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Abstract. In many current dynamic global vegetation mod-
els (DGVMs), including those incorporated into Earth sys-
tem models (ESMs), terrestrial vegetation is represented by
a small number of plant functional types (PFTs), each with
fixed properties irrespective of their predicted occurrence.
This contrasts with natural vegetation, in which many plant
traits vary systematically along geographic and environmen-
tal gradients. In the JSBACH DGVM, which is part of the
MPI-ESM, we allowed three traits (specific leaf area (SLA),
maximum carboxylation rate at 25◦C (Vcmax25) and maxi-
mum electron transport rate at 25◦C (Jmax25)) to vary within
PFTs via trait–climate relationships based on a large trait
database. TheR2

adjusted of these relationships were up to
0.83 and 0.71 for Vcmax25 and Jmax25, respectively. For
SLA, more variance remained unexplained, with a maximum
R2

adjustedof 0.40. Compared to the default simulation, allow-
ing trait variation within PFTs resulted in gross primary pro-
ductivity differences of up to 50 % in the tropics, in> 35 %
different dominant vegetation cover, and a closer match with
a natural vegetation map. The discrepancy between default
trait values and natural trait variation, combined with the
substantial changes in simulated vegetation properties, to-
gether emphasize that incorporating climate-driven trait vari-
ation, calibrated on observational data and based on ecolog-

ical concepts, allows more variation in vegetation responses
in DGVMs and as such is likely to enable more reliable pro-
jections in unknown climates.

1 Introduction

Terrestrial vegetation plays a pivotal role in land–atmosphere
interactions, modifying carbon, water and heat fluxes via bio-
chemical processes such as photosynthesis and respiration or
via biophysical vegetation properties such as stomatal con-
ductance and albedo. Therefore, a correct representation of
terrestrial vegetation and its dynamics in Earth system mod-
els (ESMs) is essential, especially for future climate projec-
tions. In these models, vegetation can be simulated by dy-
namic global vegetation models (DGVMs), which integrate
vegetation dynamics with land surface models. They are de-
veloped to predict vegetation distribution and fluxes of en-
ergy, water and carbon under past, current and future climate
regimes. As such, they allow analysis of transient vegetation
responses and feedbacks to climate (Foley et al., 1998; Pren-
tice et al. 2007).

Compared to earlier models, vegetation dynamics and in-
teractions between the biosphere and atmosphere have been
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much improved over the past decade, although many issues
still need to be resolved (Quillet et al., 2010). One of these
issues is the way in which plant functional types (PFTs)
are used to represent vegetation. PFTs are classes of plant
species with presumably similar roles in an ecosystem, re-
sponding in a comparable manner to environmental con-
ditions like water and nutrient availability (Lavorel et al.,
1997). They are defined by a combination of attributes such
as plant growth form (e.g., trees, shrubs, grasses, herbs), phe-
nology (evergreen, raingreen, summergreen) and bioclimatic
tolerances (e.g., minimum temperature requirements). No-
tably, most current PFT classifications use constant param-
eter values for some key plant traits, i.e., plant properties that
reflect the way plants cope with their environment (Violle
et al., 2007). Using constant plant traits in PFTs has seri-
ous limitations (Ordõnez et al., 2009; Van Bodegom et al.,
2012), as such constant values contrast with observed trait
variation (Ackerly and Cornwell, 2007; Freschet et al., 2011;
Westoby et al., 2002), therefore not accounting for local en-
vironmental constraints. Furthermore, global trait database
analyses have shown that the variation in plant traits is large
within PFTs and often even greater than the difference in
means among PFTs (Laughlin et al., 2010; Wright et al.,
2005a). Even though PFTs may capture a significant part of
the global plant trait variation, a large part (for some traits up
to 75 %) may still be unexplained (Kattge et al., 2011) and is
thus not represented in current DGVMs.

Given that plants can adjust to the environment via
changes in traits, and that such changes influence ecosystem
functioning (Diaz et al., 2004; Lavorel and Garnier, 2002),
implementing these trait-driven interactions within PFTs of
DGVMs is highly relevant. By simulating variation in plant
trait responses, it is better possible to quantify plant adap-
tation to climate and to account for plant–atmosphere feed-
backs in DGVMs. Indeed, the limitations of inflexible PFTs
is increasingly acknowledged by modelers and several at-
tempts to allow for more (trait) variation within PFTs can
be found in, for example, JeDi-DGVM (Pavlick et al., 2012)
or aDGVM (Scheiter et al., 2013). However, none of the
approaches so far tried to maximally include trait varia-
tion based on observational trait data and capture multiple
sources of this variation by relating trait data to environmen-
tal variables. This inclusion may be possible by making use
of the relationship between traits and multiple environmen-
tal drivers as occurring at both regional and global scales,
for instance in relation to temperature, water and nutrient
availability or disturbances (Ordoñez et al., 2009; Van Om-
men Kloeke et al., 2012; Wright et al., 2005b). Such rela-
tionships between environmental conditions and traits can
potentially be understood via ecological assembly theory,
which describes the processes that determine species assem-
blages (Cornwell and Ackerly, 2009; Cornwell et al., 2006;
Götzenberger et al., 2012). An important abiotic assembly
process is habitat filtering (Keddy, 1992), which describes
how local environmental drivers (e.g., soil fertility or pre-

cipitation) constrain the range of potential species and re-
lated trait values in a given habitat. For many traits, such as
specific leaf area, leaf nitrogen and wood density, this con-
tributes to trait convergence within communities, prevailing
over trait divergence (Freschet et al., 2011; Swenson and En-
quist, 2007) and resulting in global relationships between
community trait means and climatic drivers. Community trait
means match closely to the model resolution of DGVMs,
given that the majority of the models provide a mean value
of a trait for a PFT (in a given grid cell). By identifying the
environmental drivers of variation in community trait means,
multiple causes of variation are determined and the observed
natural trait variation can be modeled with a high level of
accuracy.

The aim of this study is thus to model climate-driven
trait variation within PFTs, determined as comprehensively
as possible from observations, and to identify the impacts
through vegetation responses and vegetation–atmosphere
feedbacks on DGVM model behavior. So far, observational
trait data have been used to derive mean parameter values and
uncertainties for PFTs in the context of different vegetation
models (Kattge et al., 2009; Ziehn et al., 2011), but this study
provides a proof of concept to predict mean parameter values
per PFT for each individual grid cell, based on a systematic
analysis of observed trait–climate relationships using a large
observational trait database.

The trait–climate relationships were implemented in the
JSBACH DGVM, which is part of the Max Planck Institute
Earth System Model (MPI-ESM) (Brovkin et al., 2009; Rad-
datz et al., 2007; Roeckner et al., 2003) and is used in the
context of ESMs and carbon cycle model intercomparisons
(Friedlingstein et al., 2006). We simulate variation in three
originally constant and PFT-specific key leaf traits in JS-
BACH, for which sufficient georeferenced observational data
could be selected to calibrate the traits. These traits were spe-
cific leaf area (SLA), maximum carboxylation rate at a refer-
ence temperature of 25◦C (Vcmax25) and maximum electron
transport rate at 25◦C (Jmax25). To determine relationships
between these three traits and climatic drivers for each PFT,
community means of trait values from the TRY global plant
trait database (Kattge et al., 2011) were related to global cli-
matic data. Based on these relationships between traits and
climate, SLA, Vcmax25 and Jmax25 were reparameterized
for each grid cell on a yearly basis, depending on the local
climatic conditions in a grid cell. Compared to the default
model, this enabled enhanced feedbacks between plants and
environment, as traits within natural PFTs could vary dynam-
ically in space and time. A simulation with variable traits is
compared for trait distribution, productivity and vegetation
distribution to a default simulation with the original trait val-
ues of the model, and to an additional simulation with con-
stant, but observation-based, trait values.

As DGVMs are already parameterized to produce ap-
proximate realistic results, our variable traits simulation
will not necessarily approach reality better than the default
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simulation. Therefore, in this paper the focus lies on sim-
ulation intercomparisons to evaluate the impact of incorpo-
rating climate-driven trait variation. The simulations are not
meant to represent current vegetation or climate states, but
were run into equilibrium states with their own internal cli-
mate and vegetation composition in order to study the im-
pacts of trait variation within PFTs. However, we include
comparisons with global biomass and gross primary produc-
tivity (GPP) estimates and potential vegetation distribution to
evaluate the realism of the various simulation results.

2 Materials and methods

2.1 Model description

Simulations were performed with the ESM of the Max
Planck Institute (MPI-ESM). The model setup consisted of
the JSBACH DGVM, a land surface model (Raddatz et al.,
2007) with a vegetation dynamics module (Brovkin et al.,
2009), coupled to the atmosphere model ECHAM5 (Roeck-
ner et al., 2003) to allow for full inclusion of vegetation–
atmosphere feedbacks. The model version on spatial resolu-
tion of T63 (approx. 1.875◦, dividing the world into 18 432
grid cells) with 47 atmospheric layers was used, with atmo-
spheric CO2 concentration kept constant at 353.9 ppm. Sea-
sonal sea surface temperatures and sea ice were prescribed
from a default simulation with the MPI ocean model (MPI-
OM) (Marsland et al., 2003). Vegetation dynamics were
interactive to allow for vegetation shifts and vegetation–
atmosphere feedbacks through trait dynamics. Terrestrial
grid cells contained multiple PFTs, each occupying a cer-
tain fraction, depending on their competitive ability (based
on net primary productivity – NPP). This study does not in-
clude crops and pastures, but focuses on responses of natural
vegetation, represented by eight PFTs. These were tropical
broadleaved evergreen trees (TrET), tropical broadleaved de-
ciduous trees (TrDT), extratropical (both temperate and bo-
real) evergreen trees (ExTrET), extratropical deciduous trees
(ExTrDT), raingreen shrubs (RgSh), cold/deciduous shrubs
(DSh), C3 grasses (C3G) and C4 grasses (C4G). No anthro-
pogenic land use or land cover change was simulated.

2.2 Selected trait and climate data

All PFT-dependent trait parameters in the model for which
sufficient georeferenced observational trait data could be
collected were selected. This resulted in selection of 3
traits; SLA (m2 kg−1 carbon), Vcmax25 (µmol m−2 s−1) and
Jmax25 (µmol m−2 s−1). SLA is used to determine the
amount of carbon that can be stored in the green and reserve
carbon pools. In contrast to most DGVMs, SLA is decou-
pled from the phenology routine in JSBACH and therefore
does not play a role in determining productivity. Vcmax25
(µmol m−2 s−1) and Jmax25 (µmol m−2 s−1) are the refer-
ence values at 25◦C used for calculation of the Vcmax and

Jmax values at the actual temperature. These traits are part
of the photosynthesis routine in JSBACH, which is modeled
following Farquhar et al. (1980) for C3 plants and Collatz et
al. (1992) for C4 plants (see Supplement S1 for a more de-
tailed description with equations of the functioning of traits
in JSBACH). Vcmax25 also determines the reference dark
respiration at 25◦C (Rd,25). Leaf carbon assimilation is the
lowest of carboxylation and electron transport rate (calcu-
lated from actual Vcmax and Jmax) minus dark respiration,
and scaled to canopy level with the use of the leaf area index
(LAI). Supplement S2 provides a description and a flowchart
with the role of the selected traits in JSBACH processes and
the way variation in these traits might propagate in the model.

Only georeferenced trait observations from field sampling
and field experiments were used and selected from the TRY
database (Kattge et al., 2011), with additional data for SLA
from the database by Van Bodegom et al. (2012) and for
Vcmax25 and Jmax25 from Domingues et al. (2010) (see
Table 1 for all references). From these databases, only Vc-
max and Jmax data that could be standardized to a refer-
ence temperature of 25◦C were used. Most Vcmax and Jmax
values had already been standardized to this temperature via
the formulation of the photosynthesis model by Farquhar et
al. (1980) used in the context of JSBACH (Kattge and Knorr,
2007). For other records for which the temperature during
measurement was recorded, standardization was done ac-
cording to this formulation. For C4 grasses, variation in PEP-
case CO2 specificity (PEP, mmol m−2 s−1) instead of Jmax25
was determined, following Collatz et al. (1992). Since for
C4 grasses insufficient observational PEP and Vcmax25 data
were available, these traits were estimated more indirectly
applying equations from Simioni et al. (2004), who deter-
mined PEP and Vcmax25 based on leaf nitrogen (N) content
(g m−2) (regressions based on two C4 species). Therefore,
for C4 grasses, additional information on leaf N was obtained
from the TRY database.

Each trait observation was linked to a PFT based on in-
formation on growth form (shrub, grass, tree), leaf habit (de-
ciduous/evergreen) and photosynthetic pathway (C3/C4) for
the species involved. The climatic domain of a species (tropi-
cal, boreal etc.) was determined based on the Köppen–Geiger
climate classification (Kottek et al., 2006) and applied to the
georeferenced observations.

We used PFT-specific community means of traits to match
the scale of modeled fluxes most closely, as JSBACH pro-
vides mean values per PFT (in a given grid cell). Commu-
nity means were weighted by the square root of the number
of observations (data points) per location. This resulted in
12 394 observations for SLA distributed over 2869 species
and 1052 (PFT-specific) communities, 761 observations over
129 species and 70 communities for Vcmax25, and 402 ob-
servations over 108 species and 56 communities for Jmax25
(see Supplement S3 for a global map with locations of trait
data).

www.biogeosciences.net/10/5497/2013/ Biogeosciences, 10, 5497–5515, 2013
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Table 1.References for trait data used in this study.

Reference SLA Vcmax25 Jmax25

Ackerly and Cornwell (2007) x
Bahn et al. (1999) x
Cavender-Bares et al. (2006) x
Cornelissen et al. (2003) x
Cornelissen et al. (2004) x
Cornwell et al. (2006) x
Domingues et al. (2010) x x
Fyllas et al. (2009) x
Garnier et al. (2007) x
Kattge et al. (2009) x x x
Kattge et al. (2011) x
Kleyer et al. (2008) x
Kurokawa and Nakashizuka (2008) x
Kurokawa (unpublished data) x
Laughlin et al. (2010) x
Leishman (unpublished data) x
Louault et al. (2005) x
Medlyn et al. (1999) x
Niinemets (1999) x x
Niinemets (2001) x x
Ogaya and Penuelas (2007) x
Ogaya and Penuelas (2008) x
Ordõnez et al. (2010) x
Patĩno et al. (2012) x
Pyankov et al. (1999) x
Reich et al. (2008) x
Reich et al. (2009) x
Shipley (1995) x
Shipley and Vu (2002) x
Soudzilovskaia (unpublished data) x
Swaine (2007) x
van Bodegom et al. (2012) x
van Bodegom (unpublished data) x
Vile et al. (2006) x
Weiher (unpublished data) x
Wohlfahrt et al. (1999) x
Wright et al. (2004) x
Wright et al. (2006) x

2.3 Trait–climate relationships

The observed natural variation of SLA, Vcmax25 and Jmax25
was described for each PFT by the simplest models pos-
sible, using linear regressions between individual traits and
multiple observational climatic variables. The derived trait–
climate relationships likely reflect habitat filtering, which
commonly leads to trait convergence at community scales.
The relationships were implemented in JSBACH to predict
traits based on the internally simulated climate. As a con-
sequence, in our choice of climate variables, we were con-
strained by the environmental predictors that are modeled in
JSBACH.

Global climate data on mean annual precipitation (MAP,
mm yr−1), mean annual relative humidity (Reh, %), mean an-
nual temperature (MAT,◦C), and mean temperature of cold-
est and warmest month (Tmin andTmax, ◦C) were collected

from a global 10 min gridded dataset of mean monthly cli-
mate data based on weather stations from the Climatic Re-
search Unit (CRU) (New et al., 2002). Mean annual net short-
wave radiation (NSWR, W m−2) was calculated based on
distance to sun and percentage sunshine (from CRU) accord-
ing to Allen et al. (1998) on a global 30 min spatial resolu-
tion. Mean annual soil moisture was taken from GLEAM, a
methodology that estimates soil moisture and evapotranspi-
ration based on remotely sensed data at a global 15 min spa-
tial resolution (SoilMoist, m3 m−3 for 1 m depth; Miralles et
al., 2011). Given the available modeled climatic drivers in
JSBACH, soil moisture was the best available estimate of a
drought index. Soil moisture was the only edaphic control of
trait variation, since soil N was not modeled in this version
of JSBACH.

To determine trait–climate relationships, we tested all pos-
sible climate combinations in relation to each trait. Regres-
sions with the highest explained variance (highestR2

adjusted)
were selected, after checking for significance of climatic
drivers and distribution of residuals. Table 2 shows for each
PFT the selected climatic drivers of the best model, as well
as their directional relationship with the traits (third column),
and the correspondingR2

adjusted. In case of co-linearity be-
tween environmental drivers (Pearson’s correlation higher
than 0.7 or lower than−0.7), the driver with lowest signif-
icance was omitted. Due to the low number of entries for
Vcmax25 and Jmax25, data for the two tropical tree PFTs
were combined, as well as data for the two shrub PFTs. Even
though we acknowledge that mean trait values for evergreen
and deciduous vegetation types will differ in reality, combin-
ing these will give better estimates than modeling these traits
on their few individual data points alone. Due to differences
in other vegetation characteristics, these PFTs will still dif-
fer in their emergent properties, as the results will show. In
total there were eight relationships for SLA and six for both
Vcmax25 and Jmax25. These relationships were subsequently
implemented in JSBACH.

In addition, to allow trait calculations to go beyond cli-
matic regions used in the regressions, but to still maintain
traits within ranges as observed in nature, we applied two
constraints on simulated trait ranges. First of all, predicted
traits were constrained to the 2.5–97.5 % quantiles of all indi-
vidual observations within a PFT (instead of the community
means). Secondly, for Jmax25 and Vcmax25, an additional
constraint was applied to maintain the strong physiological
correlation between them (Medlyn et al., 2002; Wullschleger,
1993), keeping Jmax25 and Vcmax25 values within the 95 %
confidence interval of the linear regression among these two
traits (as determined per PFT). Predicted values outside this
range were adjusted to the confidence interval border, based
on the shortest distance needed to reach the border. Since
this version of JSBACH did not simulate N-cycling, soil N
could not be used to parameterize Vcmax25, even though N-
availability is a strong determinant (see references in Kattge
et al., 2009). However, observational data was used to limit
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Table 2.Properties of the selected trait–climate relationships used to parameterize traits.

No. of entries Environmental drivers R2
adjustedof Lower and upper

(observations)1 of traits2 relationships boundaries3

SLA (m2 kg−1 carbon)

Tropical evergreen trees 69 (933) −MAP, −NSWR, (+int) 0.092 7.41, 48.29
Tropical deciduous trees 38 (129) −Tmin, −MAP, +Reh 0.30 12.07, 49.54
Extratropical evergreen trees4 363 (308) +MAT, +MAP,−NSWR 0.29 4.58, 42.46
Extratropical deciduous trees4 177 (282) −Tmax, −Reh, (+int) 0.056 6.24, 90.50
Raingreen shrubs 178 (696) −MAP, −NSWR 0.26 3.66, 72.69
Cold/deciduous shrubs 39 (111) +MAT 0.13 17.82, 61.53
C3 grasses 153 (309) +Tmax, +Reh 0.12 3.08, 96.58
C4 grasses 35 (101) −NSWR 0.40 5.41, 72.19

Vcmax25 (µmol m−2 s−1)

Tropical evergreen trees & 9 (85) +MAT, +MAP, (−int) 0.83 18.0, 67.7
Tropical deciduous trees5

Extratropical evergreen trees 15 (284) +MAT,−MAP, +Reh 0.28 18.4, 179.9
Extratropical deciduous trees 19 (273) −Reh,−SoilMoist, (+int) 0.34 18.2, 130.0
Raingreen shrubs & 15 (75) −MAP, −Reh, (+int) 0.45 25.1, 129.1
Cold/deciduous shrubs5

C3 grasses 4 (15) −MAT 0.37 24.4, 118.4
C4 grasses 8 (29) +NSWR 0.51 21.7, 46.3

Jmax25 (µmol m−2 s−1) – for C4 grasses: PEP (mmol m−2 s−1)

Tropical evergreen trees & 9 (51) +MAT, +MAP, (−int) 0.68 35.8, 121.6
Tropical deciduous trees5

Extratropical evergreen trees 12 (113) +Tmin, −MAP 0.28 57.5, 329.6
Extratropical deciduous trees6 10 (135) +Tmin, +NSWR, (−int)/ 0.71/0.44 41.1, 206.9

−MAP, −SoilMoist, (+int)
Raingreen shrubs & 13 (59) +MAP,−SoilMoist 0.64 65.4, 223.5
Cold/deciduous shrubs5

C3 grasses 4 (15) −MAT 0.63 42.8, 230.6
C4 grasses 8 (29) +NSWR 0.51 92.3, 465.4

1 Number of entries available for the regression analysis, in parentheses the number of observations for these entries.
2 Environmental drivers are mean annual temperature (MAT), mean temperature of coldest and warmest month (Tmin andTmax), mean annual
precipitation (MAP), mean annual relative humidity (Reh), soil moisture (SoilMoist) and net shortwave radiation (NWSR). + = positive relationship,
− = negative relationship, and (int) = interaction effect between two drivers.
3 Lower and upper boundaries of the predicted traits in the variable traits simulation, based on the 2.5 and 97.5 quantiles of all individual observations
within PFTs.
4 Extratropical trees include both temperate and boreal trees.
5 For Vcmax25 and Jmax25, tropical trees have the same relationships with climatic drivers, as they were combined due to low number of entries. The
same holds for shrubs.
6 As the best model covered a relatively small climatic range, an additional regression model was applied to these areas that fell outside the climatic
range of the first model.

the above two constraints on Vcmax25, in this way indirectly
incorporating N-limitations via observed Vcmax25 values.

2.4 Simulation setups

Three different scenarios were performed: (1) a simulation
containing the default parameterization of JSBACH with
constant parameter values per PFT, based on Raddatz et
al. (2007) and Kattge et al. (2009), and adapted to approx-
imate realistic vegetation functioning within the vegetation
dynamics module (Brovkin et al., 2009); hereafter called “de-

fault simulation”, (2) an “observed traits simulation” again
with constant values for SLA, Vcmax25 and Jmax25 per PFT,
but based on observational data only (the weighted commu-
nity means for each PFT, from here on called “observed
global means”), and (3) a “variable traits simulation” in
which traits were allowed to vary depending on local climatic
conditions. In the latter simulation, at the beginning of every
year, each of the three key traits was reparameterized for each
PFT in every terrestrial grid cell of the world, depending on
the local simulated climatic conditions in each grid cell. The
observed traits simulation was performed in order to separate

www.biogeosciences.net/10/5497/2013/ Biogeosciences, 10, 5497–5515, 2013
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the effects of replacing default trait constants by observation-
based constants from the effects of adding trait variation in
the model. As this simulation mainly serves as a control, we
will focus our results and discussion on the variable traits
simulation.

To get vegetation into quasi-equilibrium with the simu-
lated climate (but with CO2 concentration fixed), the coupled
model (JSBACH/ECHAM5) was run for 150 years with veg-
etation dynamics in an accelerated mode (i.e., vegetation was
simulated 3 times for each year of simulated climate). Next,
to get the slow soil carbon pools into equilibrium, the uncou-
pled carbon model of JSBACH (“CBALANCE”) was run for
1500 yr. The coupled model was continued for 160 yr with
updated carbon pools (with the vegetation module in an ac-
celerated mode for the first 50 yr), until carbon pools and veg-
etation cover had reached equilibrium. The last 10 yr were
averaged and used for further analysis, which in this setup
(with prescribed seasonal sea surface temperatures) was suf-
ficient to account for the interannual climate variation.

2.5 Data comparison

Model performance was investigated by comparing vegeta-
tion distribution, GPP and biomass of the simulations with
observations. Vegetation distribution of the dominant PFT
(Fig. 5) was compared to the potential (natural) vegetation
map of Ramankutty and Foley (1999), which in part is used
to initialize simulations in JSBACH. The mismatch in spa-
tial resolution (the potential vegetation maps is at a global
30 min spatial resolution) was solved by counting the num-
ber of PFTs according to Ramankutty and Foley (1999) that
were present in each JSBACH grid cell. The PFT with the
highest occurrence was compared with the simulated dom-
inant PFT of JSBACH. To match the PFT classifications,
aggregated PFTs were constructed (Supplement Table S6.1
and Fig. S6.1), as the PFTs of Ramankutty and Foley (1999)
could not be directly related to those of JSBACH. Temper-
ate and boreal evergreen trees were merged to match extrat-
ropical evergreen trees in JSBACH. The same was done for
deciduous trees. Shrubs (marginal in JSBACH) were merged
into a single PFT (“shrubs”) in both JSBACH and the veg-
etation map. As savannas consist of grasslands and wood-
lands, matches between savannas and C4 grasses or tropical
broadleaved deciduous trees were both classified as correct.
Tundra and mixed forests were omitted from the comparison
as no equivalent PFT was available in JSBACH. Model per-
formance was determined with Cohen’s kappa (κ) (Cohen,
1960), which is the proportion of agreement between veg-
etation maps, while accounting for chance agreement. Grid
cells with sea or ice as the dominant cover were not taken
into account, and neither were cases in which more than
1 PFT shared the highest occurrence (i.e., equal number of
grid cells). This resulted in a comparison of 2819 grid cells.

Latitudinal patterns of median GPP were compared with
data taken from Beer et al. (2010), who combined observa-

tional data (eddy covariance fluxes) with diagnostic models
to approximate GPP.

Simulated biomass was compared to estimates from
Robinson (2007), which include adjusted estimates of be-
lowground (root) carbon in plant biomass. Estimates based
on root/shoot quotients from Mokany et al. (2006) and Grace
et al. (2006) were used. As we simulated only natural veg-
etation and the estimates of Robinson (2007) are current
estimates including land use change and crops, comparing
global total biomass would result in an overestimation by
our simulations. Therefore, comparisons were made per m2

per (aggregated) PFT. JSBACH does not have a separate
savanna-like PFT. Therefore, tropical forests and C4 grass-
lands were averaged and compared with averages of tropi-
cal forests and savanna. Furthermore, extratropical trees were
averaged and compared with averaged temperate and boreal
trees of Robinson (2007). Mediterranean shrubs and tundra
were omitted as there were no comparable PFTs in JSBACH.
For the tropics, an additional comparison of biomass was
made to Saatchi et al. (2011).

3 Results

3.1 Mismatch between observed trait data and default
trait settings

Fig. 1 shows the observed trait ranges as collected from
the databases. Grey diamonds reflect the PFT-specific de-
fault trait values in JSBACH and black circles indicate the
PFT-specific global means based on the observed commu-
nity means. These observed global means were used to re-
place the default trait values in the observed traits simulation.
For all three traits, the default trait values deviated strongly
from the observed global means. Differences were on av-
erage 32.3 % for Vcmax25, 26.8 % for Jmax25 and 17.3 %
for SLA (but for specific PFTs going up to 73.4 %, 57.6 %
and 35.2 %, respectively). Such mismatch between observa-
tional trait data and default trait values has also been reported
by Kattge et al. (2011), who showed how PFT-specific con-
stant SLA values in DGVMs often differ from the means
of observed data, and in some cases are at the low end of
the observed data distribution. In JSBACH, SLA default val-
ues were always lower than the observed global means, ex-
cept for the tropical broadleaved deciduous trees, but they
almost all fell within the 25 % quartiles of the observed
range of SLA, except for deciduous shrubs. However, for
both Vmax25 and Jmax25, default values fell outside the 25 %
quartiles for more than half of the PFTs (five out of eight
PFTs for both), and in some cases even outside the minimum
and maximum values (tropical deciduous trees, C4 grasses
and C3 grasses for Vcmax25 and Jmax25, and additionally
extratropical evergreen trees for Jmax25). In contrast to SLA,
there was no clear direction of the trait differences for either
Vcmax25 or Jmax25: half of the default values were lower
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than the observed global means (tropical deciduous trees, ex-
tratropical evergreen trees, raingreen shrubs and C4 grasses),
the other half higher. These differences point to a strong mis-
match between default trait parameters in JSBACH with ob-
served natural trait means.

Figure 1 also shows that within each PFT large trait
variation was apparent, as well as large overlap in trait
ranges among PFTs, which corresponds to other trait anal-
ysis (Laughlin et al., 2010; Wright et al., 2005a). This was
most manifested for SLA, where all PFTs overlapped with
each other. For Vcmax25, the only PFTs of which the 95 %
confidence interval did not overlap were both tropical ever-
green trees and C4 grasses with C3 grasses, and for Jmax25
both tropical trees and deciduous shrubs with C3 grasses.

3.2 Simulated trait variation based on climatic drivers

The observed variation in PFT-specific community means (as
given by Table 1) was related to environmental drivers by ap-
plying multiple regression. Table 2 (third column) presents
for each trait and each PFT the selected climatic drivers used
in the regressions and their directional relationship with the
traits. All regressions were significant, except for C3 grasses
for Vcmax25 and for Jmax25. Although the selected environ-
mental drivers differed among PFTs, NSWR and MAP were
most frequently selected as drivers for SLA, as were MAP,
MAT and RH for Vcmax25, and MAP for Jmax25. R2

adjusted
was up to 0.83 for Vcmax25 and 0.71 for Jmax25. For SLA,
more variation remained unexplained, with a maximum value
of 0.40 forR2

adjusted.
Fig. 2 presents the predicted trait ranges in JSBACH, as

calculated by applying the regressions on simulated climate
in JSBACH. As in Fig. 1, grey diamonds and black cir-
cles again represent default trait values and observed global
means. For each grid cell, only simulated trait values of
the dominant PFTs are selected to prevent trait values of
marginal PFTs with almost no ecosystem impact to obscure
trait ranges most important for model output. Raingreen
shrubs were almost never dominant, and predicted variation
was low, while deciduous shrubs were never dominant.

For all three traits, a strong mismatch of default traits with
the simulated trait variation was apparent: for SLA default
values (grey diamonds) fell (at least) outside the 25–75 % in-
terquartile range in four PFTs (vs. one in the observed data),
and for Vcmax25 and Jmax25 for every PFT.

In contrast to the default and observed trait simulation,
where PFTs had one constant value per trait, a large climate-
driven trait range was predicted for the variable traits simu-
lation. The higher SLA of deciduous versus evergreen trees
observed in natural vegetation was reflected in the simulated
SLA ranges. As for the observational trait data (Fig. 1), there
was large overlap in predicted trait ranges among PFTs as
well (Fig. 2), particularly for Vcmax25 and Jmax25. Simu-
lated SLA ranges were narrower and overlapped less among
PFTs compared to observed ranges. For some PFTs (e.g., ex-

Fig. 1.Observed trait ranges of PFT-specific community means:(a)
SLA (m2 kg−1 carbon),(b) Vcmax25 (µmol m−2 s−1), (c) Jmax25
(µmol m−2 s−1). For C4 grasses, PEPcase CO2 specificity (PEP)
in mmol m−2 s−1 is modeled. Box plots show the median (mid-
dle line), the 25 % and 75 % quartiles (hinges), the outer value
within the 1.5∗ interquartile range (whiskers) and outliers (open
circles). Grey diamonds are trait values used in the default simu-
lation, black circles are observed global means used in the observed
traits simulation and therefore do not match the medians in the box
plots. PFTs are tropical broadleaved evergreen trees (TrET), tropical
broadleaved deciduous trees (TrDT), extratropical (both temperate
and boreal) evergreen trees (ExTrET), extratropical deciduous trees
(ExTrDT), raingreen shrubs (RgSh), cold/deciduous shrubs (DSh),
C3 grasses (C3G) and C4 grasses (C4G).

tratropical deciduous trees and C3 grasses for Vcmax25 and
Jmax25), simulated trait variation for Vcmax25 and Jmax25
(Fig. 2) was larger than observed variation (Fig. 1). Predicted
traits may have fallen outside the ranges of observed varia-
tion when climatic ranges as simulated in JSBACH exceeded
observational climate ranges used to derive the trait–climate
relationships. However, this did not result in unrealistic trait
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Fig. 2. Simulated trait ranges of the dominant PFTs of each grid
cell in the variable traits simulation:(a) SLA (m2 kg−1 carbon),
(b) Vcmax25 (µmol m−2 s−1), (c) Jmax25 (µmol m−2 s−1). For C4
grasses, PEPcase CO2 specificity (PEP, in mmol m−2 s−1) instead
of Jmax25 is modeled. Box plots and symbols as in Fig. 1. PFTs
as in Fig. 1 but without cold/deciduous shrubs (DSh), because this
PFT was never dominant. Observed global means are added again
for illustrative purposes. Note that direct comparison with simulated
data is not appropriate here as the range of climatic conditions do
not overlap for observed and simulated trait data.

values, as limits were set on maximum trait values based
on individual observations. Furthermore, we implemented a
trade-off between Vcmax25 and Jmax25, keeping them within
realistic ranges (even outside climatic ranges used for deter-
mination of the regressions). For SLA, such trade-off was not
taken into account, but unrealistic SLA values were not very
likely as SLA was based on a much larger dataset, covering
a very large range of climatic conditions.

3.3 Inclusion of trait variation alters predicted global
patterns of productivity

The observed traits and variable traits simulation showed a
similar pattern of median GPP along the latitudinal gradi-
ent compared to the default simulation (Fig. 3), but in ab-
solute values GPP was much higher in the variable traits
simulation in the geographic zone between about 30◦ S and
30◦ N (∼ 50 % around the equator and twice as much be-
tween 25 and 30◦ N). GPP of the observed traits simulation
also reached higher values (up to twice as much) as the de-
fault between 25 and 30◦ N, but had lower values than the
variable traits simulation between 20◦ S and 15◦ N, and high-
est values (64–67 %) at higher latitudes.

NPP differences between 30◦ S and 30◦ N were less pro-
found than for GPP, showing that trait variation affects global
patterns of GPP and NPP in different ways. Again, at higher
latitudes, the observed traits simulation predicted highest
NPP. For the variable traits simulation, the reduction from
gross to net primary productivity around the tropics is much
stronger than for either other simulation, resulting in smaller
NPP differences among simulations compared to GPP dif-
ferences (even though differences may still go up to 75 % be-
tween 25 and 30◦ N for both observed and variable traits sim-
ulations). The large reduction in differences between NPP
and GPP among simulations cannot solely be attributed to
a higher respiration of PFTs due to higher Vcmax25 (see
Fig. 4), and is mainly a consequence of net productivity ex-
ceeding the maximum sizes of the different carbon pools
(e.g., leaves, wood, reserves) as defined in JSBACH, result-
ing in respiration of excess carbon. This loss of excess carbon
is visible in the tropical regions for all simulations, but for
the variable traits simulation this resulted in a proportionally
larger amount of productivity removed. This was enhanced
by the higher SLA in these regions, which partly determines
the amount of carbon stored in the living parts of the plants,
consisting of leaves, fine roots and sapwood.

These results show that, while reproducing global patterns
of productivity, incorporating global trait variation in the
model leads to strong changes in predicted productivity. Even
though GPP is not only determined by the photosynthetic pa-
rameters (Vcmax25 and Jmax25), as it is affected by, for ex-
ample, water availability as well, on average, shifts in GPP
were generally accompanied by shifts in similar directions
by mean Vcmax25 and Jmax25 (weighted by fractional cov-
erage of PFTs), compared to the default simulation (Fig. 4).
Exceptions occurred, as for example, the drop in Vcmax25
and Jmax25 above 40◦ N did not lead to a coinciding drop in
GPP. As expected, as SLA does not play a role in productiv-
ity, changes in GPP could not be related to similar shifts in
SLA.
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Fig. 3. Latitudinal gradient of median GPP and NPP (gram car-
bon m−2 yr−1) for default simulation (DEFAULT), observed traits
simulation (OBS TR) and variable traits simulation (VAR TR), and
GPP taken from Beer et al. (2010) (BEER).

Table 3.Dominant PFT coverage (%) of vegetated grid cells for the
three different simulations.

% coverage of dominant PFT

Observed Variable
PFT Default traits traits

simulation simulation simulation

Tropical evergreen trees 23.06 0 12.55
Tropical deciduous trees 0.024 21.38 7.89
Extratropical evergreen trees 13.64 36.31 21.45
Extratropical deciduous trees 14.72 0 8.66
Raingreen shrubs 3.66 1.30 0.12
Cold/deciduous shrubs 0.048 0 0
C3 grasses 24.58 24.50 21.47
C4 grasses 4.83 5.19 8.37

Bare surface 15.44 11.32 19.50

3.4 Major shifts in vegetation distribution

Figure 5 and Table 3 show how the global distribution of
dominant vegetation types as predicted by the simulations
strongly changes when incorporating observed global trait
values or including climate-driven trait variation. A PFT was
considered dominant if it had the highest fractional cover-
age in a grid cell; this ranged from coverage of almost 100 %
(mostly in tropical regions) to only 30 % in some areas at
higher latitudes (see Supplement S4 for fractional coverage
of the dominant PFTs). Predicted dominant PFTs differed
from the default simulation in 35.4 % of the terrestrial grid
cells for the variable traits simulation and in 50.5 % of the
grid cells for the observed traits simulation.

In the observed traits simulation, tropical evergreen trees,
dominant in the default simulation, were taken over by de-
ciduous trees in Africa, South America and Australia and
extratropical deciduous trees were replaced by extratropi-

Fig. 4. Latitudinal gradient of mean trait values weighted by frac-
tional cover of the PFTs.(a) SLA (m2 kg−1 carbon),(b) Vcmax25
(µmol m−2 s−1), and(c) Jmax25 (µmol m−2 s−1). For Jmax25, C4
grasses are left out as PEP instead of Jmax25 is modeled for this
PFT. Lines and abbreviations as in Fig. 3.

cal evergreen trees as the dominant PFT, resulting in less
spatially heterogeneous dominant vegetation. In the variable
traits simulation, these shifts occurred as well (see Fig. 5 and
Table 3). However, in contrast to the observed traits simu-
lation, both changes in dominant tree cover only occurred
in limited areas, which resulted in more spatial variation in
vegetation in the areas where trees were dominant. The shifts
from tropical evergreen to tropical deciduous trees cannot be
explained by Vcmax25 and Jmax25, since these tropical PFTs
were parameterized with the same values for these traits. The
most profound difference between these tropical PFTs seems
to be their leaf turnover rate, which is higher for the decidu-
ous than for the evergreen trees. As a consequence, tropical
deciduous trees had somewhat lower leaf area index, which
meant lower productivity in favorable periods, but also less
carbon loss in more stressful circumstances (e.g., drier peri-
ods). In some areas, this could have resulted in a higher total
yearly NPP for tropical deciduous trees, thereby outcompet-
ing evergreen trees.
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Fig. 5.Global distribution of dominant PFTs.(a) Default simulation,(b) observed traits simulation and(c) variable traits simulation.
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Another shift in predicted dominant vegetation in the vari-
able traits simulation was an increase in C4 grasses (from
4.8 % in the default simulation to 8.4 %). This occurred
mostly in Africa and Australia at the expense of tropical trees
and raingreen shrubs. This expansion of C4 grasses below the
Sahara coincided with higher fractions of burned area, which
promoted the expansion of grasses at the cost of trees.

In the variable traits simulation, bare ground increased as
the dominant cover type (from 15.4 % in the default simu-
lation to 19.5 %) in the southwest of the United States (and
Mexico), northern Canada and northeast of Siberia at the ex-
pense of C3 grasses and deciduous trees, resulting in a shift
of the boreal treeline toward lower latitudes. These shifts
often coincided with a decrease in Vcmax25 (see Supple-
ment S5), suggesting lower productivity and consequently
less expansion of these PFTs.

3.5 Modulation of climate by traits

Predicted climate differed among simulations. In the vari-
able traits simulation enhanced climate–vegetation feed-
backs were possible both through changes in traits (mod-
ifying PFT properties), as well as through shifts in vege-
tation distribution (see Supplement S2 describing such in-
teractions). However, differences in climate cannot be re-
lated unambiguously to either traits or vegetation shifts. As
differences in temperature in unvegetated areas like Green-
land and Antarctica show, there does not have to be a direct
spatial relation between climate and vegetation. Moreover,
some vegetation shifts (compared to the default) do occur in
places where climates differ among simulations (e.g., north-
ern Canada), whereas in other areas no such effect occurred
(e.g., in tropical zones).

Precipitation differences were local and showed no clear
spatial pattern (Fig. 6c and d), but in the variable traits and
observed traits simulations it was drier in Canada, Asia and
Australia, as well as in large parts of the Amazon rainforests
compared to the default simulation.

Compared to the default simulation, in the observed traits
simulation mean annual surface-air temperatures were pro-
foundly higher (over 1◦C) in eastern Siberia, Alaska, the US
and Australia, and lower (up to 1◦C) in large parts of Eu-
rope and Russia, South Africa and South America (Fig. 6a),
meaning that (at least) temperature is very sensitive to pa-
rameterization of traits. Temperature differences were less
profound between default and the variable traits simulation
(Fig. 6b), but still went up to around 1◦C. Changes in temper-
ature did not correlate with clear changes in traits or vegeta-
tion shifts (e.g., tree–grass shifts), but in the Southern Hemi-
sphere (Australia, Africa, South America) corresponded to
differences in transpiration, where cooler areas coincided
with higher transpiration. This could be related to the higher
Vcmax25 in these areas, resulting in higher GPP and conse-
quently an increase in transpiration.

The differences between the observed traits simulation and
variable traits simulation indicate that by allowing traits to
vary and respond to environmental conditions (as in the vari-
able traits simulation), feedbacks between climate and traits
result in more moderate temperature shifts, showing the sig-
nificant effect of adaptive traits on climate.

3.6 Comparison of model output with observational
data

Cohen’sκ, indicating the correspondence of the global map
of potential (natural) vegetation of Ramankutty and Foley
(1999) with simulated vegetation distribution, was 0.289,
0.282 and 0.334 for the default, observed traits and vari-
able traits simulations, respectively. These values were some-
what lower than theκ ’s of other DGVMs, e.g.,κ = 0.40 for
the Lund-Potsdam-Jena DGVM (LPJ) orκ = 0.42 for LPJ
with implementation of plant hydraulic architecture, both
with 18 PFTs (Hickler et al., 2006), orκ = 0.42 for a con-
sensus map of multiple DGVMs with 6 PFTs (Cramer et al,
2001). However, these models were compared to different
vegetation maps and had a different number of classes, mak-
ing comparisons difficult. Our simulations with 7 vegetation
classes performed less well, but this might partly depend on
the chosen vegetation map (Ramankutty and Foley, 1999).
A low κ means that for either simulation, a large proportion
of the grid cells did not match the potential vegetation map
(Supplement Fig. S6.2). However, there is a substantial in-
crease in similarity to observed vegetation from the default
and observed traits simulation toward the variable traits sim-
ulation.

Mismatches occurred in large parts of the US and Canada,
where the simulations predicted mostly C3 grasslands, while
according to the potential vegetation map also forests should
be present. The same holds for large parts of Europe. The
potential vegetation map shows less bare ground than any
simulation, resulting in mismatches in the US, but also other
parts of the world. Furthermore, almost the whole continent
of Australia did not correspond to this map; shrubs and sa-
vanna are dominant according to the map, and even though
the models did predict C4 grasses there, it was in different
areas. Where the default and observed traits simulation had
low correspondence with the vegetation map in Africa and
South America, the variable traits simulation performed bet-
ter, mainly with respect to the tropical trees. Even though
differences in performance are small, the variable traits sim-
ulation matched the potential vegetation map most closely.

Comparing latitudinal patterns of median GPP with es-
timates from Beer et al. (2010) (thin blue line in Fig. 3),
each simulation produces substantial higher GPP at most lat-
itudes (on average leading to 2, 2.4 and 2.6 times higher
GPP for the default, observed traits and variable traits sim-
ulations, respectively), with the default simulation in gen-
eral having the smallest differences. Through the imposed
observation-based variation in Vcmax25 and Jmax25 in the
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Fig. 6.Difference in mean annual temperature (◦C) and annual precipitation (mm yr−1). Observed traits simulation minus default simulation
for (a) temperature and(c) precipitation, and variable traits simulation minus default simulation for(b) temperature and(d) precipitation.

variable traits simulation, GPP particularly in the tropics was
overestimated. As nothing has been changed in the photosyn-
thesis schemes, this probably points to a parameter mismatch
in the (default) model, as in the variable traits simulation the
traits are supposed to be more close to realistic values than in
the default model.

Chen et al. (2012) suggest that global GPP estimates based
on remotely sensed LAI are underestimated by 9 % when leaf
clumping is not taken into account, as this would result in an
underestimation of the contribution of shaded leaves to GPP,
with the strongest underestimation occurring in the tropics.
This implies that the estimates of GPP by Beer et al. (2010)
might be too low, as remotely sensed LAI (and fAPAR) data
were used to extrapolate GPP estimates from flux-towers to
global maps, and thus the actual differences with our simu-
lations may be less. Also many other DGVMs show higher
GPP in the tropical areas than the observed median GPP by
Beer et al. (2010), and the GPP estimates of the variable traits
simulation still do fall within the upper range of GPP predic-
tions by other DGVMs.

Comparisons of simulated biomass per m2 per (aggre-
gated) PFT with current biomass estimates by Robinson
(2007) show that for the combined tropical trees and sa-
vannas the variable traits simulation (13.12 kg C m−2) most
closely matched biomass estimates (13.14 kg C m−2) (Ta-

ble 4). For extratropical (temperate and boreal) forest
and temperate grasslands, the default simulation under-
estimates carbon in vegetation (7.08 kg C m−2). Both the
observed traits and variable traits simulation are closer
(9.64 and 9.65 kg C m−2) to the global estimates for
forests (8.83 kg C m−2), although they overestimate biomass.
For temperate grasslands, either simulation underestimates
biomass, with the default simulation deviating the least from
global estimates (0.16 vs. 0.67 kg C m−2), even though dif-
ferences among simulations are small. Overall, this implies
that of the three simulations, the variable traits simulation is
closest to global biomass estimates per PFT per m2.

The largest differences in GPP were found in the trop-
ical areas. Comparing simulated biomass of the tropical
zone with estimates of Saatchi et al. (2011), either sim-
ulation overestimates biomass in most areas (see Supple-
ment S7), especially in the south of Brazil, and large parts
of southern Africa (areas with dry forests and savannas). In
general, for either simulation the areas with high biomass
(> 200 Mg C ha−1) are much more extensive than according
to Saatchi et al. (2011). However, it has to be noted that for
these areas with high biomass, the uncertainties in biomass
estimates of Saatchi et al. (2011) are large, ranging from
25 % to over 50 %, meaning differences might be smaller in
reality.
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Table 4.Biomass estimates from Robinson (2007) compared to simulated biomass of the three simulations.

Biomass (kg C m−2)

Observed Variable
Robinson PFT Biomass JSBACH PFT Default traits traits

(kg C m−2) simulation simulation simulation

Tropical forest 20.23 Tropical evergreen forest 16.15 14.63 22.07
Savannah & grassland 6.05 Tropical deciduous forest 10.84 17.55 16.96

C4 grasses 0.31 0.29 0.32
Average 13.14 9.10 10.82 13.12

Temperate forest 13.65 Extratropical evergreen forest 5.79 10.96 9.04
Boreal forest 4.01 Extratropical deciduous forest 8.38 8.33 10.25
Average 8.83 7.08 9.64 9.65

Temperate grassland 0.67 C3 grasses 0.16 0.13 0.12

4 Discussion

The aim of this study is to identify the impacts of climate-
driven trait variation within PFTs through vegetation re-
sponses and vegetation–atmosphere feedbacks on DGVM
model behavior. We determined observed trait variation
within PFTs as comprehensively as possible based on rela-
tionships between measured traits and climate and soil mois-
ture, representing major assembly processes by the abiotic
environment. As model intercomparisons have shown that
large uncertainties exist in projections of land carbon up-
take by DGVMs (Cramer et al., 2001; Friedlingstein et al.,
2006, Sitch et al., 2008), incorporation of variation in veg-
etation responses is important to allow more feedbacks be-
tween vegetation and climate and to increase plausibility of
model predictions, especially under strong climate change.
Here, we incorporated variation in plant responses based on
relationships between observed trait and climate data into the
JSBACH DGVM, which revealed profound effects on carbon
fluxes and vegetation distribution.

4.1 Challenges of modeling trait variation based on
trait–climate relationships

In our approach, we used trait–climate relationships to de-
scribe the observed natural trait variation and implemented
these in JSBACH. These relationships identify and capture
multiple (approximate) drivers of natural trait variation, and
are thought to reflect abiotic assembly processes. They inte-
grate multiple vegetation responses at different temporal and
spatial scales, including acclimation, adaptation of species
and species replacement into a spatially and temporally vary-
ing trait mean.

One of the issues that might affect the reliability of model
performance is the fact that we derived climate-driven trait
variation for each trait independently, not explicitly account-
ing for trait trade-offs. The advantage of a changed trait often
implies a cost in another trait (e.g., the leaf economics spec-

trum of Wright et al., 2004), possibly dampening the positive
effect of the other trait and modifying plant performance.
Implementing trait trade-offs helps to restrict possible trait
combinations or plant responses, especially when simulated
traits are modeled outside the observational climatic ranges
used to derive the trait–climate relationships. However, trade-
offs can only be included if the traits involved are explic-
itly represented in the model and if they are PFT specific.
This complicates including and evaluating the importance
of trade-offs in DGVMs. In our situation, we took care of
the trade-off among Vcmax25 and Jmax25 by constraining
the values of one trait by the other. Moreover, in JSBACH,
changes in these traits are coupled to respiration and tran-
spiration processes as well, likely leading to consistent re-
sponses. Trade-offs between SLA and other traits were not
accounted for, given the specific way SLA in JSBACH is
used in relation to productivity, independent of LAI and phe-
nology. This decoupling of SLA expresses that early phenol-
ogy is strongly driven by remobilization of carbon from pre-
vious year reserves and not from current year productivity.
Instead, in JSBACH phenology is determined by the envi-
ronmental drivers temperature and soil moisture. Therefore,
the commonly observed strong trade-off between SLA and
leaf life span (LLS) (Wright et al., 2004) is not expressed
in JSBACH, in contrast to many other DGVMs. In fact, by
incorporating environment-driven variation in SLA, the de-
coupling between SLA and LLS has been partly diminished
compared to the default model, more closely representing
natural plant strategies. Trait trade-offs thus need to be eval-
uated depending on the model formulation.

We updated trait values once per year. This time step is
a balance between computational efficiency and ecological
realism. By this approach we avoid evaluating ontogenic im-
pacts on trait values and whether environmental impacts dif-
fer for different parts of the growing season, for which cur-
rently insufficient information is available. Despite presumed
differences in plasticity among species and PFTs (although
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we are not aware of studies analyzing this), current analyses
on within-species variation of leaf economics traits (Kattge
et al. 2011; Messier et al. 2010) suggest that all PFTs will
be sufficiently plastic to adjust their leaf economic traits at
yearly timescales to the extents forced by year-to-year dif-
ferences in climatic drivers. The selected leaf traits in this
study are rather plastic and can vary within a year (Dubey et
al., 2011; Misson et al., 2006). Other traits, like wood traits,
will have longer adaptation times than a year, as changes
would involve individual or species turnover. SLA may be
somewhat less plastic than the two photosynthetic traits, but
a yearly reparameterization is reasonable, as leaves of decid-
uous species are shed every year and vary in relation to en-
vironmental changes (Ma et al. 2011). The maximum lifes-
pan for leaves of evergreen PFTs is three years in JSBACH,
meaning yearly SLA shifts occur in (on average) a third of
the leaves, resulting in a slight overestimation of SLA varia-
tion in evergreens. However, the yearly shift in leaf trait val-
ues may not only reflect acclimation, but genetic adaptation
and species replacements may also contribute. In contrast to a
mechanistic approach, in our approach the impacts and (un-
known) timescales of those processes leading to trait shifts
do not have to be differentiated.

4.2 Implementing variation in PFTs: comparing
approaches

Determining trait–climate relationships is broadly accepted
and applied in ecology (Ordoñez et al., 2010; Wright et al.,
2005b), but using these relationships in combination with ob-
servational trait data to calibrate trait variation and imple-
ment these relationships in DGVMs is novel. Recently, there
are various attempts to implement more (trait) variation in
PFTs or calibrate parameters on observational data. For ex-
ample, Alton (2011) allowed for more variation in a num-
ber of traits in the land surface model JULES-SF via tun-
ing of traits to ranges set by observational data (e.g., eddy-
covariance fluxes, satellite data), but this trait variation was
modeled as stochastic processes. Some trait variation based
on mechanistic principles has been incorporated in O-CN
(Zaehle and Friend, 2010); there trait variation was not the
primary goal, but a means to enable feedbacks in the mod-
eling of nutrient cycles. Some DGVMs also implement the
concept of environmental filtering, like the JeDi-DGVM
(Pavlick et al., 2012). This DGVM models functional diver-
sity by creating a continuum of PFTs or plant growth strate-
gies (PGSs), which are determined by trait trade-offs and
habitat filtering. However, this model does not include mea-
surable traits (Reu et al., 2011) and as such does not allow for
linking traits to observational trait data or evaluation of trait
combinations. Also aDGVM (Scheiter et al., 2013) generates
trait variation, and viable trait combinations are selected and
inherited via species performance. This means that environ-
mental filtering only acts on trait values through the next gen-

eration. aDGVM has not been validated with observational
data, nor does it include trait trade-offs.

In contrast to these approaches, we aim to comprehen-
sively model trait variation in PFTs by identifying multiple
drivers of trait variation and calibrating these relationships on
observational trait data. Our proposed method is correlational
and does not explain mechanistically the adaptation, acclima-
tion or turnover processes behind trait variation (Pavlick et al.
2012). Nor does it fully account for constraints by biotic in-
teractions, trait trade-offs or dispersal limitation on trait val-
ues (similar to most DGVMs). Still, in our opinion, it is an
important and necessary step as it reflects the observed corre-
lation between traits and climatic drivers (Niinemets, 2001;
StPaul et al., 2012; Wright et al., 2005b) as changing with
changing climate conditions. Importantly, it has the advan-
tage that it does identify and quantify multiple abiotic drivers
of trait means and in this way captures a large part of ob-
served trait variation, as shown by the substantialR2

adjustedof
most regressions.

4.3 Implications of incorporating observation-based
trait variation

The observed global mean trait values of natural vegetation
as used in the observed traits simulation strongly deviated
from trait values in the default simulation, indicating a mis-
match between default PFT trait means and means obtained
from natural vegetation. Moreover, either set of constant val-
ues contrasts strongly with the large trait variation observed
in natural vegetation (Fig. 1). While we applied the most
comprehensive database available today, we are aware that
estimates of observed trait variation are still uncertain (Ta-
ble 2) and need to be improved in future applications. Nev-
ertheless, the wide range of observed trait values illustrates
how simulations with constant traits do not reflect natural
trait variation. In contrast, this variation was reflected by the
variable traits simulation where trait variation represented
abiotic assembly processes (Fig. 2).

To investigate the effects of trait variation on vegetation–
climate feedbacks, it was essential to incorporate vegetation
dynamics, to allow trait shifts to alter vegetation distribu-
tion and in this way modulate productivity and climate. In
contrast to the simulations with constant traits (both default
and observed traits simulations), the variable traits simula-
tion enabled enhanced interactions between vegetation and
climate to occur, via shifting traits. Such changes in traits did
not have a direct effect on climate, but propagated indirectly
to climate by modifying different plant properties and fluxes
(see Supplement S2 for these pathways). These trait–climate
interactions ultimately resulted in more spatial variation in
dominant vegetation compared to the other two simulations.
As such, predicted vegetation distribution is more a result of
temporal dynamics in vegetation properties than is the case in
the other simulations where these vegetation properties were
prescribed.
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In the current model setup, direct and indirect effects (via
climate, changes in vegetation properties or distribution) of
traits are not easily disentangled, which makes it difficult to
pinpoint how and to what degree traits directly modulated
model output. Our main aim however, is to identify the in-
tegrated impact of trait variation on model behavior via veg-
etation responses and feedbacks with climate. So, we were
more interested in whether and to what extent trait varia-
tion alters model performance, than to know the exact path-
ways, as we acknowledged in advance this is difficult with a
coupled model setup. Offline simulations with prescribed cli-
mate could help to reduce the number of possible variables
causing the changes and may clarify some patterns. However,
for our model, such offline simulations were for technical
reasons not yet feasible.

Provided the strong effect exerted by climate on traits, ma-
jor differences among the simulations in predicted vegeta-
tion distribution and productivity were expected, the latter
especially when parameters that affect assimilation rate are
concerned, as sensitivity analyses of DGVMs have shown
(White et al., 2000; Zaehle et al., 2005). Indeed, for the ob-
served traits simulation and variable traits simulation, this re-
sulted in large differences in the new equilibrium state, both
compared to the default and to each other. Not only were
vegetation properties affected, but also climate changed and
mean temperatures were altered by up to more than 1◦C.
This confirms that JSBACH (and other DGVMs), are quite
sensitive to changes in a few key parameters and this may
cast some doubts on the reliability and predictive power of
DGVMs in general.

As the simulations in this study provide equilibrium states,
and as such do not necessarily correspond to current climate
or vegetation composition, model comparisons with obser-
vational data must be interpreted with care, although it does
provide insights in the realism of the simulations. DGVMs
are parameterized to produce approximately realistic results,
and therefore our simulations were not expected to approach
observations better than the default simulation. Even though
the variable traits simulations produced high GPP for trop-
ical areas, its biomass estimates and vegetation distribution
more closely resembled observational data than the default
simulation.

The large differences in model output and the mismatch
between default trait values in the model and observed trait
variation in nature demonstrate that – besides a correct rep-
resentation of plant physiology (e.g., photosynthesis, transpi-
ration) – integration of ecological theory will be a step for-
ward to help improve vegetation representation in DGVMs
and ESMs. Allowing for variable vegetation responses to cli-
mate and soil will have important consequences for predic-
tions by vegetation models, for vegetation distribution and
productivity as well as for global current and future climate.
A model intercomparison with this approach under elevated
CO2 projections, for which large uncertainties in predictions

by current DGVMs exist (Friedlingstein et al., 2006; Sitch et
al., 2008), should therefore be one of the next steps.

5 Conclusions

In this study we identified the impacts of modeling climate-
driven trait variation in PFTs, calibrated on observational
data, on JSBACH model behavior. The current mismatch of
constant trait values in JSBACH with observed natural trait
variation and the impact of incorporation of trait variation on
model behavior with respect to vegetation distribution, pro-
ductivity and global climate together emphasize the need for
implementation of more observation-based trait variation and
concomitant ecological concepts. The suggested approach,
based on such data and concepts, reflects vegetation accli-
mation and adaptation to the environment, and will help en-
able more reliable modeling of vegetation behavior under un-
known climates.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
5497/2013/bg-10-5497-2013-supplement.pdf.
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F. J., Neill, D. A., Silva, N., Prieto, A., Rudas, A., Silviera, M.,
Vieira, I. C. G., Lopez-Gonzalez, G., Malhi, Y., Phillips, O. L.,
and Lloyd, J.: Basin-wide variations in foliar properties of Ama-
zonian forest: phylogeny, soils and climate, Biogeosciences, 6,
2677–2708, doi:10.5194/bg-6-2677-2009, 2009.

Freschet, G. T., Dias, A. T. C., Ackerly, D. D., Aerts, R., van Bode-
gom, P. M., Cornwell, W. K., Dong, M., Kurokawa, H., Liu,
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