.

The quantification of individual feedbacks then allows one to compare models to

quantify the uncertainty contributions, measured as the model to model differ-

ence, of single feedbacks to climate sensitivity estimates (e.g., Bony and Dufresne

2005), and if possible compare them to theoretical expectations or observations

of a single component (e.g., Hall and Qu 2006).

All processes in the climate system change in concert when the climate is

changing, as measured by the change in global mean surface temperature. Dif-

ferent methods can be utilized to break down λ into the different contributions,

all having in common that forcing and response are separated. How parts of

the contributions are separated into forcing or response depends on the adopted

feedback framework.

Distinctions between feedbacks can also be arbitrary if the strength in the dif-

ferent physical feedbacks is related to the same processes. For example, the water

vapor feedback and the tropospheric temperature lapse rate feedback are anti-

correlated. If the lapse rate feedback is strongly negative (i.e., a strong reduction

in lapse rate, and thus a strong decrease in the greenhouse effect), the water vapor

feedback is strongly positive. The reason that both feedbacks are related to the

same mechanism, which is a change in deep convection. A weaker temperature

lapse rate is generated by a greater warming at high altitudes than at the surface

due to heat transport by convection. At the same time, enhanced convection also

leads to more upper tropospheric water vapor (e.g., Cess 1975; Held and Soden

2000). For this reason, these two feedbacks are often added together to a single

feedback (λWV+LR), in which they partly compensate each other. By this the

inter-model spread in the strength of this combined feedback is reduced. Huy-
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bers (2010) reports further compensations between different feedbacks (especially

surface albedo and cloud feedback), but argues that those relations can in fact be

an artifact due to, (1) the methods used to estimate the feedbacks, (2) the repre-

sentation of physical relationships in the models, or (3) conditioning the models

upon some combination of observations and expectations.

The concept of feedbacks, forcing and climate sensitivity has proved to be help-

ful in the idealized model world, but extrapolation to the real world has proven

to be complicated. Partial derivatives can hardly be derived from observations,

due to many interfering processes, that are difficult to separate and to isolate

from the background variability. In the idealized model world, this can be done

with different methods. The choice for a certain analyzing method introduces

limitations to the results and their interpretation.

Although the feedback parameters defined in Eq. 3.2 are a constant, there is

variability in the relevant variables at various space- and timescales. In order to

obtain approximately global-mean constant values, the relevant quantities need

to be averaged in time. A feedback estimated for a certain year may be very

different in other years and the necessary averaging time may be different for dif-

ferent physical processes. The biggest problem arises for clouds, which are highly

variable in space and time. This has implications for quantifying feedbacks from

climate models and for deriving feedback factors from observations, or finding

observational constraints.

The aim of this study is to compare and assess different feedback quantification

methods, and to analyze spatiotemporal variability of the different feedbacks. To

do so, we use climate model simulations with the atmospheric general circulation

model ECHAM5 (Roeckner et al. 2003), coupled to a mixed-layer ocean. This

idealized framework neglects factors contributing to natural variability such as

volcanic eruptions, El Niño variability and varying modes of ocean circulations

as well as less well defined contributions to the forcing (land use change, ocean

heat uptake, aerosols).

In section 3.2 we review the different methods to quantify feedbacks, and in

section 3.3 we describe the experiment set-up for the idealized climate change sim-

ulations. In section 3.4 we analyze the different feedbacks, and discuss their ge-

ographical temporal variability in section 3.5 using the different methods. These

results have implications for estimating feedback factors in the climate system

from observations, which is discussed in the conclusions, section 3.6
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3.2 Methods to quantify feedbacks in GCMs

Four different methods to estimate climate feedbacks have been proposed in the

literature. They are based on two different principles. In this section we briefly

describe these four methods. The first two are based on differences based on

a recalculation of radiative fluxes perturbed by specific contributions; while the

other two depend on differences in the all-sky and clear-sky radiative fluxes.

The first principle is less ambiguous, but involves performing radiative transfer

computations and special model diagnostics (the kernel method helps to obviate

this, by approximating the partial radiative perturbation method, without the

need for repeated radiative transfer calculations on ancillary data). The second

principle is only applicable to the cloud component of the feedback parameter, but

as climate models differ mostly in the cloud feedback component, this approach

is often used to estimate the radiative impact of changed clouds in a perturbed

climate.

Partial radiative perturbation

This technique was first introduced by Wetherald and Manabe (1988) and more

recently applied to an ensemble of atmosphere-ocean general circulation models

by Colman (2003) and Soden and Held (2006). Offline radiative transfer calcu-

lations are used to estimate the effect of single variables such as temperature,

water vapor, surface albedo or clouds on the ToA radiation. Under the assump-

tion of linearity and separability each variable is substituted separately, one at

a time, from a perturbed simulation, while all other radiation relevant variables

are taken from a control simulation. This allows one to calculate each feedback

factor separately for any variable x, as follows.

λx =
∆xR

∆x

∆x

∆Ts
(3.5)

where ∆x and ∆Ts are obtained from the difference between a perturbed and

a control simulation, and ∆xR/∆x from off-line radiation calculations. With

this method the partial derivatives are calculated directly and it is closest to

the formal definition of the feedback factor as defined in equation 3.2, for a

few exceptions aside. These are: interactions between feedbacks are neglected,

the climate change signal in any variable is the total derivative of variable x

with temperature instead of the partial derivative, and the difference between

perturbed and control simulations might not be small enough to allow for the

discrete approximation of the derivative by the differentiation.

Colman and McAvaney (1997), Schneider et al. (1999) and Soden et al. (2004)

pointed out that the assumption that all fields are uncorrelated introduces bi-
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ases. Unintended perturbations are introduced to the radiation by de-correlating

variables, but this can be partially overcome by applying this method twice.

Once forward (FW), by substituting a variable from the perturbed climate (ptr)

into the control climate (ctl) (∂ptr−ctlRx) and once backward (BW) by taking a

variable from the control climate and substituting it into the perturbed climate

(∂ctl−ptrRx). The final radiative perturbation is then better approximated as the

average of these two estimates,
∂ptr−ctlRx−∂ctl−ptrRx

2
.

Because this method is less easy to implement than the other methods, spu-

rious differences may arise depending on the exact implementation. It is also

computationally expensive and needs special instantaneous model output. Most

importantly, the radiative transfer part of the climate model needs to be isolated

for the off-line radiative transfer computations.

Radiative kernels

This method is a linearization of the previously described partial radiative per-

turbation (PRP) method and was introduced by Soden et al. (2008). Instead of

perturbing one variable at a time by an increment defined from a perturbed and

a control simulation, as described above for the PRP method, the mean climate

state is perturbed incrementally in the radiative flux computations level by level

for each variable at a time by a pre-defined small increment, and the changes to

the ToA radiation balance are computed as a “radiative kernel” for variable x

(Kx) as a function of latitude, longitude, model level and time. The kernel for

each variable x represents the first fraction of formula 3.5 and is multiplied with

the climate change signal from a forced simulation to calculate λx. The advan-

tage is that once those kernels are computed, offline radiation calculations are no

longer necessary.

The temperature kernel (KT) is computed by perturbing the temperature at

every level at each time by an increment of 1 K, while the specific humidity kernel

(KW) is calculated by perturbing the specific humidity by an amount correspond-

ing to about a 1-K warming at fixed relative humidity. The 3-D surface albedo

kernel is computed by perturbing the surface albedo fields by a 1% increment

(Soden et al. 2008).

A radiative kernel for clouds cannot be computed because an incremental

change in “clouds”, which depends on cloud fraction as well as cloud ice and

cloud water mixing ratios, is not easy to define. The clear-sky component in

the ∆CRE calculation, however, can be corrected for the influence of the other

feedbacks in the clear-sky by using the difference of the full-sky kernels for each

variable x (Kx) and clear-sky kernels (K0
x) for the temperature, water vapor and

surface albedo feedbacks.
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∆CR = ∆CRE + (K0
T − KT)∆T + (K0

W − KW)∆W

+(K0
A − KA)∆A + (G0

− G). (3.6)

This compensates for cloud masking effects in the ∆CRE calculations, as

described in section 3.2. The stratospheric adjusted radiative forcing (G) and

clear-sky stratospheric adjusted radiative forcing (G0) are also needed for this

correction.

Change in cloud radiative effect

This method is most commonly used and easiest to apply, but is only applicable

to the cloud feedback contribution to the total climate feedback parameter. It

makes use of diagnostic variables that are commonly calculated on-line in climate

simulations (Cess and Potter 1987). Clear-sky radiative fluxes are calculated

(subscript c), by setting all cloud related variables (cloud water, cloud ice, cloud

fraction) to zero for a second diagnostic radiation call. This is done for the short-

wave (SW) and long-wave (LW) component separately. The difference between

the full-sky radiative flux calculations and the diagnostic clear-sky calculations

yields the cloud radiative effect (CRE), where the sum of the SW and LW com-

ponent is the net cloud radiative effect1.

CRE = (F SW
− F SW

c ) + (F LW
− F LW

c ) (3.7)

The difference of CRE between a perturbed climate (∆CREprt) and a control

climate (∆CREctl) defines the change in cloud radiative effect (∆CRE).

∆CRE = CREprt − CREctl (3.8)

This quantity is often used as a proxy for the cloud feedback.

The difficulty with this method lies in the components being very large, on the

order of hundreds of Wm-2, but the resulting ∆CRE is close to zero. Further

more, the clear-sky components of the perturbed climate include contributions

from the temperature lapse rate, water vapor and surface albedo feedback, which

does not allow for an accurate separation of the cloud feedback from these other

feedbacks. Some part of the change in cloud radiative forcing does thus not

result from changes in cloud properties, but from a change in cloud masking,

1Negative radiative fluxes are defined here as energy loss for the climate system, while positive

radiative fluxes are an energy gain for the climate system.
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so that the ∆CRE does not accurately reflect the cloud feedback (Zhang et al.

1994; Colman 2003; Soden et al. 2004). It is often negative, even though the

actual cloud feedback is generally slightly positive if diagnosed more accurately

in climate models. However, when compared across models, the differences in

cloud radiative forcing are predominantly a measure of differences due to clouds.

This method is widely used, because it gives an uncomplicated first estimate

of the cloud influence on the radiation budget. Also, the cloud radiative effect is

comparable with satellite observations (e.g. the Clouds and the Earth’s Radiant

Energy System, CERES, Wielicki et al. 1996), yet it should be mentioned that

such comparisons should be done with caution, as clear-sky radiative fluxes from

models and satellites are not directly comparable (Sohn et al. 2006).

Linear regression of TOA radiative flux imbalance versus surface

temperature change

This method was proposed by Gregory et al. (2004) for a constant forcing over

longer time periods (years). It makes use of the relationship of the change in

global-mean surface temperature (∆Ts) and the forcing (∆F ), which is expressed

as the energy balance at the top-of-atmosphere (∆R).

∆R = ∆F − α∆Ts (3.9)

The variations of ∆R(t) and ∆Ts(t) with time are regressed against each other

as long term averages (e.g. yearly averages). This yields a regression line with a

slope, −α, and an intercept, ∆F . The regression can be separated into the short-

and long-wave components of R and F , and - analogous to the ∆CRE calculations

above - also for clear and cloudy skies, respectively. Then −α is proportional to

the cloud feedback estimate through the ∆CRE calculations and if regressed for

the net full-sky radiative ToA imbalance, it is an estimate for the total feedback

factor. The use of clear-sky fluxes is identical to ∆CRE so this method is facing

the same interpretational issues.

The ∆Ts intercept is equal to F
α

which is the equilibrium ∆Ts, or climate

sensitivity. ∆R is approximately equal to the stratospheric temperature adjusted

radiative forcing, for ∆Ts → 0 (see also Figure 3.2). The advantage of this

method is that forcing, cloud feedbacks and climate sensitivity can be estimated

with the use of only a few years of model integration, without a need for any

further diagnostics.

This method disaggregates forcing and response depending on time scales they

act on. For example, clouds instantaneously respond to the increased CO2 concen-

trations, due to changes in heating rates, which is independent from the response

to changes in surface temperature (Gregory and Webb 2008). This is referred
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to as the “indirect CO2 effect”, which in the definition used in this method is

part of the forcing, while in the other methods it is attributed to the feedback.

In this regression method, compared to other methods, the forcing is thus more

loosely defined to include all processes acting on “fast” timescales, while the feed-

backs are well-defined as only such processes responding to a surface temperature

change. In the following, we will refer to this method as the “Gregory-method”.

3.3 Model and experimental set-up

All feedback metrics are applied to the same set of simulations, using ECHAM5.4

(Roeckner et al. 2003), with a relatively coarse spectral resolution of T31 (ap-

proximately 3.75 degree resolution) and 19 vertical levels. First, a 20 year control

integration is conducted with prescribed present-day greenhouse gas concentra-

tions and with prescribed monthly varying sea-surface temperatures and sea-ice

cover maps. The heat fluxes from this control simulation are used for the mixed-

layer ocean integrations. Coupled to a 50 m mixed-layer ocean, a 20 year control

integration and a 50 year integration with doubled CO2 concentrations are per-

formed, until a new equilibrium is reached. For our analysis the last six years of

the control and the perturbed simulations are used. For all four applied methods,

the same six hourly model output is used. The radiation code of ECHAM5.4, with

16 long-wave and 6 short-wave bands (Cagnazzo et al. 2007), is isolated from the

model and used for the offline calculations for the radiative perturbation method

and for computing the radiative kernels. For the calculations of the radiative

kernels, incremental perturbations are applied to output fields of temperature,

specific humidity and surface albedo from the control simulation.

For quantification of the lapse rate feedback diagnostics of the tropopause

height are necessary to exclude the stratospheric temperature change. Here we

use the WMO defined tropopause of the control simulation which is saved together

with the other instantaneous model output every six hours.

By using the same model output and radiation code throughout this study we

strive to be as consistent as possible. Differences in the results will only depend

on the method used and its underlying assumptions.

3.4 Feedback factors

Figure 3.1 shows the global-, long-term averages (six years) of the physical feed-

back factors analyzed using the different methods described in section 3.2. The

error bars indicate the sampling error over the six years. The boxes indicate ±

one standard deviation of single year averages, while the whiskers indicate the
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maximum and minimum value in a single year. Table 3.1 gives further details

of the LW and SW contributions separately. The standard deviations apply to

feedback estimates for six single-year averages. The cloud feedback factor, λC,

is calculated with four different methods, while for the tropospheric temperature

lapse rate, water vapor and surface albedo feedbacks only the PRP and the ra-

diative kernel methods are applicable. For the PRP method the forward (FW)

calculated and the backward (BW) calculated feedback factor along with the

average values are provided.

The Planck response is the strongest negative feedback with -3.23/-3.17 Wm-2K-1,

calculated with the PRP method, and -3.08 Wm-2K-1, if calculated using radiative

kernels (not shown). These two estimates of the Planck response overlap within

the range of uncertainty as obtained from the year-to-year variability. The tropo-

spheric temperature lapse rate feedback, λLR, is negative on a global, long-term

average. This feedback differs the most depending on whether the FW or BW

PRP is used, with -0.61 and -0.23 Wm-2K-1, respectively, indicating strongest

perturbations by de-correlating the different variables in the radiative flux calcu-

lations. The radiative kernel yields a λLR of -0.68 Wm-2K-1, comparable to the

FW PRP, but much larger in absolute terms than the BW PRP. The estimates of

λLR obtained with the two different methods do not overlap within one standard

deviation of the year-to-year variability, if the FW and BW calculated PRP are

combined to a lapse rate feedback of -0.42 Wm-2K-1.

The water vapor feedback, λWV is the strongest positive feedback with 1.76/1.79

Wm-2K-1 for the FW/BW PRP and 2.08 Wm-2K-1 using the radiative kernel

method. For the water vapor feedback, these two methods differ the most in an

absolute sense. The water vapor feedback estimates derived with the PRP and

kernel method do not agree within one standard deviation of the year-to-year

variability. This is mainly due to the large differences in the LW component of

this feedback. This feedback acts in both the SW and the LW spectra, but is

dominated by the LW contribution that is responsible for ∼ 75% of the total

water vapor feedback. For the LW contribution the water vapor feedback fac-

tor differs strongly, depending on the method chosen. Here the PRP LW water

vapor feedback is 1.32/1.42 Wm-2K-1, while the LW component is larger with

1.71 Wm-2K-1, if calculated using the linearization through the LW water vapor

kernel. For the SW the PRP and kernel method indicate a feedback strength of

0.43/0.38 and 0.37 Wm-2K-1, respectively.

Combining the water vapor and lapse rate feedbacks, λWV+LR, partly compen-

sates the discrepancies between the PRP and kernel methods. The LW compo-

nents do not overlap within one standard deviation of the inter-annual variability

for either λLR or λWV between the two methods, but they do in the combined

feedback. This is analogous to the feedback strength difference for λLR and λWV
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Figure 3.1: Surface albedo (λA), cloud (λC), water vapor (λWV), tropospheric tem-

perature lapse rate (λLR) and the combined λWV and λLR feedback factor calculated

with different methods. Each box is the mean feedback strength ± one standard devi-

ation and the whiskers indicate the maximum and minimum yearly averaged feedback

strength of the six analyzed years. For the Gregory method the whiskers are calculated

taking the maximum and minimum deviation from the regression, while the box gives

the mean regression error.

among climate models, which decreases when the two are combined (Colman

2003).

The surface albedo feedback is only affecting the SW radiation. In our simula-

tions it is the smallest feedback, with 0.22/0.16 Wm-2K-1 using the PRP method
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Figure 3.2: Change in net downward radiative flux regressed against the change in

global mean surface temperature for yearly averages. The slope of the cloud components

is proportional to the cloud feedback strength.

and 0.17 Wm-2K-1, if calculated with the surface albedo kernel. These measures

agree within the measure of uncertainty used here, when the PRP-FW and PRP-

BW are combined, yielding a λA of 0.18 Wm-2K-1.

The cloud feedback affects the LW and SW radiation strongly, but the globally

temporally averaged feedback factors are small. While the PRP method, kernel

method and Gregory method give a positive cloud feedback with 0.34/0.16, 0.33

and 0.18 Wm-2K-1 respectively, the ∆CRE is of opposite sign with -0.35 Wm-2K-1.

This is not surprising, because ∆CRE does not correspond directly to λC as

defined in equation 3.2 (see Section 3.2). Examining the SW and LW component

separately gives no consistent picture of the cloud feedback strength across all

methods used here. The PRP methods gives a positive cloud feedback factor for

both components, while the ∆CRE is of negative sign for both components. The

kernel corrected ∆CRE gives a positive LW and a negative SW cloud feedback,

while the cloud feedback derived from the Gregory-method is negative in the LW
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3.4 Feedback factors

Table 3.1: Feedback factors and their standard deviation between different years, cal-

culated for six years with different methods for all components. Values are given in

Wm−2K−1. The values calculated with the backward (BW) partial radiative pertur-

bation (PRP) are multiplied with -1 to be comparable to the forward (FW) calculated

PRP.

λX Method LW LW Std SW SW Std Net Net Std

λPL
PRP (FW/BW) -3.23/-3.17 0.1/0.1 0.0 0.0 -3.23/-3.17 0.1/0.1

Kernel -3.08 0.1 0.0 0.0 -3.08 0.1

λLR
PRP (FW/BW) -0.61/-0.23 0.05/0.06 -0.01/0.0 0.0/0.0 -0.61/-0.23 0.05/0.06

Kernel -0.68 0.1 0.0 0.0 -0.68 0.1

λWV
PRP (FW/BW) 1.32/1.42 0.07/0.07 0.43/0.38 0.01/0.01 1.76/1.79 0.08/0.08

Kernel 1.71 0.08 0.37 0.02 2.08 0.09

λA
PRP (FW/BW) 0.0/0.0 0.0/0.0 0.22/0.16 0.01/0.0 0.22/0.16 0.01/0.0

Kernel 0.0 0.0 0.17 0.01 0.17 0.01

λC

PRP (FW/BW) 0.18/0.08 0.01/0.01 0.16/0.08 0.24/0.24 0.34/0.16 0.23/0.23

Kernel 0.49 0.03 -0.17 0.17 0.33 0.18

∆CRE -0.24 0.04 -0.11 0.16 -0.35 0.16

Gregory -0.19 0.06 0.37 0.18 0.18 0.19

λWV+LR
PRP (FW/BW) 0.71/1.18 0.06/0.06 0.43/0.38 0.01/0.01 1.13/1.56 0.07/0.07

Kernel 1.03 0.09 0.37 0.02 1.40 0.09

spectra and positive in the SW. These differences arise from the cloud masking

effect in the ∆CRE calculation, as well as in the Gregory method (see also section

3.2). Figure 3.2 shows ∆CRE in relation to the change in surface temperature.

The slopes of the regression lines for the cloud LW and cloud SW components

indicate the cloud feedbacks. It is notable that both regression lines have a

non-zero intercept at the Y-axis, which is in this framework part of the forcing

(Gregory and Webb 2008). This explains the smaller magnitude of the net cloud

feedback when estimated by the Gregory-method. The regression error is used

as the sampling error, comparable to the standard deviation of the inter-annual

variability and the maximum and minimum distance from the regression line are

used for the whiskers in Figure 3.1. The uncertainties inferred from this are large,

especially for the SW component.
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3.5 Feedback variability

Feedback analyses are applied to differences between two simulations in station-

ary state. Hence feedback factors are constant by definition, if averaged over a

sufficiently long period, and we discussed them as such in the previous section.

For practical reasons those analyses are applied to relatively short periods which

can be too short, resulting in sampling errors when estimating feedbacks. The

length of the averaging period depends on the feedback of interest and the de-

sired accuracy. In a climate model many sources of variability can be eliminated

to minimize the variability and to make understanding of the feedback processes

easier. For the experiments used here, we use a low resolution climate model

(see section 3.3), coupled to a mixed layer ocean. Due to this simplification

the absolute numbers for the feedback quantification can be seen only as an ap-

proximation to reality, but the implications and differences of the used feedback

metrics are still worth analyzing. In the following we analyze spatial and tempo-

ral variability separately, which both are likely higher in a less simplified set up,

when a full dynamical ocean, vegetation, sources of natural variability like volca-

noes, or a varying solar constant are included. The same is true for nature, where

a smaller, transient forcing and uncertainties in observations make the accurate

determination of feedback factors a challenging, still unresolved, task. Analyzing

the temporal and spatial variability of feedbacks helps to answer how long we

need to average, in order to get accurate estimates of a feedback factors from any

given method and geographical distributions help to understand the underlying

processes controlling feedbacks, ultimately leading to a better understanding of

the climate system and its response to perturbations.

3.5.1 Spatial variability

Figure 3.3 and 3.4 show maps of the geographical distributions of the surface

albedo, water vapor, cloud and lapse rate feedback factors, calculated using the

PRP method and radiative kernels, respectively, and Figure 3.6 shows the ∆CRE

as a proxy for the cloud feedback. All feedback maps are calculated from the same

six hourly output over six years.

The Planck response (not shown) is the first order feedback, if just temperature

would change uniformly when a forcing was imposed to the system. It is strongly

negative everywhere with -3.08 to -3.23 Wm-2K-1 as a global average, depending

on the method (Table 3.1). As temperature rises with higher carbon dioxide

concentrations, the forcing gets balanced at the ToA by radiating more energy

out to space. The strongly non-linear relation (σT 4) makes the Planck response

strongest in the tropics, where temperatures are already high, and weakest in
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3.5 Feedback variability

Figure 3.3: Geographical distribution of physical feedback factors calculated using

the partial radiative perturbation method and their zonal means, as averaged over six

years.

high latitudes, assuming a uniform temperature change.

The surface albedo feedback is positive nearly everywhere and only effective in

mid to high latitudes (Figure 3.3a and 3.4a). Higher temperatures under doubled

CO2 conditions cause less ice and snow to form in winter and lead to an earlier

snow and ice melting in spring. The second is more relevant, because there is more

short-wave radiation in spring to make this feedback more effective. Locally this

feedback factor can exceed 3 Wm-2K-1 (1 Wm-2K-1 on zonal average) and reaches

its maximum in our simulations around 70-80◦in both hemispheres.

The water vapor feedback is strongly positive everywhere (Figure 3.3b and

3.4b) and geographical structures are similar for both methods. The cold tropical

tropopause and the dry subtropical subsiding branches of the upper atmosphere

are most susceptible to changes in specific humidity, which leads to a maximum

of λWV at about 15◦ N.

The lapse rate feedback (λLR, Figure 3.3d and 3.4d) is positive over large re-

gions in the mid and high latitudes, mainly continental areas. At low latitudes,

the atmosphere warms more at higher altitudes than at the surface, where the

vertical temperature profile remains close to the moist adiabat due to the influ-

ence of deep convection. In mid- to high-latitude continental areas the surface

temperature responds strongest, leading to a positive lapse rate feedback. Here
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Figure 3.4: Geographical distribution of physical feedback factors calculated using

radiative kernels and their zonal means, as averaged over six years. The cloud feedback

factor in c.), is calculated from clear-sky corrected ∆CRE.

the tropospheric temperature lapse rate is mainly controlled by baroclinic ad-

justment (Stone and Carlson 1979). For the temperature lapse rate feedback

the difference is largest between the forward and backward calculated feedback

factor (Figure 3.5d). The probability density functions for the lapse rate feed-

back differ throughout the whole distribution. Those differences are strongest at

high latitudes where the lapse rate feedback is positive. In these regions artificial

perturbations are most relevant through de-correlation of the fields in the PRP

method. Also changes in cloud masking strongly influence the results obtained

when the PRP method is applied only one way (i.e, only FW).

Spatial variability of the cloud feedback

The cloud feedback (Figure 3.3c, 3.4c and 3.6) can locally be strongly negative or

positive. On a global average this nearly cancels out, so that the global averaged

feedback factor is close to zero (see Figure 3.1 and Table 3.1) and depending

on the method, this average feedback can be positive or negative. This makes

the accurate estimation of the cloud feedback particularly difficult. Clouds can

change their height, depth, size, frequency, reflectivity, phase, or any combination

of these. The cloud feedback thus affects the long- and short-wave spectra and is
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3.5 Feedback variability

Figure 3.5: Probability density functions of physical feedback factors calculated for

annual mean geographical distributions, using the forward PRP (red) and the backward

PRP (blue, multiplied with -1 for better comparison) method. The solid lines indicate

the average over the six years and the shaded area indicates the year to year variability.

highly variable in space and time.

The geographical distributions of the net cloud feedback obtained from the

PRP, kernels and ∆CRE look similar, but on a global average ∆CRE is lower,

in our case in fact of a different (negative) sign. This is due to the temperature

and water vapor feedbacks in the clear-sky component. Some parts of those

feedbacks are not separated from the cloud feedback when subtracting the clear-

sky component, if the cloud masking changing (see Section 3.2). The zonally

averaged structure is similar between the three methods, with a negative cloud

feedback in the inner tropics, positive cloud feedback in the mid latitudes and

again a negative feedback in the high latitudes. The cloud feedback maps differ in
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their detail but the corrected ∆CRE through the kernel method agrees better in

its geographical distribution, as well in its global average, with the cloud feedback

calculated using the PRP method.
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Figure 3.6: Change in net cloud radiative effect as time average (above) and global

averages for every six hours over six years in grey and five month running mean in red

(bottom).

The bulk of the geographical variability comes from the short-wave component

of the cloud feedback, which shows structures similar to the net cloud feedback

(Figure 3.8). Changes in the SW cloud forcing are mainly due to changes in cloud

cover (rather than cloud top height or cloud water content).

The LW component of the cloud feedback is globally positive except over sub-

tropical oceans and polar regions, where it is slightly negative (Figure 3.8). In

our simulations the tropopause rises in general due to a deepening of the con-

vective overturning, leading to an increase in upper tropospheric humidity and

consequently an upward shift of the profile of tropospheric infrared cooling. This
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3.5 Feedback variability

decoupling of LW emission at the top of high anvil clouds from the surface emis-

sions was described by Hartmann and Larson (2002) and Zelinka and Hartmann

(2010), who hypothesized that through these mechanisms all models simulate a

positive LW cloud feedback.

Figure 3.7: Cloud radiative forcing, if the PRP method is applied to cloud related

fields switched from one year of a control simulation to another year.

The year-to-year variability in clouds is strong. If the PRP method is applied to

two years of the same climate state, e.g. by taking cloud fields from one year and

calculating their radiative perturbation as they are set in the atmospheric state of

a different year, the radiative forcing can be of comparable magnitude to the cloud

feedback (Figure 3.7). In this - arbitrarily chosen - case the global mean ToA

radiative forcing is -0.55 Wm-2, but over several years this averages out to zero.

The main feature that gives confidence in the feedback in Figure 3.3c, 3.4c and

3.6 is its structure, which is independent of the applied method. Especially the

zonal structure appears robust. Little structure cab identified in the year-to-year

variation of the cloud forcing, which indicates that the cloud-climate feedback

can be separated from the natural variability in cloudiness.

3.5.2 Temporal variability

The climate feedback concepts are based on global mean, long time averages, but

the geographical and temporal variability still have valuable information. Es-

pecially, if the goal is to verify feedback strength estimates from models with
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Figure 3.8: Geographical distribution of cloud short-wave and cloud long-wave radia-

tive feedback factor (left) and six hourly globally averages (right) of the components of

cloud feedback factor for six years (grey lines), calculated using the FW PRP method.

The red line in the time series is the five month running mean and the horizontal black

lines is the mean over the entire time series. Note that the Y-axis range of the short-

wave is the same as the range for the net cloud feedback factor and the range for the

long-wave component is identical to all other feedback factors in Figure 3.9.

observations, or to infer feedback strength directly from observations, the vari-

ability characteristics become important as one has to derive the averaging period

that is needed for accurately estimating feedback factors. Figure 3.9 shows the

temporal variability of the different feedbacks as global averages, every six hours

for six consecutive years, as calculated with the PRP method. The standard

deviations in Table 3.1 are calculated from different yearly averages along each

time series.

The time series in Figure 3.9 for the globally averaged surface albedo, lapse

rate and water vapor feedback show seasonality and vary within 0.5-1.0 Wm-2K-1

over the six years analyzed here. The variation in the lapse rate feedback and the

water vapor are weakly anti-correlated on short (6 hours) time-scales (correlation

coefficient r=-0.21), but strongly correlated (r=0.71) when averaged over three

months. A weak lapse rate feedback is caused by a smaller temperature change

aloft, leading to a small water vapor feedback at the same time. Huybers (2010)

reports further correlation between feedbacks across climate models, which might

not be entirely physical. We find that the surface albedo feedback and the lapse

rate feedbacks have the strongest correlation (r=0.31) on short time-scales, even

stronger than the correlation of the tropospheric temperature lapse rate with the

water vapor feedback. While on longer time-scales however, the correlation is
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only r=0.50 related to the seasonal cycle. The global mean values of the net

cloud feedback are correlated with the lapse rate feedback (r=0.17 on short time

scales and up to r=0.31 on the time-scale of days) and a correlation between

surface albedo and water vapor feedback also exists (up to 0.5 depending on the

averaging time scale), all other combinations show little to no correlation.

The global mean values of the the surface albedo, lapse rate and water vapor

feedback reflect seasonality. This is especially true for the surface albedo feedback,

which is strongest in northern hemisphere spring when solar radiation at high

northern latitudes starts to increase.

Temporal variability of the cloud feedback

The cloud feedback is much more variable than the other feedbacks but shows

no seasonal variation in its global mean. As the geographical distribution of

the cloud feedback strength in Figure 3.3, where regionally the feedback can be

strongly positive, or negative, it varies in the global mean on the 6-hourly time

scale by ±5 Wm-2K-1, while the mean is close to zero.

The largest part of the temporal variability comes from the SW component of

the cloud feedback (Figure 3.8) that is dominated by low clouds, that have a high

albedo. Due to their low thermal contrast with the surface, the impact on the LW

is much smaller, and its variability is comparable to the other feedbacks. Note

that the temporal variability from ∆CRE in Figure 3.6 is much smaller then the

temporal variability obtained from the PRP method.

3.6 Implications and conclusions

By using different methods to separate physical feedbacks in idealized climate

simulations, through a consistent use of model output and radiation code, we

show that feedback parameters are method-dependent. Methods differ in their

definition of forcing and feedback which is affecting the results. Assumptions of

how processes are disaggregated and how this is done exactly introduces further

biases between methods.

Overall the geographical distributions are comparable between the methods,

with robust regional features (although details differ). For the cloud feedback

the geographical structure is consistent between years, giving confidence in the

simulated feedback.

We also show that feedback processes vary on different timescales and with a

different magnitude, even when many modes of variability are excluded in our

experiments. This makes long-term averages necessary for stable estimates of

feedback factors. The cloud feedback varies the most in our simulations, especially
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Figure 3.9: Time series of physical feedback factors for six hourly (grey line) globally

averaged values for six years, calculated using the FW PRP method. The five months

running mean (red line) is plotted to accentuated long term variability and the mean

value (horizontal black line) is plotted as reference. Note the eight times larger range

on the Y-axis of the cloud feedback factor.

in the SW spectrum, thereby introducing large sampling errors (on the order of

magnitude of the actual feedback) if only short global temporal averages are

used. In our simulations a single year is sufficient to estimate the surface albedo

feedback. The tropospheric temperature lapse rate feedback requires about three
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years averaging time, although absolute differences are large depending on the

method. For the water vapor feedback this is five years and for the cloud feedback

six years. For the latter, the sampling error can be as large as the inter-model

difference in the CMIP3 ensemble and might be even larger in more complex

models, let alone in reality.

Depending on one’s interest, even simple estimates of the ∆CRE can give

valuable and reliable information, for example about the zonal structure of the

cloud feedback. For the PRP and the kernel method, where all contributions

to λ are known, the equation 3.1 can be evaluated for a climate in equilibrium.

This would verify whether all assumptions are justified when disaggregating the

feedbacks.

The forcing introduced by the doubling of the atmospheric CO2 concentration,

as done in the perturbed simulation, can be calculated online as the stratospheric

adjusted radiative forcing (see Stuber et al. 2001). This yields 3.89 Wm-2 for the

model configuration used here. The forcing could also be estimated by using a

CO2 kernel, analog to the other kernels for the feedback calculations, or taken

from the Gregory method (3.91 Wm-2). The equilibrium climate sensitivity for

the model configuration used here is 2.98 K.

For the PRP method equation 3.1, with the feedback parameter expanded as

in Eq. 3.4, and with the radiation imbalance on the right-hand-side set to zero

assuming an equilibrium is attained, yields:

0 ≈ −0.36(±1.13) = 3.89 + [−3.23(±0.0) − 0.42(±0.06) + 1.78(±0.08)

+0.19(±0.01) + 0.25(±0.23)] ∗ 2.98

For the radiative kernel method, it yields:

0 ≈ −0.66(±0.75) = 3.89 + [−3.08(±0.0) − 0.61(±0.1) + 2.08(±0.09)

+0.17(±0.01) + 0.33(±0.23)] ∗ 2.98

This equation gives consistent estimates of the total feedback factor within the

range of uncertainty, here defined as the sampling error due to variability, for the

PRP method as well as for the radiative kernel method. The results suggests that

sampling errors can easily exceed the errors introduced through the assumptions

made in the different methods.
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Chapter 4

On constraining estimates of

climate sensitivity with present-day

observations through model

weighting1

The distribution of model-based estimates of equilibrium climate sen-

sitivity has not changed substantially in more than 30 years. Efforts

to narrow this distribution by weighting projections according to mea-

sures of model fidelity have so far failed, largely because climate sensi-

tivity is independent of current measures of skill in current ensembles

of models. Here we provide a cautionary example showing that mea-

sures of model fidelity that are effective at narrowing the distribution

of future projections (because they are systematically related to cli-

mate sensitivity in an ensemble of models) may be poor measures of

the likelihood that a model will provide an accurate estimate of cli-

mate sensitivity (and so degrade distributions of projections if they

are used as weights). Furthermore, it appears unlikely that statistical

tests alone can identify robust measures of likelihood. We consider two

ensembles: one obtained by perturbing parameters in a single climate

model, and a second containing the majority of the world’s climate

models. The simple ensemble reproduces many aspects of the multi-

model ensemble, including the distributions of skill in reproducing the

present-day climatology of clouds and radiation, the distribution of

climate sensitivity, and the dependence of climate sensitivity on cer-

tain cloud regimes. By restricting error measures to those regimes

1This chapter is in review by the Journal of Climate: Klocke, D., R. Pincus, J. Quaas, On

constraining estimates of climate sensitivity with present-day observations through model

weighting, Journal of Climate, 2011.
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we can identify tighter relationships between climate sensitivity and

model error and narrower distributions of climate sensitivity in the

simple ensemble. These relationships, however, do not carry into the

multi-model ensemble. This suggests that model weighting based on

statistical relationships alone is unfounded, and perhaps that climate

model errors are still large enough that model weighting is not sensible.

4.1 Model error and climate sensitivity

Equilibrium climate sensitivity, defined as the response in global-mean near-

surface temperature to a doubling of atmospheric CO2 concentrations from pre-

industrial levels, is a useful proxy for climate change because many other pro-

jections scale with it. Climate models produce a range of estimates of climate

sensitivity which can themselves be sensitive to fairly small changes in model for-

mulation (Soden et al. 2004). The distribution of these projections has remained

roughly the same for more than 30 years (compare, for example, Charney 1979;

Solomon et al. 2007).

One might expect that with improvements of climate models over time, projec-

tions would converge to a narrower distribution, but this has not yet proved true:

successive generations of climate models have produced improved simulations of

the present-day climate (Reichler and Kim 2008) but commensurate distributions

of climate sensitivity (Knutti et al. 2008).

The distribution might also be narrowed by invoking Bayes’s theorem and

weighting each prediction of climate sensitivity by the likelihood of the corre-

sponding model (Murphy et al. 2004; Stainforth et al. 2005; Knutti et al. 2010).

This likelihood is usually modeled as a decreasing function of model error, defined

as some measure of the difference between long-term averages of observations and

model simulations of the present-day climate. Weighting ensembles is fraught

with theoretical issues including the impact of the sampling strategy used to con-

struct the initial ensemble (Frame et al. 2005) and questions of how to treat an

ensemble in which members have varying degrees of interdependence (e.g. Knutti

et al. 2010; Tebaldi and Knutti 2007). But weighting projections has so far failed

to substantially narrow distributions of climate sensitivity for a more practical

reason: in current ensembles of climate models, global measures of error are not

systematically related to climate sensitivity or the underlying feedbacks (Knutti

et al. 2006; Murphy et al. 2004; Piani et al. 2005; Sanderson et al. 2008; Collins

et al. 2011).

Any observable measure of present-day error that is correlated with climate

sensitivity in a given ensemble of climate projections, if used as a weight, would
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4.1 Constructing a simple ensemble

narrow the distribution of climate sensitivity estimates. This makes it tempting to

seek such measures. But if the systematic relationships between the present day

and the future in an ensemble of models have causes which are not shared by the

physical climate system, weighting by such a measure can introduce substantial

projection errors (Weigel et al. 2010).

Here we provide a practical demonstration of how hard it can be to determine

whether relationships between the present day and the future in a given ensemble

have a more general basis. We consider two ensembles of climate models: one

containing a wide range of models and another employing a single model with

varied values of closure parameters. We use the simpler, single-model ensemble

as a proxy for understanding the behavior of the more complicated multi-model

ensemble, much as one might use the more complicated ensemble to understand

the real world. Section 4.2 describes the construction of the simple ensemble;

we then show that this simple ensemble reproduces several relevant aspects of

the multi-model ensemble. Section 4.4 describes the construction of a metric of

present-day performance that is correlated with climate sensitivity in the simple

model but does not generalize to the multi-model ensemble. We conclude by

exploring the implications for model weighting.

4.2 A simple ensemble spanning a range of errors

and climate sensitivities

We construct a perturbed-parameter ensemble by varying the values of selected

closure parameters (Table 4.1) in physical parameterizations of the general cir-

culation model ECHAM5 (Roeckner et al. 2003). The parameters are uncertain

in observations and are those used to adjust the model so that its energy bud-

get is balanced at the top of atmosphere (to within observational uncertainties

and accounting for ocean heat storage). Each parameter is restricted to fairly

small ranges near the default and all parameters are sampled simultaneously us-

ing Latin hypercube sampling (McKay et al. 1979). Five hundred realizations of

ECHAM5 are created and each model is run for a single year using present-day

climatological distributions of sea ice and sea surface temperature.

For each ensemble member, we compute an aggregate measure of the error in

simulating the present-day distribution of clouds, radiation, and precipitation.

Because it is not known which observable aspects, if any, of the present-day

climate are connected to climate sensitivity, any aggregate metric is arbitrary;

we justify the narrow focus of our choice by noting that a) differences in cloud

feedbacks drive much of the diversity in climate sensitivity estimates from climate

models (Soden and Held 2006), particularly by affecting the radiation budget,
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Chapter 4 Constraining climate sensitivity by weighting

Table 4.1: List of perturbed parameters in the ECHAM5 ensemble, their description,

default value, the range they are varied in and the percentage contribution to the

variation in skill and climate sensitivity. 1Default value in the atmosphere-only model.
2 Default value in the coupled model. *Indicates coupled parameters, to keep top of

the atmosphere radiative fluxes close to balance.

Description of parameter Default value Range
R2[%] R2[%]

Skill Sensitivity

Entrainment rate for shallow convection*

(Tiedtke 1989)
0.0003 0.0003 - 0.001 3 44

Cloud mass flux above level of non-buoyanc*

(Tiedtke 1989)
0.11/0.32 0.1 - 0.3333 3 44

Entrainment rate for penetrative convection

(Tiedtke 1989)
0.0001 0.00001-0.0005 64 0

Conversion rate from cloud water to rain

(Tiedtke 1989)
0.0004 0.0001-0.005 0 1

In-homogeneity of liquid clouds

(Cahalan et al. 1994)
0.7 0.65 - 1 4 0

In-homogeneity of ice clouds

(Cahalan et al. 1994)
0.71/0.82 0.65 - 1 20 1

Asymmetry of ice particles in clouds

(Stephens et al. 1990)
0.911/0.852 0.75 - 1 0 1

Coefficient for horizontal diffusion 12 6 - 24 6 5

Gravity wave drag activation threshold (mean)

(Lott 1999)
500 400 - 1000 2 0

Gravity wave drag activation threshold (stddev)

(Lott 1999)
200 100 - 700 2 0

Albedo minimum of snow/ice 0.6/0.5 0.45 - 0.65 8 0

Albedo maximum of snow/ice 0.8/0.75 0.75 - 0.9 9 3

and b) a majority of the varied parameters are cloud-related. We compute the

root-mean-square error relative to observations for cloud fraction, longwave and

shortwave cloud radiative effects at the top of the atmosphere (e.g. Hartmann

and Short 1980), and surface precipitation over each month of the annual cycle

(Pincus et al. 2008). These errors are much larger in our short integrations than

for long runs with well-tuned models because sampling errors are large. Still, the

difference in errors based on individual years from longer runs (described below)

is very small relative to the difference in error spanned by the ensemble, indicating

that the diversity in error is robust. Errors in individual fields are standardized

so that the distribution of each error across the ensemble has zero mean and a

standard deviation of one, then added together to provide an aggregate error
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4.2 Constructing a simple ensemble

measure for each model, where low errors reflect greater skill relative to other

members of the ensemble.
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Figure 4.1: Climate sensitivity and skill in two ensembles of climate models. a) Equi-

librium climate sensitivity as a function of the change in global annual mean net cloud

radiative effect (∆CRE) under doubled CO2 conditions. The CMIP3 ensemble is shown

with red dots; the models are also labelled. The distribution of climate sensitivities is

similar in the two ensembles, as is the mechanism driving the variability (the change in

cloud radiative effect). Background colors indicate the highest (red) and lowest (blue)

sensitivity models used later. b) Distributions of aggregate skill in present-day sim-

ulations of clouds, radiation, and precipitation for our perturbed-parameter ensemble

(histogram) and from the CMIP3 ensemble (dots). The skill measure integrates over

the annual cycle, the geographic distribution, and four variables. Black dots indicate

the performance of the base ECHAM model (atmosphere-only and coupled to an ocean

model) within the CMIP3 ensemble.

We sort the models according to this measure of aggregate error and compute

the equilibrium climate sensitivity of every tenth model across the range of ag-

gregate skill (so that the distribution of skill in the initial ensemble is roughly

preserved). Ten-year runs are performed using a slab ocean model and present-

day greenhouse gas concentrations, from which we determine the flux corrections

necessary to maintain present-day sea surface temperatures. A fifty-year sim-

ulation is then performed using the same ocean heat flux corrections but with

doubled carbon dioxide concentrations. Equilibrium climate sensitivity is com-

puted as the difference in global mean surface temperature between the last ten

years of the doubled CO2 and the present-day simulations.
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Chapter 4 Constraining climate sensitivity by weighting

4.3 The simple ensemble as proxy for the

multi-model ensemble

Results from this ensemble, in which all diversity arises from parametric uncer-

tainty, are comparable in many ways to the multi-model ensemble from the World

Climate Research Programme’s Coupled Model Intercomparison Project phase 3

(CMIP3; see Meehl et al. 2007), which represents the majority of the world’s

climate models and contains both parametric and structural variability. In par-

ticular, the distributions of climate sensitivity (Figure 4.1a) and our aggregated

measure of model error (Figure 4.1b) are similar in both ensembles. These quan-

tities are not systematically related to each other in either ensemble (Figure 4.2).

The similarity in the distributions of error and sensitivity, as well as the lack of

a connection between the two, mirror previous experiences across a wide range

of perturbed-parameter ensembles (Murphy et al. 2004; Stainforth et al. 2005;

Collins et al. 2011).
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Figure 4.2: Global measure of skill, aggregated over cloud radiative effects, precipita-

tion and cloud cover are unrelated to climate sensitivity in a simple ensemble and the

multi-model CMIP3 ensemble.

50



4.4 Developing measures of model error linked to climate sensitivity

The two ensembles also share an important structural feature: the same mech-

anism underlies the variability in climate sensitivity. In both ensembles, models

with a large change in the net cloud radiative effect under doubled CO2 concen-

trations are those with higher climate sensitivity (Figure 4.1a). The longwave

cloud radiative effect in our ensemble does not change much between present-

day and doubled CO2 conditions, while diversity in shortwave cloud radiative

effect (CRESW ) changes, in turn, is largely driven by diversity in the response of

low-latitude oceanic boundary layer clouds (Bony and Dufresne 2005).

By these measures, the perturbed-parameter ensemble is a successful proxy for

the multi-model ensemble. This allows us to test the generality of model weighting

techniques in two structurally distinct but statistically similar ensembles.

4.4 Developing measures of model error linked to

climate sensitivity

We now design a measure of error in reproducing the present-day climate that

is explicitly related to climate sensitivity in our simple ensemble. We identify

such a measure by focussing on the low-latitude oceanic boundary layer clouds

whose response is tightly linked to climate sensitivity (Bony and Dufresne 2005).

Boundary layer clouds dominate CRESW in subsidence regions, i.e. where the

mid-tropospheric pressure velocity is downward (ω500 > 0), so we sort present-

day CRESW by this quantity (Bony et al. 2004). In our ensemble the present-day

distribution of CRESW in subsidence regions differs markedly between the ten

highest- and ten lowest-sensitivity model variants (Figure 4.3a). Higher sensitiv-

ity models have weaker values of CRESW , indicating that clouds are some com-

bination of less frequent, less extensive, or less reflective than in low-sensitivity

simulations. The higher sensitivity models are also more consistent with obser-

vations (here, cloud radiative effect derived from satellite observations (Wielicki

et al. 1996; Loeb et al. 2009) and sorted by ω500 inferred from ERA-Interim reanal-

ysis data (Simmons et al. 2007)). Although the highest- and lowest-sensitivity

models in our ensemble are distinct from each other, at the most frequent values

of subsidence essentially all members over-estimate CRESW relative to observa-

tions. In regions of large-scale ascent (ω500 < 0) the distributions of CRESW in the

highest- and lowest-sensitivity models are much broader and overlap significantly.

In nature, boundary layer clouds in subsiding regions over the oceans are further

correlated (Medeiros and Stevens 2010) with lower tropospheric thermodynamic

stability (LTS; see Bretherton and Wyant 1997; Klein and Hartmann 1993), here

defined as the difference in the potential temperature at 1000 hPa and 700 hPa.

Our simple ensemble reproduces this dependency as well (Figure 4.3b). Through
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Figure 4.3: Relationships between present-day cloud properties and atmospheric state

in a perturbed-parameter ensemble. Both figures are restricted to the tropical (30◦S

– 30◦N) oceans. The ten highest- and lowest-sensitivity models (red and blue, re-

spectively) in the perturbed-parameter ensemble are shown; box and whisker plots

summarize the medians (central lines), quartiles (box ends), and range (whiskers) of

the distributions. Observations are shown in black, and the frequency distribution of

models and observations in the lower part of each panel. a) Monthly-mean values of

shortwave cloud radiative effect CRESW (all-sky fluxes minus clear-sky fluxes) sorted by

mid-tropospheric pressure velocity ω500. Boundary-layer clouds dominate in subsiding

(ω500 > 0) regions where high- and low-sensitivity models in our ensemble are distinct.

Global measures of skill, though, are dominated by the errors unrelated to climate sen-

sitivity occurring through the entire domain. The grey area indicates regions used in

Figure 4.3b. b) Cloud radiative effect in subsidence regions (ω500 > 0.03 Pa s-1) sorted

by lower tropospheric stability. The grey background color indicates regions used for

weighting in Figure 4.4b. High- and low-sensitivity models are distinct through a 4 K

range of stability, though the ensemble is systematically roughly 2 K less stable than

is observed.

much of the range of LTS the highest- and lowest-sensitivity models are indistin-

guishable, but in the range 13 K < LTS < 17 K CRESW in the high-sensitivity

models is consistently weaker, and in better agreement with observations, than

for low-sensitivity models. These are the most frequent values of LTS in subsiding

regions in our ensemble.

Figure 4.3 demonstrates why global measures of skill are unrelated to model

climate sensitivity: because the clouds whose systematic changes explain the di-

versity in sensitivity occur in a small region of the globe. Most measures of

skill compare models to observations in global domains (e.g. Gleckler et al. 2008;
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Figure 4.4: A tightly-focused measure of skill narrows the distribution of climate

sensitivity in a simple ensemble. a) Equilibrium climate sensitivity as a function of

conditionally-sampled root-mean-square error in shortwave cloud radiative effect of

simulations compared to satellite observations. The error is computed only in regions

of descending air (ω500 > 0.03 Pa s-1) and moderate lower tropospheric thermodynamic

stability (13 K < LTS < 17 K) over tropical oceans. b) Distributions of climate sensi-

tivity estimates before (black) and after weighting by a function of the error in panel a.

Weighting by this metric decreases the standard deviation of the distribution by about

23% and increases the mean by 0.35 K.

Pincus et al. 2008; Reichler and Kim 2008). Restricting the geographical do-

main over which errors are computed would not change this result much: even

considering only the low-latitude oceans, the root-mean-square difference with

observations are influenced not only by the regions controlling the sensitivity

but also by ascending regions, where errors are large, and low-sensitivity models

perform somewhat better, on average.

We define instead a conditioned error measure Ec as the root-mean-square dif-

ference between model simulations and observations of CRESW integrated over

regions with large-scale subsidence (ω500 > 0.03 Pa s-1) and moderate lower tro-

pospheric stability (13 K < LTS < 17 K).

Regions satisfying both conditions comprise just 5% of the area of the trop-

ics (2.5% of the globe) in the observations and somewhat more in the models.

Nonetheless, Ec is a reasonably good predictor of climate sensitivity in the simple

ensemble (Figure 4.4), which means it can be used to narrow the distribution of

climate sensitivity estimates. Figure 4.4b shows the distribution of climate sensi-

tivity obtained from the perturbed-parameter ensemble before and after weighting
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by the likelihood L(Ec) = exp(−E2
c /2) (Murphy et al. 2004). The standard devi-

ation of the posterior distribution is 3/4 of that of the prior distribution, mostly

because a few models with low sensitivity have large errors and hence low weight.

The mean climate sensitivity also increases by 0.35 K.

CMIP3 ensembele high sensitivity
                                 low sensitivity
                                 medium sensitivity

CERES ERBE-like / ERA-Interim
CERES-EBAF / ERA-Interim

ω500 [Pa s-1]
0-0.06 0.06

C
RE

SW
 [

W
m

-2]

0

-60

-120 1

PD
F

0

a.)

ascending subsiding

CMIP3 ensembele high sensitivity
                                 low sensitivity
                                 medium sensitivity
CERES-ERBE-like / ERA-Interim
CERES-EBAF / ERA-Interim

0

-60

-120

LTS [K] (ω500 > 0.03 Pa s-1)
12 16 20

1

0

PD
F

b.)

stableunstable

Figure 4.5: Relationships between present-day cloud properties and atmospheric state

in a multi-model ensemble. These figures are constructed in the same way as Figure 4.3,

but the distribution of cloud radiative effect as sorted by ω500 (a) or lower tropospheric

stability in subsiding regions (b) does not distinguish between high- and low-sensitivity

models in the CMIP3 ensemble.

But despite the many similarities between the perturbed-parameter and multi-

model ensembles, the systematic relationship between climate sensitivity and Ec

does not carry into the multi-model ensemble (Figure 4.5), nor does the distribu-

tion of sensitivity estimates from the multi-model ensemble change when weighted

by L(Ec).

4.5 Implications for weighting projections from

multi-model ensembles

One could conclude that we have obtained a null result and that the single-model

perturbed-parameter ensemble is, after all, a poor proxy for the multi-model

ensemble. Instead, we propose that these calculations are a concrete illustration

of some of the issues involved in the weighting and more general interpretation

of multi-model ensembles.

First, our results confirm that it is possible to obtain distributions of climate

sensitivity and global measures of error as diverse as those produced by the multi-
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model ensemble with even modest variations about a single model. This suggests

that variability in error and sensitivity at these levels is easy to come by (though

why this is so remains an intriguing open question). In fact, in our ensemble

diversity in skill and climate sensitivity arises from surprisingly simple paramet-

ric sensitivity: Climate sensitivity is primarily related to the entrainment rate

for shallow convection, which varies along with a cloud mass flux parameter (ex-

plaining 44% of the variance in climate sensitivity; Table 4.1), while aggregate

error is related to another parameter, the entrainment rate for deep convection

(explaining 64% of the variance in aggregated error; Table 4.1). If broad diver-

sity in behavior can arise from underlying simplicity then the diversity itself is

uninformative. This is an illustrative reminder that the distribution of climate

sensitivity from any model ensemble can not be interpreted as an estimate of the

total uncertainty in climate sensitivity.

Second, while the motivation to narrow the distribution of climate sensitivity

estimates is strong, our results dramatize the danger of focusing exclusively on

this goal. Relationships between sensitivity and model fidelity in any ensemble

emerge from an unknown mix of underlying similarity in model representation

and error, statistical sampling error, and physical relationships also present in the

natural world. This means that arbitrarily-chosen error measures may arise from

underlying similarity not present in the physical climate system. We argue that

because metrics developed from the full multi-model ensemble alone can not be

falsified by comparison to more general ensembles, they can not be justified as a

model likelihood purely on the basis of the strength of the statistical connection

between that metric and climate sensitivity. Indeed, where observations have

been used successfully to constrain model response (Hall and Qu 2006; Clement

et al. 2009) statistical metrics have been bolstered by physical arguments. Much

depends on the way weights are chosen, since incorrect weighting (that is, weight-

ing not related to true model likelihood) can substantially reduce the benefits of

using an ensemble of projections (Weigel et al. 2010).

Finally, it is possible that present-day models are not yet sufficiently accurate

to benefit from model weighting. Weighting model projections by skill is an as-

sertion that models are likely to produce accurate estimates of future climate in

proportion to their ability to reproduce some aspects of the present-day climate;

the implicit assumption is that models with higher skill are more likely to be ac-

curate representations of the physical climate system. But by most measures, no

current climate model produces distributions of the present-day climate statisti-

cally consistent with observations (Gleckler et al. 2008; Pincus et al. 2008, see also

Figure 4.3 and 4.5), implying that all models are formally unlikely. Weighting an

ensemble under these circumstances is essentially asserting that incorrect models

are more reliable than even-more-incorrect models. But the result of Bayes’s the-
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orem is ambiguous when the system being modeled is far from the system being

observed, and it may be that model weighting will be more profitable when the

collection of models we have is closer to the world we observe.
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Chapter 5

Towards the use of data

assimilation for process-oriented

climate model evaluation and

climate sensitivity constraints

This chapter outlines how process-oriented climate model evaluation

might improve our understanding of which processes are driving cli-

mate sensitivity. A possibility to challenge climate models directly

with observations is to apply initial value problems, as in numerical

weather prediction. Here we follow the avenue proposed by Rodwell

and Palmer (2007), who use data assimilation to obtain an optimal ini-

tial state for short climate model integrations. This initial state is the

most consistent with observations, and how much the model solution

drifts from this state is used to analyze model errors on time scales of

a few hours. Using this approach in ECHAM requires technical mod-

ifications, in particular the integration of the climate model in a data

assimilation/forecast cycle, whereby the model starts from the best

estimate of the atmospheric state. Here we use the same perturbed

physics ensemble as in Chapter 4, where models only differ in their

representation of clouds. The physical processes related to clouds act

on “fast” timescales (i.e., minutes to days) and therefore the errors

associated with cloud physics evolve quickly. Consequently, cloud pa-

rameterizations in climate models are well suited to be evaluated with

this method.

The technical modifications to ECHAM and an interface for an ensem-

ble data assimilation framework are presented followed by an outline

of the potential use of the data assimilation technique in the spirit

of results from the previous chapters. This can help in the future to
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more rigorously evaluate climate models on a more process oriented

level and might lead to better simulations of cloud processes which

eventually improves our understanding in cloud responses to climate

perturbations.

5.1 Introduction

Projections of climate models can be verified only on long time scales. Observa-

tional data for the climate response to large forcings is sparse (for an example see

Chapter 2), hence confidence in climate models has to be built by testing them

against present and past climates, for which observations of quantities consid-

ered important for climate simulations are available. This is generally done by

comparing long-term statistics from climate model output to long-term statistics

from observations (Reichler and Kim 2008; Gleckler et al. 2008). Although cli-

mate models continuously increased their ability to simulate the present-day and

past climate over the last decades (Reichler and Kim 2008), climate projections,

quantified by estimates of climate sensitivity, did not converge in the same time

(compare for example Charney 1979 and Solomon et al. 2007).

The simulated atmospheric state at a given time does not necessarily corre-

spond to the real atmospheric state, because climate models solve boundary con-

dition problems, where usually arbitrary initial conditions are used. One reason

for this is that the predictability of weather is limited to a few weeks, given the

current observation systems and numerical models, while climate timescales are

much longer. Therefore processes in climate models cannot be evaluated by a

direct comparison with observations (an exception may be the use of “nudging”

techniques to evaluate individual model parameterizations). Errors in long-term

statistics in turn do not necessarily relate to errors in just one process; they could

be caused by other processes interacting with the process of interest. Especially

fast physical processes, like those related to clouds, react on time scales of min-

utes to hours to changes in environmental conditions. Comparisons of long-term

statistics can identify errors, but may not untangle the processes that cause them.

Instead we can evaluate processes more directly, by challenging climate models

with observations. Climate models can be initialized with the best estimate of

the atmospheric state at a given time and make short-term forecasts, comparable

to Numerical Weather Predictions (NWP). Phillips et al. (2004) initialized a cli-

mate model with reanalysis data to evaluate it within a five day forecast. They

attributed the mean forecast error to deficiencies in physical parameterizations.

Another option is to initialize a climate model with the use of data assimilation

as in NWP. Based on this idea, Rodwell and Palmer (2007) adapted NWP meth-
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ods for an evaluation of “fast” physical processes. They assimilated observational

data in the climate version of their model and analyzed assimilation increments

after every six-hour forecast, as a measure for errors in the representation of fast

physical processes. Tendency diagnostics of physical parameterizations are used

as error diagnostics to identify for contributions of different physical processes to

the assimilation increment. This overcomes the dependence on a control model

used to generate the reanalysis, as in the Phillips et al. (2004) approach, which

may be inconsistent with the physics of the forecast model. The so called “initial

tendency” approach requires the integration of the model in a data assimila-

tion/forecast cycle.

The initial tendency approach can only assess fast physics perturbations, i.e.

perturbations that have an impact on weather forecasts as well as the simulated

climate. Recent research suggests that most of the present climate model param-

eter uncertainty is associated with clouds (e.g. Cess et al. 1990; Colman 2003;

Klocke et al. 2011a,b), and cloud-related processes act on short time-scales, thus

they are ideal to be evaluated with this approach.

Especially the response of low clouds in the tropical marine boundary layer

has been identified as the main contributor to the inter-model spread in climate

sensitivity within the Coupled Model Inter-comparison Project phase-3 ensemble

(CMIP3) (Bony and Dufresne 2005). Klocke et al. (2011a) related present-day

features of this cloud regime to climate sensitivity in a simplified ensemble. This

suggests that differences in climate sensitivity are process-related and geograph-

ically restricted, especially as global measures of skill fail to relate an observable

of the present-day climate to climate sensitivity.

Processes related to clouds are not directly simulated in climate models, but are

represented via parameterizations. Such statistical formulations include empiri-

cal parameters, which are not well constraint by observations. Especially cloud

parameters are used to tune the radiation balance of climate models, in order

to obtain the best fit of the model to the present-day climate. The good results

models achieve by tuning may be due to compensating errors. Large uncertain-

ties in estimated climate sensitivities can be related to those parameters. These

uncertainties can be explored systematically with large “perturbed physics” ex-

periments (Murphy et al. 2004; Stainforth et al. 2005; Klocke et al. 2011a). Such

experiments are computationally expensive, as the models need to be run in many

configurations and there is a large number of parameters in a climate model. Ta-

ble 4.1 in Chapter 4, for example, shows the parameter uncertainties that Klocke

et al. (2011a) explored. Most of the parameters are cloud related, similar to the

approaches in other perturbed physics experiments (e.g. Murphy et al. 2004).

In this study we outline a strategy to make use of data assimilation techniques,

to initialize the climate model ECHAM from the best estimate of the atmospheric
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state at a given time. We propose to use 3-D assimilation increments of tempera-

ture, wind components, surface pressure and specific humidity in the same set of

models used by Klocke et al. (2011a) (see Chapter 4) to more rigorously identify

processes that determine the skill of the present-day simulation. Can we show

that errors in the climatology already manifest themselves in the first few time-

steps? Do local errors in the representation of clouds have a remote influence?

What we wish to achieve, is identifying a process which is related to climate

sensitivity, rather than some statistical relation.

Another possible approach to use the data assimilation framework in a climate

model is to systematically assess model uncertainty as investigated by Annan

et al. (2005). They use an Ensemble Kalman Filter data assimilation scheme

in which some model parameter values are included as part of the model state

vector, and where the cost function involves a test of the model’s simulation of

present-day observations. For a simplified atmospheric model they are able to

reproduce three out of five known parameter values in identical twin experiments

where the model was assumed to be perfect (except for the unknown parameter

values). Further work is required to determine the efficiency of this approach

when applied to more complex, more non-linear, and less perfect models, with

more tunable parameters like the climate model ECHAM used here. Such a

study is currently performed as a diploma thesis project at MPI-M (Schirber, in

preparation).

In section 5.2 modifications to ECHAM and the interface with the data as-

similation system DART is described. In section 5.4 we show some first results

obtained with this method and in section 5.5 we give a brief outlook to future

work.

5.2 Technical notes on the integration of ECHAM

in a data assimilation/forecast cycle

We use an ensemble filter based data assimilation approach, because in contrast

to variational data assimilation techniques no tangent-linear, or adjoint approxi-

mation is required. The two approaches are also comparable in their performance

(Kalnay et al. 2007; Buehner et al. 2010). Different ensemble filters are included

in the Data Assimilation Research Toolbox (DART, Anderson et al. 2009) which

is relatively easy to adapt and freely available to the research community.

DART is developed at the National Center of Atmospheric Research (NCAR).

It is a flexible and comprehensive ensemble filter system, designed for research

and education. Its modular structure allows to incorporate new models, filters,

or observation types with relatively small effort, via interface routines.
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The modifications to ECHAM and DART are necessary to link them as an en-

semble data assimilation/forecasting system. On the climate model side, the first

time-step after a restart needs to be modified. ECHAM restarts from two time-

levels, but observations are assimilated only at one time-step. On the DART

side, transformation programs are necessary to transform the ECHAM restart

files into the required state vector and back, after each data assimilation/forecast

cycle. DART also needs information about the ECHAM variable names, grid

specifications and time stepping in order to assign suited assimilation windows

and to ensure the right interpolation of observations in the vertical and horizontal

(section 5.2.2). Finally, an overarching program is designed to drive the ensem-

ble forecast system to advance the model ensemble, organize observations and

transform data between state vectors for the assimilation framework and spectral

space for the climate model restart from the analysis (section 5.2.3).

5.2.1 Modifications to the model restart

ECHAM is developed for climate simulations and has not been used as part of a

data assimilation/forecast cycle, although it originally emerged from the forecast

model of the European Centre for Medium-Range Weather Forecasts (ECMWF).

Climate simulations are a boundary condition problem, therefore little attention

was paid to the initialization of the model during the model development.

For the experiments proposed here the initialization and starting of the model

plays a crucial role. In order to properly start the model from the analysis created

by data assimilation, modifications to the model start are necessary. ECHAM

uses a semi-implicit two time-level leapfrog time discretization scheme (see Fig-

ure 5.1). Prognostic variables are vorticity, divergence, temperature (T), the

logarithm of the surface pressure (PS), specific humidity (Q) and cloud water

(Xl). From vorticity and divergence the meridional wind (U) and zonal wind (V)

components can be calculated. The DART system assimilates observations at

one time level t, but for a standard model restart, two time levels are needed.

There are two options for a model start from the analysis, when incorporated in

the data assimilation/forecast cycle. These are to

1. include both time levels in the state vector (i.e., T(t), U(t), V(t), Q(t),

PS(t) and T(t-1), U(t-1), V(t-1), Q(t-1), PS(t)) and assimilate the obser-

vations only on time level t, but adjust the time level t-1 according to the

covariances across the ensemble between time level t and t-1.

2. use only the time level t in the state vector, but adjust the model start to

a one time level restart, by changing the very first time step to start from

the analysis.
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Chapter 5 Towards process-oriented model evaluation

Computational costs increase with the number of state variables in the state

vector and the number of observations. For this reason we use option 2. For this,

the strategy used for initial model starts, which is different from a model restart,

is applied.

Climate simulations with ECHAM are initialized with a subset of variables.

The prognostic variables (vorticity, divergence, temperature, surface pressure and

specific humidity) and some boundary conditions (e.g. sea-surface temperature,

sea-ice cover, orography, vegetation) are loaded. All other variables are pre-

defined by some default value (usually zero) and they develop their physically

defined state within the first couple of time steps (days) of the simulation. This

means that the model is not starting from a “realistic“ atmospheric state, but the

realistic state is developed during the first time steps. At the model initialization

variables are only available on one time level (t) and (t-1)-values are obtained by

copying the actual values (at time t) into the first time-step. This first time-step

is only a forward half Euler time-step and not a leap-frog-step, because of the

equality of t and (t-1)-values (Figure 5.1a). Actual values (at time t) are the

spectral coefficients read. They are transformed to Fourier coefficients during the

second time step, followed by a transformation to grid point values via inverse

Fourier transformation.

This is done in the subroutine ioinitial. A description of the time stepping

algorithm for an initial start is illustrated in Figure 5.1a. The model starts from

a single time level and performs an Eulerian step forward with half the time step

length of the full leapfrog time integration scheme. The calculated new model

state is used to calculate the tendencies of the first real leapfrog time step.

The restart of ECHAM is handled by the subroutine iorestart and its de-

scendants. The restart file contains a full description of the model state at t-1

in grid point space. The prognostic variables of time level t in an intermediate

symmetric/anti-symmetric split set of Fourier coefficients are used to calculate

the tendencies for advancing the model to t+1 in a way that is consistent with the

model time discretization (see Figure 5.1b). This means that the restart informa-

tion stored ensures a simulation identical to an uninterrupted one. In contrast to

an initial start, a model restart starts from time level t-1 and uses the available

prognostic variables of time level t to advance to time level t+1.

We change the model restart for the prognostic variables (for other variables the

restart remains the same) such that it is analogous to the initial model start. The

spectral prognostic variables (vorticity, divergence, temperature and log surface

pressure) at time-level t from the restart file are used, but need to be patched

for the use in DART. The symmetric and asymmetric components of the Fourier

coefficients need to be recombined and transformed to the grid point space. Zonal

and meridional wind are calculated from divergence and vorticity and are written
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Figure 5.1: Schematic illustration of time stepping on an initial models start (a) and

at model restart (b). Black and blue illustrate the two time levels, while the red color

shows the half Euler time-step at model initialization.

together with specific humidity and temperature into a separate file. This file

contains all state variables in grid space at time t. These variables are then

ready to be transformed to a state vector for DART and updated by the data

assimilation filter.

After DART updated the state vector, all variables are transformed back to

spectral space and divergence and vorticity are calculated from the two wind

components. A new IO reading routine is created (ionwp), derived from subrou-

tine ioinitial, which reads the analysis. All other variables are read from the

restart file as usually done in a restart. This is similar to the way current NWP

models are starting their forecasts. The first time step is then an Euler time-step

with half the time-step length of the leap frog scheme. Next, the model advances

as usual, until the next assimilation window is reached.

Figure 5.2 shows the error introduced through the modified restart in compar-

ison to the default model restart. The root mean square error (RMSE) of the

500 hPa geopotential height from the modified restart is calculated against the
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Figure 5.2: Deviation in geopotential height at 500 hPa, of the restart for one time-

level restarts, modified to initialize the model with analysis from data assimilation,

compared to the standard two-time-level restart, measured as the two hourly global

mean root-mean square-error (RMSE).

default two time-level restart of the model. The small error introduced by the

modified model restart is negligible in comparison to the rather brutal changes

to the atmospheric state introduced by the observations to the model.

5.2.2 The interface to DART

Ensemble filter data assimilation systems are attractive, because they derive an-

isotropic and flow-dependent covariance estimates from an ensemble. ECHAM

is interfaced with the Data Assimilation Research Testbed (DART; Anderson

et al. 2009) system developed at the National Center for Atmospheric Research

(NCAR), which is a comprehensive ensemble filter system designed for research

and education. We use the default ensemble adjustment Kalman filter (EAKF;

Anderson 2001), which is a square root filter and is implemented in DART with

serial observation processing (Anderson 2003). The EAKF includes cross covari-

ances between different observation- and state-space variables. Because of the

extensive documentation in the literature, we do not include a description of the

filter here but refer the interested reader to the DART related references above.

The ensemble filter is used to assimilate surface pressure and 3-D observations of
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U-wind, V-wind, specific humidity and temperature to estimate the atmospheric

states. The predictions analyzed are the 6-hrs ensemble forecasts initialized from

the ensemble filter analyses.

In the ECHAM-DART system presented here, the initial conditions are gen-

erated by integrating the climate model for N years to get restart files for N

ensemble members, each at the same time of the year. This ensures that the

ensemble members are independent. Arbitrarily large ensembles can be gener-

ated, but we chose N=80 members, always using the first of January and July as

restart files for our experiments. Performing the experiments in boreal summer

and winter ensures that the results are not season-dependent.

DART needs all variables in a state vector. Two separate programs transfer

the relevant variables (T,U,V,Q,PS plus optional tracers) from the model space to

the state vector (trans pv sv) and, after the state vector is updated by DART,

back (trans sv pv) to the model grid. The ECHAM-DART interface reads the

state vector, determines the model time, model grid size and assimilation win-

dow, depending on the time-step length. For the low resolution T31 ECHAM5

version used here, the time step length is 40 minutes, which gives an assimila-

tion window of t ±20 minutes. In DART a location, a desired generic ’kind’

(like KIND SURFACE PRESSURE, KIND TEMPERATURE, KIND SPECIF-

IC HUMIDITY, ... ) is assigned to each entry of the state vector and observations

are interpolated to the ECHAM locations. The state variables (or observations)

that are close to a given base observation are located. We assimilate T, U, V, Q,

PS from radiosondes, aircraft data and satellite data from the Global Position-

ing System radio occultation technique (GPS-RO; Anthes et al. 2008) and the

Atmospheric Infrared Sounder (AIRS; Chahine et al. 2006).

5.2.3 Data assimilation/forecast cycle work flow

Figure 5.3 summarizes the data assimilation/forecast cycle of ECHAM-DART,

including the intermediate transformation steps. A prior ensemble of N initial

conditions (start files) needs to be created. To obtain these, the model is inte-

grated for 80 years and each restart file of January and July first at midnight

is saved for the initial ensemble. From those start files the initial ensemble of

state vectors for DART is created, after the spectral variables are transformed to

grid space and the U- and V-wind components are calculated. DART updates

the initial ensemble of state vectors with observations and writes an ensemble of

analyses. These updated state vectors are transformed to grid space and a second

program transforms the wind components back to vorticity and divergence and

writes these plus all other variables, except Q, back to spectral space. ECHAM

starts from this one time level and advances the ensemble to the next assimila-
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Figure 5.3: Work flow diagram of the ECHAM-DART data assimilation/forecast cycle.

Red font indicates the separate routines used by the filter. Trans pv sv and Trans sv pv

transform the prognostic variables between the model state and the state vector, re-

spectively. Advance model advances the N ensemble members to the next assimilation

window after each assimilation time. Patch restart transforms the model spectral vari-

ables to grid point space and calculates from divergence and vorticity the two wind

components, while uv2dv and gp2sp do the reverse operation.

tion window. The new ensemble of restart files, six hours later from the initial

ensemble, is the basis for the next cycle.
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5.3 Assimilation increments as a skill measure
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Figure 5.4: Schematic illustration of the data assimilation and forecast integration

aspects of ECHAM-DART. X represents time series of an observable (e.g. of tempera-

ture, wind components, or specific humidity). For each i, Xi(ti) represents the model

forecast initiated from an analysis. For the purposes of explaining the methodology,

the role of systematic forecast error (negative bias) has been emphasized (adapted from

Rodwell and Palmer (2007)).

In the perturbed physics ensemble used in Chapter 4, all models are identical,

except for some parameters in the cloud parameterizations. The same models are

initialized here every six hours with the best estimate of the atmospheric state,

with the use of observations. How far a model drifts away from the observed

trajectory of the atmospheric state relative to other models, depends entirely

on the cloud parameterization. Maps of the assimilation increments of T, U, V

and Q highlight regions with large increments. This may allow for relating the

increments to individual processes.

The mean assimilation increment in a six-hour forecast and m assimilation

/forecast cycles for any variable X can be written as:

INC =
1

m

m
∑

i=1

∆Xi =
1

m

m
∑

i=1

(X(ti) − X(ti−1 + ∆t)) (5.1)

This is also illustrated in Figure 5.4. The mean assimilation increment is the

average departure of the model forecast from the analysis. A systematic model

error would lead to a non-zero increment. A positive (negative) increment in a

variable indicates that the model tends to drift to too small (large) values during

the forecast, hence the data assimilation filter would pull the model back to larger

(smaller) values.
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Figure 5.5: Global mean as-

similation increments from 1

January 2008 every six hours

(00, 06, 12, 18 h) for specific
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V-wind components and surface
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Figure 5.6: Vertical profiles of global mean assimilation increments averaged over ten

days in January 2008 (00, 06, 12, 18 h) for specific humidity (q), temperature (T), zonal

wind (U-Wind) and meridional wind (V-Wind). The models with highest (red) and

lowest (blue) equilibrium climate sensitivity and the highest (black plain) and lowest

(black dashed) skill in simulating the climatology of cloud related variables from the

perturbed physics ensemble of Klocke et al. (2011a) are shown (see Table 5.1).

5.4 First results

Figure 5.5 shows the global mean assimilation increments for the surface pressure

for 15 days in January 2008 and in three exemplary model levels for temperature,

specific humidity and the two wind components (U, V) from ECHAM6. After
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five days the ensemble has equilibrated with the observations (the assimilation

increments reach stationarity) and in all remaining figures only the ten days after

day five are used to obtain the mean assimilation increments.

In Figure 5.6 the mean assimilation increments for four different models from

the ensemble of Klocke et al. (2011a) are shown as vertical profiles. The highest-

and lowest-sensitivity model, plus the most and least skilled models (according

to the cloud related skill measure defined in Chapter 4) are selected from the

ensemble. For illustration purposes only four parameters are perturbed (see Ta-

ble 5.1). Those four parameters are controlling most of the variability of skill and

equilibrium climate sensitivity across the full ensemble used in Chapter 4.

Table 5.1: Parameter settings in the four members of the Klocke et al. (2011)

ECHAM6 model ensemble chosen for the analysis. These are the models with the high-

est and lowest climate sensitivity and the best and worst aggregate skill, respectively.

Parameters marked with (*) are varied jointly in the perturbed-physics ensemble.

Description of parameter
High Low High Low

skill skill sensitivity sensitivity

Entrainment rate for shallow convection* 6.98E-04 6.62E-04 6.28E-04 3.94E-04

Cloud mass flux above level of non-buoyancy* 2.33E-01 2.21E-01 2.09E-01 1.31E-01

Entrainment rate for penetrative convection 1.15E-04 1.43E-04 3.20E-05 3.02E-05

Conversion rate from cloud water to rain 3.13E-03 4.91E-03 2.16E-03 4.90E-03

The vertical profiles of the specific humidity (q) assimilation increments (Fig-

ure 5.6) are positive throughout the column for all four model versions. This

indicates a too dry atmosphere, which is corrected in every assimilation cycle

to higher specific humidities based on observations. Errors at higher model lev-

els are relatively large for the low sensitivity model simply because the upper

atmosphere has low specific humidity.

The specific humidity assimilation increments in the lower model levels are

consistent with the profiles of temperature (T) assimilation increments, which

are positive, indicating a tendency of all model versions to a lower troposphere

that is too cold. At higher model levels the two models with opposing climate

sensitivity are closer to the observations while the models of opposing skill have

positive assimilation increments (negative bias).

Biases in the winds are in the lower model levels, independent of the parameter

values, which is especially true for the U-wind component. This suggests that

this bias is unrelated to the perturbed cloud parameterizations. At higher levels

the different models diverge.
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In all variables the largest biases are robust, independent of parameter settings.

Interestingly the sensitivity models show comparable vertical profiles, and the two

models with opposing skill have similar assimilation increments. A possible reason

for this is that the parameter for the entrainment rate of penetrative convection

is similar in the two model versions with opposing skill, and also similar in the

two model versions with opposing climate sensitivity (see Table 5.1), but between

these two sets, values are substantially different. Because deep convection in the

tropics largely drives the general circulation, this parameter is expected to have

a strong global mean impact. For this first pilot study the parameter values may

however not be optimally chosen, which hinders some interpretations.

Because the parameter for the entrainment rate of penetrative convection is rel-

evant for the skill in reproducing the climatology of cloud related variables, one

would expect small assimilation increments for the model with high aggregate

skill, and large ones for the model with low skill. Recalling that surface precipi-

tation, cloud radiative effects and cloud cover were used, one would expect this

to be true in particular in the lower troposphere and in humidity, that are most

relevant for cloud formation. As can be seen in Figure 5.6, however, the opposite

is found. It remains to be proven that the process-oriented evaluation proposed

here is superior to the aggregate skill metric used earlier. It is expected that

the value of this method improves when assimilation increments are evaluated on

regional, rather than just global scales.

An explanation for the comparable assimilation increments for the two models

with opposing climate sensitivity may be due to the finding that global measures

of skill and climate sensitivity are broadly un-related (Chapter 4). This technique

does provide 3-D assimilation increments, hence the evaluation can be refined to

target certain processes in specific regions. In particular we expect a difference

in assimilation increments of humidity in the subtropics, since cloudiness in these

regions specifically was found to correlate with climate sensitivity. These ques-

tions will be investigated in more detail with the help of more perturbed model

versions in future studies.

5.5 Outlook and research questions

The experiments here shown use just a few parameters from the subset of the per-

turbed parameter ensemble in Chapter 4. Further simulations with a larger set of

models from the perturbed physics ensemble are necessary to obtain more mean-

ingful results. Nevertheless, these preliminary results already demonstrate the

potential of this method for the evaluation of fast physical processes. Especially

when the mean assimilation increments are regionally confined several interesting
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research questions can be addressed with this approach. A few examples are:

• How do errors in the climatology manifest themselves in the first few time-

steps?

• Can a certain fast process be related to assimilation increments and subse-

quently to errors in the climatology?

• Are there teleconnections of fast evolving errors?

• Can a specific process be linked to climate sensitivity?
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Chapter 6

Conclusion and Outlook

How sensitive is the Earth’s climate system to perturbations? This

question intrigues many because future planning for mitigation and adaptation

to a changing climate is easier the more certain we are about the answer to this

questions. The range of climate sensitivity estimates did not narrow much in the

past decades and it remains a great challenge to do so. Several paths to get closer

to answering this question more accurately are followed and discussed in detail

in this thesis.

In Chapter 2 the possibility of better constraining climate sensitivity from

volcanic forcings is explored through the use of ensemble simulations of the last

millennium with a comprehensive earth system model. These include all known

forcings based on reconstructions. Here we simply assume that the response to

the short pulse forcing is directly related to climate sensitivity. The composite

of many different volcanic forcing realizations in many different states of the

climate system is used to estimate how many volcanic eruptions would have to

be observed to yield an estimate of climate sensitivity narrower than the one

currently obtained from the CMIP3 multi-model ensemble. Few volcanoes, but

with stronger radiative forcing are better suited for deriving a narrower composite

normalized response, compared to many weak volcanic events. To achieve a

comparable range of climate sensitivities as given by the multi-model ensemble of

CMIP3, more than 45 volcanoes, all larger than Mt. Pinatubo (the eruption with

the largest radiative impact in the last century) are needed. For a frequency of

large volcanic eruptions comparable to the one in the last millennium, more than

10000 years are necessary to derive a tighter range of climate sensitivity from

response following volcanic eruptions. This suggests that large volcanic events

are in fact not useful to constrain equilibrium climate sensitivity.

Physical radiative feedbacks from idealized climate simulations are quantified

in Chapter 3 using four different methods, with different levels of complexity. The

results differ between the methods and differences are largest for the cloud feed-

back. The spatial and temporal variability of each feedback are used to estimate

the averaging time scale necessary to satisfy the feedback concept of one constant
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global mean value. We find that the year-to-year variability of each feedback pro-

cess in this single model is comparable to the model-to-model spread in feedback

strength of the CMIP3 ensemble. The strongest spatial and temporal variability

is in the short-wave component of the cloud feedback. Even in our very idealized

simulations, where many sources of natural variability are neglected, multi-year

averages are necessary to get a reliable estimate of the simulated cloud feedback.

Considering the large natural variability and relatively small forcing present in the

real world, as compared to the forcing imposed by doubling CO2 concentrations

in the simulations, this implies that using observations to constrain the cloud

feedback is a challenging task and requires reliable long-term measurements.

In Chapter 4 we provide a cautionary example showing that measures of model

fidelity that are effective at narrowing the distribution of future projections (be-

cause they are systematically related to climate sensitivity in an ensemble of

models) may be poor measures of the likelihood that a model will provide an ac-

curate estimate of climate sensitivity (and so degrade distributions of projections

if they are used as weights). This conclusion is achieved considering two ensem-

bles: one obtained by perturbing parameters in a single climate model, and a sec-

ond containing the majority of the world’s climate models. The simple ensemble

reproduces many aspects of the multi-model ensemble, such as the distributions

of skill in simulating the present-day climatology of clouds and radiation, the dis-

tribution of climate sensitivity, and the correlation of climate sensitivity with the

cloud feedback. By constructing an error metric for the subtropical marine low-

level cloud regimes, we can identify a relationship between climate sensitivity and

model error useful to obtain a narrower distribution of climate sensitivity in the

simple ensemble. This relationship, however, does not carry into the multi-model

ensemble. This suggests that model weighting based on statistical relationships

alone is unfounded, and perhaps that climate model errors are still large enough

that model weighting is not sensible.

Climate model errors are dominated by errors in fast physical processes on the

sub-grid scale such as the ones related to clouds. These processes are dependent

on the large scale atmospheric state. If evaluated as a climatology, errors are hard

to isolate. For example could even a perfect cloud parameterization only deliver

only a poor representation of clouds, if the thermodynamical conditions are erro-

neous. Thus an evaluation of the simulated cloud fields in this hypothetical model

would come to the wrong conclusion that something is wrong with the cloud pa-

rameterization. Consequently, closure parameters in the cloud parameterizations

would be adjusted to make the model fit better to the observed climate. By using

data assimilation increments as skill measure this can be partly avoided and fast

processes can be evaluated more directly. This approach is outlined in detail in

Chapter 5 which allows to approach several interesting questions. Which errors
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in fast processes are related to errors in the climatology? Is there a process which

can be related to skill in the climatology and maybe even to the response of clouds

to perturbations? These questions will be investigated in future studies using the

introduced data assimilation/forecast framework in Chapter 5 on the perturbed

parameter ensemble from Chapter 4.

The first three parts of the thesis explored several possibilities to quantify and

constrain climate sensitivity but consistently concluded that these avenues fail

to provide more reliable estimates of climate sensitivity. However, the data as-

similation approach can potentially lead to better climate models, in conjunction

with a better understanding of the climate’s response to perturbations.
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