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Abstract. Many studies have investigated potential climate
change impacts on regional hydrology; less attention has
been given to the components of uncertainty that affect these
scenarios. This study quantifies uncertainties resulting from
(i) General Circulation Models (GCMs), (ii) Regional Cli-
mate Models (RCMs), (iii) bias-correction of RCMs, and (iv)
hydrological model parameterization using a multi-model
framework. This consists of three GCMs, three RCMs, three
bias-correction techniques, and sets of hydrological model
parameters. The study is performed for the Lech watershed
(∼ 1000 km2), located in the Northern Limestone Alps, Aus-
tria. Bias-corrected climate data are used to drive the hy-
drological model HQsim to simulate runoff under present
(1971–2000) and future (2070–2099) climate conditions.
Hydrological model parameter uncertainty is assessed by
Monte Carlo sampling. The model chain is found to perform
well under present climate conditions. However, hydrologi-
cal projections are associated with high uncertainty, mainly
due to the choice of GCM and RCM. Uncertainty due to
bias-correction is found to have greatest influence on pro-
jections of extreme river flows, and the choice of method(s)
is an important consideration in snowmelt systems. Overall,
hydrological model parameterization is least important. The
study also demonstrates how an improved understanding of
the physical processes governing future river flows can help
focus attention on the scientifically tractable elements of the
uncertainty.

1 Introduction

The global climate has changed during recent decades and
there is high confidence that this is partly due to human activ-
ity (Oreskes, 2004; Solomon et al., 2007; Jones et al., 2008;
Rosenzweig et al., 2008). Over coming decades, changes in
climate are expected to exceed those observed during the
20th century (Kharin et al., 2007; Solomon et al., 2007; Tren-
berth, 2011). As a consequence, climate change risk assess-
ment has become an important part of sectoral and national
adaptation planning (e.g. Biesbroek et al., 2010; Howden et
al., 2007; Milly et al., 2008).

General Circulation Models (GCMs) are the most
favoured tools for assessing climate change. These models
represent major Earth system components including atmo-
sphere, oceans, land surface and sea ice. GCMs operate on a
global to continental scale and, thus, are unable to resolve re-
gional climate effects. Dynamical and statistical downscaling
is therefore used to generate climate information at finer spa-
tial resolutions. Dynamical downscaling includes Regional
Climate Models (RCMs) which are nested within the domain
of a GCM over a region of interest (Giorgi et al., 1990; Giorgi
and Mearns, 1999). RCMs use GCM output as initial and
lateral boundary conditions and can now generate climate in-
formation at resolutions as fine as 7 km (Pavlik et al., 2012).
Statistical downscaling is based on empirical relationships
between large-scale atmospheric indices and local meteoro-
logical data (Wilby et al., 2004). Comprehensive reviews of
downscaling methods are provided elsewhere (e.g. Fowler et
al., 2007; Maraun et al., 2010; Wilby et al., 2009).
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Projects such as PRUDENCE (Christensen and Chris-
tensen, 2007) and ENSEMBLES (van der Linden and
Mitchell, 2009) have increased the availability of RCM out-
puts, whereas increasing computational resources have lead
to their improved spatial resolution as well as their appeal
for hydrological impact assessment (e.g. van Roosmalen et
al., 2011). However, systematic biases are often found in
the RCM output, especially in the simulation of precipita-
tion (e.g. Frei et al., 2006; Themeßl et al., 2010; Pavlik et
al., 2012). Hence, statistical bias-correction techniques are
widely applied to RCM output before using the scenarios in
hydrological assessment (e.g. Bóe et al., 2007; Beyene et al.,
2010; Dobler et al., 2010; Quintana-Seguı́ et al., 2010; Hage-
mann et al., 2011; Stoll et al., 2011).

Although many studies rely on this type of approach, rel-
atively few have assessed the associated uncertainties. Es-
timating uncertainty in climate change impact studies is
still very much in its infancy, although early studies sug-
gest that widely divergent scenarios can emerge (e.g. Kay
et al., 2009; Quintana-Seguı̀ et al., 2010; Chen et al., 2011a;
Stoll et al., 2011; Ledbetter et al., 2012). This uncertainty
arises from the emission scenario, GCM structure and pa-
rameterization, RCM structure and parameterization, bias-
correction method, impact model structure and parameteri-
zation, as well as natural variability in the impact system.
These sources can be grouped into (i) uncertainty originat-
ing from the future emission pathways and aerosols, (ii) un-
certainty related to the model projections and (iii) uncer-
tainty arising from natural fluctuations (Maurer and Duffy,
2005; Hawkins and Sutton, 2009; Fischer et al., 2011). In
the present investigation we focus on uncertainty originat-
ing from model projections because we are particularly in-
terested in identifying those components of uncertainty that
are potentially reducible through further field work and re-
search (e.g. Hawkins and Sutton, 2009).

Many studies have already explored the significant un-
certainty originating from GCMs (e.g. Jasper et al., 2004;
Maurer and Duffy, 2005; Chen et al., 2006; Minville et al.,
2008; Buytaert et al., 2009). Uncertainty related to the RCM,
the statistical downscaling approach, the hydrological model
structure and parameterization, has received less attention
and studies show mixed results. For example, Quintana-
Segúı et al. (2010) found major differences between three
downscaling and bias-correction techniques when assessing
climate change impacts on the hydrology of Mediterranean
basins. Similar findings are reported by Stoll et al. (2011),
Teutschbein et al. (2011) and Chen et al. (2011a). Con-
versely, van Roosmalen et al. (2011) found only small dif-
ferences when comparing projected groundwater and stream
discharge using two different bias-correction methods. Chen
et al. (2011b) report that the choice of calibration period for
deriving bias-correction parameters is found to be of minor
importance.

Gosling et al. (2011) investigated impacts of climate
change on river runoff using seven GCMs and two dis-

tributed hydrological models (a global hydrological model
and a catchment-scale hydrological model). GCM structural
uncertainty was found to be larger than hydrological model
structural uncertainty. Bae et al. (2011) studied the effects
of climate change by driving three semi-distributed hydro-
logical models with a number of GCMs. They found that the
choice of hydrological model can induce major differences in
runoff change under the same climate forcing. This is consis-
tent with Bastola et al. (2011), who report high uncertainty
associated with hydrological models in an investigation of
four Irish catchments. Poulin et al. (2011) demonstrated that
the effect of the hydrological model structure is more impor-
tant than the effect of parameter uncertainty when studying
climate change impacts in a snow-dominated river basin.

The majority of studies focus on a single source of uncer-
tainty; only a few attempt to quantify uncertainty originating
from multiple factors. For example, Wilby and Harris (2006)
report that uncertainty due to climate change scenarios and
downscaling methods is greater than uncertainty related to
the hydrological model parameters. Kay et al. (2009), Prud-
homme and Davies (2009) and Chen et al. (2011c) confirm
that impacts are most sensitive to GCM structures, but Chen
et al. (2011c) show that the downscaling method or GCM ini-
tial conditions can produce comparable or even larger uncer-
tainty. In general, the importance of each uncertainty source
depends on (i) the time interval, (ii) the impact variable, (iii)
season, and (iv) the region considered.

The aim of this study is to quantify different sources of
uncertainty in hydrological projections for an Alpine river
basin. We examine uncertainty originating from (i) GCM
structure, (ii) RCM structure, (iii) bias-correction method,
and (iv) hydrological model parameterization. We begin with
a description of the study area and data involved then ex-
plain the calibration and uncertainty analyses at each stage.
The four components of uncertainty are diagnosed in terms
of changes to annual, mean and high flows. The final sec-
tion identifies some important caveats and opportunities for
further research.

2 Study area and data

The study is performed for the Lech watershed, located in the
Northern Limestone Alps of Austria (Fig. 1). The watershed
is drained by the river Lech, a tributary of the Danube river.
The catchment area upstream of the gauge at Lechaschau,
near Reutte, is approximately 1000 km2. For a detailed de-
scription of the study area see Dobler et al. (2010).

The Lech catchment is characterized by major varia-
tions in topography, climate, soil and vegetation over short
distances. The elevation ranges from approximately 800 m
above sea level to around 3000 m, with 85 % of the area lo-
cated at an elevation of 1200 m to 2400 m. Annual precipi-
tation varies between∼ 1300 mm and∼ 1800 mm measured
at the stations illustrated in Fig. 1. At an elevation of 1080 m
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Fig. 1.Study area Lech watershed.

(station Holzgau – see Fig. 1), mean annual air temperature
is around 6.1◦C, with maximum monthly mean temperature
of 15.2◦C in July and minimum monthly mean temperature
of −3.5◦C in January.

Daily data for temperature, precipitation and runoff for the
years 1971 to 2005 are obtained from theHydrographischer
DienstÖsterreich, Zentralanstalt f̈ur Meteorologie und Geo-
dynamik(ZAMG) andDeutscher Wetterdienst(DWD). Fig-
ure 1 shows the location of the temperature and precipitation
stations in or close to the catchment.

Large-scale climate data are derived from the ENSEM-
BLES project (http://ensemblesrt3.dmi.dk/) for the period
from 1971 to 2099. The time slice from 1971 to 2000 is used
as present climate while the period 2070 to 2099 serves as
the future scenario. Surface air temperature and precipitation
were extracted from the RCM output.

3 Models and methods

An ensemble of downscaled and bias-corrected climate sce-
narios is used to drive a hydrological model in order to sim-
ulate runoff for present and future time horizons. The pro-
jections of future climate are produced by three different
GCMs, which are dynamically downscaled by three differ-
ent RCMs and subsequently bias-corrected in three differ-
ent ways. Uncertainty originating from (i) GCM, (ii) RCM,
(iii) bias-correction, and (iv) hydrological model parameter-
ization is systematically assessed by varying the modelling
component under focus, while holding others constant. For
example, in order to assess uncertainty related to the GCM,

the three GCMs are varied while the remaining model chain
consists of a fixed RCM, a fixed bias-correction technique
and a fixed hydrological model parameter set. Differences
between model outputs provide an estimate of the uncertainty
originating from each modelling component. Figure 2 gives
an overview of the approach and the combinations of models
used to assess each source of uncertainty.

3.1 GCMs

Three GCMs, the Max Planck Institute for Meteorology
ECHAM5 model (Roeckner et al., 2006), the Met Office
Hadley Centre for Climate Prediction and Research HadCM3
(Johns et al., 2003; Jungclaus et al., 2006) and the Bergen
Climate Model BCM (Furevik et al., 2003) are used. From
the HadCM3 model, the low sensitive member (HadCM3Q3)
is considered. All models are forced with the Special Re-
port on Emission (SRES) A1B scenario (Nakicenovic et al.,
2000), which can be considered as mid-range scenario in
terms of greenhouse gas emissions.

3.2 RCMs

The RCMs used are RCA (Kjellström et al., 2005), REMO
(Jacob, 2001, Jacob et al., 2007) and RACMO (Lenderink et
al., 2003). The output of these models has a spatial resolu-
tion of about 25 km (0.22◦). Figure 2 gives an overview of
the RCMs under study and their driving GCMs. The RCA
model is driven by all of the three different GCMs, while
the REMO and RACMO models are only forced with the
ECHAM5 model.
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Fig. 2. Modelling chains used to assess(a) GCM uncertainty,(b) RCM uncertainty,(c) bias-correction uncertainty and(d) hydrological
model parameter uncertainty.

3.3 Bias-correction techniques

In order to correct RCM output for systematic biases, three
different bias-correction techniques are applied: the delta
change method (delta), local scaling (scal), and quantile-
quantile (QQ) mapping. All methods depend on establishing
an empirical relationship between the RCM control simula-
tion (1971–2000) and observations (1971–2000), for each of
the stations shown in Fig. 1. Subsequently, the same rela-
tionship is applied when adjusting the scenario simulation
(2070–2099). The methods are based on the fundamental as-
sumption that the empirical relationship derived from present
climate conditions is also valid for the future scenario (e.g.
Wilby et al., 2004).

The single RCM grid box (resolution of 25× 25 km) over-
lying the target station is selected for the bias-correction
of temperature and precipitation. The bias-correction tech-
niques are then applied separately for each pair of grid
and station values. For temperature, the bias-correction is
only applied to data of the station at Holzgau, the reference
station. In order to differentiate temperature in the catch-
ment vertically, fixed monthly temperature lapse rates de-
rived from observed data are used. The application of ob-
served lapse rates is necessary because mean monthly tem-
perature lapse rates as simulated by the RCMs show large
systematic biases. For example, Kotlarski et al. (2011) evalu-
ated temperature lapse rates simulated by the RCM COSMO-

CLM over the Alps. Deviations from the observed lapse rate
of ∼ 0.15◦C per 100 m were reported, which would result in
large temperature biases at higher elevations.

However, Gardner et al. (2009) and Minder et al. (2010)
show that the assumption of a constant surface lapse rate (e.g.
−0.65◦C per 100 m) is questionable and recommend the ap-
plication of temporally variable lapse rates. Thus, we derive
monthly varying temperature lapse rates based on observed
data by regressing the mean monthly temperature of the cor-
responding stations against their elevation. The application
of monthly constant lapse rates assumes that the lapse rates
will not change in the future. However, this is a questionable
(e.g. Kotlarski et al., 2011) but necessary assumption when
studying climate change impacts in a complex Alpine catch-
ment where steep temperature gradients are not properly rep-
resented by RCMs.

We selected two temperature stations (Holzgau
(1080 m a.s.l.) and Zugspitze (2960 m a.s.l.), see Fig. 1)
covering the time period from 1971–2000 to derive monthly
varying surface lapse rates. In order to assess the spatial
representativeness of the calculated lapse rates, we compared
them with lapse rates calculated from a number of additional
stations, which cover a shorter time period (1985–2000).
Figure 3 confirms that the lapse rate calculations based on
the two temperature stations are broadly representative for
the time period 1985–2000. Only between July and October
does the estimation give stronger lapse rates compared to
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Fig. 3. Comparison of surface temperature lapse rate calculations
derived from two and seven stations.

the calculation based on the seven stations. However, as
most of the snow is already melted away in these months,
the differences in the lapse rate calculations may not signif-
icantly affect runoff simulations. The monthly lapse rates
based on the two stations show strong seasonal variations
with a minimum during June at−0.66◦C per 100 m and a
maximum in January at−0.34◦C per 100 m, based on the
years 1971 to 2000. Similar lapse rates are also reported by
Prömmel et al. (2010) for other station pairs in the Alps.

3.3.1 Delta change method

Due to its simplicity, the “delta change” or “change fac-
tor” method is one of the most widely applied downscaling
techniques in climate change impact assessments (e.g. Prud-
homme et al., 2002; Wilby and Harris, 2006; Minville et al.,
2008; Dobler et al., 2010). Observed temperature and precip-
itation series are altered with delta change factors to obtain
future climate scenarios. The change factors are derived from
RCM data as the mean monthly change between the control
and future simulations and are additive for temperature and
multiplicative for precipitation. Note that the basic method
accounts for shifts in mean and ignores changes in variabil-
ity (Fowler et al., 2007). The number of days with precip-
itation does not change between the reference and scenario
simulations.

3.3.2 Local scaling

The second method is local scaling, following the approach
of Widmann et al. (2003) and others (e.g. Salathé, 2005;
Graham et al., 2007; Stoll et al., 2011). Local scaling is a
straightforward approach, as it preserves the dynamic charac-
teristics of the scenario simulation. Daily RCM precipitation
at each grid point is multiplied by a monthly factor, which
is derived from the quotient between the precipitation simu-
lated by the RCM for the reference period and the precipita-

tion observed at each site. The same factor is then applied to
the RCM scenario data. For temperature, an additive adjust-
ment instead of a multiplicative is used. In this method, it is
possible for the future precipitation frequency to differ from
the control period.

Bias-correction of the variance of monthly temperature
was also undertaken following the method of Chen et
al. (2011a). This is necessary as large biases in the variance
of monthly temperatures are found in RCM output, which
could significantly affect modelled snow accumulation and
melt. Thus, the standard deviation of the RCM temperature
is corrected by the ratio between the standard deviation of
the temperature simulated by the RCM for the reference pe-
riod and the standard deviation of observed temperature. The
same correction factor is then applied to the future scenario
data.

3.3.3 Quantile-quantile mapping

The third technique is the quantile-quantile (QQ) mapping
approach, as employed in a growing number of studies (e.g.
Bóe et al., 2007; D́eqúe, 2007, Quintanta-Seguı́ et al., 2010;
Hagemann et al., 2011; Themeßl et al., 2012). QQ mapping is
based on adjusting quantiles of RCM output to observations
in order to eliminate systematic errors in RCM output.

First, cumulative distribution functions (CDFs) of ob-
served and RCM simulated data for the control period are
used to calculate transfer functions for each percentile. A
moving window of 31 days centered on the day under in-
vestigation is used to construct the CDFs. It should be noted
that the use of a moving window approach, compared to a
monthly calibration as presented in Sects. 3.3.1 and 3.3.2, en-
sures that no abrupt changes occur at the boundaries of each
month. The transfer functions are determined for each day of
the year with the two percentiles related by linear interpola-
tion. Note, that after this step, the corrected variables of the
control simulations have the same CDF as observations.

Second, simulated variables for the present climate are
bias-corrected using the transfer function. Finally, the same
transfer function is applied to the future scenario. Values
smaller than the observed minimum or greater than the maxi-
mum are assumed to be the lowest and highest percentiles, re-
spectively. For temperature, we followed the study of Beyene
et al. (2010) and removed the linear warming trend before ap-
plying the QQ technique and re-imposed it afterwards. Due
to a significant temperature increase in the future scenario,
the CDF of future temperature is very different from the CDF
of simulated present temperature. This would lead to many
temperature corrections outside the calibration range, and
may significantly alter the climate change signal. Removing
the linear trend before applying the QQ technique helps to
reduce the number of extrapolations.
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3.4 Hydrological model

In order to simulate hydrological conditions for present
and future climate, the semi-distributed hydrological model
HQsim (Kleindienst, 1996) is applied. HQsim has been
tested extensively for Alpine watersheds (e.g. Dobler et al.,
2010; Achleitner et al., 2011) and has already been used to
study climate change impacts on the runoff regime (Dobler
et al., 2010) and flood hazard potential (Dobler et al., 2012)
of the Lech river.

In brief, HQsim is best described as a semi-distributed,
conceptual model. HQsim simulates all relevant processes
controlling runoff in mountain watersheds: snow accumula-
tion and melt, evapotranspiration, interception and infiltra-
tion. Evapotranspiration is simulated based on the concept of
Hamon’s potential evapotranspiration dependent on the wa-
ter availability (Federer and Lash, 1978). For a detailed de-
scription of the model see Achleitner et al. (2011) or Dobler
and Pappenberger (2012). The watershed is divided into hy-
drological response units (HRUs), which are defined as areas
with similar runoff characteristics (Flügel, 1997). The delin-
eation of HRUs is done on the basis of gridded layers of
altitude, soil and land use. Input to the hydrological model
includes daily temperatures for 100 m altitudinal belts and
daily precipitation for the stations shown in Fig. 1. Tempera-
tures for different altitudinal belts are calculated by applying
the lapse rates obtained from the two meteorological stations
(see Sect. 3.3). The model is run with a daily time step.

HQsim is specified by a number of global and local param-
eters, which must be adjusted during the calibration period.
Dobler and Pappenberger (2012) identified the most sensi-
tive parameters in the model. They found 17 parameters to be
sensitive for the simulation of runoff, which are considered
for calibration in this study. These parameters mainly control
snow and soil processes and are calibrated by maximizing the
Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970).

The model is calibrated for the Lech watershed using flows
at the gauging station Lechaschau, for the years 1981 to
2000. Subsequently, the model is validated using the periods
1971 to 1980 and 2001 to 2005. Figure 4a gives an exam-
ple of the performance of HQsim for one year (1975) dur-
ing the validation period (red line). This is a fairly typical
hydrological year for the Lech catchment characterized by
snow melt-induced spring floods as well as floods during
the summer season, which were caused by heavy precipi-
tation events. Therefore, the year can be considered as be-
ing broadly representative. The seasonal cycle is simulated
well by the model, although a slight underestimation is found
from May to September (Fig. 4b). The exceedance probabil-
ity distrution (Fig. 4c) indicates a slight bias towards higher
runoff values. However, in general the figures indicate that
the model performs fairly well in this complex Alpine wa-
tershed. For the calibration period, the NSE is 0.85 and for
the two validation periods 0.83 (1971–1980) and 0.87 (2001–
2005), respectively. The better performance of the model
in the second validation period (2001–2005) is mainly due
to two extreme flood events (2002 and 2005), which are
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Table 1.Parameters and their ranges used for uncertainty analysis. Values in brackets indicate the range of the 20 parameter sets.

Parameter Range Unit Description

meltfuncmax 1.0–6.0 mm◦C−1 d−1 maximum degree day factor
(1.1–1.6)

s0 depth 500–2500 mm depth of unsaturated soil zone
(575–2477) of soil type 0 (lithosol)

s2 depth 500–2500 mm depth of unsaturated soil zone
(910–2283) of soil type 2 (rendzina)

s2 m 0.1–0.9 Mualem-van Genuchten parameter m
(0.2–0.4) for soil type 2 (rendzina)

s2 drain 0–0.3 ratio of the outflow of the unsaturated
(0.1–0.3) soil zone, which comes to base flow

storage (soil type 2 – rendzina)

simulated very well by the model. We found no significant
changes in the model performance during the whole simula-
tion period 1971–2005.

3.5 Hydrological model parameters

Of the 17 parameters selected for calibration, Dobler and
Pappenberger (2012) classified five as being highly sensitive
(Table 1). Of those five parameters, one relates to snow melt-
ing (meltfuncmax) and the remaining four to soil properties.
In order to account for uncertainty related to the choice of
hydrological model parameters, a Monte Carlo framework
is applied. Five thousand parameter sets are generated ran-
domly from the parameter ranges in Table 1, assuming a
uniform distribution. The 20 parameter sets with the high-
est NSE are then selected to evaluate the effects of different
parameter sets on projected climate impacts.

As can be seen in Table 1, for the parameters s0depth,
s2 depth and s2drain, good simulations can be obtained with
values varying over wide ranges. This indicates that values of
these parameters have little influence. Other parameters such
as meltfuncmax and s2m only produce acceptable simula-
tions when concentrated within certain intervals.

Figure 4a illustrates an example for the range of the simu-
lations obtained from the 20 different model parameter sets.
The NSE for these 20 simulations varies between 0.84 and
0.85, based on the years 1971–2000. Thus, different sets of
model parameters yield the same functional output, consis-
tent with the concept of model equifinality (Beven and Freer,
2001).

In order to evaluate the effects of different hydrological
model parameter sets on the hydrological projections, rela-
tive changes between the present and future runoff simula-
tions are calculated for each parameter set. As can be seen
in Fig. 2, the modelling chain consisting of the ECHAM5
model, the RACMO model and the delta change approach is
used as a basis for this assessment.

3.6 Uncertainty measure

In order to determine the contribution of the different un-
certainty sources, the spread (percentage points) between the
different simulations is used. This measure has already been
applied in a wide range of studies, e.g. Kay et al. (2009). The
advantages of this measure are that (i) it is easy to implement
and (ii) the results are easy to interpret. However, the disad-
vantages are that (i) information from data points between the
minimum and maximum values is not taken into account; (ii)
interactions between the different components are not con-
sidered; as well as (iii) the ranges are not normalized by the
number of samples, which makes it difficult to compare the
different uncertainty sources. As an alternative to the uncer-
tainty measure presented here, Finger et al. (2012) performed
an analysis of variance (ANOVA) to partition the uncertainty
into different components.

4 Results

Section 4.1 presents the performance of the bias-corrected
control simulations, while Sect. 4.2 shows temperature and
precipitation projections obtained from the spectrum of
model combinations. Finally, uncertainties in the hydrolog-
ical projections resulting from different sources are assessed.

4.1 Performance for present climate conditions

Figure 5 shows HQsim simulations driven by observed me-
teorological data (denoted as the reference simulation) and
bias-corrected RCM data for the control period. Note that
HQsim simulations forced with bias-corrected data are com-
pared with the reference simulation, instead of observed
runoff. This is to separate model biases in the HQsim simula-
tions from those originating from the bias-corrected climate
data (e.g. Lenderink et al., 2007; Minville et al., 2008).
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Fig. 5. Runoff from HQsim simulations using observed station data (reference simulation) and the different modelling chains showing(a)
mean daily runoff,(b) mean seasonal runoff and(c) the mean seasonal 90 %-quantile of daily runoff.

The control simulations are bias-corrected by applying
the local scaling and the QQ mapping approaches. Note
that in case of the delta change approach the reference
simulation is regarded as control simulation. Figure 5a
shows a relatively good agreement between the reference
simulation and the six control simulations. The seasonal
cycle is captured very well, indicating that the applied
model chains perform well in this complex catchment.
The clearest differences occur in the winter season when
some of the control simulations are slightly lower than
the reference simulation (see Fig. 5b). Biases in winter
range from −36 % (ECHAM5REMO SCAL) to −10 %
(HadCM3Q3RCA SCAL). Comparatively small biases are
found in summer, ranging from−7 % (BCM RCA SCAL)
to +4 % (ECHAM5 RACMO QQ) and from −9 %
(REMO RCA SCAL) to −3 % (ECHAM5 RACMO QQ)
in autumn.

In general, there is a tendency towards underestimating
seasonal runoff, especially for the simulations based on the
local scaling technique. This could be the result of possible
errors in the wet-day frequency, which are not accounted for
in the local scaling approach. The bias-corrected control sim-
ulations contain too many low precipitation (“drizzle”) days,
which may cause higher evapotranspiration and hence, lead
to an underestimation of seasonal runoff.

For the 90 %-quantile of daily runoff, almost all con-
trol simulations slightly underestimate runoff (see Fig. 5c).
The largest biases are found during winter, with de-
viations ranging from−44 % (ECHAM5REMO SCAL)
to −19 % (HadCM3Q3RCA SCAL). During summer, in-
stead, a relatively good agreement between observa-
tion and the control simulation is obtained, with bi-
ases ranging from−9 % (ECHAM5 RCA SCAL) to +6 %
(ECHAM5 RACMO QQ).

4.2 Uncertainty in climate projections

In the next step, temperature and precipitation scenarios are
compared to assess the spread of uncertainty originating from
the choice of the (i) GCM, (ii) RCM and (iii) bias-correction
approach. Note that for the delta change approach the climate
change signal is calculated between the future scenario and
the control simulations of the RCM, while for local scaling
and QQ mapping it is derived from the bias-corrected RCM
control and scenario simulations.

Figure 6 shows temperature and precipitation scenarios for
the different model chains. The differences among the pro-
jections provide an estimate of the uncertainty involved in
the simulations. GCM inter-model variability is found to be
very large for both temperature and precipitation projections.
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Figure 6. Mean monthly changes in temperature (T) and precipitation (P) between the 3 

reference period (1971-2000) and the future scenario (2070-2099). Uncertainty originating 4 

from GCM, RCM and bias-correction is illustrated. Temperature and precipitation data are 5 
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Fig. 6. Mean monthly changes in temperature (T ) and precipitation (P ) between the reference period (1971–2000) and the future scenario
(2070–2099). Uncertainty originating from GCM, RCM and bias-correction is illustrated. Temperature and precipitation data are averaged
across the catchment.

Most of the simulations show warming between 2.0◦C and
3.5◦C for the period 2070 to 2099, compared to the refer-
ence period (1971 to 2000). The largest increase of 4.5◦C
originates from the ECHAM5 scenario in July, whereas the
lowest increase of+1.3◦C is obtained from BCM scenario
in October. Temperature scenarios vary among the different
GCMs by 0.3◦C in January and by 2.1◦C in November. No
clear temporal pattern in the temperature change is evident,
but precipitation shows strong decreases during summer and
increases during winter and spring. These results are con-
sistent with findings obtained from other studies in the Alps
(e.g. Solomon et al., 2007; Smiatek et al., 2009; Kjellström et
al., 2011). The largest decrease is in the ECHAM5 scenario
with −28 % in July, and largest increase is simulated by the
BCM scenario with+35 % in December. The spread of the
precipitation scenarios is similar throughout the year.

During winter and spring, the spread of uncertainty in the
temperature projections resulting from the RCM structure is
similar to that originating from the GCM structure, while it
is lower during summer and autumn. The range of uncer-
tainty in the projections of precipitation is slightly smaller
for the RCMs than for the GCMs. For mean monthly tem-

perature, the inter-model variability ranges between 0.3◦C in
July and 1.8◦C in April. Generally, the RCMs produce more
similar temporal patterns for both variables than the GCMs.
For precipitation, the largest deviations among the different
simulations are found in September, while the lowest differ-
ences occur in April. These results are in partial disagree-
ment with previous studies. Results from the PRUDENCE
project (10 RCMs forced by 1 GCM; Christensen and Chris-
tensen, 2007) have shown that the largest uncertainty over
central European areas (Jacob et al., 2007) and catchments
(Rhine, Danube; Hagemann and Jacob, 2007) occurs during
the summer. Here, the regional climate is less constrained
by the boundary forcing due the importance of local scale
processes, such as convection and land-atmosphere interac-
tions. For precipitation, our results agree with those men-
tioned above, except for July, where the limited sample size
of 3 RCMs likely leads to an underestimation of RCM uncer-
tainty. For temperature, the largest RCM uncertainty occurs
from March to June, while during the summer months of July
and August the RCM uncertainty is rather low. This is likely
caused by the mountainous location of the watershed where
snow-related processes, especially the snow albedo feedback
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Figure 7. (a) Uncertainty in the projection of mean annual runoff (Q) resulting from GCM, 3 

RCM, bias-correction and hydrological model parameters. (b) Size of impact range 4 

originating from each uncertainty source. The differences (percentage points) between the 5 
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Fig. 7. (a) Uncertainty in the projection of mean annual runoff (Q) resulting from GCM, RCM, bias-correction and hydrological model
parameters.(b) Size of impact range originating from each uncertainty source. The differences (percentage points) between the minimum
and maximum values are plotted.

(see, e.g. Hall and Qu, 2006), have a dominant impact on the
warming signal during the snow melt period in spring. Model
differences in the representation of these processes lead to
different strengths in the snow albedo feedback and, thus, to
larger uncertainties in the projected warming signal.

Uncertainty related to the choice of the bias-correction ap-
proach is comparatively small. However, it must be noted that
two out of three bias-correction techniques (local scaling and
the delta change approach) are directly calibrated on monthly
values. Thus, the climate change signals obtained by these
methods are the same when focusing on mean monthly pro-
jections. The QQ mapping approach (which has not been cal-
ibrated on monthly values) generates climate change signals
comparable to the delta change and local scaling technique.
But, it can be seen, that the QQ mapping approach modifies
the climate change signal. Similar findings are reported by
Hagemann et al. (2011) and Themeßl et al. (2012).

The spread of the temperature projections ranges up to
0.3◦C in April and May. The lowest difference between the
precipitation projections occurs in November and the highest
in May. Overall, Fig. 6 shows that uncertainty related to the
bias-correction approach is comparatively small when focus-
ing on mean monthly values.

4.3 Uncertainty in hydrological projections

4.3.1 Mean annual runoff

In the next step, uncertainty in projected mean annual runoff
is evaluated. Figure 7 shows the spread of uncertainty orig-
inating from (i) GCM, (ii) RCM, (iii) bias-correction, and
(iv) hydrological model parameters. All projections indicate
a slight downward trend in mean annual runoff.

Projections based on different GCMs show modest vari-
ations, ranging from−17 % (HadCM3Q3RCA SCAL) to
−8 % (BCM RCA SCAL). Uncertainty originating from
the RCMs is slightly larger, with projected changes rang-
ing between−17 % (HadCM3Q3RCA SCAL) and−4 %
(ECHAM5 RACMO SCAL), while uncertainty related to
the bias-correction step is smaller than GCM and RCM un-
certainty. The hydrological model parameter sets have rela-
tively little effect on the uncertainty.

It is interesting to note that although RCM uncertainty is
found to be less than GCM uncertainty for temperature and
precipitation (see Sect. 4.2), it is the most important source
of uncertainty when focusing on projections of mean annual
runoff. This suggests that the relationship between climate
forcing and hydrological response is highly non-linear, con-
sistent with the findings of Arnell (2011).

4.3.2 Mean monthly runoff

Figure 8 illustrates uncertainty in the projections of mean
monthly runoff originating from different sources. All sim-
ulations indicate considerable increases in mean monthly
runoff from December to April, and decreases from June
to August. In other months no clear tendency towards an
increase or decrease are found. Larger uncertainties in the
hydrological projections are found during winter compared
with summer. However, it has to be noted that the results
are presented in relative terms, whereas comparatively large
percentage differences during winter translate into relatively
small changes in absolute discharges.

On average, the GCM structure has the largest effects on
the model output. Relatively large deviations are found be-
tween the three different simulations from January to May
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Figure 8. (a) Uncertainty in the projections of mean monthly runoff (Q) resulting from GCM, 2 

RCM, bias-correction and hydrological model parameters. (b) Size of impact range 3 
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Fig. 8. (a)Uncertainty in the projections of mean monthly runoff (Q) resulting from GCM, RCM, bias-correction and hydrological model
parameters.(b) Size of impact range originating from each uncertainty source. The differences (percentage points) between the minimum
and maximum values are plotted.

and in November. This is due to the fact that the BCM-driven
simulation (Fig. 6) shows a smaller increase in temperature
compared to the other two GCMs in these months. Snow
melt-dominated rivers like the Lech are particularly sensitive
to changes in temperature (e.g. Dobler et al., 2010), as this
determines whether precipitation falls as snow or rain. Thus,
high uncertainty in the temperature projections during these
months results in high uncertainty in runoff projections.

Uncertainty originating from the RCM structure is in gen-
eral slightly smaller than those related to the GCM struc-

ture. However, during winter relatively high uncertainty is
obtained, due to the spread of uncertainty in the tempera-
ture projections in these months (Fig. 6). Uncertainty result-
ing from the bias-correction approach is smaller than uncer-
tainty related to GCM and RCM structure, although compar-
atively large differences among the three simulations are ob-
tained for some months. Note that although only small differ-
ences in the forcing projections are found (Fig. 6), relatively
large differences in the hydrological simulations are evident.
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Again, this indicates that there is a non-linear hydrological
response to the climate forcing (Arnell, 2011).

Uncertainty resulting from hydrological model parame-
ters has generally less influence on projected changes in
monthly runoff, compared to the other uncertainty sources.
The largest uncertainty range due to hydrological model pa-
rameters is found during winter and amounts to about 20 %,
while during summer only a small spread of uncertainty is
obtained. As can be seen in Fig. 4a, model skill during low
flow periods in winter is comparatively small, arising from
a poorer representation of base flow than surface runoff and
interflow in the model structure. Hence, relatively large bi-
ases of the hydrological model cause relatively high projec-
tion uncertainties. However, it should be pointed out that the
uncertainties during winter are comparatively small in abso-
lute terms. Nevertheless, these results demonstrate that the
hydrological model parameterization varies across different
hydrological conditions.

4.3.3 10 % and 1 % flow exceedance probabilities

Finally, uncertainty in the 10 % and 1 % flow ex-
ceedance probabilities is assessed. Figure 9 shows the
spread of uncertainty in the whole exceedance probabil-
ity distribution resulting from different sources. Except for
the ECHAM5RACMO QQ and ECHAM5RACMO SCAL
scenarios, all show a decrease in mean high flows
by the end of this century. The spread of results
range from −27 % (HadCM3Q3RCA SCAL) to −9 %
(ECHAM5 RACMO QQ) for flows exceeded 10 % of the
time and from−18 % (HadCM3Q3RCA SCAL) to +15 %
(ECHAM5 RACMO QQ) for flows exceeded 1 % of the
time. In general, there are large variations across the spec-
trum of the different projections, stressing the importance
of using different model combinations when assessing the
spread of uncertainty.

Figure 9a indicates that the GCM and RCM structures
have significant effects on the projections of high flows.
While the magnitude of GCM uncertainty is similar for dif-
ferent exceedance probabilities, uncertainty related to the
RCM and the bias-correction approach increases with the
rarity of the hydrological event. For example, GCM, RCM
and bias-correction uncertainty are the main sources of un-
certainty for flows exceeded 10 % of the time, while RCM
and bias-correction uncertainty are the most important un-
certainty source for flows exceeded 1 % of the time. As can
be seen in Fig. 9, the spread of uncertainty in the projec-
tions of mean high flows originating from the RCM and the
bias-correction approach is very large. The projections even
suggest different sign changes. This clearly indicates that the
RCM and the bias-correction approach play a significant role
when assessing climate change impacts on hydrological ex-
tremes (at least in this catchment).

When comparing the ECHAM5RACMO DELTA and
ECHAM5 RACMO SCAL scenarios, comparatively high

uncertainty for the highest flows are obtained. Although the
methods generate the same monthly temperature and precipi-
tation scenarios (Fig. 6), the results are very different for high
flows. The delta change approach only considers changes in
the mean, whereas the local scaling approach also changes
the variability. However, as changes in climate variability are
at least as important as changes in the mean when focus-
ing on extremes (Katz and Brown, 1992), it is not surprising
that both methods differ in the simulation of high flows. This
result echoes the findings of Lenderink et al. (2007), who
compared runoff in the river Rhine using two different bias-
correction techniques. Although similar results were found
in mean summer and mean winter runoff, large differences
for extreme flows during winter were reported.

In contrast to the delta change and local scaling tech-
niques, the QQ mapping approach explicitly accounts for
changes in both precipitation and temperature extremes. The-
meßl et al. (2010) showed that the technique performs well
for higher quantiles of the precipitation distribution. Thus,
the QQ mapping approach appears to be more reliable when
focusing on extremes than the delta change and local scaling
approaches. Uncertainty related to hydrological model pa-
rameters has only a minor influence on projections of high
flows, compared to the other sources discussed above. This
reflects the fact that the objective function (NSE) used for
HQsim calibration favours the reproduction of high flows.

5 Discussion and conclusion

Most climate change impact studies are based on a modelling
chain consisting of (i) GCMs, (ii) RCMs, (iii) bias-correction
techniques, and (iv) an impact model such as a hydrological
model. Although a large number of studies are based on this
kind of approach, relatively little attention has been given to
assessing uncertainty in the hydrological projections. While
some studies focus on one source of uncertainty, such as
GCM structure (Maurer and Duffy, 2005) or the downscaling
approach (e.g. Quintana-Seguı́ et al., 2010), fewer attempts
have been made to look at multiple sources (e.g. Wilby and
Harris, 2006; Kay et al., 2009; Prudhomme et al., 2009; Chen
et al., 2011c). This study explores uncertainty resulting from
different sources by applying a multi-model ensemble. The
Lech watershed (∼ 1000 km2), located in the Northern Lime-
stone Alps of Austria, was selected as the study area.

Our results generally show that hydrological projections
are subject to considerable uncertainty. The size of the im-
pact range among the spectrum of scenarios spans 90 % in
some months (see Fig. 8b). Sometimes the models even show
different sign changes. When focusing on flows exceeded
1 % of the time, for instance, some models indicate a de-
crease of−18 % while others show an increase of+15 %.
This demonstrates that the use of multi-model ensembles is
a necessary prerequisite for quantifying climate change im-
pacts at regional or local scales. Results from studies based
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Fig. 9. (a)Uncertainty in flow exceedance probabilities resulting from GCM, RCM, bias-correction and hydrological model parameters.(b)
Size of impact range originating from each uncertainty source. The differences (percentage points) between the minimum and maximum
values are plotted.

on a single GCM, should thus be interpreted with extreme
caution (Chen et al., 2011c; Harding et al., 2012).

Overall, our results confirm that GCM structure is an im-
portant source of uncertainty in climate change impact stud-
ies on a regional scale. The wide range of uncertainty in the
hydrological projections is mainly the result of high uncer-
tainty in the forcing projections. This finding agrees with ear-
lier work (e.g. Wilby and Harris, 2006; Kay et al., 2009; Chen
et al., 2011c). Uncertainty related to the choice of RCMs is
found to be of comparable magnitude. The effect of the bias-
correction approach is found to increase with the rarity of the
hydrological event: there is less influence on the simulation
of average hydrological conditions compared with extremes.

Hydrological model parameter uncertainty is found to be less
important compared to the other factors.

For practical purposes most assessments cannot apply
multi-model ensembles as herein, so effort is best focused
on using different GCMs and RCMs when assessing the
main spread of uncertainty in hydrological projections. How-
ever, if information is needed on extremes, different bias-
correction techniques should also be included. Simple bias-
correction techniques such as the delta change method and
local scaling are only calibrated on monthly data and do not
take into account changes in the extremes. Thus, their appli-
cability should be limited to mean values. The delta change
method, even though it has been regularly used in the past, is
identified as insufficient to study extremes. Moreover, direct
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use of the RCM output as in local scaling and the QQ ap-
proach is more straightforward (plus changes in variability
are also considered unlike in the delta change approach). In
contrast, the delta change method is very easy to implement
and it provides reliable estimates for mean conditions.

The use of more sophisticated methods may also increase
the data requirements for bias-correction (e.g. Haerter et al.,
2011), even though the uncertainty introduced by the method
may be reduced. However, the bias-correction approach se-
lected to simulate extremes should be specially designed to
handle extreme events, such as the QQ mapping approach, as
it explicitly considers possible changes in extremes. Themeßl
et al. (2010) compared several empirical-statistical down-
scaling and error correction methods for daily precipitation
downscaling over the Alpine region. The QQ mapping ap-
proach showed the best performance in reducing error char-
acteristics, particularly at high quantiles. Thus, the method
seems to be more reliable when focusing on extremes than
other bias-correction techniques.

Nevertheless, all of these approaches have one main lim-
itation. In mountain watersheds, the combination of temper-
ature and precipitation is crucial, as it determines whether
precipitation falls as rain or snow. The bias-correction tech-
niques adjust both variables independently, which may de-
stroy the physical relationship between the two variables
(e.g. Bóe et al., 2007; Maraun et al., 2010; Hagemann et al.,
2011; Themeßl et al., 2012). Further research is needed to de-
termine the extent to which these inter-variable relationships
matter when evaluating climate change impacts over annual
and multi-decadal time scales.

The results of this study show that the hydrological model
parameterization is generally of low significance. Recently,
Vaze et al. (2010) reported that models calibrated over a
long time period can generally be applied in climate impact
studies, when future mean annual rainfall is not more than
15 % drier or 20 % wetter than the values observed in the
calibration period. Also in this study a relatively long cali-
bration period (20 yr) was used, which increases the chance
of sampling-varied hydrological conditions and thereby may
result in more generalized parameters (Merz et al., 2009).
Hence, with these parameter sets, a wider range of hydrolog-
ical conditions can be simulated well, maybe even conditions
which have not been observed during the calibration period
(Merz et al., 2009). These results are in disagreement with
the findings presented by Merz et al. (2011) and Coron et
al. (2012), who stated that the transfer of model parameters
in time may introduce a significant bias in the hydrological
simulations. However, such findings strongly depend on the
catchment under investigation as well as the applied mod-
els and thus, are difficult to generalize. Decisively more re-
search is needed to test the assumption of model transferabil-
ity. In addition to the uncertainty sources investigated in this
study, other components may also affect the model output.
For example, Bae et al. (2011) demonstrated that the hydro-
logical model structure has a significant impact on projected

changes. Future studies should also take into consideration
this source of uncertainty.

Quantifying the distribution of temperature is particularly
important for mountain hydrology. Model errors resulting
from the assumed spatio-temporal constant lapse rate are
widely unknown, but may be of high significance in moun-
tain regions. Minder et al. (2010), for instance, analysed the
consequences of lapse rate characterization for hydrological
projections in the Cascade Mountains and found consider-
able differences in runoff projections when using different
lapse rate assumptions. However, the sparse distribution of
temperature stations, especially at higher elevation zones,
and the influence of local climate effects, makes it very dif-
ficult to resolve temperature variability in mountain regions
(Minder et al., 2010). Nevertheless, a better understanding of
the spatio-temporal dynamics of the temperature lapse rate
is essential in marginal situations between snow/ice accumu-
lation, melting, and bare ground. Additionally, field experi-
ments may help to better constrain the parameters of HQsim
and to reduce uncertainty due to model parameterization.

Despite the large range of uncertainty in the hydrologi-
cal projections, some robust findings emerge from this study.
Mean runoff during winter, for example, is projected to in-
crease substantially in all simulations. In this case, the cli-
mate change signal is by far larger than the uncertainty as-
sociated with the projections. These findings suggest some
confidence in hydrological projections on a regional local
scale, whilst acknowledging the small suite of GCMs used.
For high flows, instead, no clear signals towards an increase
or a decrease were obtained.

It should also be noticed, that the results of this study
strongly depend on the study region and the models used.
Thus, the results can not be directly transferred to other
catchments or other models. Nevertheless, the study provides
important findings on the relative importance of different un-
certainty sources, which are essential for future impact stud-
ies.

The study has several limitations. Due to a relatively small
number of models and methods applied, only a limited esti-
mation of the overall uncertainty could be quantified. In order
to assess uncertainty originating from hydrological model
parameters, only 20 parameter sets were used. Considering
more parameters may result in a wider uncertainty range.
Also, the relatively low number of GCM-RCM combinations
as well as the selection of the ECHAM5 and RCA models
to be held constant when varying the other components will
understate the spread of uncertainty due to GCM and RCM
structure. This could lead to misleading impressions of the
relative significance of individual uncertainty sources (Kay
and Jones, 2012). However, very large ensembles of GCM-
RCM combinations are yet not available due to the associated
high computational demand (e.g. Kendon et al., 2010). More-
over, possible interactions between the different uncertainty
sources were neglected in this study.
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Finally, it should also be noted that even if we can char-
acterize all the components of uncertainty in climate change
impact assessments, we must not lose sight of the fact that
the present generation of GCMs exhibit large errors. Recent
work has highlighted considerable deficiencies in the rep-
resentation of precipitation (Stephens et al., 2010) and the
global atmospheric moisture balance (Liepert and Previdi,
2012). Therefore, we should always be circumspect about
just how much uncertainty can be characterized given the
flawed nature of the inputs to our studies. Future research
in Alpine basins should thus focus on the tractable elements
of uncertainty: especially those linked to snow accumulation
and melt processes.
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Flügel, W. A.: Combining GIS with regional hydrological mod-
elling using hydrological response units (HRUs): An application
from Germany, Math. Comput. Simulat., 43, 297–304, 1997.
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Merz, R., Parajka, J., and Blöschl, G.: Scale effects in concep-
tual hydrological modeling, Water Resour. Res., 45, W09405,
doi:10.1029/2009WR007872, 2009.
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