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Abstract. In many current dynamic global vegetation mod- ical concepts, allows more variation in vegetation responses

els (DGVMs), including those incorporated into Earth sys-in DGVMs and as such is likely to enable more reliable pro-

tem models (ESMs), terrestrial vegetation is represented byections in unknown climates.

a small number of plant functional types (PFTs), each with

fixed properties irrespective of their predicted occurrence.

This contrasts with natural vegetation, in which many plant

traits vary systematically along geographic and environmen-l Introduction

tal gradients. In the JSBACH DGVM, which is part of the

MPI-ESM, we allowed three traits (specific leaf area (SLA), Terrestrial vegetation plays a pivotal role in land—atmosphere

maximum carboxylation rate at 2& (Vcmaxs) and maxi-  interactions, modifying carbon, water and heat fluxes via bio-

mum electron transport rate at 25 (Jmaxs)) to vary within -~ chemical processes such as photosynthesis and respiration or

PFTs via trait—climate relationships based on a large traitvia biophysical vegetation properties such as stomatal con-

database. Thdzgd.usted of these relationships were up to ductance and albedo. Therefore, a correct representation of

0.83 and 0.71 for Vcmax and Jmays, respectively. For  terrestrial vegetation and its dynamics in Earth system mod-

SLA, more variance remained unexplained, with a maximumels (ESMs) is essential, especially for future climate projec-

RédjustedOfOAO- Compared to the default simulation, allow- tions. In these models, vegetation can be simulated by dy-

ing trait variation within PFTs resulted in gross primary pro- namic global vegetation models (DGVMs), which integrate

ductivity differences of up to 50 % in the tropics, #1035 % vegetation dynamics with land surface models. They are de-

different dominant vegetation cover, and a closer match withveloped to predict vegetation distribution and fluxes of en-

a natural vegetation map. The discrepancy between defaulrgy, water and carbon under past, current and future climate

trait values and natural trait variation, combined with the regimes. As such, they allow analysis of transient vegetation

substantial changes in simulated vegetation properties, toresponses and feedbacks to climate (Foley et al., 1998; Pren-

gether emphasize that incorporating climate-driven trait vari-tice et al. 2007).

ation, calibrated on observational data and based on ecolog- Compared to earlier models, vegetation dynamics and in-
teractions between the biosphere and atmosphere have been
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much improved over the past decade, although many issuespitation) constrain the range of potential species and re-
still need to be resolved (Quillet et al., 2010). One of theselated trait values in a given habitat. For many traits, such as
issues is the way in which plant functional types (PFTs) specific leaf area, leaf nitrogen and wood density, this con-
are used to represent vegetation. PFTs are classes of platitbutes to trait convergence within communities, prevailing
species with presumably similar roles in an ecosystem, reever trait divergence (Freschet et al., 2011; Swenson and En-
sponding in a comparable manner to environmental con-quist, 2007) and resulting in global relationships between
ditions like water and nutrient availability (Lavorel et al., community trait means and climatic drivers. Community trait
1997). They are defined by a combination of attributes suchmeans match closely to the model resolution of DGVMs,
as plant growth form (e.g., trees, shrubs, grasses, herbs), phgiven that the majority of the models provide a mean value
nology (evergreen, raingreen, summergreen) and bioclimatiof a trait for a PFT (in a given grid cell). By identifying the
tolerances (e.g., minimum temperature requirements). Noenvironmental drivers of variation in community trait means,
tably, most current PFT classifications use constant parammultiple causes of variation are determined and the observed
eter values for some key plant traits, i.e., plant properties thahatural trait variation can be modeled with a high level of
reflect the way plants cope with their environment (Violle accuracy.
et al., 2007). Using constant plant traits in PFTs has seri- The aim of this study is thus to model climate-driven
ous limitations (Ordiez et al., 2009; Van Bodegom et al., trait variation within PFTs, determined as comprehensively
2012), as such constant values contrast with observed trads possible from observations, and to identify the impacts
variation (Ackerly and Cornwell, 2007; Freschet et al., 2011;through vegetation responses and vegetation—atmosphere
Westoby et al., 2002), therefore not accounting for local en-feedbacks on DGVM model behavior. So far, observational
vironmental constraints. Furthermore, global trait databaserait data have been used to derive mean parameter values and
analyses have shown that the variation in plant traits is largeincertainties for PFTs in the context of different vegetation
within PFTs and often even greater than the difference inmodels (Kattge et al., 2009; Ziehn et al., 2011), but this study
means among PFTs (Laughlin et al., 2010; Wright et al.,provides a proof of concept to predict mean parameter values
2005a). Even though PFTs may capture a significant part oper PFT for each individual grid cell, based on a systematic
the global plant trait variation, a large part (for some traits upanalysis of observed trait—climate relationships using a large
to 75 %) may still be unexplained (Kattge et al., 2011) and isobservational trait database.
thus not represented in current DGVMSs. The trait—climate relationships were implemented in the
Given that plants can adjust to the environment viaJSBACH DGVM, which is part of the Max Planck Institute
changes in traits, and that such changes influence ecosystefarth System Model (MPI-ESM) (Brovkin et al., 2009; Rad-
functioning (Diaz et al., 2004; Lavorel and Garnier, 2002), datz et al., 2007; Roeckner et al., 2003) and is used in the
implementing these trait-driven interactions within PFTs of context of ESMs and carbon cycle model intercomparisons
DGVMs is highly relevant. By simulating variation in plant (Friedlingstein et al., 2006). We simulate variation in three
trait responses, it is better possible to quantify plant adap-originally constant and PFT-specific key leaf traits in JS-
tation to climate and to account for plant—-atmosphere feedBACH, for which sufficient georeferenced observational data
backs in DGVMs. Indeed, the limitations of inflexible PFTs could be selected to calibrate the traits. These traits were spe-
is increasingly acknowledged by modelers and several ateific leaf area (SLA), maximum carboxylation rate at a refer-
tempts to allow for more (trait) variation within PFTs can ence temperature of 2& (Vcmaxs) and maximum electron
be found in, for example, JeDi-DGVM (Pavlick et al., 2012) transport rate at 25C (Jmays). To determine relationships
or aDGVM (Scheiter et al.,, 2013). However, none of the between these three traits and climatic drivers for each PFT,
approaches so far tried to maximally include trait varia- community means of trait values from the TRY global plant
tion based on observational trait data and capture multiplerait database (Kattge et al., 2011) were related to global cli-
sources of this variation by relating trait data to environmen-matic data. Based on these relationships between traits and
tal variables. This inclusion may be possible by making useclimate, SLA, Vcmays and Jmays were reparameterized
of the relationship between traits and multiple environmen-for each grid cell on a yearly basis, depending on the local
tal drivers as occurring at both regional and global scalesglimatic conditions in a grid cell. Compared to the default
for instance in relation to temperature, water and nutrientmodel, this enabled enhanced feedbacks between plants and
availability or disturbances (Ordiez et al., 2009; Van Om- environment, as traits within natural PFTs could vary dynam-
men Kloeke et al., 2012; Wright et al., 2005b). Such rela-ically in space and time. A simulation with variable traits is
tionships between environmental conditions and traits carcompared for trait distribution, productivity and vegetation
potentially be understood via ecological assembly theorydistribution to a default simulation with the original trait val-
which describes the processes that determine species asseuoes of the model, and to an additional simulation with con-
blages (Cornwell and Ackerly, 2009; Cornwell et al., 2006; stant, but observation-based, trait values.
Gotzenberger et al., 2012). An important abiotic assembly As DGVMs are already parameterized to produce ap-
process is habitat filtering (Keddy, 1992), which describesproximate realistic results, our variable traits simulation
how local environmental drivers (e.g., soil fertility or pre- will not necessarily approach reality better than the default
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simulation. Therefore, in this paper the focus lies on sim-Jmax values at the actual temperature. These traits are part
ulation intercomparisons to evaluate the impact of incorpo-of the photosynthesis routine in JSBACH, which is modeled
rating climate-driven trait variation. The simulations are not following Farquhar et al. (1980) for C3 plants and Collatz et
meant to represent current vegetation or climate states, budl. (1992) for C4 plants (see Supplement S1 for a more de-
were run into equilibrium states with their own internal cli- tailed description with equations of the functioning of traits
mate and vegetation composition in order to study the im-in JSBACH). Vcmays also determines the reference dark
pacts of trait variation within PFTs. However, we include respiration at 28C (R 25). Leaf carbon assimilation is the
comparisons with global biomass and gross primary produciowest of carboxylation and electron transport rate (calcu-
tivity (GPP) estimates and potential vegetation distribution tolated from actual Vecmax and Jmax) minus dark respiration,
evaluate the realism of the various simulation results. and scaled to canopy level with the use of the leaf area index
(LAI). Supplement S2 provides a description and a flowchart
with the role of the selected traits in JSBACH processes and
the way variation in these traits might propagate in the model.
Only georeferenced trait observations from field sampling
and field experiments were used and selected from the TRY

Simulations were performed with the ESM of the Max database (Kattge et al., 2011), with additional data for SLA
Planck Institute (MPI-ESM). The model setup consisted of T0M the database by Van Bodegom et al. (2012) and for
the JSBACH DGVM, a land surface model (Raddatz et al., YcM&%s and Jmays from Domingues et al. (2010) (see

2007) with a vegetation dynamics module (Brovkin et al., Table 1 for all references). From these databases, only Vc-

2009), coupled to the atmosphere model ECHAM5 (Roeck-max and Jmax data that could be standardized to a refer-
ner et al., 2003) to allow for full inclusion of vegetation— €NC€ temperature of 2& were used. Most Vcmax and Jmax

atmosphere feedbacks. The model version on spatial resoll/2/ue€s had already been standardized to this temperature via
tion of T63 (approx. 1.875 dividing the world into 18 432 the formulation of the photosynthesis model by Farquhar et

grid cells) with 47 atmospheric layers was used, with atmo-al' (1980) used in the context of JSBACH (Kattge and Knorr,

spheric CQ concentration kept constant at 353.9 ppm. Sea-2007). For other records for which the temperature during

sonal sea surface temperatures and sea ice were prescrib@fasurement was recorded, standardization was done ac-

from a default simulation with the MPI ocean model (MPI- cording to this formulation. For C4 grasses, variation in PEP-
ipe —1y;

OM) (Marsland et al., 2003). Vegetation dynamics were €2S€ C@ specificity (PEP, mmol m? s~*) instead of Jmaps

interactive to allow for vegetation shifts and vegetation—Was determined, following Collatz et al. (1992). Since for

atmosphere feedbacks through trait dynamics. Terrestriat4 9rasses insufficient observational PEP and Vegidata

grid cells contained multiple PFTs, each occupying a cerwere available, these traits were estimated more indirectly

tain fraction, depending on their competitive ability (based < .
on net primary productivity — NPP). This study does not in- Mined PEP and Vcmax based on leaf nitrogen (N) content

clude crops and pastures, but focuses on responses of natuf@"M *) (regressions based on two C4 species). Therefore,
vegetation, represented by eight PFTs. These were tropica(PrC4 grasses, additional information on leaf N was obtained
broadleaved evergreen trees (TrET), tropical broadleaved ddfom the TRY database. , ,

ciduous trees (TrDT), extratropical (both temperate and bo- E@ch trait observation was linked to a PFT based on in-
real) evergreen trees (EXTFET), extratropical deciduous treeformation on growth form (shrub, grass, tree), leaf habit (de-
(ExTrDT), raingreen shrubs (RgSh), cold/deciduous shrub<iduous/evergreen) and photosynthetic pathway (C3/C4) for

(DSh), C3 grasses (C3G) and C4 grasses (C4G). No anthrdghe species involved. The cl@matic domain o_faspecieg (tropi-
pogenic land use or land cover change was simulated. cal, boreal etc.) was determined based on thppgén—Geiger
climate classification (Kottek et al., 2006) and applied to the

2.2 Selected trait and climate data georeferenced observations.

We used PFT-specific community means of traits to match
All PFT-dependent trait parameters in the model for whichthe scale of modeled fluxes most closely, as JSBACH pro-
sufficient georeferenced observational trait data could besides mean values per PFT (in a given grid cell). Commu-
collected were selected. This resulted in selection of 3nity means were weighted by the square root of the number
traits; SLA (n? kg~! carbon), Vemaxs (umolnm2s~1)yand  of observations (data points) per location. This resulted in
Jmaxs (umolnm2s1). SLA is used to determine the 12394 observations for SLA distributed over 2869 species
amount of carbon that can be stored in the green and resenend 1052 (PFT-specific) communities, 761 observations over
carbon pools. In contrast to most DGVMs, SLA is decou- 129 species and 70 communities for Vcrpgand 402 ob-
pled from the phenology routine in JSBACH and therefore servations over 108 species and 56 communities for ggnax
does not play a role in determining productivity. Vcrpgx (see Supplement S3 for a global map with locations of trait
(umolnm?s~1) and Jmaxs (umolm2s-1) are the refer-  data).
ence values at 25C used for calculation of the Vecmax and

2 Materials and methods

2.1 Model description

applying equations from Simioni et al. (2004), who deter-
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Table 1. References for trait data used in this study. from a global 10 min gridded dataset of mean monthly cli-
mate data based on weather stations from the Climatic Re-
Reference SLA  Vcmax Jmaxs search Unit (CRU) (New et al., 2002). Mean annual net short-
Ackerly and Cormnwell (2007) N wave radiation (NSWR, W m?) was calculated based on
Bahn et al. (1999) X distance to sun and percentage sunshine (from CRU) accord-
Cavender-Bares et al. (2006) X ing to Allen et al. (1998) on a global 30 min spatial resolu-
Comelissen et al. (2003) X tion. Mean annual soil moisture was taken from GLEAM, a
gg::i";fz?a? ?2'65326(;04) XX methodology that estimates soil moisture and evapotranspi-
Domingues et al. (2010) X N ration based on remotely sensed data at a global 15 min spa-

tial resolution (SoilMoist, Mm~3 for 1 m depth; Miralles et

al., 2011). Given the available modeled climatic drivers in

JSBACH, soil moisture was the best available estimate of a
drought index. Soil moisture was the only edaphic control of

Kleyer etal. (2008) trait variation, since soil N was not modeled in this version

Kurokawa and Nakashizuka (2008) X !

Kurokawa (unpublished data) X of JSBACH.

Laughlin et al. (2010) To determine trait—climate relationships, we tested all pos-

Leishman (unpublished data) X sible climate combinations in relation to each trait. Regres-

Fyllas et al. (2009)
Garnier et al. (2007)
Kattge et al. (2009)
Kattge et al. (2011)

X X X x X
x
=

x

Louault et al. (2005) X sions with the highest explained variance (highRgt; qied
mi?:;ﬁ'eiig(ég?g) . . were selected, after checking for significance of climatic
Niinemets (2001) x X drivers and distribution of residuals. Table 2 shows for each
Ogaya and Penuelas (2007) X PFT the selected climatic drivers of the best model, as well
Ogaya and Penuelas (2008) X as their directional relationship with the traits (third column),
Orddhez et al. (2010) x and the correspondinggdjusted In case of co-linearity be-
g;;r;?«?\tlefélzcﬁg)gg) f( tween environmental drivers (Pearson’s correlation higher
Reich et al. (2008) x 'than 0.7 or Iowgr thar-0.7), the driver with lowest S|gn|f-
Reich et al. (2009) X icance was omitted. Due to the low number of entries for
Shipley (1995) X Vcmaxes and Jmays, data for the two tropical tree PFTs
Shipley and Vu (2002) x were combined, as well as data for the two shrub PFTs. Even
g\‘;‘vi?;go(‘g'g’y;‘ (unpublished data) y X though we acknowledge that mean trait values for evergreen
van Bodegom et al. (2012) N gnd deC|duc')us'vegetat|0n types will differ in regllty, combm.-
van Bodegom (unpublished data) X ing these will give better estimates than modeling these traits
Vile et al. (2006) X on their few individual data points alone. Due to differences
Weiher (unpublished data) X in other vegetation characteristics, these PFTs will still dif-
Wohlfahrt et al. (1999) X fer in their emergent properties, as the results will show. In
m:gm : Z:: ggggg i total there were eight relationships for SLA and six for both

Vcemaxes and Jmays. These relationships were subsequently
implemented in JSBACH.
In addition, to allow trait calculations to go beyond cli-
2.3 Trait—climate relationships matic regions used in the regressions, but to still maintain
traits within ranges as observed in nature, we applied two
The observed natural variation of SLA, Vcmagand Jmaxs constraints on simulated trait ranges. First of all, predicted
was described for each PFT by the simplest models postraits were constrained to the 2.5-97.5 % quantiles of all indi-
sible, using linear regressions between individual traits andvidual observations within a PFT (instead of the community
multiple observational climatic variables. The derived trait— means). Secondly, for Jmgxand Vcmays an additional
climate relationships likely reflect habitat filtering, which constraint was applied to maintain the strong physiological
commonly leads to trait convergence at community scalescorrelation between them (Medlyn et al., 2002; Wullschleger,
The relationships were implemented in JSBACH to predict1993), keeping Jmax and Vcmays values within the 95 %
traits based on the internally simulated climate. As a con-confidence interval of the linear regression among these two
sequence, in our choice of climate variables, we were conitraits (as determined per PFT). Predicted values outside this
strained by the environmental predictors that are modeled imange were adjusted to the confidence interval border, based
JSBACH. on the shortest distance needed to reach the border. Since
Global climate data on mean annual precipitation (MAP, this version of JSBACH did not simulate N-cycling, soil N
mmyr-1), mean annual relative humidity (Reh, %), mean an-could not be used to parameterize Vcmgeven though N-
nual temperature (MAT,C), and mean temperature of cold- availability is a strong determinant (see references in Kattge
est and warmest montiifin and Tmax, °C) were collected et al., 2009). However, observational data was used to limit
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Table 2. Properties of the selected trait—climate relationships used to parameterize traits.

No. of entries Environmental drivers Razdjustedof Lower and upper

(observations)  of traits? relationships  boundarids
SLA (m? kg~ carbon)
Tropical evergreen trees 69 (933) —MAP, —NSWR, (+int) 0.092 7.41, 48.29
Tropical deciduous trees 38 (129) —Tmin, —MAP, +Reh 0.30 12.07, 49.54
Extratropical evergreen trébs 363 (308) +MAT, +MAP,—NSWR 0.29 4.58, 42.46
Extratropical deciduous trebs 177 (282) —Tmax, —Reh, (+int) 0.056 6.24, 90.50
Raingreen shrubs 178 (696) —MAP, —NSWR 0.26 3.66, 72.69
Cold/deciduous shrubs 39 (111) +MAT 0.13 17.82,61.53
C3 grasses 153 (309) Tiax, +Reh 0.12 3.08, 96.58
C4 grasses 35(101) —NSWR 0.40 5.41,72.19
Vemaxps (umol 2 s~1)
Tropical evergreen trees & 9 (85) +MAT, +MAR-{nt) 0.83 18.0, 67.7
Tropical deciduous treés
Extratropical evergreen trees 15 (284) +MATMAP, +Reh 0.28 18.4,179.9
Extratropical deciduous trees 19 (273) —Reh,—SoilMoist, (+int)  0.34 18.2,130.0
Raingreen shrubs & 15 (75) —MAP, —Reh, (+int) 0.45 25.1,129.1
Cold/deciduous shruBs
C3 grasses 4 (15) —MAT 0.37 24.4,118.4
C4 grasses 8(29) +NSWR 0.51 21.7,46.3
Jmaxs (umol m2 s~1) — for C4 grasses: PEP (mmolths—1)
Tropical evergreen trees & 9 (51) +MAT, +MAR-{nt) 0.68 35.8,121.6
Tropical deciduous treés
Extratropical evergreen trees 12 (113) Triin, —MAP 0.28 57.5, 329.6
Extratropical deciduous tre®s 10 (135) Hmin» *NSWR, (int)/ 0.71/0.44 41.1, 206.9

—MAP, —SoilMoist, (+int)

Raingreen shrubs & 13 (59) +MAR SoilMoist 0.64 65.4,223.5
Cold/deciduous shruBs
C3 grasses 4 (15) —MAT 0.63 42.8, 230.6
C4 grasses 8(29) +NSWR 0.51 92.3, 465.4

1 Number of entries available for the regression analysis, in parentheses the number of observations for these entries.

2 Environmental drivers are mean annual temperature (MAT), mean temperature of coldest and warmestppatit {max), mean annual

precipitation (MAP), mean annual relative humidity (Reh), soil moisture (SoilMoist) and net shortwave radiation (NWSR). + = positive relationship,

— =negative relationship, and (int) = interaction effect between two drivers.

3 Lower and upper boundaries of the predicted traits in the variable traits simulation, based on the 2.5 and 97.5 quantiles of all individual observations
within PFTs.

4 Extratropical trees include both temperate and boreal trees.

5 For Vemadps and Jmayss, tropical trees have the same relationships with climatic drivers, as they were combined due to low number of entries. The
same holds for shrubs.

6 As the best model covered a relatively small climatic range, an additional regression model was applied to these areas that fell outside the climatic
range of the first model.

the above two constraints on Vcmgxin this way indirectly
incorporating N-limitations via observed Vcmawalues.

fault simulation”, (2) an “observed traits simulation” again
with constant values for SLA, Vcmaxand Jmaxys per PFT,

but based on observational data only (the weighted commu-
nity means for each PFT, from here on called “observed
global means”), and (3) a “variable traits simulation” in

Three different scenarios were performed: (1) a simulationwhich traits were allowed to vary depending on local climatic
containing the default parameterization of JSBACH with conditions. In the latter simulation, at the beginning of every
constant parameter values per PFT, based on Raddatz ¥gar. each of the three key traits was reparameterized for each
al. (2007) and Kattge et al. (2009), and adapted to approxPFT in every terrestrial grid cell of the world, depending on
imate realistic vegetation functioning within the vegetation the local simulated climatic conditions in each grid cell. The
dynamics module (Brovkin et al., 2009); hereafter called “de-0bserved traits simulation was performed in order to separate

2.4 Simulation setups

www.biogeosciences.net/10/5497/2013/ Biogeosciences, 10, 152013
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the effects of replacing default trait constants by observationtional data (eddy covariance fluxes) with diagnostic models
based constants from the effects of adding trait variation into approximate GPP.
the model. As this simulation mainly serves as a control, we Simulated biomass was compared to estimates from
will focus our results and discussion on the variable traitsRobinson (2007), which include adjusted estimates of be-
simulation. lowground (root) carbon in plant biomass. Estimates based
To get vegetation into quasi-equilibrium with the simu- on root/shoot quotients from Mokany et al. (2006) and Grace
lated climate (but with C@concentration fixed), the coupled et al. (2006) were used. As we simulated only natural veg-
model (JSBACH/ECHAMS5) was run for 150 years with veg- etation and the estimates of Robinson (2007) are current
etation dynamics in an accelerated mode (i.e., vegetation wasstimates including land use change and crops, comparing
simulated 3 times for each year of simulated climate). Next,global total biomass would result in an overestimation by
to get the slow soil carbon pools into equilibrium, the uncou- our simulations. Therefore, comparisons were made ger m
pled carbon model of JISBACH (“CBALANCE”") was run for per (aggregated) PFT. JSBACH does not have a separate
1500yr. The coupled model was continued for 160 yr with savanna-like PFT. Therefore, tropical forests and C4 grass-
updated carbon pools (with the vegetation module in an aclands were averaged and compared with averages of tropi-
celerated mode for the first 50 yr), until carbon pools and veg-cal forests and savanna. Furthermore, extratropical trees were
etation cover had reached equilibrium. The last 10yr wereaveraged and compared with averaged temperate and boreal
averaged and used for further analysis, which in this setugrees of Robinson (2007). Mediterranean shrubs and tundra
(with prescribed seasonal sea surface temperatures) was sufiere omitted as there were no comparable PFTs in JSBACH.
ficient to account for the interannual climate variation. For the tropics, an additional comparison of biomass was
made to Saatchi et al. (2011).
2.5 Data comparison

Model performance was investigated by comparing vegetas Results
tion distribution, GPP and biomass of the simulations with
observations. Vegetation distribution of the dominant PFT3.1 Mismatch between observed trait data and default
(Fig. 5) was compared to the potential (natural) vegetation trait settings
map of Ramankutty and Foley (1999), which in part is used
to initialize simulations in JSBACH. The mismatch in spa- Fig. 1 shows the observed trait ranges as collected from
tial resolution (the potential vegetation maps is at a globalthe databases. Grey diamonds reflect the PFT-specific de-
30 min spatial resolution) was solved by counting the num-fault trait values in JISBACH and black circles indicate the
ber of PFTs according to Ramankutty and Foley (1999) thatPFT-specific global means based on the observed commu-
were present in each JSBACH grid cell. The PFT with the nity means. These observed global means were used to re-
highest occurrence was compared with the simulated domplace the default trait values in the observed traits simulation.
inant PFT of JSBACH. To match the PFT classifications, For all three traits, the default trait values deviated strongly
aggregated PFTs were constructed (Supplement Table S6ftom the observed global means. Differences were on av-
and Fig. S6.1), as the PFTs of Ramankutty and Foley (1999¢rage 32.3 % for Vcmax, 26.8 % for Jmax and 17.3%
could not be directly related to those of JSBACH. Temper-for SLA (but for specific PFTs going up to 73.4 %, 57.6 %
ate and boreal evergreen trees were merged to match extraand 35.2 %, respectively). Such mismatch between observa-
ropical evergreen trees in JSBACH. The same was done fotional trait data and default trait values has also been reported
deciduous trees. Shrubs (marginal in JSBACH) were mergedby Kattge et al. (2011), who showed how PFT-specific con-
into a single PFT (“shrubs”) in both JISBACH and the veg- stant SLA values in DGVMs often differ from the means
etation map. As savannas consist of grasslands and wooaf observed data, and in some cases are at the low end of
lands, matches between savannas and C4 grasses or tropit¢ae observed data distribution. In JISBACH, SLA default val-
broadleaved deciduous trees were both classified as correaies were always lower than the observed global means, ex-
Tundra and mixed forests were omitted from the comparisorcept for the tropical broadleaved deciduous trees, but they
as no equivalent PFT was available in JSBACH. Model per-almost all fell within the 25% quartiles of the observed
formance was determined with Cohen’s kappa (Cohen, range of SLA, except for deciduous shrubs. However, for
1960), which is the proportion of agreement between veg-both Vmaxs and Jmaxs, default values fell outside the 25 %
etation maps, while accounting for chance agreement. Gridjuartiles for more than half of the PFTs (five out of eight
cells with sea or ice as the dominant cover were not takerPFTs for both), and in some cases even outside the minimum
into account, and neither were cases in which more tharand maximum values (tropical deciduous trees, C4 grasses
1 PFT shared the highest occurrence (i.e., equal number aind C3 grasses for Vcmaxand Jmays, and additionally
grid cells). This resulted in a comparison of 2819 grid cells. extratropical evergreen trees for JrpgxIn contrast to SLA,
Latitudinal patterns of median GPP were compared withthere was no clear direction of the trait differences for either
data taken from Beer et al. (2010), who combined observaVcmaxes or Jmaxs: half of the default values were lower
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than the observed global means (tropical deciduous trees, ex g
tratropical evergreen trees, raingreen shrubs and C4 grasses 5 ° E
the other half higher. These differences point to a strong mis- =, | ¢ Qoenesgonal means -
match between default trait parameters in JISBACH with ob- 8 |
served natural trait means. : ) §
Figure 1 also shows that within each PFT large trait
variation was apparent, as well as large overlap in trait
ranges among PFTs, which corresponds to other trait anal-
ysis (Laughlin et al., 2010; Wright et al., 2005a). This was
most manifested for SLA, where all PFTs overlapped with <
each other. For Vcmay, the only PFTs of which the 95 %
confidence interval did not overlap were both tropical ever- (b)
green trees and C4 grasses with C3 grasses, and fopgdmax -
both tropical trees and deciduous shrubs with C3 grasses.
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3.2 Simulated trait variation based on climatic drivers

Vemaxys (pmol m 2g
%
e

The observed variation in PFT-specific community means (as .
given by Table 1) was related to environmental drivers by ap- — - .
plying multiple regression. Table 2 (third column) presents o/ - ¢
for each trait and each PFT the selected climatic drivers usec
in the regressions and their directional relationship with the (c) B
traits. All regressions were significant, except for C3 grasses :
for Vecmaxes and for Jmaxs. Although the selected environ-
mental drivers differed among PFTs, NSWR and MAP were
most frequently selected as drivers for SLA, as were MAP,
MAT and RH for Vcmaxs, and MAP for Jmaxs. Rgdjusted _ % . é K
was up to 0.83 for Vemay and 0.71 for Imaps. For SLA, =R - ; — ]
more variation remained unexplained, with a maximum value % @ - =
of 0.40 1‘orR62ldjusted

Fig. 2 presents the predicted trait ranges in JSBACH, as TET  TDT EXWET EXTIDT RgSh  Dsh  C3G  C4G
calculated by applying the regressions on simulated climate RE:
n JSBA,CH' As in Fig. 1, grey diamonds and black cir- Fig. 1. Observed trait ranges of PFT-specific community mega)s:
cles again represent default trait values and observed globaj| o (m2 kg1 carbon),(b) Vemaxs (Lmol m~2s-1), (c) Imaves

means. For each grid cell, only simulated trait values of (umolm2s-1). For C4 grasses, PEPcase £&pecificity (PEP)
the dominant PFTs are selected to prevent trait values ofn mmolm2s-1is modeled. Box plots show the median (mid-
marginal PFTs with almost no ecosystem impact to obscurelle line), the 25% and 75% quartiles (hinges), the outer value
trait ranges most important for model output. Raingreenwithin the 1.5"interquartile range (whiskers) and outliers (open
shrubs were almost never dominant, and predicted variatiofircles). Grey diamonds are trait values used in the default simu-
was low, while deciduous shrubs were never dominant. lation, black circles are observed global means used in the observed
For all three traits, a strong mismatch of default traits with traits simulation anq therefore do not match the medians in the pox
the simulated trait variation was apparent: for SLA default plots. PFTs are tropical broadleaved evergreen trees (TrET), tropical

. . . broadleaved deciduous trees (|I’D I ), extratropical (bOth temperate
—759 -
values (grey diamo IdS) fell (at Ieast) outside the 25-75% in nd boreal) evergreen trees (EXTIET), extratropical deciduous trees

terquartile range in four PFTs (vs. one in the observed data)(ExTrDT)' raingreen shrubs (RgSh), cold/deciduous shrubs (DSh),
and for Vcmangs and Jmays for every PFT. C3 grasses (C3G) and C4 grasses (C4G).

In contrast to the default and observed trait simulation,
where PFTs had one constant value per trait, a large climate-
driven trait range was predicted for the variable traits simu-
lation. The higher SLA of deciduous versus evergreen treegratropical deciduous trees and C3 grasses for Vegand
observed in natural vegetation was reflected in the simulatedmas), simulated trait variation for Vcmay and Jmaxs
SLA ranges. As for the observational trait data (Fig. 1), there(Fig. 2) was larger than observed variation (Fig. 1). Predicted
was large overlap in predicted trait ranges among PFTs asraits may have fallen outside the ranges of observed varia-
well (Fig. 2), particularly for Vemaxs and Jmaxs. Simu-  tion when climatic ranges as simulated in JSBACH exceeded
lated SLA ranges were narrower and overlapped less amongbservational climate ranges used to derive the trait—climate
PFTs compared to observed ranges. For some PFTs (e.g., eselationships. However, this did not result in unrealistic trait
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3.3 Inclusion of trait variation alters predicted global
patterns of productivity

100
L

(a)

¢ Default values
1 4 @ Observed global means

The observed traits and variable traits simulation showed a
— : similar pattern of median GPP along the latitudinal gradi-
; ent compared to the default simulation (Fig. 3), but in ab-
3 ¢ 8 (- solute values GPP was much higher in the variable traits

‘ % == -+ simulation in the geographic zone between aboit3@nd
30° N (~50% around the equator and twice as much be-
o tween 25 and 30N). GPP of the observed traits simulation
also reached higher values (up to twice as much) as the de-
(b) - fault between 25 and 3W, but had lower values than the

‘ variable traits simulation between?8 and 18 N, and high-

EI est values (64—67 %) at higher latitudes.

SUA kg st
-t
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T NPP differences between 38 and 30N were less pro-
0 found than for GPP, showing that trait variation affects global
2 ' patterns of GPP and NPP in different ways. Again, at higher
: E latitudes, the observed traits simulation predicted highest
i 4 5—e— L — NPP. For the variable traits simulation, the reduction from
o ¢ gross to net primary productivity around the tropics is much
stronger than for either other simulation, resulting in smaller
© . NPP differences among simulations compared to GPP dif-
8 5 ferences (even though differences may still go up to 75 % be-
£ tween 25 and 30N for both observed and variable traits sim-
. ulations). The large reduction in differences between NPP
‘ S and GPP among simulations cannot solely be attributed to
E PS . ¢ 4 a higher respiration of PFTs due to higher Vcmgaxsee
— Fy : E — Fig. 4), and is mainly a consequence of net productivity ex-
% 2 S ceeding the maximum sizes of the different carbon pools
(e.g., leaves, wood, reserves) as defined in JSBACH, result-
TET  TDT  EXVET  EXIDT  Rgsh | C3G .- ing in respiration of excess carbon. This loss of excess carbon
PFT is visible in the tropical regions for all simulations, but for
Fig. 2. Simulated trait ranges of the dominant PFTs of each grid the variable traits simulati.o.n this resulted in. a proportionally
cell in the variable traits simulatiorta) SLA (m?kg~1 carbon), larger amount of p,rOdUCt'V'ty rgmoved: This was enhanced
(b) Vemaves (mol m2s~1), (c) JImavs (umolm2s~1). Forca Dy the higher SLA in these regions, which partly determines
grasses, PEPcase €6pecificity (PEP, in mmolm2s~1) instead  the amount of carbon stored in the living parts of the plants,
of Jmaxs is modeled. Box plots and symbols as in Fig. 1. PFTs consisting of leaves, fine roots and sapwood.
as in Fig. 1 but without cold/deciduous shrubs (DSh), because this These results show that, while reproducing global patterns
PFT was never dominant. Observed global means are added agawf productivity, incorporating global trait variation in the
for illustrative purposes. Note that direct comparison with simulatedmodel leads to strong changes in predicted productivity. Even
data is not appropriate here as the range .of climatic conditions though GPP is not only determined by the photosynthetic pa-
not overlap for observed and simulated trait data. rameters (Vcmax and Jmaxs), as it is affected by, for ex-
ample, water availability as well, on average, shifts in GPP

- . . ere generally accompanied by shifts in similar directions
values, as limits were set on maximum trait values base . .
S . : y mean Vcmay and Jmays (weighted by fractional cov-
on individual observations. Furthermore, we implemented a : . X
. - erage of PFTs), compared to the default simulation (Fig. 4).
trade-off between Vcmax and Jmaxs, keeping them within - .
i . Lo Exceptions occurred, as for example, the drop in Vcgax
realistic ranges (even outside climatic ranges used for deter-

mination of the regressions). For SLA, such trade-off was notand Jmays above 40N did not lead to a coinciding drop in

taken into account, but unrealistic SLA values were not veryGPP' As expected, as SLA does not play a role in productiv-

likely as SLA was based on a much larger dataset, coverin%t{:hanges in GPP could not be related to similar shifts in

a very large range of climatic conditions.
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Fig. 3. Latitudinal gradient of median GPP and NPP (gram car- §
bon ni2yr—1) for default simulation (DEFAULT), observed traits =
simulation (OBS TR) and variable traits simulation (VAR TR), and °
GPP taken from Beer et al. (2010) (BEER). 2
Table 3.Dominant PFT coverage (%) of vegetated grid cells for the w; -
three different simulations. = B
£
3o |
% coverage of dominant PFT &
@
Observed  Variable EB1
PFT Default traits traits o
simulation  simulation  simulation w w T w w y y w
-60 -40 -20 0 . 20o 40 60 80
Tropical evergreen trees 23.06 0 12.55 £atitudei()
Tropical deciduous trees 0.024 21.38 7.89 . o . . .
Extratropical evergreen trees 13.64 36.31 21.45 Elg. 4. Latitudinal gradient of meag trzaltlvalues weighted by frac-
Extratropical deciduous trees 14.72 0 8.66 tional cover of the PFT<a) SLA (m“ kg™ carbon),(b) Vcmaxs
Raingreen shrubs 3.66 1.30 0.12  (umolm2s~1), and(c) Jmaws (umol m—2s~1). For Jmays, C4
Cold/deciduous shrubs 0.048 0 0 grasses are left out as PEP instead of Jigéx modeled for this
C3 grasses 24.58 24.50 21.47  PFT. Lines and abbreviations as in Fig. 3.
C4 grasses 4.83 5.19 8.37
Bare surface 15.44 11.32 19.50

cal evergreen trees as the dominant PFT, resulting in less
spatially heterogeneous dominant vegetation. In the variable
traits simulation, these shifts occurred as well (see Fig. 5 and
Table 3). However, in contrast to the observed traits simu-
lation, both changes in dominant tree cover only occurred
in limited areas, which resulted in more spatial variation in
%/egetation in the areas where trees were dominant. The shifts
tfrom tropical evergreen to tropical deciduous trees cannot be

3.4 Major shifts in vegetation distribution

Figure 5 and Table 3 show how the global distribution of
dominant vegetation types as predicted by the simulation
strongly changes when incorporating observed global trai

e e explined by Vs and e Sinc hese vopial PET
: ! m '9 ; Ver \vere parameterized with the same values for these traits. The

. , L )
age I?I a_gn::i cgll, tlhls r(_’;mgedtfroml co:;/g(r;lge of almost 100 fmost profound difference between these tropical PFTs seems
(mostly in tropical regions) to only 30% in some areas aty o w i leaf turnover rate, which is higher for the decidu-

higher latitudes (see Supplement S4 for fractional COVETad% s than for the evergreen trees. As a consequence, tropical

of the dominant P.FTS)'. Pre_dlcted (:Jlommant PFTs .d'ﬁer.eddeciduous trees had somewhat lower leaf area index, which
from the default simulation in 35.4 % of the terrestrial grid meant lower productivity in favorable periods, but also less

cells for the variable traits simulation and in 50.5 % of the carbon loss in more stressful circumstances (’e g., drier peri-
grid cells for the observed traits simulation. ods). In some areas, this could have resulted in a higher total

doI;i;h;n??:?;\éeg;;:SE 2:23:2::82 t;oepr"eciégre]rg\ifrgtrzeesyearly NPP for tropical deciduous trees, thereby outcompet-
' y ing evergreen trees.

ciduous trees in Africa, South America and Australia and
extratropical deciduous trees were replaced by extratropi-
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PFT
O Bare surface B Extra-tropical evergreen trees [ Deciduous shrubs
B Tropical evergreen trees @ Extra-tropical deciduous trees @ C3-grasses
O Tropical deciduous trees B Raingreen shrubs O C4-grasses

Fig. 5. Global distribution of dominant PFT&) Default simulation(b) observed traits simulation arfd) variable traits simulation.
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Another shift in predicted dominant vegetation in the vari-  The differences between the observed traits simulation and
able traits simulation was an increase in C4 grasses (fronvariable traits simulation indicate that by allowing traits to
4.8% in the default simulation to 8.4%). This occurred vary and respond to environmental conditions (as in the vari-
mostly in Africa and Australia at the expense of tropical treesable traits simulation), feedbacks between climate and traits
and raingreen shrubs. This expansion of C4 grasses below thresult in more moderate temperature shifts, showing the sig-
Sahara coincided with higher fractions of burned area, whichnificant effect of adaptive traits on climate.
promoted the expansion of grasses at the cost of trees.

In the variable traits simulation, bare ground increased as8.6 Comparison of model output with observational
the dominant cover type (from 15.4% in the default simu- data
lation to 19.5 %) in the southwest of the United States (and
Mexico), northern Canada and northeast of Siberia at the ex€ohen’sk, indicating the correspondence of the global map
pense of C3 grasses and deciduous trees, resulting in a shiff potential (natural) vegetation of Ramankutty and Foley
of the boreal treeline toward lower latitudes. These shifts(1999) with simulated vegetation distribution, was 0.289,
often coincided with a decrease in Vcmafsee Supple- 0.282 and 0.334 for the default, observed traits and vari-
ment S5), suggesting lower productivity and consequentlyable traits simulations, respectively. These values were some-

less expansion of these PFTs. what lower than the’s of other DGVMs, e.g.¢ = 0.40 for
_ _ . the Lund-Potsdam-Jena DGVM (LPJ) o= 0.42 for LPJ
3.5 Modulation of climate by traits with implementation of plant hydraulic architecture, both

. , . ) . _ with 18 PFTs (Hickler et al., 2006), ar = 0.42 for a con-
Predicted climate differed among simulations. In the vari- gonqus map of multiple DGVMs with 6 PFTs (Cramer et al
able traits simulation enhanced climate—vegetation feed2001)_ However, these models were compared to diﬁerer,n
backs were possible both through changes in traits (Modyegetation maps and had a different number of classes, mak-
ifying PFT properties), as well as through shifts in vege- 4" comparisons difficult. Our simulations with 7 vegetation
tation distribution (see Supplement S2 describing such in|asses performed less well, but this might partly depend on
teractions). However, dlﬁgrences_ in climate c.annot.be '®the chosen vegetation map (Ramankutty and Foley, 1999).
Igted unamplguously to elther traits or vegetation _Sh'ﬁs' ASA low « means that for either simulation, a large proportion
differences in temperature in unvegetated areas like Greenss the grig cells did not match the potential vegetation map
land and Antarctica show, there does not have to be a d'reC(tSupplement Fig. S6.2). However, there is a substantial in-
spatial relation between climate and vegetation. MOreoverg ease in similarity to observed vegetation from the default

some vegetation shifts (compared to the default) do occur iny gpserved traits simulation toward the variable traits sim-
places where climates differ among simulations (e.g., northy,|ation.

ern Canada), whereas in other areas no such effect occurred \jismatches occurred in large parts of the US and Canada

(e.g., in tropical zones). where the simulations predicted mostly C3 grasslands, while
Precipitation differences were local and showed no clear,.ording to the potential vegetation map also forests should
spatial pattern (Fig. 6¢ and d), but in the variable traits andj,q present. The same holds for large parts of Europe. The
observed traits simulations it was drier in Canada, Asia andpotential vegetation map shows less bare ground than any
Australia, as well as in large parts of the Amazon rainforestsgim|ation, resulting in mismatches in the US, but also other
compared to the default simulation. _ parts of the world. Furthermore, almost the whole continent
Compared to the default simulation, in the observed traits¢ pstralia did not correspond to this map; shrubs and sa-

simulation mean annual _surface-air jtemperatures Were Pryanna are dominant according to the map, and even though
foundly higher (over XC) in eastern Siberia, Alaska, the US he models did predict C4 grasses there, it was in different

and Australia, and lower (up to°C) in large parts of EU-  grea5 \Where the default and observed traits simulation had
rope and Russia, South Africa and South America (Fig. 6a)y,,y correspondence with the vegetation map in Africa and
meaning that (at least) temperature is very sensitive t0 pagqih America, the variable traits simulation performed bet-
rameterization of traits. Temperature _d|fferen(?es were I_es§er' mainly with respect to the tropical trees. Even though
profound between default and the variable traits simulationgiterences in performance are small, the variable traits sim-
(Fig. 6b), but still went up to around”C. Changes in temper- - jation matched the potential vegetation map most closely.
ature did not correlate with clear changes in traits or vegeta- Comparing latitudinal patterns of median GPP with es-
tion shifts (e.g., _tree—g_rass shifts), but in the Southern Hemix;ihates from Beer et al. (2010) (thin blue line in Fig. 3),
sphere (Australia, Africa, South America) corresponded t0g4ch simulation produces substantial higher GPP at most lat-

differences in transpiration, where cooler areas coincidedy,qes (on average leading to 2, 2.4 and 2.6 times higher
with higher transpiration. This could be related to the higherpp for the default, observed traits and variable traits sim-

Vemaxs in these areas, resulting in higher GPP and consey|ations, respectively), with the default simulation in gen-

quently an increase in transpiration. eral having the smallest differences. Through the imposed
observation-based variation in Vemgxand Jmaxs in the
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Fig. 6. Difference in mean annual temperatut€} and annual precipitation (mmyt). Observed traits simulation minus default simulation
for (a) temperature ant) precipitation, and variable traits simulation minus default simulatiorffptemperature an¢H) precipitation.

variable traits simulation, GPP particularly in the tropics wasble 4). For extratropical (temperate and boreal) forest
overestimated. As nothing has been changed in the photosyrand temperate grasslands, the default simulation under-
thesis schemes, this probably points to a parameter mismatabstimates carbon in vegetation (7.08kgC%n Both the
in the (default) model, as in the variable traits simulation theobserved traits and variable traits simulation are closer
traits are supposed to be more close to realistic values than i(9.64 and 9.65kgCm?) to the global estimates for
the default model. forests (8.83 kg C m?), although they overestimate biomass.
Chen et al. (2012) suggest that global GPP estimates basdebr temperate grasslands, either simulation underestimates
on remotely sensed LAl are underestimated by 9 % when leabiomass, with the default simulation deviating the least from
clumping is not taken into account, as this would result in anglobal estimates (0.16 vs. 0.67 kg C#), even though dif-
underestimation of the contribution of shaded leaves to GPHerences among simulations are small. Overall, this implies
with the strongest underestimation occurring in the tropics.that of the three simulations, the variable traits simulation is
This implies that the estimates of GPP by Beer et al. (2010)closest to global biomass estimates per PFT per m
might be too low, as remotely sensed LAI (and fAPAR) data The largest differences in GPP were found in the trop-
were used to extrapolate GPP estimates from flux-towers tacal areas. Comparing simulated biomass of the tropical
global maps, and thus the actual differences with our simuzone with estimates of Saatchi et al. (2011), either sim-
lations may be less. Also many other DGVMs show higherulation overestimates biomass in most areas (see Supple-
GPP in the tropical areas than the observed median GPP byent S7), especially in the south of Brazil, and large parts
Beer et al. (2010), and the GPP estimates of the variable traitef southern Africa (areas with dry forests and savannas). In
simulation still do fall within the upper range of GPP predic- general, for either simulation the areas with high biomass
tions by other DGVMs. (> 200 Mg C ha'l) are much more extensive than according
Comparisons of simulated biomass pef per (aggre- to Saatchi et al. (2011). However, it has to be noted that for
gated) PFT with current biomass estimates by Robinsorthese areas with high biomass, the uncertainties in biomass
(2007) show that for the combined tropical trees and sa-estimates of Saatchi et al. (2011) are large, ranging from
vannas the variable traits simulation (13.12kg C¥nmost 25 % to over 50 %, meaning differences might be smaller in
closely matched biomass estimates (13.14 kg@)m(Ta- reality.
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Table 4. Biomass estimates from Robinson (2007) compared to simulated biomass of the three simulations.

Biomass (kg C m2)

Observed Variable
Robinson PFT Biomass JSBACH PFT Default traits traits
(kgCm2) simulation  simulation  simulation
Tropical forest 20.23 Tropical evergreen forest 16.15 14.63 22.07
Savannah & grassland 6.05 Tropical deciduous forest 10.84 17.55 16.96
C4 grasses 0.31 0.29 0.32
Average 13.14 9.10 10.82 13.12
Temperate forest 13.65 Extratropical evergreen forest 5.79 10.96 9.04
Boreal forest 4.01 Extratropical deciduous forest 8.38 8.33 10.25
Average 8.83 7.08 9.64 9.65
Temperate grassland 0.67 C3grasses 0.16 0.13 0.12
4 Discussion trum of Wright et al., 2004), possibly dampening the positive

effect of the other trait and modifying plant performance.
The aim of this study is to identify the impacts of climate- |mplementing trait trade-offs helps to restrict possible trait
driven trait variation within PFTs through vegetation re- combinations or plant responses, especially when simulated
sponses and vegetation—atmosphere feedbacks on DGVMiaits are modeled outside the observational climatic ranges
model behavior. We determined observed trait variationused to derive the trait—climate relationships. However, trade-
within PFTs as comprehensively as possible based on relasffs can only be included if the traits involved are explic-
tionships between measured traits and climate and soil moisitly represented in the model and if they are PFT specific.
ture, representing major assembly processes by the abiotithis complicates including and evaluating the importance
environment. As model intercomparisons have shown thabf trade-offs in DGVMs. In our situation, we took care of
large uncertainties exist in projections of land carbon up-the trade-off among Vcmax and Jmaxs by constraining
take by DGVMs (Cramer et al., 2001; Friedlingstein et al., the values of one trait by the other. Moreover, in JSBACH,
2006, Sitch et al., 2008), incorporation of variation in veg- changes in these traits are coupled to respiration and tran-
etation responses is important to allow more feedbacks bespiration processes as well, likely leading to consistent re-
tween vegetation and climate and to increase plausibility ofsponses. Trade-offs between SLA and other traits were not
model predictions, especially under strong climate changeaccounted for, given the specific way SLA in JSBACH is
Here, we incorporated variation in plant responses based opsed in relation to productivity, independent of LAl and phe-
relationships between observed trait and climate data into th@ology. This decoupling of SLA expresses that early phenol-
JSBACH DGVM, which revealed profound effects on carbon ogy is strongly driven by remobilization of carbon from pre-

fluxes and vegetation distribution. vious year reserves and not from current year productivity.
) ) o Instead, in JSBACH phenology is determined by the envi-

4.1 Challenges of modeling trait variation based on ronmental drivers temperature and soil moisture. Therefore,
trait-climate relationships the commonly observed strong trade-off between SLA and

leaf life span (LLS) (Wright et al., 2004) is not expressed
In our approach, we used trait—climate relationships to de- pan (LLS) (Wrig ) P

. . - _ n JSBACH, in contrast to many other DGVMs. In fact, by
scribe the observed natural trait variation and |mplementeci

h in JISBACH. Th lationships identi d ncorporating environment-driven variation in SLA, the de-
these in H. These relationships identify and capture,,, ing hetween SLA and LLS has been partly diminished
multiple (approximate) drivers of natural trait variation, and

hough f bioti bl Thev i compared to the default model, more closely representing
are thought to reflect abiotic assembly processes. They Int€z 5 plant strategies. Trait trade-offs thus need to be eval-

grate multiple vegetation responses at different temporal angIateol depending on the model formulation
spatial sgales, including gcclimation, adaptation of species updated trait values once per year. This time step is
and species replacementinto a spatially and temporally vary; pajance petween computational efficiency and ecological

ing trait mean. realism. By this approach we avoid evaluating ontogenic im-

Ofne of the |.531:1esfthat rr:ught af;eCF thde r?.“ab'“tﬁ (.)f mode] pacts on trait values and whether environmental impacts dif-
performance s the fact that we derived climate-driven traitgy . ¢ yittarent parts of the growing season, for which cur-

variation for each trait independently, not explicitly account- rently insufficient information is available. Despite presumed

ing for trait trade-offs. The advantage of a changed trait oftendifrerences in plasticity among species and PFTs (although
implies a cost in another trait (e.g., the leaf economics spec-
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we are not aware of studies analyzing this), current analysesration. aDGVM has not been validated with observational
on within-species variation of leaf economics traits (Kattge data, nor does it include trait trade-offs.

et al. 2011; Messier et al. 2010) suggest that all PFTs will In contrast to these approaches, we aim to comprehen-
be sufficiently plastic to adjust their leaf economic traits at sively model trait variation in PFTs by identifying multiple
yearly timescales to the extents forced by year-to-year dif-drivers of trait variation and calibrating these relationships on
ferences in climatic drivers. The selected leaf traits in thisobservational trait data. Our proposed method is correlational
study are rather plastic and can vary within a year (Dubey etand does not explain mechanistically the adaptation, acclima-
al., 2011; Misson et al., 2006). Other traits, like wood traits, tion or turnover processes behind trait variation (Pavlick et al.
will have longer adaptation times than a year, as change2012). Nor does it fully account for constraints by biotic in-
would involve individual or species turnover. SLA may be teractions, trait trade-offs or dispersal limitation on trait val-
somewhat less plastic than the two photosynthetic traits, buties (similar to most DGVMSs). Still, in our opinion, it is an

a yearly reparameterization is reasonable, as leaves of deci@mportant and necessary step as it reflects the observed corre-
uous species are shed every year and vary in relation to erdation between traits and climatic drivers (Niinemets, 2001;
vironmental changes (Ma et al. 2011). The maximum lifes-StPaul et al., 2012; Wright et al., 2005b) as changing with
pan for leaves of evergreen PFTs is three years in JSBACHghanging climate conditions. Importantly, it has the advan-
meaning yearly SLA shifts occur in (on average) a third of tage that it does identify and quantify multiple abiotic drivers
the leaves, resulting in a slight overestimation of SLA varia- of trait means and in this way captures a large part of ob-
tion in evergreens. However, the yearly shift in leaf trait val- served trait variation, as shown by the substam@ustedof

ues may not only reflect acclimation, but genetic adaptationrmost regressions.

and species replacements may also contribute. In contrastto a

mechanistic approach, in our approach the impacts and (urd-3 Implications of incorporating observation-based
known) timescales of those processes leading to trait shifts ~trait variation

do not have to be differentiated. ) )
The observed global mean trait values of natural vegetation

as used in the observed traits simulation strongly deviated
4.2 Implementing variation in PFTs: comparing from trait values in the default simulation, indicating a mis-
approaches match between default PFT trait means and means obtained
from natural vegetation. Moreover, either set of constant val-

Determining trait—climate relationships is broadly accepted€S contrasts strongly with the large trait variation observed

and applied in ecology (Ordiez et al., 2010; Wright et al., in natural vegetation (Fig. 1).. While we applied the most
2005b), but using these relationships in combination with ob-COMPrehensive database available today, we are aware that
servational trait data to calibrate trait variation and imple- estimates of observed trait variation are still uncertain (Ta-

ment these relationships in DGVMs is novel. Recently, thereP!€ 2) and need to be improved in future applications. Nev-
are various attempts to implement more (trait) variation in ertheless, the wide range of observed trait values illustrates

PFTs or calibrate parameters on observational data. For e10W Simulations with constant traits do not reflect natural
ample, Alton (2011) allowed for more variation in a hum- tra|F var|at|op. In. contrgst, this varlatl_on wgs_reflected by the
ber of traits in the land surface model JULES-SF via tun-Variable traits simulation where trait variation represented
ing of traits to ranges set by observational data (e.g., eddy@Piotic assembly processes (Fig. 2). _
covariance fluxes, satellite data), but this trait variation was 10 investigate the effects of trait variation on vegetation-—
modeled as stochastic processes. Some trait variation bas&imate feedbacks, it was essential to incorporate vegetation
on mechanistic principles has been incorporated in O_C,\gynam|c§, to _allow trait shifts to alter.v.egetatlon. distribu-
(Zaehle and Friend, 2010); there trait variation was not thelion and in this way modulate productivity and climate. In
primary goal, but a means to enable feedbacks in the mogcontrast to the simulations with constant traits (both default

eling of nutrient cycles. Some DGVMs also implement the and observed traits simulations), the variable traits simula-
concept of environmental filtering, like the JeDi-DGVM tion enabled enhanced interactions between vegetation and

(Pavlick et al., 2012). This DGVM models functional diver- climate to occur, via shifting traits. Such changes in traits did
sity by creating a continuum of PFTs or plant growth strate-N0t have a direct effect on climate, but propagated indirectly
gies (PGSs), which are determined by trait trade-offs and© climate by modifying different plant properties and fluxes
habitat filtering. However, this model does not include mea-(S€€ Supplement S2 for these pathways). These trait—climate

surable traits (Reu et al., 2011) and as such does not allow fdhteractions ultimately resulted in more spatial variation in
linking traits to observational trait data or evaluation of trajt dominant vegetation compared to the other two simulations.

combinations. Also aDGVM (Scheiter et al., 2013) generateS Such, predicted vegetation distribution is more a result of
trait variation, and viable trait combinations are selected and®mporal dynamics in vegetation properties thanis the case in

inherited via species performance. This means that environth€ Other simulations where these vegetation properties were
mental filtering only acts on trait values through the next gen-Prescribed.
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In the current model setup, direct and indirect effects (viaby current DGVMs exist (Friedlingstein et al., 2006; Sitch et
climate, changes in vegetation properties or distribution) ofal., 2008), should therefore be one of the next steps.
traits are not easily disentangled, which makes it difficult to
pinpoint how and to what degree traits directly modulated
model output. Our main aim however, is to identify the in-
tegrated impact of trait variation on model behavior via veg-

etation responses and feedbacks with climate. So, we WerGriven trait variation in PFTs, calibrated on observational

tmore I;nterestzdl n vx;hether an?hto \t/vhst exttehnt trait tva“t":data, on JSBACH model behavior. The current mismatch of
lon afters modet per ormange, anto npvy ggxac pa ‘constant trait values in JSBACH with observed natural trait
ways, as we acknowledged in advance this is difficult with a

. . . i . variation and the impact of incorporation of trait variation on
coupled model setup. Offline simulations with prescribed cli- model behavior with respect to vegetation distribution, pro-
: ) %Iuctivity and global climate together emphasize the need for
causing the changes anq may cIarn‘){ some patterns. Howevefmplementation of more observation-based trait variation and
for our model, such offline simulations were for technical concomitant ecological concepts. The suggested approach,

reison%ngtt%/et ftea5|blef.r ¢ ted by climat rait based on such data and concepts, reflects vegetation accli-
rovided the strong etiect exerted by climate on traits, Ma-., »40n and adaptation to the environment, and will help en-

jor d|ffergncgs among the S|_mulat|ons in predicted Vegeta_able more reliable modeling of vegetation behavior under un-
tion distribution and productivity were expected, the latter

) S known climates.
especially when parameters that affect assimilation rate are

concerned, as sensitivity analyses of DGVMs have shown

(White et al., 2000; Zaehle et al., 2005). Indeed, for the ob-Supplementary material related to this article is

served traits simulation and variable traits simulation, this re-available online at: http://www.biogeosciences.net/10/
sulted in large differences in the new equilibrium state, both5497/2013/bg-10-5497-2013-supplement.pdf

compared to the default and to each other. Not only were

vegetation properties affected, but also climate changed and

mean temperatures were altered by up to more tha. 1 _ _

This confirms that JSSBACH (and other DGVMs), are quite Acknowledgerner.]tsThls study ha.s. been financed by the Nether-
sensitive to changes in a few key parameters and this ma@rIOIS Organisation for Scientific Research (NWO), Theme

cast some doubts on the reliability and predictive power of ustainable Earth Research (project number TKS09-03). The
1e dou 1ability and predictive POWer Of, ihors are grateful to TERRABITES COST Action ES0805 for
DGVMs in general.
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The large differences in model output and the mismatch
between default trait values in the model and observed traiReferences
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resentation of plant physiology (e.g., photosynthesis, transpi£\ckerly D- D. and Cornwell, W. K. A trait-based approach to com-
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5 Conclusions

In this study we identified the impacts of modeling climate-
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