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Abstract. An analysis of so-called early warning signals 1 Introduction
(EWS) is proposed to identify the spatial origin of a sud-
den transition that results from a loss in stability of a current
state. EWS, such as rising variance and autocorrelation, cahne existence of potential tipping points in the climate sys-
be indicators of an increased relaxation time (slowing down).tem has received growing attention in recent yeaenfon
One particular problem of EWS-based predictions is the re€t al. 2008 Lenton 201]). In the narrower sense, a tip-
quirement of sufficiently long time series. Spatial EWS havePing point occurs when a system becomes very susceptible
been suggested to alleviate this problem by combining differ-0 an external forcing due to large positive feedbacks. In the
ent observations from the same time. However, the benefit ofXtreme case the system's attractor disappears at a thresh-
EWS has only been shown in idealised systems of predefine@!d value of the forcing (bifurcation) and the state has to
spatial extent. In a more general context like a complex cli-2PProach a different attractor.
mate system model, the critical subsystem that exhibits a loss I order to predict the collapse at a preconceived bifur-
in stability (hotspot) and the critical mode of the transition ¢ation or to distinguish such changes in stability from ran-
may be unknown. dom state transitions, it has been proposed to exploit statisti-
In this study we document this problem with a sim- cal precursors of instabilities\(iesenfeld 1985ab, Wiesen-
ple stochastic model of atmosphere—vegetation interactio€!d and McNamaral 989, also called early warning signals
where EWS at individual grid cells are not always detectable(EWS; Scheffer et al.2009. The fundamental assumption
before a vegetation collapse as the local loss in stability caPehind their applicability is that the system is close to a deter-
be small. However, we suggest that EWS can be applied as ginistic solution and perturbed by small fluctuations which
diagnostic tool to find the hotspot of a sudden transition andc@n be described as white noise. In case of the climate system
to distinguish this hotspot from regions experiencing an in-this approach resembles Hasselmann's concept of stochas-
duced tipping. For this purpose we present a scheme whicHC climate models flasselmann1976. When the system’s
identifies a hotspot as a certain combination of grid cellsStable fixed point loses stability when approaching a local
which maximise an EWS. The method can provide infor- bifurcation (e.g. a saddle-node bifurcation), an eigenvalue
mation on the causality of sudden transitions and may helgPProaches 0 (if time is continuous). As a result, the linear

to improve the knowledge on the susceptibility of climate relaxation time of the corresponding mode increastis{
models and other systems. sel 1984. This phenomenon has recently been referred to as

“critical slowing down” Rietkerk et al.1996 Scheffer et al.
2009 Ditlevsen and Johnsef01Q Dakos et al.201Q 2011
Lenton 2011, Lenton et al.2012h. To avoid confusion with

the phenomenon of algebraic (rather than exponential) de-
cay in systems with second-order phase transitiStr®atz
19949, we will refer to the increased relaxation time simply

Published by Copernicus Publications on behalf of the European Geosciences Union.



64 S. Bathiany et al.: Detecting hotspots via slowing down

as “slowing down”. As a consequence of slowing down, the
system’s autocorrelation and variance can incre@sbéffer

et al, 2009, and the spectrum is reddendddinen et al,
2003. Considering non-linear terms in the stability analysis, 0.8}
it follows that the skewness of the state variable can also in-
crease in magnitudésuttal and Jayaprakash008.

However, the external parameter change must be slow
enough for the system to stay close to equilibrium and to al-~
low sufficiently long time series for a statistically significant 0.4}
detection of EWS. A lack of detectability can thus impede
any final conclusion on the existence of slowing down prior
to an abrupt event. For exampl2akos et al(2008 detected
a consistent increase in autocorrelation with 95 % probabil-

0.61

0.2r

ity in only 2 out of 8 palaeo records (see their Table S3), 0 ‘ ‘ ‘ ‘ \ i
and the results seem to depend on the choice of the analysis 100 200 300 400 500 600
method, parameter values and the particular praen{on P [mm]

et al, 2012ab). This problem becomes worse close to the

:Ir?:lggczcr)tlgitng/ogfe );?]mepslﬁrj: afltgrsnect)na;. ig]r;?plzeg? :Sf?xe with k = 300. Blue lines: equi_librium precipitatioﬁ* as cal_c_ula_lted
) ) . rom P*(V) = Pq+kV for different Pyg. Green line: equilibrium

number of data points increases. In statistical terms, the SaMjegetation covel * (P) (Eq. 1).

pling variances of the estimators of variance and autocorre-

lation increase with autocorrelatioRriestley 1981). Better

resolved time series may not always provide a solution as &3hara and Sahel region, vegetation cover and precipita-
sampling below the dynamic timescale of the system will nottion are considered to be linked by a positive feedback on
add relevant information. timescales beyond year€laussen2009. The reasons are
Instead, the use of spatial EWS has been suggeStet] (  the effect of surface albedo on atmospheric stabil@pdr-
tal and Jayaprakasi2009 Donangelo et a].201Q Dakos  ney 1975, and the vegetation’s contribution to water recy-
et al, 2010: in analogy to the time domain, spatial variance cling (Claussen1997 Hales et al.2004). In models with a
and cross-correlations between different units of a spatially|arge atmosphere—vegetation feedback, two stable equilibria
explicit system as well as the spatial correlation length in-cgn exist Claussen1998 Brovkin et al, 1998 Zeng and
crease towards a tipping point. Such spatial EWS use eacRieelin 2000 Wang and Eltahijr200Q Irizarry-Ortiz et al,
time step as a sample to infer the stability, while tempo-2003 and the gradual change in orbital forcing can cause a
ral EWS need a window of many subsequent time steps. Ag,dden collapse in vegetation cov@ligussen et 311999
forcing changes over time in transient cases, temporal EWSjy et al, 2006.
thus involve information on previous states of the system. It oy study is structured as follows: in Se2twe present
is therefore often argued that spatial EWS could provide a3 stochastic model of atmosphere—vegetation interaction
more precise estimate of the current stability. However, inyhich produces a vegetation collapse when a control param-
these previous studies on spatial EWS, the system’s boundster js varied. We then use the stochastic model to document
aries are known and well-defined. In addition, the applicationg specific limitation of local EWS in a spatially explicit set-
of the one-dimensional concept of EWS to high-dimensionalting (Sect.3). Based on this finding, we explain our con-
systems, though justified by theorpiflevsen and Johnsen  cept of a hotspot and present an algorithm for the detection
201Q Sieber and Thompser2013, in practice requires a of hotspots of slowing down (Seat). We then discuss the
priori knowledge on the critical mode of the transitidteld  performance of this algorithm for different properties of the
and Kleinen2004). This critical mode indicates in which di-  analysed time series and different parameter choices and con-
rection in phase space the bifurcation occurs and thus how|yde in Sect5 by discussing possible applications and limi-
the information should be combined to yield EWS. tations of our approach. An application of our method to the
In this study, we consider the case where both, the criticakesyits of an atmosphere-vegetation model of intermediate

mode as well as the critical subsystem, are unknown. Firsteomplexity will be presented in a subsequent article.
we demonstrate that under such general conditions EWS may

not be detectable at any particular location of the system.
Second, we propose an alternative application of EWS: the A stochastic model of atmosphere—vegetation
diagnostic detection of critical regions of slowing down interaction
(hotspots) in time series.
The potential tipping point we analyse is the decline of In order to test the performance of EWS-related methods,
North African vegetation cover in the mid-Holocene. In the we generate time series with a simple stochastic model of

Fig. 1. Stability diagram for the one-dimensional conceptual model
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vegetation dynamics in subtropical deserts. The structure oDue to the fast equilibration time of the atmosphere, BY. (
this model is similar to the conceptual modeBrbvkin et al. is not dynamic, and th&; are all the state variables of this
(1998, Wang (2004, andLiu et al. (2009: annual precipi- dynamical system. The system is globally coupledkvand

tation P is a linear function of vegetation covéf, while in this regard differs from reaction-diffusion models with

equilibrium vegetation cove¥r * as a function ofP is of sig- interactions between adjacent elements only. The choice of
moidal shape (Figl): V*(P) and the interaction matrik determine the strength
) and spatial structure of the atmosphere—vegetation feedback
0if P <Py and thus the stability properties of the system.
lif P> P Brovkin et al.(1998, Wang (2004, andLiu et al. (2009
V= 103 1.03 . (1) refer to the equilibrium precipitation in the absence of any
.03— > Otherwise, . . ) )
P—P vegetation as’y. However, asPy may differ at different el
l1+a <m ements, we split it intaPy,, which is variable in space but
not in time, ands; B with a scalarB as external control pa-
with rameter. The local sensitivity of background precipitation to
PL= B exp(y §/2) Bis determinegl by parameter,s_ which are also variable_ in _
exp(y 8) space, but not in time. Hence, in all systems analysed in this

P> =B expy §/2) + . article, B is the bifurcation parameter, determined by one sin-
v0.03« gle number. In physical term® describes the effect of cli-
This function is the result of a semi-empirical fit to observa- mate forcings, while the numbers we use are chosen arbitrar-
tions Brovkin et al, 2002 and referred to as the original VE- ily. Also following Brovkin et al. (1998 and Wang (2004

CODE model inBathiany et al(2012). Parameter values in we call P*(V) the equilibrium precipitation at a particular

all our simulations are = 0.0011,8 =28,y = 1.7 x 1074, location (Fig.1). P* can be interpreted as precipitation in
ands = 9100. For all time series we analyse in this stully, the noise-free case or as the long-time mean when vegetation
is always betweei®; and P,. cover is fixed at a permanent value.

If the conditions of a specific region are described with The Gaussian white noise procegsvith zero mean and
only one value of eachy and P, the system’s determinis- small noise leveb is uncorrelated in space. We distinguish
tic equilibria can be depicted as intersections of the greenwo types of noise but always use only one of them in our
and blue curve in Figl. Reducing the external parameter experimentsoy controls perturbations which are added to
P4 describes the effect of decreasing Northern Hemispheréq. @) directly (additive noise), whilep controls perturba-
summer insolation during the mid-Holocene, leading to a de-tions added to precipitation and whose impact on the state
crease in precipitation. When the green equilibrium disap-variable V; depends on the system'’s state itself (multiplica-
pears the system experiences a saddle-node bifurcation aniye noise). Atmospheric variability is more realistically ac-
vegetation cover has to collapse to the remaining desert stateounted for by the multiplicative noise case, whereas the ad-

We extend this conceptual model by definivigand P for ditive noise case may describe disturbances other than atmo-
several elements with index(for example to represent dif- spheric conditions, such as fire, diseases or grazing. Only the
ferent grid cells in a climate model). At each of theel- additive noise case allows rising variance to be a generic in-
ements, equilibrium vegetation cover depends only on thedicator of slowing down Dakos et al. 2012, although we
local precipitation according t&*(P). Vegetation cover is  will show that in our specific model rising variance is also

updated every timestep via the dynamic equation a useful indicator in the multiplicative noise case. In all our
VE(PH) — V! simulations we use very small noi_se levelsof = 0.(_)0013
ViH_l — Vit I RS By van§~ (2) orop = 2. For simplicity, we providePy, k;; andop without
T units, although the value af represents mm yr.

As P represents mmyr our time step is 1yr, sa\r = 1.
The. tlm'escaler. describes how fast vegetatlon' COVer Can -5 o ¢ nce of early warning signals (EWS) in
tablish in previously unvegetated areas (or die back in veg- spatially coupled systems

etated areas). Followingiu et al. (200§ we fix t to 5yr

which is meant to represent the dynamics of grass in ariqp, ihe following, we address the limitations of EWS at indi-
subtropical ecosystems. Due to atmospheric water transpo{fiqa| elements. All statistical indicators are calculated from

and circulation changes, local precipitatiBnat a particular  (ime series of the state variablés Autocorrelations are de-
time ¢ depends on vegetation cover at all elements: termined for lag 1, cross-correlations for lag 0.

N
Pl =Py, +s:B'+> ki Vi+opr|. (3)
N—— j=1
Py
P*
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Fig. 2. Characteristics of system 1 in dependency on parameter
B. (a) Equilibrium vegetation cover(b) autocorrelation (lag 1),
(c) variance (additive noise only(d) variance (multiplicative noise

only).

crosscorr

3.1 First example: induced tipping

Consider the following simple system (system 1): 2 elements
are coupled in a way that the first element can be bistable due
to a large local feedback betweénand V. Precipitation at

the second element depends on vegetation cover at the first “g 10¢
element, but not vice versa. We implement this property by g 4
choosing the interaction matrix
" 3000 250 200 150 100 50
= B
2000
Fig. 3. Characteristics of system 2 in dependency on paranizter
and parameters for versions with a different number of elements) Equilibrium
vegetation cover (identical for any number of elemen(s),auto-
Po— 0 correlation (lag 1)(c) cross-correlation (no lagd) variance (addi-
0=\ 100 tive noise only)(e) variance (multiplicative noise only). Note that
all elements of a specific system are identical and thus have the same
1 measured indicators.
*=\o1)

As B is reduced, element 2 (blue) collapses in response to
the collapse of element 1 (red; FRp). The curves in all our  but element 2 does not. Only when the noise is multiplicative
figures are derived from stationary time series. However, ifthe system under consideration shows an increased variance
B was reduced very slowly during an experiment, the tran-(Fig. 2d; note that the scale differs from Figc by a factor
sient time series of the collapse would follow the equilibrium 100), but results for autocorrelation are similar to the addi-
curves, i.e. in Fig2a, very closely because the noise level is tive noise case. The increase in variance in the multiplica-
small and because the timescales of both elements are identive noise case is specific to the conceptual model and results
cal and small compared to the parameter change. Thereforé;om the increasing sensitivity af* to precipitation changes
it would not be possible to infer the causality of a transition when P is reduced (Figl). In case of a single isolated ele-
from the timing of the collapses at different elements. ment without anyP-V -feedback k = 0) there would still be
As the collapse of element 2 is induced by element 1 it isan increase in variance in the multiplicative noise case, but
not related to a substantial loss of its own stability. It rathernot in the additive noise case. In our system 1, the slowing
experiences the transition as an induced tipping caused bglown at element 1 also affects element 2 due to the interac-
a sudden change in external conditions that are imposed bgion term. This is the reason for the rise of the blue curve in
element 1. The stability of element 2 is hardly affectedbby  Fig. 2c.
directly as the difference isy andsz indicates. To obtain sufficiently precise estimates of the statistical
Therefore, element 1 shows a clear increase in autocorrelgroperties in Fig2, we performed stationary time series of
tion (Fig.2b) and variance (Figc) in the additive noise case, 10 million data points each for different values Bf In a

Earth Syst. Dynam., 4, 63%8, 2013 www.earth-syst-dynam.net/4/63/2013/



S. Bathiany et al.: Detecting hotspots via slowing down 67

Table 1. Parameter®y, ands; in example system 3 for 4 different  Table 2. Interaction matrix in system 3, distinguishing 4 different

types of elements. Colours correspond to those in£ig. types of elements. Colours correspond to those in£&ig§.number
in some row A and column B stands for the impact of any single
red blue green brown element of type B on any single element of type A (for example:

impact of red on blue: 15, impact of blue on red: 5).
Pp -50 40 210 40

S 1.7 0.8 0.2 0.9

red blue green brown

red 27 5 10 10
blue 15 4 3 3
transient situation where the sampling error is much larger, green 8 2 15 2
the collapse of element 2 would hardly be predictable with brown 2 3 2 5
EWS.
3.2 Second example: collective bistability be concluded that if the critical mode of the transition is not

_ _ known beforehand, the tipping can be unpredictable even in
To pursue this further, we now consider a system (systentases of very long time series.

2) with a different number of elements, distinguishing ver-

sions with 1, 2, 5, 10, and 20 elements, where any particu-

lar element has the identical paramet&gs=0,s; =1,and 4 Early warning signal — based hotspot detection

k;; = 300/N. By dividing the entries of interaction matrix method

k by the number of elements in the system, we equally dis-

tribute theP-V-feedback over all elements. When more and So far we have chosen systems of simple structure. In a more

more elements are coupled, the spatial resolution increaseseneral case like a spatially resolved climate model, the sta-
but the bifurcation diagram of this globally coupled system pijlity structure will be more complicated. Certain subsystems
(Fig. 3a) does not change. As local feedbacks (determined byf the climate may show a loss of stability during a change
k;;) are weak, no single element would be bistable anymoran external forcing while the rest of the system may respond
if all other elements were fixed. This fact distinguishes ouronly indirectly, or even evolve independently. In S&tve
model from those irGuttal and Jayaprakag@009, Dakos  documented that in multidimensional settings individual el-
et al. (2010 and Donangelo et al(2010, where individu-  ements can fail to show EWS before a sudden transition.
ally bistable elements are coupled. However, the system as @hile this constitutes a caveat for the prediction of sudden
whole still shows a bifurcation due to the spatial interactionstransitions, one may make a virtue out of this caveat by using
kij withi # j. EWS to diagnostically infer information on the causality of
As we couple more and more elements, it is evident thata sudden transition. In terms of system 1, we aim at finding
EWS like rising autocorrelation and variance at individual el- the nucleus of slowing down (hotspot) by distinguishing el-
ements, as well as rising cross-correlation, tend to disappeagments of the red and the blue kind. This is not possible by
(Fig. 3b—d). Again, variance in the multiplicative noise case |ooking at the system’s state directly because red and blue
(Fig. 3e) is an exception due to the increased slop€it”).  elements collapse in synchrony. Of course, in complex sys-
The one element-case here (red curves in Bjgs iden-  tems there will be a continuum from red to blue and the def-
tical to element 1 from system 1 (red curves in F2§.and injtion of a threshold in between will be somewhat arbitrary.
also to the system in Fig. 1 iBathiany et al(2012. For  |n principle, we expect that the hotspot can be identified as
EWS to appear exactly like in this single element case, thehe combination of elements which (when projected on their
system’s time series need to be projected on the critical moderitical mode) maximises an indicator of slowing down. In
of the transition, a technique introduced as “degenerate finthe following, we present an algorithm for hotspot detection
gerprinting” byHeld and Kleinen(2004. The critical mode  which we apply to our stochastic model.
implies the direction in phase space in which the bifurcation
occurs. Slowing down particularly occurs for this mode and4.1  Highly idealised North African vegetation dynamics
can be revealed by the appropriate projection. In contrast,
other modes of the system’s variability are not necessarilyAs yet another example of the stochastic model framework
influenced by slowing down as the changes of the stabilin Sect.2, consider 25 elements which can be interpreted
ity landscape in other directions (characterised by changeas a highly idealised Northern Africa (Fig). We refer to
of the according eigenvalues) are unrelated to the bifurcathis system as system 3. Again we choose parameter val-
tion. Hence, EWS in projections on other modes cannot baies which lead to preconceived properties of the model: 5 of
expected. The analysis of local EWS at individual elementsthe 25 elements gradually become desert wBés reduced
would generally contain information on these other modes of(brown elements). 5 elements stay mostly vegetated (green
variability and would therefore be a futile strategy. It has to elements), a set of 9 elements becomes bistable and finally

www.earth-syst-dynam.net/4/63/2013/ Earth Syst. Dynam., 4, 638, 2013



68 S. Bathiany et al.: Detecting hotspots via slowing down

Table 3. Example signal list for elements 19, 20 and 25 in system 1F
3. Parameter settings correspond to set 1 in Téble

Area Signalx 1000 0.8~ -
19 9.1611
20 4.8099 06l |
19, 20 11.5094
25 1.0391 s
19, 25 7.8746 04 |
20, 25 4.0192 :
19, 20, 25 11.7716

Weights (19,20,25):  40.32, 32.11, 24.70 0.2

o)

250

200 100 50 0

B

Fig. 5. Equilibrium vegetation cover at different elements of sys-
tem 3 and for different bifurcation parameter valuesThe colours
correspond to the elements in Fg The vertical black dashed lines
indicate the values a8 used for the four stationary simulations (the
smallest one also lying above the tipping point). They correspond to
BV1 in Table4 and are used for Figg8—11 and Table3.

which is presented in Fig and is the same for all ver-
sions of our method. To illustrate our explanation we
complement our step by step description with a simple
example. This example is referred to at the end of each
particular step and presented in Figand Table3.

Fig. 4. Structure of system 3. Red: area with strahg/-feedback
(hotspot), blue: passively dependent on red area, brown: dry area,
green: moist area.

2. The framework of analysis presented in this section is
too general to cover all technical details as presented in
Fig. 7 and Table3. These details can differ from case
to case. We therefore introduce the different versions of
our algorithm together with a discussion of their advan-
tages and disadvantages in Sdcs.

collapses due to a saddle-node bifurcation (red elements) and
6 elements substantially depend on the red ones but show
a much weaker local atmosphere—vegetation feedback (blue
elements; see Figh). Elements with identical colours have
identical parameter values and thus have the same state in
equilibrium. Hence, there ares# and Py, (Tablel), and 16 In all cases the analysis is applied fo preferably long
k;; (Table2). In similarity to the examples in Sed.2, no  stationary simulations for fixed but different forcings;
element is bistable on its own, as local feedbagksre too  (j = 1,2,..., J) before the bifurcation point. In our example
small. Itis only due to the strong spatial interactions betweerand for all figures which follow we choose time series of veg-
the red elements that the system can bifurcate and thus sho@tation cover forB; = 150, B, = 90, B3 = 55, andB, = 43
a vegetation collapse @& ~ 43. (henceJ = 4; vertical dashed lines in Fig). All steps that
The nucleus of the transition is the red area because thifllow are an analysis of these time series and do not involve
is where the system loses stability due to strong atmospherethe model which generated them. We describe the individ-
vegetation interaction. In the following, we refer to the red ual steps of the analysis by starting with part B in Figas
area as a hotspot. this part of the analysis corresponds to the original degener-
ate fingerprinting byHeld and Kleinen(2004), without time

4.2 Strategy for the detection of hotspots aggregation.

We now explain our method of analysis by applying it to sys- B1. For a given part of the system witN, elements, we
tem 3. As several modifications of our algorithm are possible, ~ Select a subset of elements from thes#/, elements.

we provide the explanation in two steps:

1. In this section we address the general strategy of our
approach. This strategy sets the framework of analysis

Earth Syst. Dynam., 4, 63%8, 2013

We refer to this subset as an area. Hence, there are three
levels of selected elements where each set is a subset of
the previous one: the number of elements in the com-
plete systemX; here: 25), the number of elements in a

www.earth-syst-dynam.net/4/63/2013/
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— v
A. Partition of remaining elements
— v
B. Compilation of signal list
" = 1. Selection of subset
= sal 2 Construction of EOFs
o < 9| 3. Construction of projections
© 82| 4. Calculation of EWS
S $ @ | 5. Normalisation
= x 6. Calculation of signal
(]
o
0}
- v
C. Removal of elements
according to elimination rule
D. Threshold adjustment
« if elements were removed: set to t;;
e else: increase by t;,. (up to 99.5%)
No 1 part left or

threshold = 99.5%

*Yes

Fig. 6. General flowchart of the hotspot detection scheme.

part of the systemX(,), and the number of elements in

69

the (symmetric) correlation matrix contains ones on its
main diagonal.

B3. In the general case, we calculate the leading EOF for all
time slicesB; from j = 2to J. For every EOF, we
project all time slices fronB; to B; on EOF,;. Special
cases: The projection of time seri8g on EOF,; is the
principal component of EOF In case of areas consist-
ing of one single element, the projections are identical
with the time series themselves. The standard version of
our algorithm only involves projections on EQKsee
Sect.4.3). In our example, there are therefore 4 projec-
tions for each area (small panels in Fig.

B4. We calculate a statistical property like autocorrelation or
variance of the corresponding projections to use it as an
EWS. For all projections on some EQe result is a
curve of this EWS versuB, just like those in Fig2b—

d and3b-e, but less well resolved (points only). In

our example, we us¢ = 4 and autocorrelation as EWS,
hence there are 4 values of AC for each of the 7 areas,
shown as a line plot in each panel of Frg.

To automatically compare the results for different areas, we
expand this degenerate fingerprinting method with the fol-
lowing steps:

B5 Asitis not the absolute value of a statistical property but
its increase which indicates slowing down, we shift the
curve vertically in order to be 0 gt= 1. Fig.7 (bottom
right) shows the shifted AC-curves of all 7 areas of our
example.

B6 Based on the aligned curves, we defirgggmalwhich is
one number to quantify the strength of an indicator and
to compare different areas. The definition of the signal
can differ, but it always involves all time slices. We do
so to take into account not only the difference between
the first and lasB, but the whole evolution of an EWS
vS. B as is suggested by our results in F&y.Table3
gives an example of all areas and their associated signals
for the part consisting of elements 19, 20, and 25.

an area of this parts). Example: we choose elements \ye repeat steps B1-6 for all possible combinations of ele-

19, 20 and 25 as a part. Heneég, = 3, andn can be 1

ments. If theN, elements mentioned in step 1 represent the

(3 possible combinations), 2 (3 possible combinations)yhole system under consideratioN( = N), one can then

or 3 (1 possible combination).

B2. For then selected elements, we calculate the leading
empirical orthogonal function (EOF; eigenvector of the
covariance or correlation matrix which represents the
largest variance). To construct the EOFs, we use the
freely-available linear algebra package LAPACK. In our
example, there are 7 combinations of the 3 elements (to
left corner of panels in Fig7). The 3 cases with sin-

determine the area with the maximum signal, or the areas
with a signal above a certain threshold. However, this re-
quires the calculation of"2-1 such signal (not® because
selecting 0 elements is not an option). This becomes unfeasi-
ble already fotv beyond 10. Therefore, not all possible com-
binations can be calculated and we use an iterative selection
process to decide which elements can be dropped from the
I5’:1nalysis:

A. We randomly divide the whole system into a number

gle elements are trivial and each EOF is 1. The 3 cases  of non-overlapping parts. The number of parts is cal-

with 2 elements are also trivial(1/2, /1/2) because

www.earth-syst-dynam.net/4/63/2013/

culated from the fixed parametepax via the ceiling
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Fig. 7. Example to illustrate the hotspot detection scheme using elements 19, 20, and 25 of system 3. All panels except bottom right: in each
top left corner the particular area is highlighted by bold lines. The numbers inside the elements give the eigenvectors of the correlation matrix
(EOF) for B = 43. All four time slices (forcings BV1 as in Fi§) are projected on this EOF. The four time series in each panel show a chunk

of 500 yr from these projections (normed to standard deviation 1 and mean 0). The autocorrelation at lag 1 for each projection is depicted
as a line plot in dependency a@h Bottom right: all seven curves are shifted to 0Ba& 150 in order to compare the signals of the areas.
Parameter settings correspond to set 1 in Tdble
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function {%ﬁx}. The number of parts is thus as small as Element

possible for a givemmax. The size of each part is then B e 1o e UL IIpITIB s 20 21 222328 28
determined by distributing th¥ elements as equally as
possible, so that eadW, fulfills 2 <= Np <= nmax.

B. For each part, steps 1-6 are applied. As an example, ,,
imagine that system 3 is analysed withax = 3. Hence,
the system is subdivided into 9 parts, of which 7 parts
contain 3 elements, and 2 parts contain 2 elements.

150

Occurrence

C. From asignal listlike Table3, the contribution of differ-
ent elements can be disentangled, with the aim to drop **
unimportant elements from the analysis completely. The
removal of an element means that it is not considered to
be part of the system anymore and is not used from that
point on. In this sense, the total system sesucces-
sively decreases and with it the number of parts is also o
reduced automatically.

50

Fig. 8. Performance of the hotspot detection algorithm for system
In principle, our selection process resembles the logic of3 with additive noise using time series of 2000 yr. The frequencies
afootball world cup: each team (element) does not com-show the number of times a particular element remains until the
pete directly against every other team, but only againstend of the selection process for 500 repetitions. Each repetition in-

those of the same group (part). Only teams performingVOlves the generation of a new time series and its analysis with the
well enough in their group remain in the tournament. hof[spot detection algorithm. Th(_e solid black line marks the expec-
tation value for a random selection where all elements are selected

The best rules of how to remove an element can dependith equal probability. The red dashed line marks the 95% probabil-
on the system and will be discussed under the &lim- ity threshold of the corresponding cumulative binomial distribution.
ination rule (ER) in Sect4.3. Parameter settings correspond to set 1 in Tdble

D. As a criterion for removing elements, we set a thresh-
old which is adjusted interactively to prevent that too

ossible combinations would be too large to achieve a ro-
many elements are removed at once and too early. Th

threshold is a relative number in % and relates to dif- ust hotspot detection within a feas_ible_- amount of time. As
ferent things depending on the elimination rule. In our the results depend on_the random d!strlbutlon of elements to
example as well as all following figures, we set .the ini- _dlffer_ent parts, they will b_e very similar but not completely
tial thresholdryy to 5%. As long as o element can identical when the analysis is repeated. The hotspot of slow-
be removed ir|1many pari we increase the threshold by|ng plown can be |_den_t|f|ed if the time series are long enoug_h
i 50 If the threshc;Id would reach or exceeded _(or if enough realisations are ava|lal?le) because the remain-
Inc - ing elements at the end of the analysis tend to contribute most
100 %, we set the threshold to 99.5%. If at least one, slowing down.
ﬁ:ﬁgleglj:'; -belnr%r:)]t?]\/(?:éevgevxrlzst?wtet:f);rtirt(iasg?:\de tr(;_'ts To obtain more quantitative results, _all signals galculated
maining elerqule.nts anew start}ng from step A (large Ioopdurlng the procedure can be col_lected in a sorted list for fur-
in Fig. 6) ' ther analysis. Elem_ents belonging to t_he hotspot tend to be
e part of the areas with the strongest signals and are on top
This way, the considered number of elements is gradually re®f the list. However, elements that have been removed early
duced. After each calculation of the signals in all possibleduring the analysis are not well sampled. The method there-
areas of all current parts and the potential removal of elefore only provides information on the nature of the hotspot,
ments the procedure is repeated. It ends as soon as one Bt less on the stability properties of the rest of the system.
the following conditions is true: (1) the total number of re-
maining elements is not larger thamay, in which case the 4.3 Parameter options and performance analysis
analysis is repeated one last time with one part only. (2) The
relative threshold reaches 99.5 %, but still no elements caiit has become obvious in the previous sections that the al-
be removed because the remaining elements are too similayorithm involves a number of options and parameter val-
to be discriminated. ues which have to be chosen in advance. Also, the perfor-
The algorithm serves as a sieve in order to filter out themance of the method will depend on properties of the original
important elements with a sufficiently small number of cal- time series. For a quantitative comparison of the algorithm’s
culations. Without the removal of elements, the number ofperformance under different conditions (parameter settings,
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Fig. 10. Signal list for system 3 with additive noise using time se-
0.1r ries of 100000 yr. Ordinate: absolute signal; abscissa: elements of
the system. Any area that has been calculated during the analysis is
0.05¢ represented at the ordinate value of its signal. All elements that are
part of this area are marked as blue dots. Parameter settings corre-
0 spond to set 1 in Tabk.
150 90 55 43 Element
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Fig. 9. Autocorrelation changes of projections on leading EOFs for : 3
system 3 with multiplicative noise. The leading EOFs have been .| o H o0 0 i
calculated for (a)By = 90, (b) B3 = 55, (C) B4 = 43. In each case, s 3 ' :
all previous time series (including the one used for the EOF) are * N
projected on the according EOF. The analysis is applied to the full .
system (black) as well as only parts of the system (other colours)S?o tor i I ' )
The colours correspond to the elements in BigRarameter settings - e ' |
correspond to set 21 in Table 3 ®
g | i | | |
) | 8
. . . . . ]
choice of algorithm and time series properties), we perform ! .
500 Monte Carlo experiments for each condition (Tad)le o : ‘ |
In each experiment a new realisation of the time series is

generated with system 3 and then analysed with the hotspot ¢ ¢
detection algorithm. Figurg shows how often each element )
remains until the end of each experiment for the additive , . . o . o
noise case and a time series length of 2000 yr. After the 5039: 11'?‘?850“0'(')“ forosé’_ste{“ 3 "t‘)"thl”:“'“P"C""l“"ino_'se “s'lng t'm‘: .
e : : series o yr. Ordinate: absolute signal; abscissa: elements O
rpi)F'zzgt:ZlTji;veenﬁ:‘/iael(l;aetizler?tz f{)ae?g?ésof[;h;gor?xmgggx an cjthe system. Any area that has been calculated during the analysis
. . . ’ Is represented at the ordinate value of its signal. All elements that
which fraction 2 of the actual_ly obtained el_ements belongs are part of this area are marked as blue dots. Parameter settings
to the hotspot,f1 and f2 can differ because it is not always correspond to set 21 in Table
nmax €lements that remain in the end.

As a measure of the method'’s performanmceve define

for both variants off: tained element to be part of the hotspotHgN = 9/25. A
ot ot detection which does not differ from this random case has
n2=(f12— N)/(l - N)’ (4)  performance 0.

If exactly nmax €lements are returned in every experiment,
with N as the size of the system (25) affl as the size a detection which only returns hotspot elements has perfor-
of the hotspot (9). If we assume that all 25 elements havemance 1 for both variants gf (which is of course only pos-
an equal chance to be selected, the probability for any obsible because we choose afnax smaller than the hotspot).
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The expectation value for the occurrence of every element
would be 100 in case of performance 0 (the solid black line
in Fig. 8), and 500x 5/9 in case of performance 1 (end of
vertical scale in Fig8). Potential deviations frommay ele-
ments in the output can lead to performances lower than 0
and larger than 1 if we apply.

The decision for 500 repetitions can be justified by boot-
strapping our Monte Carlo resultgffon, 1979: for any list
of 500 sets of residual elements we dravsets and mea-
sure their performances. We calculate the standard devia-
tion of the obtained performances for many differantit
turns out that for 500 repetitions, the standard deviation is
approx. 0.015 and rather independent of the parameter and
time series properties. Therefore, we round all performances
in Table4 two decimal places. Above 500 repetitions, the un-
certainty of the performance decreases very slowly while the
computation time for the Monte Carlo experiments increases
beyond feasibility.

From theoretical considerations, the performances in Ta-
ble 4 as well as the qualitative appearance of the resulting
signal lists, we draw the following conclusions with regard
to different parameter choices and time series properties:

— Different EWS can be used within the same frame-
work. Here, we use the increase in autocorrelation (AC)
and the relative increase in variance (var). Relative in-
creases in variance usually show better performances
because of a larger signal-to-noise ratio, in agreement
with Ditlevsen and Johnse(2010Q. However, AC is
the more generic EWS and also works if multiplica-
tive noise leads to a reduction in varian&akos et al.
2012. For Figs.7-11 and Table3 we use AC as an
EWS.

— We distinguish twaosignal definitions(SD). The most
simple approach is to only use the projections on the
EOF of the last time sliceBy in our example). The anal-

ysis is based on the assumption that this pattern resem- —

bles the critical mode, if the selected area is the hotspot.
We then integrate the EWS-curve over B (calculate the
area of the/ — 1 segments). We refer to this signal def-
inition as SD1. SD1 is used in our example Figand
Table3.

An alternative (referred to as SD2) is to also consider
projections on previous EOFs. This approach can add
information if the leading EOF smoothly approaches
the critical mode whe® approaches the Tipping Point.

73

shape of the projection on the last EOF is accounted for,
but also the shape of previous projections.

The choice of anelimination rule (ER) should be
adapted to the signal definition. Again, we distinguish
two elimination rules, ER1 and ER2. For SD1 we use
ERZ1, which works as follows: for each specific element,
we add up the signals of all areas this element is part of
(last row, second column in Tab8, and refer to it as
the element’sveight The threshold to remove unimpor-
tant elements is defined relative to the maximum weight
of all elements in a specific part. The absolute value of
the threshold therefore depends on the maximum weight
and differs among the system’s parts, while the rela-
tive threshold is a parameter that is independent of the
parts. For example, a threshold of 70 % means that all
elements with a weight smaller than 70 % of the max-
imum weight are removed. In our example (Figand
Table 3), element 19 belongs to the hotspot, so it con-
tributes more to the signal than elements 20 and 25,
whose weight is therefore smaller. Element 25 has a
particularly small weight (24.70) as it neither belongs
to the hotspot nor is it much affected by it. Its relative
weight compared to the maximum weight of 40.32 is
below 70%. It would therefore be removed from the
analysis if the threshold is above 70 %.

For SD2 we use a simpler approach, referred to as
ER2: we divide the signal list in the set of signals above
the current threshold and the set of signals below this
threshold. All elements which are part of any area above
the threshold remain, the other elements are removed.
Hence, the threshold is directly applied to the signals
itself without the calculation of weights. This measure
allows a better discrimination of the elements. In the ad-
ditive noise case it cannot be applied because there the
maximum signal usually belongs to the complete area.

EOFscan be calculated as an eigenvector of the sys-
tem’s covariance matrix or alternatively its correlation
matrix. If based on the covariance matrix, elements with
large variance will be emphasised. Whether this im-
proves the performance of a hotspot detection generally
depends on the system under analysis. In case of system
3 with multiplicative noise, variance is enhanced partic-
ularly at the hotspot wheB approaches the bifurcation
point. Therefore, SD2 with ER2 yield the most signifi-
cant results when using covariance-based EOFs.

www.earth-syst-dynam.net/4/63/2013/

We thus obtain/ — 1 curves of an EWS vs3 (Fig. 9). In general, other signal definitions and elimination rules
To calculate the signal for a specific area, we performcould be devised that may be tailored to a specific system.

a double integration. In terms of Fi§: first, we cal- The most generic approach is to use SD1 in combina-
culate the area under a curve with a certain colour fortion with ER1, correlation-based EOFs and autocorrelation
EOFz_90 (Fig. 9a), EOR_55 (Fig. 9b), and EOR_43 as EWS. The last EOF (the only one used in SD1) must re-
(Fig. 9c). The resulting trajectory of integrated EWS is semble the critical mode in any system approaching a bifur-
then again integrated ove®. This way, not only the cation (although it can be difficult to come very close to the
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Table 4. Performances of the hotspot detection algorithm for different sets of versions, parameter choices and time series properties.
SD =signal definition, ER = elimination rule, BV =vector of forcin3§. Performances are calculated from fractiofys italic results in
parenthesis fronf, (Sect.4.3).

Parameters for hotspot detection Time series properties

Set EWS SD ER EOF nmax fini finc BV T noise T =1000 T =2000 T=5000 7 =10000
1 AC 1 1 corm 5 5% 5% BVl 5 add. 01623 0270.33 041050 0.56(0.69
2 AC 1 1 covar. 5 5% 5% BVl 5 add. 0.18.49 024030 0.430.54 0.540.69
3 AC 1 1 cofrr. 5 5% 5% Bvli 25 add. 0.20.86 0.400.48 0.550.70 0.660.89
4 AC 1 1 corr. 3 5% 5% Bvli 5 add. 0.19.22 0.290.39 0.440.5) 0.580.67)
5 AC 1 1 corm 7 5% 5% BV1 5 add. 0.1848 0.240.3) 0.390.49 0.49 0.60
6 AC 1 1 cofrr. 5 5% 5% Bv2 5 add. 0.103 0.130.18§ 0.230.30 0.370.49
7 AC 1 1 cofrr. 5 5% 5% Bv3 5 add. 0.00.09 0.120.16 0.210.27) 0.360.43
8 AC 1 1 corr. 5 5% 1% Bvl 5 add. 0.18.49 0.280.30 0.450.47 0.630.67
9 AC 1 1 corr. 5 5% 25% Bvli 5 add. 0.16.,0 0.280.32 0.460.51) 0.620.69
10 AC 1 1 corr. 5 5% 75% Bvli 5 add. 0.1G.29 0.220.3) 0.400.5) 0.490.68
1 AC 1 1  corm 5 5% 10% BV1I 5 add. 01823 0.200.3) 037053 0.470.70
12 AC 1 1 corm 5 5% 12,5% BVI 5 add. 01223 0.210.35 0.320.52 0.440.67)
13 AC 1 1 corr. 5 5% 15% Bvli 5 add. 0.0823 0.210.37) 0.280.56 0.370.70
14 AC 1 1 corm 5 5% 17,5% BVl 5 add. 0.0824 0.170.37) 0.300.54 0.410.67)
15 AC 1 1 corm 5 5% 20% Bvli 5 add. 0.1027 0.190.37) 0.300.54 0.270.69
16 AC 1 1 corr. 5 5% 30% Bvli 5 add. -0.00.27 0.110.42 0.260.59 0.360.69
17 AC 1 1 cofrr. 5 5% 40 % Bvli 5 add. 0.10.289 0.210.39 0.280.59 0.300.68
18 AC 1 1 cofrr. 5 5% 50 % Bvli 5 add. -0.0881) 0.050.39 0.270.5) 0.440.59
19 AC 1 1 cofrr. 5 5%  100% Bvli 5 add. 0.1027 0.230.33 0.370.47 0.460.59
20 AC 1 1 cofrr. 5 80% 5% Bvli 5 add. 0.1@27 0.250.39 0.410.53 0.560.69
21 AC 2 2 covar. 5 5% 5% Bvi 5 mult. 0.6062 0.660.66 0.870.89 1.100.99
22 AC 1 1 9covar. 5 5% 5% BVvI 5 mult. 02086 044053 0.610.7) 0.740.87)
23 AC 2 2 corr. 5 5% 5% Bvi 5 mult. 04346 0500.53 0.700.649 0.950.70
24 AC 1 1 corm 5 5% 5% BVvlI 5 mult. 0.3D39 0.400.49 0.560.65 0.67 0.8
25 AC 2 2  covar. 5 5% 5% Bv2 5 mult. 05062 0.640.66 0.710.7) 0.820.79
26 AC 2 2  covar. 5 5% 5% Bv3 5 mult. 0.68.69 0.740.75 0.870.85 1.090.99
27 AC 2 2 covar. 5 5% 5% BV1I 25 mult. 06867 079079 112094 1.630.99
28 var 1 1 corr. 5 5% 5% Bvl 5 add. 0.2883 0.430.51) 0.600.79 0.67 (.86
29 var 1 1 covar. 5 5% 5% BVl 5 add. 0.2836 0.420.51) 0.620.75 0.710.87)
30 var 1 1 corr. 5 5% 5% Bvli 25 add. 03845 0.530.63 0.670.83 0.730.99
31 var 1 1 corr. 5 5% 1% Bvli 5 add. 0.30.33 048050 0.690.72 0.810.89
32 var 1 1 corr. 5 5% 25% Bvli 5 add. 0.3235 0.450.50 0.640.7) 0.76 (.89
33 var 1 1 corm 5 5% 7,5% BVl 5 add. 0473 0.410.51) 0570.73 0.620.87)
34 var 1 1 corr. 5 5% 10% Bvli 5 add. 0.2839 0.410.56 0.510.74 0.59 .86
35 var 1 1 corr. 5 5% 12,5% BVl 5 add. 0.223¢ 0.350.55 0.480.74 0.60 (.89
36 var 1 1 corr. 5 5% 15% BVl 5 add. 0.2088 0.310.55 0.420.79 0.540.87
37 var 1 1 corr. 5 5% 175% Bvl 5 add. 0.1®383 0.280.57 0.450.74 0.56 (0.86
38 var 1 1 corr. 5 5% 20% Bvli 5 add. 0.2543 0.330.56 0.340.75 0.230.89
39 var 1 1 cofrr. 5 5% 30% Bvli 5 add. 0.1@42 0.210.5) 0.420.749 0.500.8H
40  var 1 1 cofrr. 5 5% 40% Bvli 5 add. 0.2039 0.300.59 0.330.79 0.270.89
41 var 1 1 cofrr. 5 5% 50 % Bvli 5 add. 0.0643 0.240.5) 0.450.65 0.540.7)
42 var 1 1 cofrr. 5 5%  100% Bvli 5 add. 0.2235 0.360.49 0.490.59 0.570.70
43 var 1 1 corr. 5 80% 5% Bvli 5 add. 02743 041055 0.600.74 0.690.87)
44 var 2 2  covar. 5 5% 5% Bvl 5 mult. 1.70.00 2.04@.00 2.22@.00 2.25(@.00
45 var 1 1 covar. 5 5% 5% Bvl 5 mult. 0.68.00 053@.00 0.32@.00 0.37(@.00
46 var 2 2 corr. 5 5% 5% Bvl 5 mult. 159200 1.99@.00 221@.00 2.25@.00
a7 var 1 1 corr. 5 5% 5% Bvl 5 mult. 0.62.00 050@.00 0.31@.00 0.36@.00
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edge of the Tipping Point in practice). In the case of addi-
tive noise, considering previous EOFs like in SD2 may not
improve the signal-to-noise ratio because the signal is much
weaker away from the Tipping Point. This is of particular

importance if the curves of EWS v& do not differ sub-

stantially between different EOFs. Furthermore, autocorre-
lations and correlations are more generic indicators while
variances can be affected by multiplicative noise in any way.
When analysing a system whose variability is of unknown
nature, the generic approach is thus probably the most ad-

equate choice. FidglO shows the resulting signal list when

using time series of length 100 000 yr and such generic op-

tions (referred to as set 1 in Tablg

Although these options should be applicable to many sys-
tems, they may not lead to the most robust results. In sys-
tem 3 with multiplicative noise, SD2 and ER2 in combination
with covariance-based EOFs are of particular advantage. Fig-
ure 11 shows the signal list for the multiplicative noise case
when using time series of length 10000yr and options as

set 21 in Tablel. While for the additive noise case the AC’s

trajectories at the hotspot (red area) and the complete area al-
ways look alike (not shown), they differ substantially in the
multiplicative case: at the hotspot the signal starts to emerge
early, even when projecting on a leading EOF far from the

Tipping Point (red curves in Figd). This is not the case

for the other areas because the variability of the system dif-
fers substantially from the critical mode. As variances at the
hotspot are very small, the EOF pronounces other elements
than the hotspot and slowing down will thus not be observed
in the projection. Close to the Tipping Point, the variance at
the hotspot increases not only due to slowing down, but also
due to the multiplicative noise which enhances variance as

vegetation cover decreases. Therefore, the relative increase _

in variance is particularly large at the hotspot. Close to the
Tipping Point, the system’s variability becomes dominated
by the critical mode and slowing down can be seen in the
complete as well as the hotspot area. By using SD2, ER2 and
covariance-based EOFs, we use this property of the system to
better distinguish the elements from each other. As a result,
the hotspot can be detected much easier than in the additive
noise case. Using time series of 10 000 yr each, the hotspot is

clearly visible in the signal list fot max = 5 (Fig.11). Hence,

an even more robust hotspot detection can be achieved from
time series ten times shorter than in the additive noise case.
In a more general case, additive and multiplicative noise
may occur at the same time. In our system 3, the multiplica-
tive noise would dominate the results if noise levels leading

to similar variance irV were chosen. However, it is not a pri-

ori clear what would happen in other systems whose proper-
ties are not well-known. Under such conditions the generic
approach using cross- and autocorrelations with SD1 and

ER1 would be the safest option in the light of our results.
We now continue with our list of conditions:

www.earth-syst-dynam.net/4/63/2013/
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The choice oftime slicesshould cover a range o
where the changes in steady state are already pro-
nounced to achieve a good signal-to-noise ratio. In Ta-
ble 4 we distinguish three different vectors of B-values:
BV1: (150, 90, 55, 43),

BV2: (300, 200, 100, 75, 43),

BV3: (150, 90, 55).

For Figs.7-11and Table3 we use BV1 (dashed vertical
lines in Fig.5).

Theinitial threshold fni, and incrementsinc, should be
chosen small (a few percent of the maximum signal). If
they are larger, the calculation is faster and not neces-
sarily worse in performance, but the signal list will not
be well sampled. A better sampling of each element’s
contribution to the signal allows a clearer discrimination
between the elements in figures like Figé and 11.
Particularly lown, for some largeti,c (Table4) result
from the effect that too many elements are removed at
once after increasing the threshold.

The maximum number of elements per paithay, can

be chosen small for first results. The smalefy, the
faster the algorithm. When repeating the analysis with
largernmax the signal list gives an indication of the size
of the hotspot (or hotspots). As long as the maximum
signal in the list clearly increases withay, the number

of elements which form a common hotspot is larger than
nmax As Figs.10and11 document, the full hotspot may
already be identified formax smaller than the hotspot, if
tini andtinc are small to allow a robustly sampled signal
list.

The length of the time serieq’, as compared to the
key variable’s timescale has a major influence on the
method’s performance. As the time series provide only
a limited sample, the performance will increase wiith

If a single available realisation of the time series is too
short, the statistical properties of the variations are in-
sufficiently sampled and a hotspot detection can yield
wrong results. It should therefore be checked whether
the identified hotspot is robust ® by comparing dif-
ferent parts of the time series. Methods of block boot-
strapping suited for time serieBdlitis, 2003 could in
principle be applied to the full analysis to derive uncer-
tainty estimates.

The detectability of a hotspot, given a specific length of
the time series, very much depends on intrinsic system
properties like itsconnectivity and the strength of the
destabilising feedback he more elements contribute to

a hotspot, the more difficult it is to dete@tyax should

be chosen large in such a case to determine the large
extent of the hotspot which slows down the algorithm.
More importantly, the stronger the slowing down and
the better the elements can be distinguished, the easier

Earth Syst. Dynam., 4, 638, 2013
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the hotspot detection. Our system 3 may already provide It should be noted that the existence of a bifurcation is
a rather demanding case as several 10 000—100 000 yot a prerequisite of our method. Even in the case of weaker
long time slices are required for a robust hotspot detecfeedbacks and a more gradual transition will a change in sta-
tion. This time is rather beyond feasibility for climate bility be reflected in slowing down. However, the detectabil-
models of intermediate or high complexity and a hotspotity of the signal tends to decrease as compared to a bifur-
like in system 3 would hardly be detectable. However, cation where the system approaches a random walk. The
if hotspots of a more pronounced structure exist, theymain difference to previous applications of EWS is that our
could be detected more easily. As an example, considemethod does not only calculate the magnitude of slowing
the most optimistic case of an univariate process wheredown but also identifies the subsystem where it occurs.
autocorrelation increases substantially over time. This In principle, a prediction of sudden transitions could also
increase would be detectable within the order of somebe attempted with this approach. As new data points become
100 time steps@itlevsen and Johnse010. Part Il available, new EOFs and projections may be constructed.
of our two-part paper presents a hotspot detection fromAs for any prediction based on EWS, it must of course be
climate model time series of hundreds to thousands oknown in advance which maximum signal is to be expected
years length as another example. It is therefore not pos¢Thompson and Siebg2011). For example, autocorrelation
sible to provide a general statement on the requiredonly comes close to 1 when there is a bifurcation, but peaks
length of time series. The required length depends omat lower values in less extreme cases.

the nature of the potential hotspot, the exact thing that In addition, the very large data requirements imply a vast
one aims to infer with the analysis. However, this prob- separation between the timescale of changing external con-
lem does not impose any restrictions to the applicability ditions and the intrinsic timescale of the system, a condi-
of the method, but it implies that a negative result cantion that is not often satisfied. Although we focus on auto-
either be due to the non-existence of slowing down at acorrelation and temporal variability, other indicators of slow-
hotspot or to too short time series. ing down such as spatial variability could be applied within
the same iterative framework and may lead to better perfor-
mances. As our additive and multiplicative noise case illus-
trate, the more the analysis method is tailored to a specific
By applying a simple stochastic model, we have demon—SyStem’ _the more a priori knowledge_ on the da_ta generating
strated that EWS at individual elements of a coupled Sys_process is needed. For example, variance may increase or de-

tem are no generic precursors of a sudden transition at a ti crease when approaching a threshold, depending on the sys-

ping point. If the local feedback of a particular element is tem under consideratiom(ock and CarpenteP01Q Dakos
. R etal, 2012.
weak or if the element’s tipping is induced by other elements,

. . . . Additional caveats are imposed by unaccounted or chang-
EWS are not apparent until the bifurcation parameter is very. : ) .
. o . . . ing properties of the external noise, which would affect EWS
close to its critical point. In this case the signal cannot be

called early anymore, and a prediction of a sudden transi_(Carpenter and Broci200§ Scheffer et al.2009 Ditlevsen

tion, together with the area where it will occur, must fail. On and JohnserP019. In particular, we have only used white

the other hand, we have documented that indicators of Slowpmse which is uncorrelated in space. However, it would

. : : physically be more reasonable to account for spatial correla-
ing down can potentially be used to infer knowledge on the;. . ! . .

. L - . _“tions in the atmospheric variability. This could reduce the de-
causality of a sudden transition from sufficiently long time

series. To this end, we have devised an algorithm to detectteCtab'“ty of hotspots because correlations between the state

. . Variables could not be attributed to spatial interactions alone,
the hotspot or hotspots of slowing down in a many-elementbut would partly result from correlations in the noise.

system. As slowing down indicates a loss in stability of the L ;
— . Other problems may arise in cases of large noise. The lo-
current state, the detected hotspot indicates a region where . L
; N . cal stability of the deterministic state may not be represented
the system’s susceptibility to perturbations becomes large. . : .
. " well anymore in EWS, and the noise can lead to an early tip-
Although our system is meant to represent the vegetation- ind. More fundamentallv. the svstem’s mean behaviour in
atmosphere interaction in Northern Africa, the method of PINY- Y, y

analysis is generic in the sense that it can be applied to anthe large noise regime may not reflect its deterministic struc-

o . . Yure anymore due to noise-induced transitiodsré§themke
system satisfying the basic assumptions common to EWS ap- d Lef he link b ) .
proaches: and Lefever1984. The link between a system’s suscepti-

bility and statistical properties of its variability breaks down

— The system is supposed to be close to a deterministi¢!nder such conditions.

state (in terms of dynamical systems, a slow manifold), Within these limitations, our results suggest an alternative
which loses stability. applicability of EWS which may contribute to a better un-

o . ~derstanding of numerical models. In this regard our study
— The system’s variability results from small white noise. is a concretion of Lenton’s recent conclusion: “Even if fur-
ther research shows that early warning is unachievable in

5 Summary and conclusions
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practice, it could still provide valuable information on the Claussen, M., Kubatzki, C., Brovkin, V., Ganopolski, A., Hoelz-
vulnerability of various tipping elements to noise-induced mann, P., and Pachur, H. J.: Simulation of an abrupt change in
changes.”l(enton 2011). To this end, more systematic stud- ~ Saharan vegetation in the mid-Holocene, Geophys. Res. Lett.,
ies on the performance of indicators of slowing down for dif- 26, 2037-2040¢0i:10.1029/1999GL900494999.

ferent classes of models will be particularly beneficial. Dakos, V., Scheffer, M., van Nes, E. H., Brovkin, V., Petoukhov, V.,
and Held, H.: Slowing down as an early warning signal for abrupt

climate change, Proc. Natl. Acad. Sci. USA, 105, 14308-14312,

. . . doi:10.1073/pnas.0802430138008.
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