
Combined evaluation of MPI-ESM land surface water and energy

fluxes

Stefan Hagemann,1 Alexander Loew,1 and A. Andersson2

Received 29 May 2012; revised 1 October 2012; accepted 27 November 2012; published 17 May 2013.

[1] To assess the robustness of projected changes of the hydrological cycle simulated
by an Earth system model (ESM), it is fundamental to validate the ESM and to
characterize its major deficits. As the hydrological cycle is closely coupled to the
energy cycle, a common large-scale evaluation of these fundamental components of
the Earth system is highly beneficial, even though this has been rarely done up to now.
Consequently, the purpose of the present study is the combined evaluation of land
surface water and energy fluxes from the newest ESM version of the Max Planck
Institute for Meteorology (MPI-ESM), which was used to produce an ensemble of
Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. With regard
to energy fluxes, we especially make use of recent satellite data sets. Additionally,
MPI-ESM results are compared with CMIP3 results from the predecessor of
MPI-ESM, ECHAM5/MPIOM, as well as to results from the atmosphere/land part
of MPI-ESM (ECHAM6/JSBACH) forced by observed sea surface temperature
(SST). Analyses focus on regions where notable differences occur between the two
ESM versions as well as between the fully coupled and the uncoupled SST-driven
simulations. In general, our results show a considerable improvement of MPI-ESM in
simulating surface shortwave radiation fluxes. The precipitation of the fully coupled
simulations notably differs from those of the SST-forced simulations over a few river
catchments. Over the Amazon catchment, the coupling to the ocean leads to a large
negative precipitation bias, while for the Ganges/Brahmaputra, the coupling
significantly improves the simulated precipitation.
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1. Introduction

[2] The climate of the Earth is influenced by increasing
greenhouse gas concentrations, changing aerosol compo-
sitions and loads as well as land surface changes. In cli-
mate research, a special emphasis is placed on the
hydrological cycle, which is crucial to life on Earth. Its
importance is highlighted by the Global Energy and
Water Cycle Experiment (GEWEX) [e.g., Sorooshian
et al. 2005]. The implications of changes in the hydrologi-
cal cycle induced by climate change may affect society
more than any other changes, e.g., with regard to flood
risks, and changes in water availability and water quality.

[3] An accurate representation of the exchange of
water between the atmosphere, the ocean, the cryosphere,
and the land surface is one of the biggest challenges in

earth system modeling. Simulating these fluxes is extremely
difficult, because they depend on processes occurring on
spatial scales that are generally several orders of magnitude
smaller than the typical grid size in an Earth system model
(ESM). The formation of precipitation, for example, is
controlled by a multitude of processes such as cloud micro-
physics and particle growth, radiative transfer, atmos-
pheric dynamics on a variety of space and timescales, and
inhomogeneities of the Earth’s surface. All of these proc-
esses have to be properly represented in an ESM.

[4] The surface water and energy fluxes are closely
related with each other as well as the terrestrial carbon
fluxes. A strong coupling of the land surface dynamics
with the atmosphere exists, especially in transitional cli-
mate regions [see, e.g., Koster et al., 2004; Seneviratne
et al., 2010]. The feedback from the land surface can
therefore have a strong effect on regional patterns of
surface water and energy fluxes. Consequently, the focus
of this study is on evaluating the skill of the current
ESM version of the Max Planck Institute for Meteorol-
ogy (MPI-ESM) to simulate land surface water and
energy fluxes. MPI-ESM was used to produce an ensem-
ble of Coupled Model Intercomparison Project Phase 5
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(CMIP5) simulations for the forthcoming fifth Intergov-
ernmental Panel on Climate Change (IPCC) assessment
report. The evaluation mainly comprises the comparison
of simulated and observed land surface climatologies of
2m temperature, precipitation, evaporation, and river
runoff as well as surface solar radiation fluxes. In partic-
ular, we assess the dependence of biases in land surface
water and energy fluxes on cases of fully or partially
coupled MPI-ESM experiments to quantify differences
due to the coupling with a dynamic ocean model. We
also compare the results from the present MPI-ESM to
results from its precedent version to quantify the differ-
ences between the two considerably different model ver-
sions of MPI-ESM (see section 2.1). Moreover, we
quantify their accuracy compared with independent
data sets. The analysis of other components of the
hydrological cycle such as clouds, snow or soil moisture,
is beyond the scope of this study and will therefore not
be discussed.

[5] The model and the simulations considered in this
study are briefly described in section 2. Simulated and
observed components of the hydrological and energy
cycle at the land surface are compared in section 3 on a
large scale, and in section 4 for specific regions. Particu-
lar model biases in specific regions are discussed in
more detail in section 5, and the main findings are sum-
marized in section 6.

2. Description of MPI-ESM, Model Simulations
Used and Observations

2.1. ESM of the Max Planck Institute for Meteorology

[6] The coupled MPI-ESM consists of the following
model components: ECHAM6 in the atmosphere
[Stevens et al., 2012], MPIOM in the ocean [Jungclaus
et al., 2012], and JSBACH [Raddatz et al., 2007; Brovkin
et al., 2009] for land surfaces. It takes into account
observed concentrations of CO2, CH4, N2O, CFCs, O3

(tropospheric and stratospheric), and sulphate aerosols,
thereby considering the direct and first indirect aerosol
effect. Major differences of MPI-ESM to its predecessor
ECHAM5/MPIOM [Roeckner et al., 2003; Jungclaus
et al., 2006] are a new radiative transfer scheme in the
atmosphere, the use of a new aerosol climatology, and
the incorporation of the carbon cycle including ocean
biogeochemistry and an interactive and dynamic vegeta-
tion scheme at the land surface. Also the standard setup
of MPI-ESM with 47 vertical atmospheric levels (LR)
reaches to higher atmospheric layers than the previous
one with 31 levels.

2.2. Model Simulations

[7] The experiments analyzed in this study were con-
ducted following the CMIP5 protocol [Taylor et al.,
2012]. The following ESM ensemble simulations were
considered in this study, comprising three members
each. (1) An ensemble of fully coupled MPI-ESM ‘‘his-
torical’’ (twentieth century) simulations conducted with
the CMIP5 model setup, thereby focusing on the period
1971–2000 representing the current climate. This ensem-
ble is referred as MPI-ESMh in the following. (2) An

ensemble of Atmospheric Model Intercomparison
Project 2 (AMIP2) type simulations where the land/
atmosphere component of MPI-ESM (ECHAM6/
JSBACH) was forced with observed sea surface temper-
ature (SST) and sea ice from 1979 onward. Here, we
consider the period 1979–2000 and refer to this ensem-
ble as MPI-ESMa in the following. (3) An ensemble of
fully coupled ECHAM5/MPIOM historical twentieth
century simulations that was conducted for CMIP3
[Program for Climate Model Diagnosis and Intercom-
parison (PCMDI), 2007] and used in fourth IPCC
assessment report [Solomon et al., 2007]. Comparisons
focus on the period 1971–2000 and the ensemble is
referred as ECHAM5h in the following. (4) In sections
4 and 5, we also show results from an AMIP2 simula-
tion (1979–1999) using ECHAM5 with T63 horizontal
resolution and 31 vertical atmospheric levels
(ECHAM5a). This simulation has been evaluated by
Hagemann et al. [2006], where the impact of different
horizontal and vertical resolutions on the simulated
hydrological cycle of ECHAM5 was considered.

[8] A notable difference of the setup of the land sur-
face scheme JSBACH in MPI-ESM to those within the
AMIP2 simulations is the use of a dynamical vegetation
algorithm [Brovkin et al., 2009] while in the latter a pre-
scribed distribution of vegetation (i.e., Plant Functional
Types (PFTs)) is used that is based on a 1 km global dis-
tribution of major ecosystem types [Loveland et al.,
2000]. Note also the difference of the land surface repre-
sentation between ECHAM5 and MPI-ESM, where the
first uses a static description of the land surface follow-
ing Hagemann [2002], while the latter uses a dynamic
model (see above) with interactive vegetation, e.g., com-
prising the phenological simulation of leaf area index
and surface background albedo.

[9] We conducted climatological comparisons to
observations and previous analogous ECHAM5 simula-
tions. The time periods considered depend on the avail-
ability of model and observational data (see section 2.3).
Note that for the coupled simulations MPI-ESMh and
ECHAM5h we focus on the period 1971–2000 as this
will be the common reference period for the quantifica-
tion of climate change signals in studies of future global
warming. With regard to the SST forced simulations,
the available subset of this period will be used, i.e.,
1979–2000 for MPI-ESMa. Results obtained with MPI-
ESMh show that in general climatological differences
between 1971–2000 and 1979–2000 are relatively small
for the variables considered in this study, especially
when compared with the differences to observations as
reported in sections 3 and 4.

[10] Generally, simulated climatologies are directly
taken from the model output of the respective variable.
An exception is the surface albedo, which was calcu-
lated as the ratio of the monthly means of the upward
and downward shortwave radiation fluxes to appropri-
ately take into account changes in the fractions of direct
and diffuse radiation during a month. This is necessary
since the JSBACH land surface model in MPI-ESM
and also ECHAM5 calculate the surface albedo as a
function of the actual state of the vegetation, the
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background albedo below the canopy and the amount
of snow cover in a model grid cell [Roesch and Roeck-
ner, 2006; Vamborg, 2011].

2.3. Observational Data

[11] For the evaluation of surface water and energy
fluxes, various global observational data sets are used,
which are summarized in Table 1 and introduced in the
following. As the observations comprise some very
recent data sets of surface solar irradiance (SSI), these
are discussed in more detail.
2.3.1. Hydrological Observations

[12] As observations, temperature and precipitation
from the newly available global WATCH data set of
hydrological forcing data (henceforth referred to as
WFD [Weedon et al., 2011]) were used. The WFD com-
bine the daily statistics of the 40-years reanalysis of the
European Centre for Medium-Range Weather Forecasts
(ERA40 [Uppala et al., 2005]) with the monthly mean
observed characteristics of temperature from the Climate
Research Unit data set TS2.1 [Mitchell and Jones, 2005]
and precipitation from the Global Precipitation Clima-
tology Centre full data set version 4 [Fuchs et al., 2007].
For the latter, a gauge-undercatch correction following
Adam and Lettenmaier [2003] was used, which takes into
account the systematic underestimation of precipitation
measurements that have an error of up to 10%–50% [see,
e.g., Rudolf and Rubel, 2005]. Note that the uncertainties
in the precipitation data are still high in regions with a
sparse station density and those with significant snowfall
amounts, especially in mountainous areas [see, e.g.,
Rudolf and Rubel, 2005; Biemans et al., 2009]. In addition,
climatological observed discharge data were taken for
major rivers from the Global Runoff Data Centre
(GRDC; see, e.g., D€umenil Gates et al., [2000]).
2.3.2. Surface Albedo

[13] Ten years of Moderate Resolution Imaging Spec-
troradiometer (MODIS) surface albedo (MCD43C3, ver.
5) observations [Schaaf et al., 2002] are used for compari-
son with MPI-ESM results. The albedo observations are
filtered in accordance to the product quality flags to
ensure that only best quality observations are considered
for the reference data set. The data are then reprojected
to the MPI-ESM model grid (T63 resolution, Gaussian
grid). The mean surface albedo and its variance are cal-
culated from the 10-year time series for each month and
grid cell, respectively. With a record of just ten years of

observations, the estimation of robust climatic mean val-
ues of surface albedo is difficult. On the other hand,
changes in vegetation cover might already change signifi-
cantly the surface albedo on decadal timescales and
therefore affect climate [Loew and Govaerts, 2010; Fen-
sholt et al., 2012]. Results shown in this paper are based
on the full 10-year record of MODIS observations. How-
ever, we also analyzed the effect of sampling of the
MODIS observations as well as the MPI-ESM simula-
tions on shorter timescales (5 years) and found no signifi-
cant differences to those shown in the present study.
2.3.3. Surface Solar Irradiance

[14] Satellite based methods enable the estimation of
the surface solar flux at high temporal and spatial resolu-
tions at global scales. Satellite-based estimates of atmos-
pheric radiation fluxes have been developed throughout
the last 20 years. Different global products exist, which
also allow to assess the interproduct variability of SSI.
Four different surface solar radiation data sets are used
for the present study. The Clouds and Earth Radiation
Energy System (CERES) surface solar radiation fluxes
are provided at global scale and are derived from meas-
urements onboard of the Earth Observing System (EOS)
Terra and Aqua satellites [Loeb et al., 2012]. The CERES
surface fluxes are obtained from the monthly TOA/Sur-
face Averages (SRBAVG; edition 2) product for a limited
time period (2000–2003). A new reprocessed and flux cor-
rected Energy Balanced And Filled (EBAF) surface flux
product, covering the period 2000–2010, became available
after the analysis of the present paper had been finalized
[D. R. Doelling, 2012, personal communication]. An anal-
ysis of the differences between climatologies derived from
the two different data sets revealed no major differences
and no impact on the results and conclusions of the pres-
ent paper are therefore expected by using the time-limited
CERES data for the present study.

[15] Although the CERES data record is limited to a
few years, the recently released SSI data set of the Euro-
pean Organisation for the Exploitation of Meteorologi-
cal Satellites (EUMETSAT) Satellite Application
Facility on Climate Monitoring (CMSAF) covers the
period from 1983 to 2005. The product is distributed on
a regular latitude/longitude grid with a grid spacing of
0.03� in both directions and is limited to the spatial do-
main of Meteosat centered at 0�E (see Figure A1).
Details on the retrieval scheme can be found in M€uller
et al. [2009, 2011]. A recent study investigated the

Table 1. Used Observational Data Sets

Variable Data Set
Original Spatial

Resolution
Original Temporal

Resolution References

Surface albedo MODIS MCD43C3, ver. 5 0.05� 3 0.05� 8 days Schaaf et al. [2002]
Meteosat albedo EUMETSAT <5 3 5 km 10 days Loew and Govaerts [2010]
SSI CMSAF 0.03� 3 0.03� Hourly, monthly M€uller et al. [2009, 2011]

CERES 1.0� 3 1.0� Monthly Loeb et al. [2012]
BSRN Point Hourly Ohmura et al. [1998]
SRB 1� 3 1� 3 hourly, monthly Cox et al. [2006]

ISCCP 280 km 3 hourly, monthly Zhang et al. [2004]
Temperature WFD 0.5� Daily, monthly Weedon et al. [2011]
Precipitation WFD 0.5� Daily, monthly Weedon et al. [2011]
Discharge GRDC Stations Monthly D€umenil Gates et al. [2000]
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potential for the generation of a seamless surface solar
radiation product from first and second generation of
Meteosat satellites [Posselt et al., 2011a].

[16] The accuracy of the CMSAF surface solar radia-
tion product has been carefully investigated using refer-
ence measurements from the Baseline Surface Radiation
Network (BSRN) [Ohmura et al., 1998]. Ineichen et al.
[2009] compared the CMSAF data product at hourly
basis for eight stations in Europe and estimated accura-
cies of 80 to 100 W m22. Posselt et al. [2011b] showed
that the accuracy of the monthly mean product is better
than 10 W m22 and better than other existing available
surface radiation data products.

[17] The International Satellite Cloud Climatology
project (ISCCP) Flux Data (FD) product provides in-
formation on estimated SSI at a spatial scale of 280 km
and with a temporal resolution of 3 h to monthly values
[Rossow and Zhang, 1995]. Further details on the esti-
mation of surface fluxes for ISCCP are given in Zhang
et al. [2004]. Data from 1989 to 2005 were used for the
present analysis.

[18] The National Aeronautics and Space Adminis-
tration (NASA)/GEWEX surface radiation budget
(SRB) project aims at the production of long-term data
sets of shortwave and longwave surface and top-of-
atmosphere radiation fluxes. It provides 3 hourly to
monthly flux estimates at global scale with a resolution
of 1� 3 1�. The fluxes are calculated based on cloud pa-
rameters obtained from ISCCP and meteorological
fields from the NASA Global Modeling and Assimila-
tion Office (GMAO) reanalysis data sets. This study
uses monthly means of the SRB shortwave surface radi-
ation flux product (version 3.0 [Cox et al., 2006.]).

[19] All satellite data sets were reprojected to the
MPI-ESM model grid at T63 resolution before further
analysis using a conservative remapping procedure. The
different SSI observational data sets exhibit systematic
differences that may have to be considered in the com-
parisons to the model output. To illustrate these sys-
tematic differences, seasonal means of SSI differences
are shown in Figure 1 using CERES data as a reference.
Similar plots using CMSAF data are given in the Ap-
pendix. A comprehensive analysis of the accuracy of the
different satellite flux estimates is beyond the scope of
the present paper. A detailed analysis of the different
data sets is conducted in the frame of the GEWEX radi-
ation assessment (E. Raschke et al., GEWEX radiative
flux assessment (RFA), A project of the World Climate
Research Programme Global Energy and Water Cycle
Experiment (GEWEX) Radiation Panel, WCRP-Report,
in preparation, 2013), which is also addressing temporal
inconsistencies in the long-term data records caused by
perturbations such as the Pinatubo eruption, El-Ni~no, as
well as artifacts resulting from data processing. The sig-
nificance of the difference between the seasonal means
(Figure 1) was tested using a Student’s t test.

[20] The ISCCP data set shows consistent differences
to CERES as well as to the CMSAF data set. Largest
differences are observed over the tropical Atlantic, the
Sahara, as well as over Eurasia during the northern
hemispheric summer and over the Antarctic ocean

during the southern hemispheric summer. These differ-
ences might be due to a different characterization of sea
ice in the different data products.

[21] Although the SRB data set is based on ISCCP
cloud properties as an input, differences in the surface
radiation fluxes can be observed, which are due to dif-
ferent algorithms employed as well as different ancillary
data used for flux calculations. While the flux differen-
ces to CERES and CMSAF data are rather similar to
those for ISCCP in the Extratropics, SRB shows smaller
surface solar radiation fluxes in the tropical areas than
ISCCP. The difference plot in Figure 1 also shows arti-
facts caused by the spatial coverage of the different sat-
ellites used for the derivation of the data products. Over
Africa, the spatial coverage of the Meteosat satellites is
clearly visible in the difference images, which is likely to
be an artifact of the data processing.

[22] However, it needs to be emphasized that the
observed differences between the different data products
are not statistically significant in most cases. Only for a
very few grid boxes, statistically significant differences
between the seasonal means can be detected, which is
due to the large variability of SSI between the different
years. Thus, mostly a comparison of simulated SSI to
one data set, in this case CERES data, is sufficient for
the evaluation. For better illustration, additional com-
parisons to CMSAF data are provided in the Appendix.
2.3.4. BSRN Data

[23] The BSRN provides high quality in situ measure-
ments of the surface solar radiation flux at the local
scale. A total of 61 stations collect surface radiation
data on a regular basis [Ohmura et al., 1998]. BSRN sta-
tion measurements are used for an intercomparison with
the model simulations on a climatological timescale.
While the in situ data correspond to point like observa-
tions, the radiation simulated in the model corresponds
to an average flux over an entire model grid box. How-
ever, characteristic seasonal patterns of the radiation
flux can be extracted from both, model simulations and
in situ measurements and be compared. From the avail-
able 61 BSRN stations, only those were used where at
least 60 continuous months of measurements were avail-
able to compile a monthly climatology of SSI. This
resulted in a total of 39 BSRN stations worldwide (see
Figure 2). As the CMSAF SSI data cover only a limited
part of the globe, only 16 BSRN stations can be used for
comparison. The data were obtained from the BSRN
archive (http://www.bsrn.awi.de/). Climatological mean
SSI and its variability were then calculated for each sta-
tion from the entire available record of a BSRN station.

3. Results of Model Evaluation

[24] Results of the MPI-ESM evaluation are analysed
in the following, focusing on global difference maps
and zonal mean statistics for the different variables ana-
lysed in this study.

3.1. Precipitation

[25] Considering the zonal distribution of precipita-
tion over land (Figure 3), the general shape of the
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distribution is captured well by all models for all sea-
sons. Common deviations from the WFD denote a pro-
nounced dry bias in the Tropics north of the equator,
which also extends to south of the equator during the
boreal spring and summer, a dry bias in the low precipi-
tation region in the southern Subtropics accompanied
by a wet bias around 50�S, and a wet bias in the north-
ern high latitudes during boreal spring and summer.

The most notable difference between the models is
that MPI-ESMh and MPI-ESMa generally have an
improved simulation of peak rainfall in the tropics com-
pared with ECHAM5h. In the boreal summer, MPI-
ESMh even simulates a better peak than MPI-ESMa
while this peak is better captured by MPI-ESMa during
the boreal winter and spring. Over the high northern
latitudes in the boreal spring and summer, the slightly

Figure 1. Differences of seasonal cycle of SSI between different observational data sets: ISCCP compared to
(top) CERES, SRB compared to (bottom) CERES. Statistically significant differences (p > 0.05) between the satel-
lite products are indicated by stippled areas.
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lower precipitation in ECHAM5h is somewhat closer to
WFD than for the other two models.

[26] Considering the spatial differences to WFD
(Figure 4), further common deficiencies are the overesti-
mation of precipitation along steep mountain slopes
(Andes, Himalayas, Rocky Mountains), distinct dry
biases in the northern part of South America and
around the Sahel zone that extend further south during
the boreal summer. In the boreal winter, a large wet
bias over eastern Asia can be noted. The pronounced
dry bias in ECHAM5h over central and southern

Europe during the boreal summer is largely reduced in
both MPI-ESM simulations.

3.2. Temperature

[27] Figure 5 shows the zonal distribution of the 2m
temperature difference to the WFD over land averaged
over the four seasons. All models are close (within
61K) to the WFD in the tropics in all seasons, but
show pronounced warm biases in the northern mid- and
high latitudes in the boreal winter and spring, which is
replaced in the northern hemisphere by a cold bias in
the boreal summer. Further, a warm bias around 30�S
can be noted that might be related to the dry bias in the
southern Subtropics (see above). In the boreal summer,
this extends to the southern mid-latitudes while in the
boreal autumn and winter, a cold bias becomes appa-
rent. MPI-ESMh tends to be colder than the other two
models south of 30�N and shows the smallest bias com-
pared with the WFD in the tropics and southern sub-
tropics in the boreal summer and autumn (reduced or
even no warm bias around 30�S). In the northern high
latitudes, ECHAM5h is colder than MPI-ESMh and
MPI-ESMa, the latter being the warmest in this region.
Thus, ECHAM5h has the smallest warm bias in winter
and spring, while MPI-ESMa has a strongly reduced
cold bias around 60�N in the boreal summer.

Figure 2. Distribution of 39 BSRN stations with long-
term SSI measurements.

Figure 3. Zonal distribution of precipitation over land in the boreal (a) winter, (b) spring, (c) summer, and (d)
autumn. Unit: mm d21.
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[28] Maps of the 2m temperature difference to the
WFD (Figure 6) reveal that the winter warm bias is
spread throughout the whole range of northern latitudes
except for Greenland and the west coasts of North
America and Europe, and it is most pronounced in East-
ern Siberia. The reduced warm bias in ECHAM5h stems
from generally colder simulation of temperatures over
northern Eurasia. In the boreal summer, the reduced
cold bias of MPI-ESMa in the high northern latitudes is
not only related to a strongly improved simulation of
temperatures over Eurasia but also to the compensating
effect of a warm bias over Central United States that

does not appear for the other two models. The general
cold bias over Greenland is likely related to the too sim-
ple treatment of the glacier ice sheets in the models.

3.3. Surface Solar Radiation

[29] The differences in SSI between the different mod-
els and experiments are illustrated in Figure 7. The
MPI-ESM simulations are very similar for the global
mean field with a global average of 162.5 6 94.2 W m22

and 162.2 6 94.2 W m22 for MPI-ESMa and MPI-
ESMh experiments, respectively. Observed seasonal dif-
ferences are not significant except for small regions in

Figure 4. Relative precipitation difference to the WFD over land in the boreal winter (left column) and summer
(right column) for MPI-ESMh (upper row), MPI-ESMa (middle row), and ECHAM5h (lower row). Unit: %.
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the inner tropics during boreal winter as well as over the
Benguela current during June–July–August/September–
October–November (JJA/SON). Spatial differences in
SSI are mainly related to changes in the cloud pattern
that also reflect in changes in the simulated precipitation
patterns (A. Andersson et al., Evaluation of MPI-ESM
ocean surface fluxes, J. Adv. Model. Earth Syst., in prep-
aration, 2013, hereinafter referred to as Andersson
et al., in preparation, 2013).

[30] Figure 7b shows the SSI differences between
MPI-ESMh and ECHAM5h. The global mean of
ECHAM5h is lower (156.1 6 95.5 W m22) than the cor-
responding simulation results from MPI-ESM. Largest
differences are observed over Eurasia and the tropical
Africa with deviations >20 W m22. However, the
estimated differences are only statistically significant in
central Africa as well as in the Eastern Pacific. The
observed differences between the model versions are due
to different cloud coverage as well as aerosol optical
depth.
3.3.1. Evaluation Using BSRN Station Data

[31] Comparison of simulated SSI fields with BSRN
station data shows high correlations for all stations and
models. Figure 8 shows the distribution of obtained
Pearson correlation coefficients and root-mean-square
error (RMSE; W m22) for a total of 39 stations the
global radiation products and 16 stations for CMSAF.

Overall, the CMSAF SSI product shows highest corre-
lations and smallest RMSE for this climatological com-
parison, which is also the case if RMSE and correlation
of CERES, SRB, and ISCCP are calculated only for the
16 stations covered by the CMSAF data. This result is
consistent with validation results of the CMSAF data
product (see also section 2.3), which showed that this
satellite-based product has an accuracy better than
10 W m22 and shows smaller errors compared with
other existing solar irradiance products [Posselt et al.,
2011b]. The RMSE obtained in this study is slightly
larger, which is explained by the much larger scale dis-
crepancy between the BSRN stations and the model grid
scale. The other satellite data sets show slightly higher
RMSE compared with the CMSAF data. While ISCCP
and CERES show an almost similar spread in the
RMSE as the CMSAF data (r < 10 W m22 inner quar-
tile range), the SRB inner quartile range is 14 W m22.

[32] The MPI-ESM model simulations have a median
RMSE of 14 (12) W m22 for MPI-ESMa (MPI-ESMh)
with a similar variability. Contrary, ECHAM5h has a
higher RMSE of 18 W m22 with a much larger spread.
This indicates that the improvements in the new radia-
tion scheme applied in MPI-ESM as well as the new aer-
osol climatology have improved the skill of the model to
simulate SSI. In the following, we will compare the
model results against the satellite-based estimates of SSI.

Figure 5. Zonal distribution of 2m temperature difference to the WFD over land in the boreal (a) winter,
(b) spring, (c) summer, and (d) autumn. Unit: K.
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3.3.2. Results of Spatial SSI Comparison
[33] The differences between the various satellite-

based surface radiation products were discussed in sec-
tion 2.3. Table 2 summarizes the global mean annual
and seasonal SSI for the various model simulations and
observations, whereas Figure 9 shows corresponding
zonal means of SSI over land. In general, there is a
good agreement between the different data sets and the
models. Largest differences occur during the summer
season of each hemisphere. The estimated global mean
surface solar radiation flux is 162 W m22 for MPI-
ESM, for both the coupled and uncoupled simulations

and therefore well within the range of uncertainties
obtained from the analysis of reanalysis data [Trenberth
et al., 2009, 2011]. The satellite-derived global mean SSI
flux is 169.3, 164.7, and 160.8 W m22 for CERES,
ISCCP, and SRB, respectively. ECHAM5h has a much
lower global mean of 156.1 W m22. Overall, the differen-
ces between ECHAM5h and the new MPI-ESM are larger
than the differences between the coupled and uncoupled
experiments of MPI-ESM. Statistically different seasonal
means occur between MPI-ESM, ECHAM5h, and the
various observational data sets. The same regions with
significant differences are identified in both MPI-ESM

Figure 6. The 2m temperature difference to the WFD over land in the boreal winter (left column) and summer
(right column) for MPI-ESMh (upper row), MPI-ESMa (middle row), and ECHAM5h (lower row). Unit: K.
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experiments. We therefore only show results for MPI-
ESMh in Figure 10 (and Figure A2). Consistent differen-
ces of MPI-ESM occur with all observational data sets.
Statistically significant differences of SSI are mainly evi-
dent during December-January-February (DJF) and JJA
when comparing against CERES data. For DJF, SSI is
underestimated for the southern hemispherical tropical
ocean and land surfaces. In JJA, a statistically significant
underestimation of SSI is shown over large parts of the

northern hemisphere Atlantic and Pacific oceans. Signifi-
cant positive differences occur in the western Pacific
throughout all seasons. In general, similar patterns are
simulated by ECHAM5h.

[34] While the differences between simulated and
observed SSI reveal generally consistent patterns and are
very useful to identify regions with significant differences,
an overall assessment of the accuracy of the different
model experiments is difficult. We therefore calculate a

Figure 7. Differences in seasonal SSI (W m22) between (a) MPI-ESMh and MPI-ESMa and (b) between MPI-
ESMh and ECHAM5h. Statistical significant differences (p > 0.05) are indicated by stippled areas.
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single scalar normalized difference (e2) between the model
results (SSIm) and a reference data set (SSIref), following
Reichler and Kim [2008] as

e25
X

n

�
wnðSSIm;n2SSIref ;nÞ2=r2

ref ;n

�
;

whereas wn are proper weights for changes in grid cell
area, r2

ref corresponds to the interannual variance of the
reference data set, and n is an index over all grid boxes
investigated. The normalized error provides a relative
ranking of different data sets. The CERES as well as
CMSAF data sets were used as references for the calcu-
lation of e2. Figure 11 shows results of this ranking with
the dimensionless e2 on the x axis, stratified by season.
The differences in e2 between CMSAF and CERES
data are due to the different spatial domains covered by
the two data sets. In general, the observational data sets
(ISCCP, SRB) show smaller errors than the model simula-
tions, indicating a general higher agreement between the
different observational data sets, as could be expected.
SRB tends to have slightly larger values for e2 for both
CERES and CMSAF data used as a reference.

[36] The ECHAM5h simulations show the highest
errors and a considerable improvement of the simulated
SSI is found for both MPI-ESM experiments, proving
the increased capability of MPI-ESM to simulate SSI
using its refined atmospheric radiative transfer scheme
and new aerosol climatology. The relative ranking of
the different data sets remains consistent throughout
the seasons and between the two reference data sets.
Major changes in e2 are observed between the seasons
with highest errors in DJF and JJA respectively.

3.4. Surface Albedo

[37] The surface albedo of the MPI-ESM simulations
is very similar. Seasonal values of zonal means of sur-
face albedo are shown in Figure 12. On average, the
MPI-ESM simulations show good agreement with the
MODIS observations, except for high latitudes where
larger differences occur due to snow. However, these
larger absolute deviations have a small effect on the
total surface radiative fluxes, as the SSI is small during
boreal winter. Zonal means of ECHAM5h show a simi-
lar performance as the MPI-ESM simulations com-
pared with the MODIS observations. To better assess
the importance of the albedo differences for the surface
radiation fluxes, the differences between model simula-
tions and MODIS observations are expressed in terms
of differences of the upward shortwave radiation flux
which is obtained by scaling the surface albedo by the
model SSI. As mentioned in section 2.2, all results are
presented for the ensemble mean of three ensemble mem-
bers of the model experiments. However, a sensitivity
analysis (not shown) revealed that the differences caused
by the internal variability of the model are much smaller
than the differences yielded between the model simula-
tions and the satellite observations. Figure 13 shows dif-
ference maps of upward shortwave flux between the
ESM simulations and MODIS data.

[38] In general, the land surface albedo (upward flux)
is slightly overestimated by the model almost every-
where during summertime, except for the Sahel region
and some desert regions in Asia and Australia. A signif-
icance test of the differences between simulated and
observed surface shortwave upward flux showed that
the observed differences are significant (p < 0.05) nearly
everywhere on the globe. Differences between model
and observations are most pronounced during boreal
winter (DJF) and spring (March-April-May (MAM))
season with snow cover in high latitudes. In this period,
the surface albedo dynamics are affected by snow cover
and its masking by tree cover [e.g., Essery et al., 2009].
In the northwestern part of North America (British

Figure 8. BSRN error statistics: correlation and RMSE
of climatological mean seasonal cycle of SSI. Boxes cor-
respond to lower and upper quartiles, whiskers corre-
spond to the data range, and red lines signify the median
value.

Table 2. Global Means of Seasonal SSI for the Simulations and Observational Data Setsa

Data Set DJF MAM JJA SON Mean

MPI-ESMa (1979–2000) 177.7 (111.9) 157.4 (82.2) 152.1 (96.5) 162.9 (81.0) 162.5 (94.2)
MPI-ESMh (1979–2000) 176.7 (111.5) 157.9 (82.7) 151.8 (96.1) 162.5 (81.5) 162.2 (94.2)
ECHAM5h (1971–2000) 172.6 (111.6) 150.4 (85.6) 144.3 (94.7) 157.3 (85.3) 156.1 (95.5)
CERES (2000–2003) 179.8 (110.0) 165.7 (83.8) 167.8 (101.9) 163.8 (82.4) 169.3 (95.5)
ISCCP (1989–2004) 179.1 (111.4) 158.3 (82.1) 159.3 (97.5) 162.2 (80.5) 164.7 (94.1)
SRB (1989–2004) 172.2 (105.1) 155.5 (81.6) 158.7 (96.0) 156.8 (79.6) 160.8 (91.4)

aValues in brackets correspond to spatial standard deviations. All values are in W m22.

HAGEMANN ET AL.: EVALUATION—MPI-ESM LAND SURFACE FLUXES

269



Columbia), the model significantly overestimates the
surface albedo (upward flux) throughout the year. Brov-
kin et al. [2012] concluded that this positive bias is
mainly due to an underestimation of the tree coverage
by the model in this area. It also can be noted that the
Sahara is brighter in ECHAM5h compared with MPI-
ESMh, which is closer to the observations in this area.
This can be attributed to the bare soil correction of albedo
with Meteosat data in the LSP2 data set [Hagemann,
2002] that was used in ECHAM5h. Here, these data seem
to be more adequate than the soil albedo data in MPI-
ESMh that were derived from MODIS data by Rechid
et al. [2009].

[39] The overall performance of the three models to
simulate the surface albedo was estimated by calculating
the intermodel performance index of Reichler and Kim
[2008], similar to the analysis performed for the SSI,
which provides a relative ranking of the individual
experiments compared with the multimodel mean. Both

experiments with MPI-ESM clearly outperform its pred-
ecessor ECHAM5. The experiment with forced SST
(MPI-ESMa) is by 39% better than the average, while
the MPI-ESMh is still 15% better. Contrary, ECHAM5h
is by 54% worse than the multimodel mean. It should be
emphasized that the Reichler and Kim [2008] skill score
provides only a relative ranking of the different models
and experiments and is not an absolute measure of
model performance. Nevertheless, it clearly demonstrates
the improvement of surface albedo simulations by MPI-
ESM using a dynamic surface albedo scheme, compared
to its predecessor.

4. Regional Validation Over Large Catchments

[40] Results from a regional analysis for selected
major catchments are shown in the following. The dis-
tribution of catchments selected for the model valida-
tion is shown in Figure 14. To represent closed

Figure 9. Zonal distribution of SSI over land in the boreal (a) winter, (b) spring, (c) summer, and (d) autumn.
Unit: W m22.
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hydrological units over the different continents, the
largest rivers on Earth are included as well as a few
smaller ones in Europe (Baltic Sea, Danube) and Aus-
tralia (Murray). Biases of annual mean 2m temperature,
precipitation (P), evapotranspiration (E), and runoff
(R) are shown in Figures 15 and 16. As the accuracy of
global observational evapotranspiration data sets [e.g.,
Jim�enez et al., 2011; Mueller et al., 2011] is highly uncer-
tain, evapotranspiration has been diagnosed as E 5
P 2 R by assuming that the long-term storage of soil
water and snow is negligible. The observational values

used to calculate the biases are given in Table 3. In
addition to MPI-ESMh, MPI-ESMa, and ECHAM5h,
results from an AMIP2 simulation (1979–1999) using
ECHAM5 are also shown (ECHAM5a, see section 2.2).

[41] For the Eurasian high and mid-latitude catchments
(Arctic rivers, Amur, Baltic Sea, Danube), the MPI-ESM
simulations are warmer than their ECHAM5 counter-
parts (Figure 15a; see also section 3.2), which for the Dan-
ube shows up in a warm bias of about 1 K that does not
occur in both ECHAM5 simulations. For most of the
catchments, MPI-ESMh has the smallest temperature

Figure 10. SSI differences of (top) MPI-ESMh and (bottom) ECHAM5h to CERES.
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Figure 11. Relative normalized SSI error (e2) (–) for different model experiments as well as observations, relative
to (left) CERES and (right) CMSAF observations. Note differences in scale due to the smaller spatial coverage of
the CMSAF field.

Figure 12. Zonal distribution of surface albedo over land in the boreal (a) winter, (b) spring, (c) summer, and (d)
autumn.
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bias, or is at least close to the smallest bias. Here, apart
from the Danube (see above) only the Congo and Yang-
tze Kiang stick out where MPI-ESMh shows a much
stronger cold bias than the other three models.

[42] With regard to precipitation (Figure 15b), differen-
ces between the two historical simulations seem to be of
minor importance. For most catchments, MPI-ESMh pre-
cipitation is somewhat larger than for ECHAM5h, thereby
leading to some enhancement of the wet biases over the

Arctic rivers, Amur, Baltic Sea, and Yangtze Kiang, and
to an apparent reduction of dry biases over the Danube,
Congo and Parana. For the Ganges/Brahmaputra, the wet
bias is almost halved in MPI-ESMa compared with
ECHAM5a. Further difference between the two AMIP2
simulations can be noted for the Arctic rivers (increased
wet bias in MPI-ESMa), Yangtze Kiang (decreased wet
bias), Murray (removed dry bias), and Nile (10% dry bias
instead of a similar wet bias).

Figure 13. Differences in upward shortwave flux (W m22) compared to MODIS data scaled with model incoming
radiation for (top) MPI-ESMh and (bottom) ECHAM5h.
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[43] Biases and differences between the models in
evapotranspiration (Figure 16a) generally follow those
in precipitation, e.g., the positive biases over Arctic Riv-
ers, Amur, Baltic Sea and Yangtze Kiang of all models
as well as the reduced negative bias for the Murray and
the enhanced negative biases for the Nile of MPI-ESMa
compared with ECHAM5a. It seems that all models
produce a too enhanced evapotranspiration over the
Amazon, which becomes obvious by the positive biases
for the AMIP2 simulations where the precipitation
shows no bias (Figure 15b), but also for the historical
simulations that show no evapotranspiration bias even
though precipitation is largely underestimated. Simi-
larly over the Danube, evapotranspiration is overesti-
mated by MPI-ESMh after the removal of the dry
precipitation bias, while the dry precipitation bias in
ECHAM5h also leads to a negative evapotranspiration
bias. For the Ganges/Brahmaputra, evapotranspiration
generally seems to be underestimated by the models as
even in the AMIP2 simulations the surplus of water due
to the wet precipitation bias only leads to a removal of
the negative bias shown for the historical simulations.

[44] Positive or negative biases in precipitation often
exceed the biased amounts of evapotranspiration so that
also wet (Arctic rivers, Amur, Baltic Sea, Yangtze
Kiang) and dry (Congo for ECHAM5h and MPI-ESMa,
Missisippi for AMIP2 simulations) biases in runoff
(Figure 16b) occur, respectively. Differences between the
models in precipitation and evapotranspiration mostly
seem to be of the same order so that they often compen-
sate each other, which causes model differences in the
runoff and the associated bias to be rather similar with a
few exceptions. The too enhanced evapotranspiration
over the Amazon leads to a dry runoff bias for all mod-
els, which is more severe for both historical simulations
due to their too low precipitation. Overestimated evapo-
transpiration also leads to dry runoff biases over the

Danube catchment for all models except ECHAM5h
where the dry bias in precipitation dominates the dry
runoff bias. Underestimated evapotranspiration causes
wet runoff biases over the Ganges/Brahmaputra and
Murray catchments for all models. For the first, these
are largely enhanced by the wet precipitation biases for
the two AMIP2 simulations. As for precipitation (see
above), the wet runoff bias in MPI-ESMa is only about
half the bias of ECHAM5a. For the Murray, wet runoff
bias of ECHAM5a is less severe due to the larger dry
bias in precipitation. For the Nile, negative biases in pre-
cipitation and evapotranspiration compensate each other
except for ECHAM5a where the overestimation of pre-
cipitation causes a large overestimation of runoff. Note
that for the Nile climatological discharge, observations
are used before the Aswan dam was built as this is not
considered in the models either. For the Parana, the
reduction in the dry precipitation bias of MPI-ESMh
compared with ECHAM5h leads also to an analogue re-
moval of the dry runoff bias. For both AMIP2 simula-
tions, large positive runoff biases occur that are related
to a wet precipitation bias for ECHAM5a, while for
MPI-ESMa it seems to be caused by an adding up of
smaller positive and negative biases in precipitation and
evapotranspiration, respectively.

5. Annual Cycles and Differences Between
Model Families

[45] In this section, we are considering noticeable dif-
ferences of the different model families (historical/
AMIP2 and MPI-ESM/ECHAM5) in more detail,
thereby considering the mean annual cycles of precipita-
tion, 2m temperature, surface albedo, and SSI over the
selected major catchments (Figure 14). Here, we also
investigated why some of these differences occur and
how they relate to the model setup.

Figure 14. Selected large catchments of the globe at 0.5� resolution.
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5.1. Historical Versus AMIP2 Simulations

[46] The fully coupled historical and the uncoupled
AMIP2 SST driven simulations do not show any signifi-
cance differences for surface albedo. With regard to SSI
(Figure 11), the SST driven simulation (MPI-ESMa)
generally shows a relatively better performance than the
coupled model simulation (MPI-ESMh), except for
SON, indicating a general increase of SSI uncertainties
due to the coupling. However, the difference between the

MPI-ESM experiments is in general much smaller than
the difference to ECHAM5h. For 2m temperature
(Figure 15a), it can be noted that the historical simula-
tions are consistently colder over Eurasian high and mid-
latitude catchments (Arctic rivers, Amur, Baltic Sea,
Danube) than the corresponding AMIP2 simulations.
The latter is also the case for the Mississippi catchment
where both historical simulations have a reduced warm
bias. The most apparent differences between the historical

Figure 15. Annual mean biases in simulated (a) 2m temperature and (b) precipitation over several catchments.
The bias were calculated from the differences of the simulations to the WFD data.
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and the SST driven simulations occur for the land surface
water fluxes, especially for precipitation (Figure 15b).
For the Amazon, Ganges/Brahmaputra, and the Missis-
sippi, both historical simulations behave strongly differ-
ently than the AMIP2 simulations. For the Amazon, a
dry precipitation bias of about 20% occurs that is not
present in the AMIP2 simulations, while for the Ganges/
Brahmaputra, the wet precipitation bias of the AMIP2

simulations is reduced almost to zero. Consequently, we
consider these three catchments in more detail in the
following.

[47] For the Amazon, the dry biases in the hydrological
cycle are partially caused by the too enhanced evapo-
transpiration (see section 4), which points to deficits in
the representation of associated land surface processes.
These deficits seem to affect the simulated precipitation of

Figure 16. Annual mean biases in simulated (a) evapotranspiration and (b) runoff over several catchments. The
observed evaporation was calculated from the difference of WFD precipitation and observed climatological dis-
charge [D€umenil Gates et al., 2000]. The runoff bias was calculated from the difference of the simulated runoff and
the observed climatological discharge.
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all models during the boreal summer, where precipitation
is significantly lower than the WFD (Figure 17). But the
large underestimation of precipitation in the historical
simulations throughout the first nine months of the year
is not caused by these deficits as no dry bias occurs in the
SST driven AMIP2 simulations during winter and spring.
During most parts of this period, the moisture available
for precipitation is mainly transported from the Tropical
Atlantic north of the equator, i.e., passing over the north-
east (NE) coast of South America [see e.g., Trenberth,
1998]. Andersson et al. (in preparation, 2013) showed
that both coupled simulations have annual mean cold
SST bias at the NE coast of South America that is not
present in MPI-ESMa. This bias is associated with lower
evaporation rates and a subsequent dry bias in the inte-
grated water vapor. The latter is spatially enhanced by a
large-scale low bias in 10 m wind speed in the northern
Tropical Atlantic. These biases lead to a reduced mois-
ture transport into the Amazon catchment that is causing
the dry precipitation bias in the coupled simulations.
These biases along the NE coast of South America are
not present in MPI-ESMa, thereby leading to a more re-
alistic moisture transport and associated precipitation.

[48] For the Ganges/Brahmaputra, the improved sim-
ulation of precipitation induced by the coupling occurs
during the South Asian summer monsoon season, where
AMIP2 simulations, especially ECHAM5a, overesti-
mate the precipitation compared with WFD (Figure 17).
We speculate that in the AMIP2 simulations, the ocean
act as a too enhanced heat and moisture source as there
is no counteracting feedback by ocean SST. This is lead-
ing to a too strong moisture transport from the Arabian
Sea to northern India. As the models do not represent
the large irrigation ongoing over northern India and
Pakistan, there is too little moisture supply from the asso-
ciated areas [see, e.g., Saeed et al., 2009], which inhibits
the formation of precipitation indicated by the dry bias
over the northern Indian plains (Figure 4). Therefore, the
moisture is transported further inland toward the Hima-
layas, where it is causing a surplus of precipitation over
the Ganges/Brahmaputra catchment and a subsequent too
enhanced hydrological cycle over the region. In the
coupled simulations, the large moisture fluxes over the
ocean are reduced by the response of the ocean SST so

that the associated precipitation over the Ganges/Brahma-
putra catchment agrees well with the WFD. This is sup-
ported by Andersson et al. (in preparation, 2013), whose
results indicate a reasonable simulation of SST over the
Arabian Sea in the coupled simulations compared with
Hamburg Ocean Atmosphere Parameters and Fluxes
from Satellite Data (HOAPS) [Andersson et al., 2010]
being slightly colder than the AMIP SST, while the wind
speed in the AMIP simulation exhibits a positive bias for
this region. The latter and the missing coupling leads to
strongly overestimated evaporation fluxes in MPI-ESMa
over the Arabian Sea that are not present in the coupled
simulations.

[49] Noticeable differences between the coupled and
the AMIP2 simulations can be also seen in summer and
autumn over the Mississippi catchment, where a warm
bias of up 2–3�C in the AMIP2 simulations is almost
completely eliminated in both coupled simulations
(Figure 18). Figure 19 indicates that the coupling leads
to a lower simulation of SSI, which is closer to CERES
data and, hence, causes the reduction of the warm bias.
Between April and September, the coupling also leads
to an increased precipitation (Figure 17). While this
causes a wet bias until July, the prominent dry bias of
the AMIP2 simulations from August to October is
reduced. These results suggest that the coupling causes
more cloud cover and enhanced precipitation during
the summer half year, thereby overcompensating the
dry bias of the AMIP2 simulations in the annual mean
(Figure 15b). This enhanced precipitation subsequently
leads to a removal of the negative bias in runoff (Figure
16b). During the summer, the moisture is mainly trans-
ported from the northern subtropical Atlantic via Gulf of
Mexico into the catchment [see, e.g., Trenberth, 1998].
Here, both coupled models simulated a warm SST bias
that is inducing larger evaporation fluxes than in MPI-
ESMa (Andersson et al., in preparation, 2013). These
fluxes lead to a wet bias in the integrated water vapor,
and, very likely to the enhanced moisture flux into the
Mississippi catchment that is compensating the dry pre-
cipitation bias which is present in the AMIP simulations.
Part of the moisture flux into the Mississippi catchment
during the hurricane season (June–November) is related
to tropical cyclone activity that may contribute up to

Table 3. Observed Values for WFD 2m Temperature (1971–2000; �C), WFD Precipitation (1971–2000), Evaporation (WFD

Precipitation Minus Climatological Discharge), and Runoff (Climatological)a

Catchment Temperature Precipitation Evaporation Runoff

Amazon 24.6 2242 1189 1053
Amur 21.3 540 367 173
Six largest Arctic Rivers 25.0 455 264 191
Baltic Sea catchment 4.4 692 413 279
Congo 24.1 1576 1211 365
Danube 9.1 797 545 251
Ganges/Brahmaputra 17.7 1397 725 672
Mississippi 10.2 893 697 196
Murray 17.8 510 502 8
Nile 25.5 646 597 49
Parana 21.5 1308 1085 223
Yangtze Kiang 12.0 1069 532 537

aUnit: mm a21.

HAGEMANN ET AL.: EVALUATION—MPI-ESM LAND SURFACE FLUXES

277



10%–15% of the seasonal rainfall in the southern parts of
the catchment [Larson et al., 2005]. We speculate that the
summer/autumn dry bias is partially caused by the fact
that tropical cyclones cannot be adequately represented
at the used model resolution of about 200 km grid size.

5.2. MPI-ESM Versus ECHAM5

[50] As pointed out in section 3.2, larger differences in
the simulated 2m temperature occur between MPI-ESM
and ECHAM5, especially over northern Eurasia that are

most pronounced in the boreal winter half year. Here, the
MPI-ESM simulations are considerably warmer than the
ECHAM5 simulations and the WFD data, such as shown
for the Arctic Rivers, Danube, Amur, and Baltic Sea in
Figure 18. This behavior seems to be mainly imposed by a
lower simulation of surface albedo by MPI-ESM that
is closer to MODIS data than those simulated by
ECHAM5 (Figure 20). In summer time, cold biases of
ECHAM5h over the Arctic and Baltic Sea catchments
seem to be caused by a large negative SSI bias (Figure 19)

Figure 17. Simulated and observed precipitation (m3 s21) over large catchments.
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that is reduced but still prominent in the MPI-ESM simu-
lations. A corresponding behavior of precipitation biases
to biases in SSI or 2m temperature is not obvious (cf.
Figure 17).

[51] Over the Danube catchment, both ECHAM5
simulations suffer from the so-called summer drying
problem that was already highlighted for ECHAM5h by
Hagemann et al. [2009]. The problem still exists for MPI-

Figure 18. Differences to WFD 2m temperature (K) over large catchments. Differences were calculated over the
respective time period given for the ESM simulations.
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ESM, but it is largely reduced compared with ECHAM5.
The representation of land surface hydrology is very sim-
ilar in both model versions, as is the surface albedo dur-
ing summer time (Figure 20), which is close to MODIS
data. This indicates that the treatment of land surface
processes is not responsible for the reduction of the
summer drying problem in MPI-ESM. This is consistent
with results from a regional climate modeling study of
Hagemann et al. [2004], who pointed out that for two re-
gional climate models using ECHAM4 physics (HIR-
HAM, REMO), systematic errors in the atmospheric
dynamics appear to be causing the summer drying prob-

lem over the Danube catchment. These are likely also
leading to the positive evapotranspiration bias in the
MPI-ESM simulations over this region (Figure 16a, see
also section 4). The strong improvement in the simula-
tion of SSI (Figure 19) suggests that this reduction is
mainly caused by changes in the atmospheric component
of MPI-ESM, ECHAM6 [Stevens et al., 2012].

[52] In section 3.3, the better performance of MPI-
ESM in simulating SSI was already pointed out. This
cannot only be seen for the Danube, but also over
many other catchments (Arctic rivers, Baltic Sea, Ama-
zon, Nile, Congo, and Murray) where the simulated SSI

Figure 19. Differences to CERES SSI (W m22) over large catchments.

HAGEMANN ET AL.: EVALUATION—MPI-ESM LAND SURFACE FLUXES

280



(Figure 19) of MPI-ESM is closer to the satellite obser-
vations of CERES and CMSAF than the ECHAM5
SSI. For the Parana, ECHAM5 SSI is closer to CERES
data than MPI-ESM SSI (CMSAF data does not fully
cover this catchment). However, a systematic impact on

the simulated temperatures (Figure 18) is only visible
for the Parana in the southern winter and the Murray
in the southern summer half year. For the latter, the
overestimated SSI in the ECHAM5 simulations leads
to a related warm bias which is largely reduced in

Figure 20. Simulated and observed surface albedo (%) over large catchments.
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MPI-ESM where also the simulated SSI is closer to the
CERES data. For the Parana, the deviations of simu-
lated SSI to CERES data look rather similar to the tem-
peratures biases compared with WFD during July to
October.

[53] Despite the fact that MPI-ESMh was run with a
dynamic vegetation scheme while MPI-ESMa uses a
prescribed PFT distribution, the surface albedo over
snow free areas does not differ significantly between
both simulations (cf. section 3.4). Some noticeable dif-
ferences occur over the Amazon (Parana) catchment,
where MPI-ESMa surface albedo is systematically
lower (higher) by about 2% (1%) than in MPI-ESMh
(Figure 20). For the Amazon, MPI-ESMa agrees quite
well with MODIS data while for the Parana MPI-ESMh
has lower positive bias than MPI-ESMa compared with
MODIS. This implies that the dynamic vegetation scheme
simulates a too low tree cover over the Amazon catchment
as a direct consequence of the dry bias in MPI-ESMh.
Over the Parana instead, the dynamic vegetation scheme
seems to reduce a bias in the PFT distribution that is
present in MPI-ESMa. A direct effect on the simulated
temperature cannot be concluded from Figure 18, even
though it seems that over the Amazon, the overestimated
surface albedo of MPI-ESMh might be associated with a
slightly increased cold bias compared with MPI-ESMa in
the first half of the year. In the second half of the year, this
effect is exceeded by the warm bias that is likely related to
the dry bias in the boreal summer (Figure 17).

6. Summary and Concluding Remarks

[54] In the present study, we have jointly evaluated
land surface water and energy fluxes from the very recent
simulations that have been conducted with the MPI-
ESM for CMIP5 exercise. These simulations comprise
three-member ensembles of AMIP2 SST forced simula-
tions of the land/atmosphere component of MPI-ESM
and of the fully coupled ESM. MPI-ESM model output
was compared with various observational data sets as
well as to simulations by its predecessor ECHAM5.
Apart from a general evaluation of the fluxes, we
focused on differences between the two ESM versions as
well as on differences between the fully coupled simula-
tion and the SST-driven simulations.

[55] The study has proven that the simulated surface
shortwave radiation fluxes and land surface albedo
have considerably improved in MPI-ESM compared
with its predecessor ECHAM5. This has led to subse-
quent differences in simulated 2m temperature between
MPI-ESM and ECHAM5. To a large extent, these are
caused by the improved simulation of SSI in MPI-
ESM. Over the high northern latitudes in the winter,
these differences mainly originate from an improved sim-
ulation of surface albedo related to the associated snow
cover. But compared with WFD data, the MPI-ESM
simulated 2m temperature did not necessarily improve in
the same way as SSI and surface albedo. The latter is the
case for the reduction of the boreal summer cold bias in
the high northern latitudes that can be attributed to the
improved SSI in the MPI-ESM simulations. During the

boreal winter, the cold bias over Europe is removed by
MPI-ESM, but the northern Asian warm bias is largely
extended in the MPI-ESM simulations, which is mainly
limited over Eastern Siberia in ECHAM5h.

[56] For the hydrological cycle, large-scale bias pat-
terns are rather similar between the different models
over many regions. For precipitation, common devia-
tions from the WFD denote a pronounced dry bias in
the Tropics north of the equator, which also extends to
south of the equator during the boreal spring and
summer, a dry bias in the low precipitation region in the
southern Subtropics accompanied by a wet bias around
50�S, a wet bias in the northern high latitudes during bo-
real spring and summer and an overestimation of precip-
itation along steep mountain slopes. The most notable
difference between the models is that MPI-ESMh and
MPI-ESMa generally have an improved simulation of
peak rainfall in the Tropics compared with ECHAM5h.
Also, the summer drying problem over southern and
eastern Europe (especially over the Danube catchment)
is largely reduced in the MPI-ESM simulations.

[57] For many land areas, the coupling to an ocean
model does not lead to significant differences in land
surface water and energy fluxes compared to the simu-
lations forced with observed SST. But three areas can
be highlighted where the coupling causes noticeable
effects. On one hand, the coupling induces a dry bias
over the Amazon catchment, while on the other hand it
leads to an improved precipitation over the Ganges/
Brahmaputra and Mississippi catchments. For the
Amazon, this deficit of the coupled simulations cannot
be attributed to land surface processes, but instead it is
primarily induced by biases in simulated SST patterns
and associated moisture transport. Here, it can be noted
that an insufficient representation of land surface proc-
esses is probably only causing the dry bias during the
boreal summer that is persistent in all models. For the
Mississippi, warm biases in SST of the coupled simula-
tions and associated wet biases in the associated moisture
transport lead to increased summer precipitation that is
compensating a dry bias caused by other model deficits
that are likely associated with the coarse spatial resolution
of the ESMs. For the Ganges/Brahmaputra, the missing
interaction of the ocean with the atmosphere over the
Arabian Sea has been identified as the main cause of the
too enhanced precipitation in the SST-forced simulations.
This conclusion is supported by results of Wang et al.
[2005], who found that state-of-the-art atmospheric
GCMs, when forced by observed SST, are unable to sim-
ulate properly Asian-Pacific summer monsoon rainfall.

[58] In summary, the combined evaluation of land sur-
face water and energy fluxes has shown that MPI-ESM
has generally improved compared with ECHAM5, espe-
cially with regard to SSI and surface albedo. Bias pattern
for precipitation and 2m temperature are similar for
both ESM versions, and improvements slightly outweigh
worsenings. As ECHAM5h was already one of the best
performing models in the CMIP3 exercise [Reichler and
Kim, 2008], it can be concluded that MPI-ESM is well
suited for climate change studies focusing on the water
and energy cycle at the land surface.
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Appendix A

[59] In order to provide complementary information
for the usage of CERES as reference SSI in the spatial
maps of the manuscript, we added comparisons to
CMSAF SSI in this appendix. CMSAF data are avail-
able for a longer period (1989–2005) than CERES data,
but they cover only a limited part of the globe. Figure

A1 compares the seasonal SSI cycles of ISCCP and
SRB data to CMSAF data, and is, thus, complementary
to Figure 1. Figure A2 shows an analogue comparison
of MPI-ESMh and ECHAM5h to CMSAF data that is
complementary to Figure 10.

Figure A1. Differences of seasonal cycle of SSI between different observational datasets: ISCCP compared to
CMSAF (top), SRB compared to CMSAF (bottom). Statistically significant differences (p>0.05) between the
satellite products are indicated by stippled areas.
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