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ABSTRACT

The ability of general circulation models (GCMs) to correctly simulate precipitation is usually assessed

by comparing simulated mean precipitation with observed climatologies. However, to what extent the skill in

simulating average precipitation indicates how well the models represent temporal changes is unclear. A

direct assessment of the latter is hampered by the fact that freely evolving climate simulations for past periods

are not set up to reproduce the specific evolution of internal atmospheric variability. Therefore, model-to-

real-world comparisons of time series of daily, monthly, or annual precipitation are not meaningful. Here, for

the first time, the authors quantify GCM skill in simulating precipitation variability using simulations in which

the temporal evolution of the large-scale atmospheric state closely matches that of the real world. This is

achieved by nudging the atmospheric states in the ECHAM5 GCM, but crucially not the precipitation field

itself, toward the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis

(ERA-40). Global correlation maps between observed and simulated seasonal precipitation allow areas in

which simulated future precipitation changes are likely to be meaningful to be identified. In many areas,

correlations higher than 0.8 are found.

This means also that in these regions the simulated precipitation is a very good predictor for the true

precipitation, and thus a statistical correction of the simulated precipitation, which can include a downscaling

component, can provide useful estimates for local-scale precipitation. The authors show that a simple scaling

of the simulated precipitation performs well in a cross validation and thus appears to be a promising alter-

native to standard statistical downscaling approaches.

1. Introduction

Increased atmospheric concentrations of greenhouse

gases are associated not only with rising global tem-

peratures but also are expected to lead to considerable

changes in global precipitation patterns (Trenberth et al.

2007). Precipitation is characterized by large spatial and

temporal variability, and estimating future precipitation

is a major challenge in climate modeling (Trenberth et al.

2007; Randall et al. 2007). To simulate precipitation,

atmospheric general circulation models (GCMs) need to

represent condensation, evaporation, and other cloud-

microphysical processes, which in turn depend on vertical

air velocities related to large-scale uplift or convection.

The latter are influenced by the large-scale meteorolog-

ical situation and also by orographic effects. Many of

these processes operate at spatial scales smaller than a

typical GCM gridcell and are included in GCMs through

approximations known as parameterizations. Although

large-scale mean precipitation patterns are reasonably

well captured by GCMs, regional details are often poorly

represented, and not much is known about how well

temporal variability is simulated.

When considering simulated precipitation over a his-

torical period, it is possible to make direct comparisons
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with real-world observations. Groisman et al. (2005) have

shown that the multimodel mean global precipitation

trend patterns during the twentieth century do not agree

very well with observed trends but found better agree-

ment for changes in extreme precipitation. It should be

noted, however, that the differences might be partly re-

lated to random atmospheric variability rather than to

problems in the models. When making inferences about

the simulation of future climates, for which observa-

tional data are obviously not available, model consensus

is an accepted indicator of skill. Multimodel mean

trends for the twenty-first century were calculated in the

most recent Intergovernmental Panel on Climate Change

(IPCC) Assessment Report, accompanied by an anal-

ysis of the areas over which the models agree with each

other with respect to the sign of the change (Randall

et al. 2007). Again, it is partly unclear which of these

differences are due to genuine differences in the model’s

response to greenhouse gas forcing and which are due to

random, unpredictable differences in atmospheric vari-

ability. Assessing the anthropogenic influence on global

precipitation is made troublesome by the averaging of

varying regional responses, which may weaken the over-

all global signal (Allen and Ingram 2002; Held and Soden

2006), and successful quantification of anthropogenic sig-

nals must usually consider changes in particular regions

or latitudinal bands (e.g., Zhang et al. 2007). Moreover,

it is problematic to associate areas of high model agree-

ment with a high confidence in predictions because sim-

ulations in such areas may still be wrong for a common

reason.

Systematic biases and uncertainty about the skill of

the simulated temporal variability means that simulated

precipitation is often disregarded and estimates of small-

scale precipitation changes are instead based on either

high-resolution regional climate models (RCMs) driven

by GCMs or on statistical downscaling approaches (Wilby

et al. 2004; Christensen et al. 2007; Fowler et al. 2007;

Maraun et al. 2010). The latter usually derive statistical

relationships between precipitation observations and

observed large-scale predictors (e.g., atmospheric circu-

lation, temperature, and humidity) and then apply these

relationships to simulated predictors for the future. Be-

cause this approach is only justified for realistically sim-

ulated predictors, it is known as ‘‘perfect-prog(nosis)’’

downscaling (Kalnay 2003; Zwiers and Von Storch 2004;

Wilks 2006). To obtain meaningful results it is crucial

that the predictors capture the aspects of climate change

that affect precipitation. Assessing whether this is the

case can be difficult. In contrast, the response of hydro-

logical processes, including moisture transport and evap-

oration as well as precipitation, to large-scale warming has

been shown to be robust in many GCM simulations

(Held and Soden 2006). Discarding simulated precipi-

tation is thus possibly excluding critical information that

may not be fully captured by perfect-prog downscaling.

It is the purpose of this paper to clarify that there

are three sources of error for simulated precipitation

and to demonstrate that over large areas it is possible

to approximately remove the first two errors and thus

to isolate the third error. This error is directly related to

the skill of a GCM in reproducing temporal precipitation

variability given realistic large-scale weather states. We

then assess whether there are areas where this skill is

sufficiently high to allow for a meaningful statistical cor-

rection of the simulated precipitation. This so-called model

output statistics (MOS) approach can combine a correc-

tion and a downscaling component and offers an alter-

native to the perfect-prog methods that have traditionally

formed the basis of statistical downscaling methodologies

in climate research.

2. Sources of model error

A strict assessment of model skill requires the dis-

tinction between three sources of errors in simulated

precipitation (Fig. 1). If the simulated large-scale at-

mospheric conditions differ from reality, the simulated

precipitation will be different from observations even

if the convection and precipitation parameterizations in

the model are perfect. There are two possible causes for

such differences. First, a GCM may have a systematic

bias in the large-scale atmospheric states or an unre-

alistic large-scale response to climate forcings, both of

which we term a ‘‘type 1’’ error. Second, internally gen-

erated variability is unpredictable and will be different

from the real world. We term this error ‘‘type 2’’ but

note that this mismatch between simulated and ob-

served variability is not a model deficiency but a con-

sequence of a freely evolving GCM. Standard GCM

simulations for historical periods yield the climatic re-

sponse to forcings such as solar variability and changes

in atmospheric concentrations of greenhouse gases and

of anthropogenic and volcanic aerosols. These simula-

tions are not constrained by historic meteorological

observations and thus, because of the chaotic nature

of the climate system, the circulation and temperature

fields differ from reality with respect to the random,

internally generated variability component. This ran-

dom component dominates daily to interannual time

scales and is still substantial on decadal time scales.

Although the type 2 error can be ameliorated to some

extent by temporal averaging and is usually approxi-

mately quantified by initial value ensemble simulations,

understanding the causes of and quantifying the type 1

error is highly important and at the core of many model

1 JUNE 2012 E D E N E T A L . 3971



validation studies (Jansen et al. 2007; Randall et al. 2007)

and of model development.

When considering precipitation, there is also a ‘‘type

3’’ error, which is caused by the deficiencies in convec-

tion and precipitation parameterizations as well as by

differences between the real orography and the model

world. This error will lead to differences between sim-

ulated and real precipitation even if the large-scale

atmospheric conditions are in agreement with reality.

When the task is to assess the skill of simulated pre-

cipitation variability, it is in many cases useful to focus

on the type 3 error and to ask the question, how well

is precipitation simulated given realistic large-scale

conditions? This is conceptually consistent with the vali-

dation of dynamical and perfect-prog statistical down-

scaling methods by using realistic predictors, for instance,

from reanalyses. When applying downscaling methods

to GCM simulations for future climates, the downscal-

ing error derived in this way is the error component in-

troduced by the downscaling. The total error also includes

the type 1 and type 2 errors. Analogously, the total error

in future GCM-simulated precipitation is a sum of all

three error types. It is useful to separate the error con-

tributions in this way because the three errors have fun-

damentally different reasons.

Although until now it has not been possible to isolate

the type 3 error for GCMs used for climate change sim-

ulations, Widmann and Bretherton (2000) have shown

that this error can be quantified for the GCMs that

are used in atmospheric reanalyses (Kalnay et al. 1996;

Kistler et al. 2001; Uppala et al. 2005). This approach

is possible because, due to the assimilation of meteoro-

logical measurements such as pressure, wind speeds,

temperature and humidity, the large-scale states in a re-

analysis are the best estimates for the state of the real

atmosphere. They are consistent with both the assimi-

lated observations and the physical laws that govern the

atmosphere that are represented in the model. However,

no precipitation observations are assimilated and pre-

cipitation is simulated using the parameterizations and

the large-scale atmospheric states derived in the assimi-

lation process (Fig. 1). Several studies have shown that

reanalyses capture observed temporal precipitation var-

iability well (Gutowski et al. 1997; Janowiak et al. 1998;

Widmann and Bretherton 2000; Widmann et al. 2003;

Bosilovich et al. 2008). Although the GCMs used for re-

analyses are similar to those used for climate simulations,

they differ in terms of resolution and parameterizations,

and thus the reanalysis-based results cannot be directly

transferred to other GCMs.

The present study extends the reanalysis-based stud-

ies and quantifies how well precipitation variability is

simulated in a GCM (ECHAM5) used for climate pre-

diction in the IPCC Fourth Assessment Report (AR4)

(Randall et al. 2007; Trenberth et al. 2007) if the error

components related to large-scale atmospheric states

and internal variability are approximately removed. To

obtain a simulation in which the variability in large-scale

circulation and temperature is in agreement with that

observed in the real world, a simulation with ECHAM5

is conducted in which the prognostic variables are forced

toward reanalysis values for a historical period. The sub-

sequently parameterized precipitation field is thus ex-

pected to represent observed temporal variability for

regions where reanalysis fields are skillful.

3. Simulation and observations

A nudging technique (also known as Newtonian rela-

xation) (Hoke and Anthes 1976; Krishnamurti et al. 1991;

Jeuken et al. 1996; Timmreck et al. 1999; Timmreck and

Schulz 2004) was used to force the ECHAM5-simulated

divergence, vorticity, temperature, and surface pressure

fields to corresponding fields from the 40-yr European

Centre for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis (ERA-40) (Uppala et al. 2005) for the pe-

riod 1958–2001. This method has been successfully used

in previous studies to force the circulation in earlier

ECHAM versions toward a reanalysis for short periods

(Jeuken et al. 1996; Timmreck et al. 1999; Timmreck

and Schulz 2004; Bauer et al. 2008), but this is the first

FIG. 1. (a) Climate change and (b) reanalysis GCM simulations

of precipitation. Large-scale circulation fields simulated in the re-

analysis are forced to real-world observations. Type 3 parameter-

ization error still exists but is now isolated and can be quantified.
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time it has been applied to ECHAM5 and for the entire

reanalysis period, which is needed for our statistical

analysis of model skill.

For the nudging procedure, an additional term N �
(Xobs 2 X) is added to the tendency equations for each

variable, which take the form

›X

›t
5 Fm(Xt) 1 N � (Xobs 2 X), (1)

as described in Krishnamurti et al. (1991). Here, Fm

represents the model tendency (the dynamical and physi-

cal processes that determine the temporal evolution of

X) (Wilks 2006), N is the relaxation coefficient, and Xobs

represents an observed value to which the nudging is

aimed. In practice, the full integration is a two-step pro-

cess, with the normal tendencies first carried out,

Xt1Dt
* 5 Xt 1 Fm(Xt) � Dt, (2)

where Xt1Dt
* represents a prenudging predicted value

of X at time t 1 Dt. The nudging procedure is applied in

a second step,

Xt1Dt 5 Xt1Dt
* 1 N � (Xobs

t1Dt 2 Xt1Dt
* ) � Dt, (3)

resulting in a new value Xt1Dt. The relaxation e-folding

time t is equal to 1/N. Our choice of t is variable specific

and based on the results of previous work (Jeuken et al.

1996; Kaas 2000) (Table 1). In each case, t should be

short enough that the observed fields exert the required

influence but not so short that the relaxation term is

dominant over the model tendencies (Kaas 2000). Un-

like in a standard ECHAM5 simulation, in which the

sea surface temperature (SST) field is prescribed using

a representative climatology, the nudged simulation re-

quires a temporally realistic SST field. In this case, we use

the same observed, monthly varying SSTs as have been

used in ERA-40.

It is important to consider an additional source of

precipitation error that may be induced by the nudging

procedure. In a normal (nonnudged) simulation, the dy-

namically resolved and parameterized fields are physi-

cally consistent but the addition of a nudging term in

(1) inhibits the parameterized quantities to reach this

balanced state (Jeuken et al. 1996). An implication is a

modification of diabatic heating in the GCM and a pos-

sible violation of energy conservation, which in turn may

result in spurious precipitation. Jeuken et al. (1996) state

that such errors will be greatest where the nudging term

is large relative to the other terms in each tendency

equation and that the relaxation coefficient chosen for

temperature must be small enough to prevent a distortion

in the diabatic heating quantities. This nudging-induced

error, which we term ‘‘type 4’’ in accordance with the

definitions used thus far, contributes along with param-

eterization deficiencies (type 3 error) to form the total

precipitation error after the type 1 and type 2 errors have

been approximately removed. Although the set of co-

efficients in Table 1 has been previously shown to be

sufficient to guarantee that the nudging term does not

dominate the model tendency equations, the magnitude

of a potential type 4 error is expected to be associated

with considerable geographical variability.

The output from the nudged simulation is compared

to that of a standard (nonnudged) free-running ECHAM5

simulation for the period 1958–2001. Model output is on

a T63 Gaussian grid, which equates to 1.8758 3 1.8758 or

roughly 200-km latitude 3 150-km longitude at 458. All

analysis is conducted using seasonal-mean precipitation,

which is consistent with climate change projections and

also allows for a broad understanding of the seasonal

dependence of model skill and thus of the potential for

a downscaling correction. Seasonal means from each

simulation are compared to observations from the

Global Precipitation Climatology Project (GPCP) data-

set (Huffman et al. 1997; Adler et al. 2003). Version 2 of

this dataset, described in Adler et al. (2003), provides

gridded (2.58 3 2.58) monthly means based on satellite

and rain gauge observations for the period 1979–2001.

Consideration was also given to a similar merged data-

set, the Climate Prediction Center (CPC) Merged Anal-

ysis of Precipitation (CMAP) (Xie and Arkin 1997) that

also provides monthly precipitation at the same spatial

resolution. Gruber et al. (2000) compared CMAP and

a previous version of the GPCP dataset (Huffman et al.

1997), generally finding good agreement between the

datasets but also some acute differences. CMAP was

shown to treat rain gauge measurements differently to

the GPCP dataset, such as in the inclusion of atoll gauge

data to calibrate oceanic satellite estimates. The GPCP

dataset has been used in other GCM and reanalysis

validation work (e.g., Janowiak et al. 1998; Trenberth

and Shea 2005) and is considered most suitable for this

analysis.

TABLE 1. Relaxation coefficients used in the nudging procedure:

based on simple nudging assimilations used at the Danish Meteo-

rological Institute (DMI) (Kaas 2000).

Prognostic variable t(X ) (h) N (s21)

Vorticity 6.00 4.63 3 1025

Temperature 24.00 1.16 3 1025

log(surface pressure) 24.00 1.16 3 1025

Divergence 48.00 0.58 3 1025
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For the development of a high-resolution scaling cor-

rection, a comparison is made with the Global Precipi-

tation Climatology Center (GPCC) dataset, which is

based only on interpolated rain gauge observations and

covers only land areas but with a higher resolution

of 0.58 3 0.58 and for the period 1958–2001. Nudged

ECHAM5 precipitation was linearly interpolated to

the same 0.58 3 0.58 grid in which the GPCC data are

available. The correction was cross-validated using a

leave-seven-out approach.

4. Results and discussion

a. Representation of interannual precipitation
variability

It is first of all necessary to compare circulation and

temperature variability in the nudged simulation with

that in ERA-40 to assess how well the nudging pro-

cedure is able to bring the large-scale circulation and

temperature into temporal phase with the reanalysis.

Figure 2 shows correlation coefficients between simu-

lated and observed (ERA-40) seasonal mean fields of

geopotential height and temperature. Correlations are

generally strong for both variables and are consistently

higher than 0.95 across the majority of the extratropics.

Tropical regions exhibit lower correlations, particularly

in continental areas and during the boreal summer [June–

August (JJA)]. Both simulated geopotential height and

temperature at 850 hPa show noticeably low correlations

with ERA-40 across much of northern South America

(Figs. 2a–d). This may be attributable to a number of

factors, including the relatively low number of upper-

air observations over this region that are assimilated in

ERA-40 and the important role of intense convective

processes that prevail over the Amazon basin for much

of the year. Both factors may lead to relatively large

errors in the reanalysis and thus to target fields that are

less likely to be consistent with the ECHAM5 dynamics

and physics and that thus are less likely to be followed by

ECHAM5. Correlations are generally higher at 500 hPa,

reflecting the lower complexity of atmospheric fields at

higher levels, although a tropical–extratropical differ-

ence is still apparent (Figs. 2e–h). In areas where ERA-40

represents the real-world large-scale atmospheric states

well and where the correlations are high, the type 1 and

type 2 errors are approximately removed and the re-

maining precipitation errors are a sum of the parame-

terization (type 3) and spurious precipitation (type 4)

errors.

Simulated precipitation climatologies from both the

nudged and standard (non-nudged) simulations are in

reasonable agreement with observations in terms of

large-scale features (Fig. 3). However, some key re-

gional differences between the simulations are noted

(Fig. 3, right), particularly lower precipitation in the

western Pacific in the nudged simulation compared to

the standard simulation. Other parts of the tropics also

exhibit large differences, particularly Southeast Asia

and the Amazon basin. These differences may be caused

by either systematic circulation biases in the standard

simulation or random differences in the internal vari-

ability, which may be relevant even for multidecadal

averages.

Because the standard simulation is unable to repre-

sent observed interannual variability in seasonal mean

precipitation, the correlation coefficients fluctuate ran-

domly around zero (Fig. 4a). In contrast, seasonal-mean

precipitation from the nudged simulation exhibits in

many areas high correlations with observations (Figs.

4b–f), including the extratropics (308–608), especially

over large parts of Northern Hemispheric landmass for

all seasons with the exception of summer (JJA). Over

the ocean, correlations fluctuate more, with the excep-

tion of the eastern equatorial Pacific, where they are

consistently high; over tropical land areas, they are no-

ticeably low. Indeed, agreement is considerably poorer

over the majority of the African continent than any

other region, tropical or extratropical. In general, cor-

relations are low in regions of negligible precipitation,

such as the maritime deserts of the subtropical Americas

and southwestern Africa, which may be a consequence

of poorer model performance or of larger errors in the

observations.

This shows that given the correct large-scale atmo-

spheric states ECHAM5 is over large areas able to

successfully reproduce interannual variability of sea-

sonal precipitation means. Many of the regions with low

correlations are over regions where, according to Fig. 2,

there is a low agreement between the large-scale at-

mospheric states in the nudged ECHAM5 simulation

and in ERA-40. In addition, the ERA-40 atmospheric

states may have considerable errors over some data-

sparse regions such as the Southern Ocean or Antarc-

tica. Thus, in these areas type 1 and type 2 errors are not

fully eliminated and low correlations between simulated

and observed precipitation do not necessarily indicate

a large error for the sum of type 3 and type 4. In addition

the low correlations over areas with sparse precipitation

observations (e.g., over the oceans) are likely to include

a contribution from errors in the gridded precipitation

dataset.

Another potential reason for the lower correlations

between the precipitation in the nudged ECHAM5

simulation and observations in the tropics is the domi-

nance of convective processes in these regions. The
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formation of convective precipitation acts on small scales

and has a large random component for a given large-

scale atmospheric state. This means that relatively low

correlations can be expected even if the nudging suc-

cessfully controls the large-scale states and the precipi-

tation parameterizations perform well. In contrast, the

spatial and temporal distribution of frontal precipitation

is strongly constrained by large-scale atmospheric states,

and over areas dominated by frontal precipitation low

correlations indicate problems with the precipitation pa-

rameterizations. The prevalence of convective precipi-

tation in the tropics, as well as in extratropical regions

during the summer (e.g., in southern Europe), is consis-

tent with the tropical–extratropical difference in the

FIG. 2. Correlation between nudged ECHAM5 and ERA-40 seasonal mean geopotential height z and temperature

t at 850 and 500 hPa for the period 1958–2001.
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correlations. Thus, potential difficulties in removing the

type 1 and type 2 errors, in addition to the randomness of

convective precipitation, may contribute to the low

correlations in the tropics, but it is unclear whether these

factors fully explain the low correlations or whether there

is a substantial contribution from a genuine parameteri-

zation error.

Because type 1 and type 2 errors, in addition to errors

in the gridded precipitation dataset, cannot be fully elim-

inated, the correlation maps, which quantify the total

error, provide an upper estimate for the sum of the pa-

rameterization error (type 3) and the nudging-induced

error (type 4). Because the type 4 error is very unlikely

to compensate the type 3 error, the correlations also

FIG. 3. (left) Seasonal precipitation in the standard (norm) and nudged (nudg) ECHAM5 simulations (mm) and

(right) respective differences between simulated and GPCP observed precipitation (%) for the period 1979–2001.
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provide an upper estimate for the type 3 error. It is

beyond the scope of this study to separate the indivi-

dual error components. Our objective is to identify re-

gions where the total precipitation error in the nudged

ECHAM5 simulation is small and where we can there-

fore conclude that the type 3 error is small. In these areas,

the temporal precipitation variability is realistic given

the simulated large-scale atmospheric states.

b. Potential for correction and downscaling

Even in areas where the correlations of simulated and

observed precipitation are high, the simulated values may

still systematically under- or overestimate the real values.

If these scaling errors in simulated precipitation are

stationary in time, they can be corrected (Widmann et al.

2003), and this simple correction has been used, for

instance, as a reference method for statistical downscal-

ing (Schmidli et al. 2006). Although such corrections

are a form of statistical downscaling as they transform

GCM output to small-scale estimates, the approach,

which is generally known as MOS, is different from

standard perfect-prog downscaling (Kalnay 2003; Zwiers

and Von Storch 2004; Wilks 2006). Although perfect-

prog downscaling is based on real-world-scale relations

and is not designed for the purpose of correcting a par-

ticular model’s inherent errors or biases, MOS com-

bines a downscaling step with a model-specific correction

step. MOS is routinely used in weather forecasting, and

it has been shown that, in the context of global climate

modeling, scaling or more sophisticated MOS methods

are a promising alternative to perfect-prog downscaling

FIG. 4. Correlation of ECHAM5 precipitation and GPCP observations (1979–2001). Annual correlation of

(a) normal and (b) nudged ECHAM5 precipitation and GPCP observations. (c)–(f) Seasonal mean correlation of

nudged ECHAM5 precipitation and GPCP observations.
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(Landman and Goddard 2002; Widmann et al. 2003;

Feddersen and Andersen 2005; Schmidli et al. 2006).

However, so far it has only been possible to investi-

gate this approach for GCMs used in reanalyses or for

seasonal forecasts. There are two main reasons for this.

First, the fitting of many MOS methods that are more

advanced than a simple scaling (e.g., regression, multiple

predictors, nonlocal methods based on coupled pat-

terns) requires GCM simulations in which the simulated

large-scale atmospheric states are in agreement with the

real-world states. For standard GCM simulations for

past climates this is not the case. Second, simple cor-

rection methods such as scaling that can in principle be

fitted using standard simulations yield only meaningful

results if the simulated precipitation is an informative

predictor for the real-world precipitation for a given

large-scale atmospheric state: in other words, if the type

3 error is small. This point is crucial as can be seen,

for instance, from a hypothetical example in which the

two hemispheres have been erroneously swapped in the

output for the simulated precipitation. Obviously, scal-

ing would be able to bring the corrected simulated pre-

cipitation climatologies in agreement with observations,

but nevertheless the corrected time series would be

meaningless. Our analysis of nudged simulations allows

regions in which this condition is satisfied to be identi-

fied. Moreover, only simulations in which the large-scale

atmospheric states are brought close to reality by nudg-

ing (or by direct data assimilation) allow a derivation of

scaling factors that are free from errors caused by dif-

fering internal variability in the simulation and in the real

world (type 2 error). Recently, MOS corrections have

been successfully applied to RCMs (e.g., Leander and

Buishand 2007; Graham et al. 2007; Themebl et al. 2011).

In this case, the MOS models can be fitted and validated

using reanalysis-driven RCM hindcasts, in which the

large-scale atmospheric states are close to the real-world

states.

To assess whether different corrections should be used

for wet and dry situations, scaling factors for ECHAM5

output were derived separately for the lower, middle,

and upper terciles (t1, t2, and t3) of extratropical sea-

sonal precipitation (Fig. 5). At this stage, scaling is

conducted on the ECHAM5 grid (1.878 3 1.878) and

thus does not include a downscaling step. Northern

Hemisphere precipitation for the dry winter seasons

[December–February (DJF)–t1] is slightly overestimated

by the model over the Arctic, western Canada, and parts

of Asia and slightly underestimated in most of the mid-

latitudes. For the wet winter seasons (DJF–t3), under-/

overestimation is similar, with Arctic estimates very close

to observations. Most of the areas with substantial scaling

errors are very dry in winter, and even small absolute

errors lead to considerable scaling factors. In summer

(JJA), the results are similar in the sense that scaling er-

rors are mainly located over dry regions and that the t1

and t3 patterns are similar, whereas the magnitude of the

scaling errors is larger than in winter. Thus, the model

performs in both seasons similarly in wet and dry years,

whereas scaling factors are regionally and seasonally de-

pendent. In both seasons, the scaling factors are close to

1 over most areas of substantial precipitation, with East

Asia in summer being the most important exception. In

the Southern Hemisphere, a similar pattern emerges of

underestimation (overestimation) of the wettest (driest)

events. There is a more widespread underestimation of

dry winter seasons (JJA–t1) compared to dry summer

seasons (DJF–t1). Across the southern part of South

America, all three terciles are consistently underesti-

mated, with the exception of the western coastline,

where precipitation is consistently overestimated.

This approach was then extended to derive a down-

scaled correction for ECHAM5 precipitation based on

the high-resolution GPCC gridded precipitation data-

set (0.58 3 0.58 grid). We focus on Europe, where cor-

relations are generally high during most of the year. As

mentioned above, the scaling correction of simulated

precipitation would yield only meaningful results in areas

where the type 3 error is small, and thus the factors are

shown only for areas in which the correlations between

seasonal precipitation means in the GPCC dataset and

in the nudged ECHAM5 simulation are higher than 0.7

(Fig. 6). The GPCP- and GPCC-based correlation maps

(not shown) are very similar to one another on the coarser

GPCP grid, and GPCC-based correlations over data-

dense regions are as high as 0.9. Considerable scaling

errors include overestimation of spring and partly au-

tumn precipitation over Scandinavia by a factor of 1.7

and underestimation in parts of southern Europe in all

seasons up to a factor of 2. In autumn and winter, almost

all of Europe exhibits correlations above the 0.7 threshold

(with the Alps being a noticeable exception), whereas in

spring and particularly in summer the temporal variabil-

ity is not well enough simulated to make a correction of

simulated precipitation meaningful.

The downscaling correction was cross-validated using

a variant of the leave-one-out approach. This approach

allows for seasonal precipitation for each year to be es-

timated independently using a scaling factor derived from

simulated and observed data from all other years between

1958 and 2001. A leave-seven-out approach was used in

which a scaling factor to estimate seasonal precipitation

for a given year was derived using simulated and observed

data from all other years aside from the 7-yr period

centered on the year to be estimated. A period of 7 yr

was chosen to account for the influence autocorrelation.
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FIG. 5. Seasonal scaling corrections for (a)–(f) the Northern Hemisphere and (g)–(l) the Southern

Hemisphere from 308 to 908 (1979–2001). Scaling correction is defined as GPCP observations divided by

nudged ECHAM5 precipitation. DJF scaling corrections for the (a),(g) driest (t1), (b),(h) middle (t2),

and (c),(i) wettest (t3) third of events.
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Area means of the observed, the simulated, and the

corrected precipitation are shown in Fig. 7 for three

different regions over which the correlations between

observations and simulated values are high. Over the

Mediterranean basin and Australia, ECHAM5 consis-

tently underestimates precipitation and the corrected

values are a substantial improvement. Over southern

Africa, the uncorrected precipitation has a less consis-

tent bias and the local correlations with observations as

well as the correlation of the area mean are lower than

for the other regions, which leads to a less successful

correction. The quality of ERA-40 (to which the simu-

lation is nudged) is problematic over the Southern

Hemisphere in the presatellite era, which appears to be

reflected in the better skill of the nudged simulation

in the second half of the analysis period. In all three

cases, good skill on interannual time scales is also asso-

ciated with good reproduction of decadal variability. It is

this property that makes the application of scaling cor-

rection factors to climate change simulations promising.

FIG. 6. High-resolution (0.58 3 0.58) seasonal scaling corrections for Europe (1958–2001). Scaling correction is

defined as GPCC observations divided by nudged ECHAM5 precipitation. (a) DJF, (b) March–May, (c) JJA, and

(d) September–November. Because the scaling correction of simulated precipitation would yield only meaningful

results in regions where the correlation between simulated and observed values is high, the factors are shown only for

areas in which the correlations for seasonal means (using the GPCC data) are higher than 0.7.
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To further demonstrate the potential of a downscal-

ing correction for climate change simulations, the scal-

ing factor method was applied to the ECHAM5/Max

Planck Institute Ocean Model (MPI-OM) three-member

ensemble mean projection for the twenty-first century

for the Special Report on Emissions Scenarios (SRES)

A1B scenario, which is included in the IPCC AR4. Raw

and corrected projections for European mean seasonal

precipitation for the period 2080–99 are shown in Fig. 8,

with a ‘‘stippling’’ overlay indicating areas of good model

skill (correlations higher than 0.7). During both winter

(DJF) and summer (JJA), the downscaled and corrected

precipitation captures key features that are not included

in the original simulated precipitation. Heavy winter

precipitation is far more concentrated along the coast-

line of western Europe after the correction. Differences

in precipitation across the Alps, Pyrenees, and other re-

gions of complex topography are also visible, although

model skill tends to be lacking in these areas.

It is important to note that a meaningful application

of the corrections developed here to simulations of fu-

ture climate requires statistical relationships that are

stationary in time. Although this is a key limitation of

all statistical downscaling methods, it seems likely that

MOS corrections are more stable than perfect-prog re-

lationships. The latter would become unstable if the link

between large-scale predictors, such as atmospheric cir-

culation or temperature, with local precipitation changed

for any reasons in a future climate. Many of the phys-

ical processes that may change typical perfect-prog

statistical links are however resolved by GCMs: for in-

stance, changes in moisture availability that may affect

circulation–precipitation links. Thus, MOS models that

correct and downscale simulated precipitation are only

affected by instabilities that affect the nonresolved pro-

cesses represented by the parameterizations. One reason

for such instabilities is a potential dependency of sys-

tematic biases caused by the parameterizations on the

large-scale atmospheric state: for instance, through a de-

pendency on the relative contributions of frontal and

convective precipitation. For both perfect-prog and MOS

relationships, the validity of the statistical links in differ-

ent climates should therefore be thoroughly tested.

5. Summary and conclusions

The skill of GCMs in simulating precipitation is dif-

ficult to assess through simulation–observation com-

parison, because standard GCM simulations for historic

periods do not represent random real-world temporal

variability. Here, a distinction was made between three

sources of error in GCM-simulated precipitation, and

it was suggested that through removing the model’s

systematic large-scale circulation error (type 1) and the

error due to random internally generated variability (type

2) it is possible to isolate the error caused by parame-

terization and by differences in the model and real-world

orography (type 3).

The skill of ECHAM5 to simulate precipitation given

realistic large-scale conditions has been investigated by

FIG. 7. Observed, simulated, and corrected DJF and JJA precipitation (1958–2001). (a),(b) Mediterranean basin,

(c),(d) Australia, and (e),(f) southern Africa. GPCC observations are represented by the solid line, nudged

ECHAM5 precipitation is represented by the dashed line, and the cross-validated correction of nudged ECHAM5

precipitation is represented by the dotted line. Correlation coefficient r and root-mean-square error (RMSE) of the

observed and corrected time series are shown for each location.
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using a nudged simulation for the period 1958–2001,

in which the simulated circulation and temperature

variables were forced toward corresponding fields from

ERA-40. To the extent that the nudged simulation re-

produces the temporal variability in the observed large-

scale atmospheric states, the type 1 and type 2 errors

can be eliminated and the type 3 precipitation error can

be assessed. Because the type 1 and type 2 errors cannot

be completely removed, the analysis of the remaining

total error leads to an upper estimate for the type 3 er-

ror. As noted by Jeuken et al. (1996), the nudging may

induce imbalances and spurious precipitation, and thus

an additional (type 4) error may be introduced. Yet the

total precipitation error in the nudged simulations still

yields an upper estimate for the type 3 error.

Although a more detailed analysis of the different

error components is in principle possible, it is beyond

the scope of this study. We focused on the identification

of areas with a small total error in the nudged simula-

tion. Over these areas, the type 3 error is small and thus

the temporal variability of the simulated precipitation

is consistent with the simulated large-scale atmospheric

states.

Until now, the confidence one should have in GCM-

simulated precipitation has typically been assessed from

the level of agreement in multimodel ensembles (e.g.,

FIG. 8. (left) Seasonal precipitation projections (mm) for 2080–99 simulated by ECHAM5 according to the SRES

A1B scenario and (right) subsequent downscaled corrections on a 0.58 3 0.58 grid. Stippled areas in the raw

ECHAM5 projections indicate regions of good model skill, determined by the degree of correlation between sim-

ulated and observed precipitation between 1958 and 2001. Stipples are sized to reflect correlation coefficients of

greater than 0.6 (small stipples), 0.7 (medium stipples) and 0.8 (large stipples).
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Randall et al. 2007) and by focusing on the representa-

tion of large-scale modes of variability (i.e., ENSO).

Such comparisons cannot distinguish between the three

types of error that may be responsible for the differ-

ences. With our analysis of type 3 errors, it is possible to

identify regions where agreement among different

models is backed up by good parameterization skill in

ECHAM5.

Using correlation maps between observed (based on

rain gauges and satellites) and simulated seasonal pre-

cipitation, it was shown that over many regions of the

world the precipitation variability in the nudged simu-

lation is in excellent agreement with the observations,

and thus over these areas the type 3 error is small. The

model skill in representing interannual precipitation var-

iability, given the correct large-scale atmospheric states,

was shown to be particularly high in the extratropics

and over the Northern Hemispheric land surface. In

particular, over Africa and South America the remaining

total error was still high, which may be caused by large

type 3 errors but potentially also by remaining type 1 and

type 2 errors in the nudged simulation or by errors in the

precipitation observations.

For regions with a small type 3 error, a statistical

correction of the simulated precipitation was proposed,

which can include a downscaling component and is con-

ceptually a model output statistics (MOS) approach.

MOS is regularly used in weather forecasting but has so

far not been used for climate simulations because the

fitting and validation of the statistical correction usu-

ally requires nudged GCM simulations. A simple scaling-

factor correction and cross-validation was used to

demonstrate that simulated precipitation is an excellent

predictor for local precipitation in many regions. We

note that through the nudging systematic biases in the

simulated large-scale atmospheric states are approxi-

mately removed and therefore the application of the

MOS corrections to future simulations does not correct

for type 1 errors in these simulations. Whether it is the

purpose of statistical downscaling to correct for sys-

tematic errors in the large-scale GCM states is arguable.

For large errors, the answer is clearly no, because a

fundamentally low-performing GCM cannot be cor-

rected by statistical methods that are substantially less

complex than the GCM itself. Our approach is fully

consistent with standard perfect-prog downscaling ap-

proaches, which also do not remove type 1 errors be-

cause the statistical models are based on observations,

as well as with regional modeling, where the large-scale

states in the regional model are constrained by the driv-

ing GCM. In all these cases, the downscaling methods

attempt to find local variables that are consistent with the

large-scale GCM states.

Being able to make reliable estimates of future pre-

cipitation continues to be a major challenge to global

climate modeling. At the local scale, methods of down-

scaling GCM output continue to form the basis for

these estimates. The success of a relatively simple MOS

downscaling approach suggests there is potential to ex-

ploit more sophisticated techniques that use simulated

precipitation as a predictor variable. It is anticipated

that future work will develop a range of MOS methods

and evaluate their success against traditional perfect-

prog methods and that skillful downscaling methods will

be applied more comprehensively to climate change

simulation than in this study.
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