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Abstract. Many studies have investigated potential climate 1 Introduction

change impacts on regional hydrology; less attention has

been given to the components of uncertainty that affect thesd he global climate has changed during recent decades and
scenarios. This study quantifies uncertainties resulting fronfhere is high confidence that this is partly due to human activ-
(i) General Circulation Models (GCMs), (ii) Regional Cli- ity (Oreskes, 2004; Solomon et al., 2007; Jones et al., 2008;
mate Models (RCMs), (iii) bias-correction of RCMs, and (iv) Rosenzweig et al., 2008). Over coming decades, changes in
hydrological model parameterization using a multi-model climate are expected to exceed those observed during the
framework. This consists of three GCMs, three RCMs, three20th century (Kharin et al., 2007; Solomon et al., 2007; Tren-
bias-correction techniques, and sets of hydrological modepPerth, 2011). As a consequence, climate change risk assess-
parameters. The study is performed for the Lech watershe®hent has become an important part of sectoral and national
(~ 1000 kn?), located in the Northern Limestone Alps, Aus- adaptation planning (e.g. Biesbroek et al., 2010; Howden et
tria. Bias-corrected climate data are used to drive the hy2l., 2007; Milly et al., 2008).

drological model HQsim to simulate runoff under present General Circulation Models (GCMs) are the most
(1971-2000) and future (2070-2099) climate conditions.favoured tools for assessing climate change. These models
Hydrological model parameter uncertainty is assessed byepresent major Earth system components including atmo-
Monte Carlo sampling. The model chain is found to perform Sphere, oceans, land surface and sea ice. GCMs operate on a
well under present climate conditions. However, hydrologi- global to continental scale and, thus, are unable to resolve re-
cal projections are associated with high uncertainty, mainlygional climate effects. Dynamical and statistical downscaling
due to the choice of GCM and RCM. Uncertainty due to iS therefore used to generate climate information at finer spa-
bias-correction is found to have greatest influence on protial resolutions. Dynamical downscaling includes Regional
jections of extreme river flows, and the choice of method(s)Climate Models (RCMs) which are nested within the domain
is an important consideration in snowmelt systems. Overallof @ GCM over a region of interest (Giorgi et al., 1990; Giorgi
hydrological model parameterization is least important. Theand Mearns, 1999). RCMs use GCM output as initial and
study also demonstrates how an improved understanding dgteral boundary conditions and can now generate climate in-
the physica| processes governing future river flows can he"j‘ormation at resolutions as fine as 7 km (PaV'Ik etal., 2012)

focus attention on the scientifically tractable elements of theStatistical downscaling is based on empirical relationships
uncertainty. between large-scale atmospheric indices and local meteoro-

logical data (Wilby et al., 2004). Comprehensive reviews of
downscaling methods are provided elsewhere (e.g. Fowler et
al., 2007; Maraun et al., 2010; Wilby et al., 2009).
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Projects such as PRUDENCE (Christensen and Christributed hydrological models (a global hydrological model
tensen, 2007) and ENSEMBLES (van der Linden andand a catchment-scale hydrological model). GCM structural
Mitchell, 2009) have increased the availability of RCM out- uncertainty was found to be larger than hydrological model
puts, whereas increasing computational resources have leadructural uncertainty. Bae et al. (2011) studied the effects
to their improved spatial resolution as well as their appealof climate change by driving three semi-distributed hydro-
for hydrological impact assessment (e.g. van Roosmalen dbgical models with a number of GCMs. They found that the
al., 2011). However, systematic biases are often found inchoice of hydrological model can induce major differences in
the RCM output, especially in the simulation of precipita- runoff change under the same climate forcing. This is consis-
tion (e.g. Frei et al., 2006; ThemelRl et al., 2010; Pavlik ettent with Bastola et al. (2011), who report high uncertainty
al.,, 2012). Hence, statistical bias-correction techniques arassociated with hydrological models in an investigation of
widely applied to RCM output before using the scenarios infour Irish catchments. Poulin et al. (2011) demonstrated that
hydrological assessment (e.godet al., 2007; Beyene et al., the effect of the hydrological model structure is more impor-
2010; Dobler et al., 2010; Quintana-Ségtial., 2010; Hage- tant than the effect of parameter uncertainty when studying
mann et al., 2011; Stoll et al., 2011). climate change impacts in a snow-dominated river basin.

Although many studies rely on this type of approach, rel- The majority of studies focus on a single source of uncer-
atively few have assessed the associated uncertainties. Eginty; only a few attempt to quantify uncertainty originating
timating uncertainty in climate change impact studies isfrom multiple factors. For example, Wilby and Harris (2006)
still very much in its infancy, although early studies sug- report that uncertainty due to climate change scenarios and
gest that widely divergent scenarios can emerge (e.g. Kaylownscaling methods is greater than uncertainty related to
et al., 2009; Quintana-Senet al., 2010; Chen et al., 2011a; the hydrological model parameters. Kay et al. (2009), Prud-
Stoll et al., 2011; Ledbetter et al., 2012). This uncertaintyhomme and Davies (2009) and Chen et al. (2011c) confirm
arises from the emission scenario, GCM structure and pathat impacts are most sensitive to GCM structures, but Chen
rameterization, RCM structure and parameterization, biasetal. (2011c) show that the downscaling method or GCM ini-
correction method, impact model structure and parameteritial conditions can produce comparable or even larger uncer-
zation, as well as natural variability in the impact system. tainty. In general, the importance of each uncertainty source
These sources can be grouped into (i) uncertainty originatdepends on (i) the time interval, (ii) the impact variable, (iii)
ing from the future emission pathways and aerosols, (ii) un-season, and (iv) the region considered.
certainty related to the model projections and (iii) uncer- The aim of this study is to quantify different sources of
tainty arising from natural fluctuations (Maurer and Duffy, uncertainty in hydrological projections for an Alpine river
2005; Hawkins and Sutton, 2009; Fischer et al., 2011). Inbasin. We examine uncertainty originating from (i) GCM
the present investigation we focus on uncertainty originat-structure, (i) RCM structure, (iii) bias-correction method,
ing from model projections because we are particularly in-and (iv) hydrological model parameterization. We begin with
terested in identifying those components of uncertainty thata description of the study area and data involved then ex-
are potentially reducible through further field work and re- plain the calibration and uncertainty analyses at each stage.
search (e.g. Hawkins and Sutton, 2009). The four components of uncertainty are diagnosed in terms

Many studies have already explored the significant un-of changes to annual, mean and high flows. The final sec-
certainty originating from GCMs (e.g. Jasper et al., 2004;tion identifies some important caveats and opportunities for
Maurer and Duffy, 2005; Chen et al., 2006; Minville et al., further research.

2008; Buytaert et al., 2009). Uncertainty related to the RCM,

the statistical downscaling approach, the hydrological model

structure and parameterization, has received less attentiop Study area and data

and studies show mixed results. For example, Quintana-

Segu et al. (2010) found major differences between threeThe study is performed for the Lech watershed, located in the
downscaling and bias-correction techniques when assessingorthern Limestone Alps of Austria (Fig. 1). The watershed
climate change impacts on the hydrology of Mediterraneanis drained by the river Lech, a tributary of the Danube river.
basins. Similar findings are reported by Stoll et al. (2011), The catchment area upstream of the gauge at Lechaschau,
Teutschbein et al. (2011) and Chen et al. (2011a). Connear Reutte, is approximately 1000%nfror a detailed de-
versely, van Roosmalen et al. (2011) found only small dif- scription of the study area see Dobler et al. (2010).

ferences when comparing projected groundwater and stream The Lech catchment is characterized by major varia-
discharge using two different bias-correction methods. Chenions in topography, climate, soil and vegetation over short
et al. (2011b) report that the choice of calibration period for distances. The elevation ranges from approximately 800 m
deriving bias-correction parameters is found to be of minorabove sea level to around 3000 m, with 85 % of the area lo-
importance. cated at an elevation of 1200 m to 2400 m. Annual precipi-

Gosling et al. (2011) investigated impacts of climate tation varies betweetr 1300 mm and-~ 1800 mm measured
change on river runoff using seven GCMs and two dis-at the stations illustrated in Fig. 1. At an elevation of 1080 m

Hydrol. Earth Syst. Sci., 16, 4343436Q 2012 www.hydrol-earth-syst-sci.net/16/4343/2012/



C. Dobler et al.: Quantifying different sources of uncertainty in hydrological projections 4345

10°30'0°E 11°00"E

Germany
Austria Vils
L]

Swizerland

Ital .
v Slovenia

<> Water gauge

* Temperature stations used
for lapse rate calculations

* Temperature stations

47°15'0"N

Landeck Precipitation stations
[ ]

[ ] Lech and tributaries
Sankt Anton am Arlberg [ catchment area
Altitude [m a.s.l.]

0 5 10 20 Kilometers P High - 3033
S T T S S S |

47°0'0"N

L Low:838

Fig. 1. Study area Lech watershed.

(station Holzgau — see Fig. 1), mean annual air temperaturéhe three GCMs are varied while the remaining model chain
is around 6.2C, with maximum monthly mean temperature consists of a fixed RCM, a fixed bias-correction technique
of 15.2°C in July and minimum monthly mean temperature and a fixed hydrological model parameter set. Differences
of —3.5°C in January. between model outputs provide an estimate of the uncertainty
Daily data for temperature, precipitation and runoff for the originating from each modelling component. Figure 2 gives
years 1971 to 2005 are obtained from Hiygdrographischer  an overview of the approach and the combinations of models
DienstOsterreich Zentralanstalt fir Meteorologie und Geo- used to assess each source of uncertainty.
dynamik(ZAMG) and Deutscher Wetterdien$DWD). Fig-
ure 1 shows the location of the temperature and precipitatior?-1  GCMs
stations in or close to the catchment. )
Large-scale climate data are derived from the ENSEM-Three GCMs, the Max Planck Institute for Meteorology

BLES project http://ensemblesrt3.dmi.gkfor the period ~ECHAMS model (Roeckner et al., 2006), the Met Office
from 1971 to 2099. The time slice from 1971 to 2000 is usegHadley Centre for Climate Prediction and Research HadCM3
as present climate while the period 2070 to 2099 serves aglohns et al., 2003; Jungclaus et al., 2006) and the Bergen

the future scenario. Surface air temperature and precipitatiofy!imate Model BCM (Furevik et al., 2003) are used. From
were extracted from the RCM output. the HadCM3 model, the low sensitive member (HadCM3Q3)

is considered. All models are forced with the Special Re-
port on Emission (SRES) A1B scenario (Nakicenovic et al.,
2000), which can be considered as mid-range scenario in

3 Models and methods o
terms of greenhouse gas emissions.

An ensemble of downscaled and bias-corrected climate SCe5 5 RCMs
narios is used to drive a hydrological model in order to sim-

ulate runoff for present and future time horizons. The pro-The RCMs used are RCA (Kjellgtm et al., 2005), REMO
jections of future climate are produced by three different(Jacob' 2001, Jacob et al., 2007) and RACMO (Lenderink et
GCMs, which are dynamically downscaled by three differ- 31 2003). The output of these models has a spatial resolu-
ent RCMs and subsequently bias-corrected in three differtign of about 25 km (0.29. Figure 2 gives an overview of
ent ways. Uncertainty originating from (i) GCM, (i) RCM, the RCMs under study and their driving GCMs. The RCA
(iii) bias-correction, and (iv) hydrological model parameter- jodel is driven by all of the three different GCMs, while

ization is systematically assessed by varying the modellinghe REMO and RACMO models are only forced with the
component under focus, while holding others constant. FolecHAMS5 model.

example, in order to assess uncertainty related to the GCM,

www.hydrol-earth-syst-sci.net/16/4343/2012/ Hydrol. Earth Syst. Sci., 16, 43486Q 2012
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Fig. 2. Modelling chains used to asse& GCM uncertainty,(b) RCM uncertainty,(c) bias-correction uncertainty ar(d) hydrological
model parameter uncertainty.

3.3 Bias-correction techniques CLM over the Alps. Deviations from the observed lapse rate
of ~0.15°C per 100 m were reported, which would result in
C large temperature biases at higher elevations.
In order to correct RCM output for systematic biases, three .
P ¥ However, Gardner et al. (2009) and Minder et al. (2010)

different bias-correction techniques are applied: the delta

change method (delta), local scaling (scal), and quantile-ShOWthatthe assumption of a constant surface lapse rate (e.g.

quantile (QQ) mapping. All methods depend on estabIishing_p'a"'__’oC per 100m) is que_stionable and recommend the ap-
an empirical relationship between the RCM control simula- plication of temporally variable lapse rates. Thus, we derive

tion (1971-2000) and observations (1971-2000), for each 0|;nonthly varying temperature lapse rates based on observed

the stations shown in Fig. 1. Subsequently, the same relac-jata by regressing the mean monthly temperature of the cor-

tionship is applied when adjusting the scenario Simulationresponding stations against their elevation. The application

(2070-2099). The methods are based on the fundamental agf monthly constant lapse rates assumes that the lapse rates

sumption that the empirical relationship derived from presentWIII not change in the future. However, this is a questionable

climate conditions is also valid for the future scenario (e.g.(e'g' Kotlar.skl etal, 201.1) but necessary assumption when
Wilby et al., 2004). studying climate change impacts in a complex Alpine catch-

The single RCM grid box (resolution of 2625 km) over- ment where steep temperature gradients are not properly rep-

lying the target station is selected for the bias—correctionresented by RCMs. .

of temperature and precipitation. The bias-correction tech- We selected two te_mperature stations (Hol_zgau
niques are then applied separately for each pair of grid(1080_ma's'|')_ and Z_ugspltze (2960mas.l.), see Fig. 1)
and station values. For temperature, the bias-correction igovering the time period from 1971-2000 to derive monthly

only applied to data of the station at Holzgau, the reference/arying surface lapse rates. In order to assess the spatial

station. In order to differentiate temperature in the catch-TePresentativeness of the calculated lapse rates, we compared

ment vertically, fixed monthly temperature lapse rates dethem with lapse rates calculated from a number of additional

rived from observed data are used. The application of ob—St_aﬂonS’ which cover a shorter time period (1985-2000).

served lapse rates is necessary because mean monthly tefiJUre 3 confirms that the lapse rate calculations based on
perature lapse rates as simulated by the RCMs show larg e two temperature stations are broadly representative for
tl

systematic biases. For example, Kotlarski et al. (2011) evalu- € time period 1985-2000. Only between July and October

ated temperature lapse rates simulated by the RCM COSMO(—joes the estimation give stronger lapse rates compared to
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0.2 tion observed at each site. The same factor is then applied to
l === 2 stations (1971-2000) the RCM scenario data. For temperature, an additive adjust-
T -0.3 == ¢== 2 stations (1985-2000) A ment instead of a multiplicative is used. In this method, it is
o \ 7 stations (1985-2000) ° possible for the future precipitation frequency to differ from
s 04 \ rd the control period.
© 05 Bias-correction of the variance of monthly temperature
£ was also undertaken following the method of Chen et
o -06 1 al. (2011a). This is necessary as large biases in the variance
§ 5% of monthly temperatures are found in RCM output, which
- 974 could significantly affect modelled snow accumulation and
melt. Thus, the standard deviation of the RCM temperature
0.8 —r T T T T is corrected by the ratio between the standard deviation of
12 3 4 5 6 7 8 9 10 11 12 the temperature simulated by the RCM for the reference pe-
month riod and the standard deviation of observed temperature. The

. . . same correction factor is then applied to the future scenario
Fig. 3. Comparison of surface temperature lapse rate calculations

derived from two and seven stations. data.

3.3.3 Quantile-quantile mapping

the cal;:url]atlon ba_sedl ondthe slevzn statlc_)ns.h However,haﬂ]e third technique is the quantile-quantile (QQ) mapping
most_o the snow IS already me te away In these mo_nt _Sapproach, as employed in a growing number of studies (e.g.
the differences in the lapse rate calculations may not S'gn'f'Bée et al., 2007; Bqe, 2007, Quintanta-Segat al., 2010;
icantly affect runoff simulations. The monthly lapse rates Hageman,n ot al.’, 20117;Then,1ef3I etal., 2012). QQ,mappi,ng is

bz?tied on .the twg sFatlans Sh;:é ztéoogg sealso%nal Va&'at'onl’?ased on adjusting quantiles of RCM output to observations
with & minimum during June ' per mand a i, order to eliminate systematic errors in RCM output.

maximum in January &0.34°C per 100 m, based on the First, cumulative distribution functions (CDFs) of ob-

years 1971 to 2000. Similar lapse rates gre.also reported b¥erved and RCM simulated data for the control period are
Pommel et al. (2010) for other station pairs in the Alps. used to calculate transfer functions for each percentile. A
moving window of 31 days centered on the day under in-
vestigation is used to construct the CDFs. It should be noted
that the use of a moving window approach, compared to a
monthly calibration as presented in Sects. 3.3.1and 3.3.2, en-
. L : ures that no abrupt changes occur at the boundaries of each
techniques in climate change impact assessments (€.9. Pruraﬁ-onth. The transfer functions are determined for each day of

homme et al., 2002; Wilby and Harris, 2006; Minville et al., the vear with the two percentiles related by linear interoola-
2008; Dobler et al., 2010). Observed temperature and precip- year wi WO p ! vl ' P

itation series are altered with delta change factors to obtai%'gg;g‘f;?&ﬁ?:&:ﬁ;;;@: tshtgps’atrrr:ee cCo[r)rFe gg(;gsgr%glﬁjnzf the
future climate scenarios. The change factors are derived front '

RCM data as the mean monthly change between the contr Iiass?((::g?rg,ctselcrjnle!sail;edtr\\/:rtI;t:wlgfserf?Lr:ESoﬁrerii:\tll clkr;]:tsea;rs
and future simulations and are additive for temperature an%r 9 ' Y:

ansfer function is applied to the future scenario. Values

multiplicative for precipitation. Note that the basic method smaller than the observed minimum or areater than the maxi-
accounts for shifts in mean and ignores changes in variabil: 9

ity (Fowler et al., 2007). The number of days with precip- mum are assumed to be the lowest and highest percentiles, re-

itation does not change between the reference and scenarﬁ? ectively. For temperature, we followed the study of Beyene
simulations. etal. (2010) and removed the linear warming trend before ap-

plying the QQ technique and re-imposed it afterwards. Due
to a significant temperature increase in the future scenario,
the CDF of future temperature is very different from the CDF
The second method is local scaling, following the approachCf Simulated present temperature. This would lead to many
of Widmann et al. (2003) and others (e.g. SaatB005: tempe_raty_re corrections ou_t5|de the callbr_atlon range, _and
Graham et al., 2007: Stoll et al., 2011). Local scaling is amay_5|gn|f|cantly alter the chr_nate change S|gnz_;1I. Removing
straightforward approach, as it preserves the dynamic charadl€ linear trend before applying the QQ technique helps to
teristics of the scenario simulation. Daily RCM precipitation "¢duce the number of extrapolations.

at each grid point is multiplied by a monthly factor, which

is derived from the quotient between the precipitation simu-

lated by the RCM for the reference period and the precipita-

3.3.1 Delta change method

Due to its simplicity, the “delta change” or “change fac-
tor” method is one of the most widely applied downscaling

3.3.2 Local scaling

www.hydrol-earth-syst-sci.net/16/4343/2012/ Hydrol. Earth Syst. Sci., 16, 43486Q 2012
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Fig. 4. (a) Observed and HQsim simulated runoff for the year 1975. The blue shading indicates the range obtained when using 20 different
parameter setg¢b) Mean monthly runoff andc) exceedance probability distribution for observed and simulated data, based on the period
from 1971 to 2005.

3.4 Hydrological model HQsim is specified by a number of global and local param-
eters, which must be adjusted during the calibration period.
In order to simulate hydrological conditions for present Dobler and Pappenberger (2012) identified the most sensi-
and future climate, the semi-distributed hydrological modeltjye parameters in the model. They found 17 parameters to be
HQsim (Kleindienst, 1996) is applied. HQsim has beensensitive for the simulation of runoff, which are considered
tested extensively for Alpine watersheds (e.g. Dobler et al. for calibration in this study. These parameters mainly control
2010; Achleitner et al., 2011) and has already been used t@now and soil processes and are calibrated by maximizing the
study climate change impacts on the runoff regime (DoblerNash-Suitcliffe efficiency (NSE) (Nash and Sutcliffe, 1970).
et al., 2010) and flood hazard potential (Dobler et al., 2012) The model is calibrated for the Lech watershed using flows
of the Lechriver. at the gauging station Lechaschau, for the years 1981 to
In brief, HQsim is best described as a semi-distributed,2000. Subsequently, the model is validated using the periods
conceptual model. HQsim simulates all relevant processeg971 to 1980 and 2001 to 2005. Figure 4a gives an exam-
controlling runoff in mountain watersheds: snow accumula-ple of the performance of HQsim for one year (1975) dur-
tion and melt, evapotranspiration, interception and infiltra-ing the validation period (red line). This is a fairly typical
tion. Evapotranspiration is simulated based on the concept ofydrological year for the Lech catchment characterized by
Hamon's potential evapotranspiration dependent on the wasnow melt-induced spring floods as well as floods during
ter availability (Federer and Lash, 1978) For a detailed de-the summer season, which were caused by heavy precipi-
scription of the model see Achleitner et al. (2011) or Dobler tation events. Therefore, the year can be considered as be-
and Pappenberger (2012). The watershed is divided into hying broadly representative. The seasonal cycle is simulated
drological response units (HRUs), which are defined as areagell by the model, although a slight underestimation is found
with similar runoff characteristics (Byel, 1997). The delin-  from May to September (Fig. 4b). The exceedance probabil-
eation of HRUs is done on the basis of gridded layers ofity distrution (Fig. 4c) indicates a slight bias towards higher
altitude, soil and land use. Input to the hydrological model rynoff values. However, in general the figures indicate that
includes daily temperatures for 100 m altitudinal belts andthe model performs fairly well in this complex Alpine wa-
daily precipitation for the stations shown in Fig. 1. Tempera- tershed. For the calibration period, the NSE is 0.85 and for
tures for different altitudinal belts are calculated by applying the two validation periods 0.83 (1971-1980) and 0.87 (2001—
the lapse rates obtained from the two meteorological stationg005), respectively. The better performance of the model
(see Sect. 3.3). The model is run with a daily time step.  in the second validation period (2001-2005) is mainly due
to two extreme flood events (2002 and 2005), which are

Hydrol. Earth Syst. Sci., 16, 4343436Q 2012 www.hydrol-earth-syst-sci.net/16/4343/2012/
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Table 1. Parameters and their ranges used for uncertainty analysis. Values in brackets indicate the range of the 20 parameter sets.

Parameter Range Unit Description

meltfuncmax  1.0-6.0 mmAC~1d=1  maximum degree day factor
(1.1-1.6)

sO.depth 500-2500 mm depth of unsaturated soil zone
(575-2477) of soil type 0 (lithosol)

s2 depth 500-2500 mm depth of unsaturated soil zone
(910-2283) of soil type 2 (rendzina)

s2m 0.1-0.9 Mualem-van Genuchten parameter m
(0.2-0.4) for soil type 2 (rendzina)

s2drain 0-0.3 ratio of the outflow of the unsaturated
(0.1-0.3) soil zone, which comes to base flow

storage (soil type 2 — rendzina)

simulated very well by the model. We found no significant 3.6 Uncertainty measure
changes in the model performance during the whole simula-

tion period 1971-2005. In order to determine the contribution of the different un-
certainty sources, the spread (percentage points) between the
3.5 Hydrological model parameters different simulations is used. This measure has already been

applied in a wide range of studies, e.g. Kay et al. (2009). The
Of the 17 parameters selected for calibration, Dobler andadvantages of this measure are that (i) it is easy to implement
Pappenberger (2012) classified five as being highly sensitiveind (ii) the results are easy to interpret. However, the disad-
(Table 1). Of those five parameters, one relates to snow meltyantages are that (i) information from data points between the
ing (meltfuncmax) and the remaining four to soil properties. minimum and maximum values is not taken into account; (ii)
In order to account for Uncertainty related to the choice Ofinteractions between the different Components are not con-
hydrological model parameters, a Monte Carlo frameworksidered; as well as (iii) the ranges are not normalized by the
is applied. Five thousand parameter sets are generated rafumber of samples, which makes it difficult to compare the
domly from the parameter ranges in Table 1, assuming aifferent uncertainty sources. As an alternative to the uncer-
uniform distribution. The 20 parameter sets with the high- tainty measure presented here, Finger et al. (2012) performed
est NSE are then selected to evaluate the effects of differergn ana|ysis of variance (ANOVA) to partition the uncertainty
parameter sets on projected climate impacts. into different components.

As can be seen in Table 1, for the parametersieth,

s2 depth and s2irain, good simulations can be obtained with
values varying over wide ranges. This indicates that values oft Results
these parameters have little influence. Other parameters such

as meltfuncmax and s2m only produce acceptable simula- Section 4.1 presents the performance of the bias-corrected
tions when concentrated within certain intervals. control simulations, while Sect. 4.2 shows temperature and

Figure 4a illustrates an example for the range of the simyPrécipitation projections obtained from the spectrum of

lations obtained from the 20 different model parameter setsM°del combinations. Finally, uncertainties in the hydrolog-

The NSE for these 20 simulations varies between 0.84 andf@! Projections resulting from different sources are assessed.
0.85, based on the years 1971-2000. Thus, different sets g

. . . z{.l Performance for present climate conditions
model parameters yield the same functional output, consis-

tent with the concept of model equifinality (Beven and Freer, Figure 5 shows HQsim simulations driven by observed me-
2001). . . teorological data (denoted as the reference simulation) and
In order to evaluate the effects of different hydrological nias corrected RCM data for the control period. Note that
model parameter sets on the hydrological projections, relagasim simulations forced with bias-corrected data are com-
tive changes between the present and future runoff simulapareq with the reference simulation, instead of observed
tions are calculated for each parameter set. As can be Seqfjnoff. This is to separate model biases in the HQsim simula-

in Fig. 2, the modelling chain consisting of the ECHAMS ;s from those originating from the bias-corrected climate
model, the RACMO model and the delta change approach igja¢4 (e.g. Lenderink et al., 2007; Minville et al., 2008).
used as a basis for this assessment.
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Fig. 5. Runoff from HQsim simulations using observed station data (reference simulation) and the different modelling chains(sfowing
mean daily runoff(b) mean seasonal runoff aifd) the mean seasonal 90 %-quantile of daily runoff.

The control simulations are bias-corrected by applying For the 90 %-quantile of daily runoff, almost all con-
the local scaling and the QQ mapping approaches. Notérol simulations slightly underestimate runoff (see Fig. 5c¢).
that in case of the delta change approach the referenc&éhe largest biases are found during winter, with de-
simulation is regarded as control simulation. Figure 5aviations ranging from—44% (ECHAM5REMO_SCAL)
shows a relatively good agreement between the referenc® —19% (HadCM3Q3RCA_SCAL). During summer, in-
simulation and the six control simulations. The seasonalstead, a relatively good agreement between observa-
cycle is captured very well, indicating that the applied tion and the control simulation is obtained, with bi-
model chains perform well in this complex catchment. ases ranging from-9% (ECHAM5RCA_SCAL) to +6 %

The clearest differences occur in the winter season wheffECHAM5_ RACMO_QQ).

some of the control simulations are slightly lower than

the reference simulation (see Fig. 5b). Biases in winter4.2 Uncertainty in climate projections

range from —-36% (ECHAMSREMO_SCAL) to —10%

(HadCM3Q3RCA_SCAL). Comparatively small biases are In the next step, temperature and precipitation scenarios are
found in summer, ranging from7 % (BCM_RCA_SCAL) compared to assess the spread of uncertainty originating from
to +4% (ECHAM5RACMO_QQ) and from —9% the choice of the (i) GCM, (ii) RCM and (iii) bias-correction
(REMO_RCA_SCAL) to —3% (ECHAM5RACMO_QQ) approach. Note that for the delta change approach the climate
in autumn. change signal is calculated between the future scenario and

In general, there is a tendency towards underestimatinghe control simulations of the RCM, while for local scaling
seasonal runoff, especially for the simulations based on thand QQ mapping it is derived from the bias-corrected RCM
local scaling technique. This could be the result of possiblecontrol and scenario simulations.
errors in the wet-day frequency, which are not accounted for Figure 6 shows temperature and precipitation scenarios for
in the local scaling approach. The bias-corrected control simthe different model chains. The differences among the pro-
ulations contain too many low precipitation (“drizzle”) days, jections provide an estimate of the uncertainty involved in
which may cause higher evapotranspiration and hence, leathe simulations. GCM inter-model variability is found to be
to an underestimation of seasonal runoff. very large for both temperature and precipitation projections.
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Fig. 6. Mean monthly changes in temperatui® @nd precipitation P) between the reference period (1971-2000) and the future scenario
(2070-2099). Uncertainty originating from GCM, RCM and bias-correction is illustrated. Temperature and precipitation data are averaged
across the catchment.

Most of the simulations show warming between Z0and  perature, the inter-model variability ranges betweer? G.Bh
3.5°C for the period 2070 to 2099, compared to the refer-July and 1.8C in April. Generally, the RCMs produce more
ence period (1971 to 2000). The largest increase of@.5 similar temporal patterns for both variables than the GCMs.
originates from the ECHAMb scenario in July, whereas theFor precipitation, the largest deviations among the different
lowest increase of-1.3°C is obtained from BCM scenario simulations are found in September, while the lowest differ-
in October. Temperature scenarios vary among the differenénces occur in April. These results are in partial disagree-
GCMs by 0.2C in January and by 2°C in November. No  ment with previous studies. Results from the PRUDENCE
clear temporal pattern in the temperature change is evidenproject (10 RCMs forced by 1 GCM; Christensen and Chris-
but precipitation shows strong decreases during summer anténsen, 2007) have shown that the largest uncertainty over
increases during winter and spring. These results are concentral European areas (Jacob et al., 2007) and catchments
sistent with findings obtained from other studies in the Alps (Rhine, Danube; Hagemann and Jacob, 2007) occurs during
(e.g. Solomon et al., 2007; Smiatek et al., 2009; Kjadlstiet  the summer. Here, the regional climate is less constrained
al., 2011). The largest decrease is in the ECHAM5 scenaridy the boundary forcing due the importance of local scale
with —28 % in July, and largest increase is simulated by theprocesses, such as convection and land-atmosphere interac-
BCM scenario withH-35 % in December. The spread of the tions. For precipitation, our results agree with those men-
precipitation scenarios is similar throughout the year. tioned above, except for July, where the limited sample size
During winter and spring, the spread of uncertainty in the of 3 RCMs likely leads to an underestimation of RCM uncer-
temperature projections resulting from the RCM structure istainty. For temperature, the largest RCM uncertainty occurs
similar to that originating from the GCM structure, while it from March to June, while during the summer months of July
is lower during summer and autumn. The range of uncer-and August the RCM uncertainty is rather low. This is likely
tainty in the projections of precipitation is slightly smaller caused by the mountainous location of the watershed where
for the RCMs than for the GCMs. For mean monthly tem- snow-related processes, especially the snow albedo feedback
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parameters(b) Size of impact range originating from each uncertainty source. The differences (percentage points) between the minimum
and maximum values are plotted.

(see, e.g. Hall and Qu, 2006), have a dominant impact on the Projections based on different GCMs show modest vari-
warming signal during the snow melt period in spring. Model ations, ranging from-17 % (HadCM3Q3RCA_SCAL) to
differences in the representation of these processes lead t68 % (BCM_RCA_SCAL). Uncertainty originating from
different strengths in the snow albedo feedback and, thus, tthe RCMs is slightly larger, with projected changes rang-
larger uncertainties in the projected warming signal. ing between—17 % (HadCM3Q3RCA_SCAL) and —4 %
Uncertainty related to the choice of the bias-correction ap{(ECHAM5_RACMO_SCAL), while uncertainty related to
proach is comparatively small. However, it must be noted thathe bias-correction step is smaller than GCM and RCM un-
two out of three bias-correction techniques (local scaling anctertainty. The hydrological model parameter sets have rela-
the delta change approach) are directly calibrated on monthlyively little effect on the uncertainty.
values. Thus, the climate change signals obtained by these It is interesting to note that although RCM uncertainty is
methods are the same when focusing on mean monthly profound to be less than GCM uncertainty for temperature and
jections. The QQ mapping approach (which has not been calprecipitation (see Sect. 4.2), it is the most important source
ibrated on monthly values) generates climate change signalsf uncertainty when focusing on projections of mean annual
comparable to the delta change and local scaling techniqueunoff. This suggests that the relationship between climate
But, it can be seen, that the QQ mapping approach modifieforcing and hydrological response is highly non-linear, con-
the climate change signal. Similar findings are reported bysistent with the findings of Arnell (2011).
Hagemann et al. (2011) and Themel3| et al. (2012).
The spread of the temperature projections ranges up t¢ 3 5  Mean monthly runoff
0.3°C in April and May. The lowest difference between the

precipitation projections occurs in November and the highesﬁzigure 8 illustrates uncertainty in the projections of mean

in May. Overall, Fig. 6 shows that uncertainty related to themonthly runoff originating from different sources. All sim-

bias-correction approach is comparatively small when focus- |~ . . . . .
) ulations indicate considerable increases in mean monthly
ing on mean monthly values.

runoff from December to April, and decreases from June
to August. In other months no clear tendency towards an
increase or decrease are found. Larger uncertainties in the
4.3.1 Mean annual runoff hydrological projections are found during winter compared
with summer. However, it has to be noted that the results
In the next step, uncertainty in projected mean annual runoffare presented in relative terms, whereas comparatively large
is evaluated. Figure 7 shows the spread of uncertainty origpercentage differences during winter translate into relatively
inating from (i) GCM, (ii) RCM, (iii) bias-correction, and small changes in absolute discharges.
(iv) hydrological model parameters. All projections indicate  On average, the GCM structure has the largest effects on
a slight downward trend in mean annual runoff. the model output. Relatively large deviations are found be-
tween the three different simulations from January to May

4.3 Uncertainty in hydrological projections
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and in November. This is due to the fact that the BCM-driventure. However, during winter relatively high uncertainty is
simulation (Fig. 6) shows a smaller increase in temperatureobtained, due to the spread of uncertainty in the tempera-
compared to the other two GCMs in these months. Snowture projections in these months (Fig. 6). Uncertainty result-
melt-dominated rivers like the Lech are particularly sensitiveing from the bias-correction approach is smaller than uncer-
to changes in temperature (e.g. Dobler et al., 2010), as thitainty related to GCM and RCM structure, although compar-
determines whether precipitation falls as snow or rain. Thusatively large differences among the three simulations are ob-
high uncertainty in the temperature projections during thesdained for some months. Note that although only small differ-
months results in high uncertainty in runoff projections. ences in the forcing projections are found (Fig. 6), relatively

Uncertainty originating from the RCM structure is in gen- large differences in the hydrological simulations are evident.
eral slightly smaller than those related to the GCM struc-
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Again, this indicates that there is a non-linear hydrologicaluncertainty for the highest flows are obtained. Although the
response to the climate forcing (Arnell, 2011). methods generate the same monthly temperature and precipi-
Uncertainty resulting from hydrological model parame- tation scenarios (Fig. 6), the results are very different for high
ters has generally less influence on projected changes iflows. The delta change approach only considers changes in
monthly runoff, compared to the other uncertainty sourcesthe mean, whereas the local scaling approach also changes

The largest uncertainty range due to hydrological model pathe variability. However, as changes in climate variability are
rameters is found during winter and amounts to about 20 %at least as important as changes in the mean when focus-
while during summer only a small spread of uncertainty ising on extremes (Katz and Brown, 1992), it is not surprising
obtained. As can be seen in Fig. 4a, model skill during lowthat both methods differ in the simulation of high flows. This
flow periods in winter is comparatively small, arising from result echoes the findings of Lenderink et al. (2007), who
a poorer representation of base flow than surface runoff andompared runoff in the river Rhine using two different bias-
interflow in the model structure. Hence, relatively large bi- correction techniques. Although similar results were found
ases of the hydrological model cause relatively high projec-in mean summer and mean winter runoff, large differences
tion uncertainties. However, it should be pointed out that thefor extreme flows during winter were reported.

uncertainties during winter are comparatively small in abso- In contrast to the delta change and local scaling tech-
lute terms. Nevertheless, these results demonstrate that theques, the QQ mapping approach explicitly accounts for
hydrological model parameterization varies across differentchanges in both precipitation and temperature extremes. The-

hydrological conditions. mefRl et al. (2010) showed that the technique performs well
for higher guantiles of the precipitation distribution. Thus,
4.3.3 10% and 1 % flow exceedance probabilities the QQ mapping approach appears to be more reliable when

focusing on extremes than the delta change and local scaling

Finally, uncertainty in the 10% and 1% flow ex- approaches. Uncertainty related to hydrological model pa-
ceedance probabilities is assessed. Figure 9 shows thmmeters has only a minor influence on projections of high
spread of uncertainty in the whole exceedance probabilflows, compared to the other sources discussed above. This
ity distribution resulting from different sources. Except for reflects the fact that the objective function (NSE) used for
the ECHAM5RACMO_QQ and ECHAM5RACMO_SCAL HQsim calibration favours the reproduction of high flows.
scenarios, all show a decrease in mean high flows
by the end of this century. The spread of results
range from —27% (HadCM3Q3RCA_SCAL) to —9% 5 Discussion and conclusion
(ECHAM5_RACMO_QQ) for flows exceeded 10% of the
time and from—18 % (HadCM3Q3RCA_SCAL) to +15% Most climate change impact studies are based on a modelling
(ECHAM5_RACMO_QQ) for flows exceeded 1% of the chain consisting of (i) GCMs, (ii) RCMs, (iii) bias-correction
time. In general, there are large variations across the spedechniques, and (iv) an impact model such as a hydrological
trum of the different projections, stressing the importancemodel. Although a large number of studies are based on this
of using different model combinations when assessing thekind of approach, relatively little attention has been given to
spread of uncertainty. assessing uncertainty in the hydrological projections. While

Figure 9a indicates that the GCM and RCM structuressome studies focus on one source of uncertainty, such as
have significant effects on the projections of high flows. GCM structure (Maurer and Duffy, 2005) or the downscaling
While the magnitude of GCM uncertainty is similar for dif- approach (e.g. Quintana-Ségt al., 2010), fewer attempts
ferent exceedance probabilities, uncertainty related to thdnave been made to look at multiple sources (e.g. Wilby and
RCM and the bias-correction approach increases with theHarris, 2006; Kay et al., 2009; Prudhomme et al., 2009; Chen
rarity of the hydrological event. For example, GCM, RCM et al., 2011c). This study explores uncertainty resulting from
and bias-correction uncertainty are the main sources of undifferent sources by applying a multi-model ensemble. The
certainty for flows exceeded 10 % of the time, while RCM Lech watershed+ 1000 kn?), located in the Northern Lime-
and bias-correction uncertainty are the most important unstone Alps of Austria, was selected as the study area.
certainty source for flows exceeded 1% of the time. As can Our results generally show that hydrological projections
be seen in Fig. 9, the spread of uncertainty in the projec-are subject to considerable uncertainty. The size of the im-
tions of mean high flows originating from the RCM and the pact range among the spectrum of scenarios spans 90% in
bias-correction approach is very large. The projections eversome months (see Fig. 8b). Sometimes the models even show
suggest different sign changes. This clearly indicates that theifferent sign changes. When focusing on flows exceeded
RCM and the bias-correction approach play a significant rolel % of the time, for instance, some models indicate a de-
when assessing climate change impacts on hydrological exerease of—18 % while others show an increase -p15 %.
tremes (at least in this catchment). This demonstrates that the use of multi-model ensembles is

When comparing the ECHAMRACMO_DELTA and a necessary prerequisite for quantifying climate change im-
ECHAM5_RACMO_SCAL scenarios, comparatively high pacts at regional or local scales. Results from studies based
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values are plotted.

on a single GCM, should thus be interpreted with extremeHydrological model parameter uncertainty is found to be less
caution (Chen et al., 2011c; Harding et al., 2012). important compared to the other factors.

Overall, our results confirm that GCM structure is an im-  For practical purposes most assessments cannot apply
portant source of uncertainty in climate change impact studmulti-model ensembles as herein, so effort is best focused
ies on a regional scale. The wide range of uncertainty in theon using different GCMs and RCMs when assessing the
hydrological projections is mainly the result of high uncer- main spread of uncertainty in hydrological projections. How-
tainty in the forcing projections. This finding agrees with ear- ever, if information is needed on extremes, different bias-
lier work (e.g. Wilby and Harris, 2006; Kay et al., 2009; Chen correction techniques should also be included. Simple bias-
et al., 2011c). Uncertainty related to the choice of RCMs iscorrection techniques such as the delta change method and
found to be of comparable magnitude. The effect of the bias{ocal scaling are only calibrated on monthly data and do not
correction approach is found to increase with the rarity of thetake into account changes in the extremes. Thus, their appli-
hydrological event: there is less influence on the simulationcability should be limited to mean values. The delta change
of average hydrological conditions compared with extremesmethod, even though it has been regularly used in the past, is

identified as insufficient to study extremes. Moreover, direct
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use of the RCM output as in local scaling and the QQ ap-changes. Future studies should also take into consideration
proach is more straightforward (plus changes in variability this source of uncertainty.

are also considered unlike in the delta change approach). In Quantifying the distribution of temperature is particularly
contrast, the delta change method is very easy to implemeritmportant for mountain hydrology. Model errors resulting
and it provides reliable estimates for mean conditions. from the assumed spatio-temporal constant lapse rate are

The use of more sophisticated methods may also increaseidely unknown, but may be of high significance in moun-
the data requirements for bias-correction (e.g. Haerter et altain regions. Minder et al. (2010), for instance, analysed the
2011), even though the uncertainty introduced by the methodonsequences of lapse rate characterization for hydrological
may be reduced. However, the bias-correction approach sgrojections in the Cascade Mountains and found consider-
lected to simulate extremes should be specially designed table differences in runoff projections when using different
handle extreme events, such as the QQ mapping approach, Epse rate assumptions. However, the sparse distribution of
it explicitly considers possible changes in extremes. Themefldlemperature stations, especially at higher elevation zones,
et al. (2010) compared several empirical-statistical down-and the influence of local climate effects, makes it very dif-
scaling and error correction methods for daily precipitation ficult to resolve temperature variability in mountain regions
downscaling over the Alpine region. The QQ mapping ap-(Minder et al., 2010). Nevertheless, a better understanding of
proach showed the best performance in reducing error chaithe spatio-temporal dynamics of the temperature lapse rate
acteristics, particularly at high quantiles. Thus, the methodis essential in marginal situations between snow/ice accumu-
seems to be more reliable when focusing on extremes thatation, melting, and bare ground. Additionally, field experi-
other bias-correction techniques. ments may help to better constrain the parameters of HQsim

Nevertheless, all of these approaches have one main limand to reduce uncertainty due to model parameterization.
itation. In mountain watersheds, the combination of temper- Despite the large range of uncertainty in the hydrologi-
ature and precipitation is crucial, as it determines whethercal projections, some robust findings emerge from this study.
precipitation falls as rain or snow. The bias-correction tech-Mean runoff during winter, for example, is projected to in-
niques adjust both variables independently, which may de<crease substantially in all simulations. In this case, the cli-
stroy the physical relationship between the two variablesmate change signal is by far larger than the uncertainty as-
(e.g. Be et al., 2007; Maraun et al., 2010; Hagemann et al.,sociated with the projections. These findings suggest some
2011; Themell et al., 2012). Further research is needed to deonfidence in hydrological projections on a regional local
termine the extent to which these inter-variable relationshipsscale, whilst acknowledging the small suite of GCMs used.
matter when evaluating climate change impacts over annudkor high flows, instead, no clear signals towards an increase
and multi-decadal time scales. or a decrease were obtained.

The results of this study show that the hydrological model It should also be noticed, that the results of this study
parameterization is generally of low significance. Recently,strongly depend on the study region and the models used.
Vaze et al. (2010) reported that models calibrated over arhus, the results can not be directly transferred to other
long time period can generally be applied in climate impactcatchments or other models. Nevertheless, the study provides
studies, when future mean annual rainfall is not more thanimportant findings on the relative importance of different un-
15% drier or 20 % wetter than the values observed in thecertainty sources, which are essential for future impact stud-
calibration period. Also in this study a relatively long cali- ies.
bration period (20 yr) was used, which increases the chance The study has several limitations. Due to a relatively small
of sampling-varied hydrological conditions and thereby maynumber of models and methods applied, only a limited esti-
result in more generalized parameters (Merz et al., 2009)mation of the overall uncertainty could be quantified. In order
Hence, with these parameter sets, a wider range of hydrologio assess uncertainty originating from hydrological model
ical conditions can be simulated well, maybe even conditiongparameters, only 20 parameter sets were used. Considering
which have not been observed during the calibration periodnore parameters may result in a wider uncertainty range.
(Merz et al., 2009). These results are in disagreement withAlso, the relatively low number of GCM-RCM combinations
the findings presented by Merz et al. (2011) and Coron efas well as the selection of the ECHAM5 and RCA models
al. (2012), who stated that the transfer of model parameterso be held constant when varying the other components will
in time may introduce a significant bias in the hydrological understate the spread of uncertainty due to GCM and RCM
simulations. However, such findings strongly depend on thestructure. This could lead to misleading impressions of the
catchment under investigation as well as the applied modselative significance of individual uncertainty sources (Kay
els and thus, are difficult to generalize. Decisively more re-and Jones, 2012). However, very large ensembles of GCM-
search is needed to test the assumption of model transferabiRCM combinations are yet not available due to the associated
ity. In addition to the uncertainty sources investigated in thishigh computational demand (e.g. Kendon et al., 2010). More-
study, other components may also affect the model outputover, possible interactions between the different uncertainty
For example, Bae et al. (2011) demonstrated that the hydrosources were neglected in this study.
logical model structure has a significant impact on projected
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Finally, it should also be noted that even if we can char-Buytaert, W., @lleri, R., and Timbe, L.. Predicting climate
acterize all the components of uncertainty in climate change change impacts on water resources in the tropical Andes: Ef-
impact assessments, we must not lose sight of the fact that fects of GCM uncertainty, Geophys. Res. Lett., 36, L07406,

the present generation of GCMs exhibit large errors. Recent d0i:10.1029/2008GL037042009.

work has highlighted considerable deficiencies in the rep-Clen. D.. Achberger, C..@sanen, J., and Hellsim, C.: Using sta-
tistical downscaling to quantify the GCM-related uncertainty in

resentation of precipitation (Stephens et al., 2010) and the _ ) o .

. . . .. regional climate change scenarios: A case study of Swedish pre-
global atmospheric moisture balance (Liepert and Previdi, =~ )

: cipitation, Adv. Atmos. Sci., 23, 54-60, 2006.
_2012)' Therefore, we S,hOUId always be C'rCL_ijpe_Ct aboubhen, J., Brissette, F. P., and Leconte, R.: Uncertainty of downscal-
just how much uncertainty can be characterized given the ing method in quantifying the impact of climate change on hy-
flawed nature of the inputs to our studies. Future research grology, J. Hydrol., 401, 190-202, 2011a.
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