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Abstract. Networks that merge and harmonise eddy-
covariance measurements from many different parts of the
world have become an important observational resource for
ecosystem science. Empirical algorithms have been devel-
oped which combine direct observations of the net ecosystem
exchange of carbon dioxide with simple empirical models
to disentangle photosynthetic (GPP) and respiratory fluxes
(Reco). The increasing use of these estimates for the analysis
of climate sensitivities, model evaluation and calibration de-
mands a thorough understanding of assumptions in the anal-
ysis process and the resulting uncertainties of the partitioned
fluxes. The semi-empirical models used in flux partitioning
algorithms require temperature observations as input, but as
respiration takes place in many parts of an ecosystem, it is
unclear which temperature input – air, surface, bole, or soil
at a specific depth – should be used. This choice is a source
of uncertainty and potential biases.

In this study, we analysed the correlation between different
temperature observations and nighttime NEE (which equals
nighttime respiration) across FLUXNET sites to understand
the potential of the different temperature observations as in-
put for the flux partitioning model. We found that the differ-

ences in the correlation between different temperature data
streams and nighttime NEE are small and depend on the se-
lection of sites. We investigated the effects of the choice of
the temperature data by running two flux partitioning algo-
rithms with air and soil temperature. We found the time lag
(phase shift) between air and soil temperatures explains the
differences in the GPP andReco estimates when using ei-
ther air or soil temperatures for flux partitioning. The impact
of the source of temperature data on other derived ecosys-
tem parameters was estimated, and the strongest impact was
found for the temperature sensitivity. Overall, this study sug-
gests that the choice between soil or air temperature must be
made on site-by-site basis by analysing the correlation be-
tween temperature and nighttime NEE. We recommend us-
ing an ensemble of estimates based on different temperature
observations to account for the uncertainty due to the choice
of temperature and to assure the robustness of the temporal
patterns of the derived variables.
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1 Introduction

Eddy-covariance measurements have contributed strongly to
our understanding of ecosystem responses to climate with
respect to water, carbon and energy fluxes (Law et al., 2002;
Falge et al., 2002; Teuling et al., 2010; Mahecha et al., 2010,
and many more).

To analyse changes in the observed net ecosystem ex-
change (NEE) with respect to the underlying processes pho-
tosynthesis and respiration, NEE is often partitioned into
gross primary production (GPP) and ecosystem respiration
(Reco). This procedure is usually based on semi-empirical
models of respiration, which use temperature as a driver.
Respiratory fluxes are generated by many components of
an ecosystem, e.g., leaves, branches, stems, but also below-
ground, by soil organisms and roots. The temperature driv-
ing the respiration processes varies between the different
locations where they take place (Subke and Bahn, 2010).
Moreover eddy-covariance systems observe the flux above
the canopy and, therefore, not at the time when the fluxes
form, but rather delayed by the transport time from the loca-
tion of respiration to the sensor (Phillips et al., 2011). This
heterogeneity within the ecosystem influences the relation-
ship between observed fluxes and temperature: it can ap-
pear as noise or hysteresis patterns may occur. Trying to ac-
count for this heterogeneity to improve model performance
strongly increases the complexity and, therefore, the num-
ber of parameters in the flux partitioning model. However,
keeping the model’s structure simple is an important goal
in order to remain as close as possible to the data, to avoid
additional assumptions, and to avoid additional sources of
uncertainty. Currently, frequently used flux-partitioning al-
gorithms choose only one temperature stream, and it re-
mains unclear which temperature (air,Tair or soil, Tsoil, in
a specific soil depth, or the surface temperature,Tsurf) is the
most appropriate (Subke and Bahn, 2010). Moreover, hys-
teresis can lead to systematic under- or overestimation in
flux-partitioning algorithms that selectively fit only daytime
or nighttime data and then extrapolate the model in time.

The collection and harmonisation of eddy-covariance ob-
servations from stations all over the world (www.fluxdata.
org) and methodological developments now allow for global
gridded datasets of carbon fluxes based on local eddy-
covariance flux measurements to be derived (Beer et al.,
2010). In addition to the value of having a global esti-
mate based on observations, these global gridded datasets
are highly promising for land surface model validation and
improvement (Bonan et al., 2011). For such studies precise
uncertainty estimates strongly increase the usefulness of the
data. The uncertainty of the GPP estimate has been partly
considered in some studies by including estimates based on
daytime and nighttime data, but both algorithms rely on air
temperature (and not soil temperature) as a driver for respi-
ration (Beer et al., 2010; Lasslop et al., 2010).

The goal of our study is to improve our understanding of
potential biases and uncertainties in flux partitioning algo-
rithms as affected by the choice of the driving temperature
and with this our understanding on how to best use these es-
timates. We first illustrate how differences between air and
soil temperature can influence flux partitioning algorithms.
We investigate the potential of air and soil temperatures as
drivers for the Lloyd and Taylor (Lloyd and Taylor, 1994)
respiration model across FLUXNET sites. We quantify the
uncertainty and potential biases arising from the choice of
the driving temperature for respiration. We further try to at-
tribute the differences between the annual flux components
derived with the air and soil temperatures to statistical mea-
sures of the relationship between air and soil temperatures
and to vegetation structure. Moreover, we quantify the dif-
ference in ecosystem parameters derived during the flux par-
titioning using either air or soil temperature.

2 Methods

2.1 Data

We used data from the FLUXNET “La Thuile” database
(www.fluxdata.org, version of December 2007) containing
976 site-years of half hourly eddy-covariance data. The data
are CO2 storage change corrected, spike filtered,u∗-filtered
(u∗ is the friction velocity), and subsequently gap-filled (Pa-
pale et al., 2006). A flux partitioning algorithm is applied that
partitions the net exchange into GPP andReco (Reichstein
et al., 2005). In spite of this high level of harmonisation, the
derivation of half-hourly fluxes from the high frequency raw
data still varies from site to site (Mauder et al., 2008). For the
analysis only sites providing the necessary data with a high
quality, i.e., the data necessary to apply the flux partition-
ing and retrieve reliable annual sums were used. We could
include 270 yr from 90 sites.

We used air and soil temperature observations; air temper-
ature is usually measured above the canopy close to the eddy-
covariance system. The depth of soil temperature observa-
tions varies between sites (see Table 1). When multiple soil
temperatures were available, we used the observation clos-
est to the surface, assuming that the top layer is usually the
largest source of respiration in soils. In addition to these two
temperature data streams, we computed the surface temper-
ature,Tsurf, based on longwave radiation for sites measuring
the radiation components (see Table 1). The surface temper-
ature can be derived as:

Tsurf =

(
Lout− (1− ε)Lin

σBε

)1/4

(1)

which is based on the Stefan-Boltzmann law. Here,σB de-
notes the Stefan-Boltzmann constant,Lout is the longwave
outgoing radiation,Lin is the longwave incoming radiation
andε is the emissivity of the surface, here set to 0.98, which
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Table 1.List of FLUXNET sites and years used, reference, values of LAI and SOC included in the analysis, column LW indicates whether
longwave radiation was available for the specific site andd is the measurement depth of the soil temperature inm.

sites years reference LAI SOC LW d

AT-Neu 2003 Wohlfahrt et al.(2008) 6.5 4.25 0.05
AU-Fog 2006 – – – x
AU-Tum 2003 Van Gorsel et al.(2008) 2.4 – 0.02
BE-Lon 2005, 2006 Moureaux et al.(2006) 5.4 3.7
BE-Vie 1997–2008,2000–2003,2005–06Aubinet et al.(2001) 5.1 3.82
BR-Sa2 2001 Sakai et al.(2004) 4.91 – x
BW-Ma1 2000 Veenendaal et al.(2004) 1.3 0.5 x
CA-Ca1 1999, 2002 Humphreys et al.(2006) 8.4 – x
CA-Ca2 2001–2005 Humphreys et al.(2006) 2.2 –
CA-Ca3 2002–2005 Humphreys et al.(2006) 6.7 – x
CA-Let 1999–2005 Flanagan et al.(2002) 0.8 –
CA-Mer 1999–2005 Lafleur et al.(2003) 1.3 – x 0.02
CA-Oas 1997–2000, 2002–2005 Black et al.(2000) 2.1 1.63 x
CA-Obs 2000–2003, 2005 Bergeron et al.(2007) 3.8 – x
CA-Ojp 2000–2003, 2005 Howard et al.(2004) 2.6 1.58 x
CA-Qcu 2002–2003, 2005, 2006 Giasson et al.(2006) 0.82 – x
CA-Qfo 2004 Bergeron et al.(2007) 3.7 3.5 x
CA-SJ3 2005 Zha et al.(2009) 2.9 – x
CA-TP4 2004 Arain and Restrepo-Coupe(2005) 8 3.7 x 0.02
CA-WP1 2004–2005 Syed et al.(2006) 2.61 – x
CN-Do1 2005 Yan et al.(2008) 5.1 – x
CN-Do2 2005 Yan et al.(2008) 3.78 – x
CN-Do3 2005 Yan et al.(2008) 1.63 – x
DE-Bay 1998–1999 Staudt and Foken(2007) 5.3 17.02 0.02
DE-Geb 2004–2006 Anthoni et al.(2004) – – x 0.02
DE-Gri 2006 Prescher et al.(2010) 4.93 – x
DE-Hai 2001, 2003 Knohl et al.(2003) 6.08 12.2 0.05
DE-Har 2005–2006 Schindler et al.(2006) – – x
DE-Kli 2005 Prescher et al.(2010) 4.7 9.7 x
DE-Tha 1998–2000, 2003–2006 Grünwald and Bernhofer(2007) 8 16 x
DE-Wet 2004, 2006 Rebmann et al.(2010) 4.78 – x 0.02
DK-Sor 1997–2002, 2005–06 Pilegaard et al.(2003) 5 – x 0.02
ES-ES1 1999–00, 2005–06 Reichstein et al.(2005) 2.63 –
ES-ES2 2006 – 3.015 – x
ES-LMa 2004–2005 – 2 3.32 x
ES-VDA 2004 Gilmanov et al.(2007) 1.35
FI-Hyy 1997, 1999, 2001–2002, 2004 Suni et al.(2003b) 6.7 5.6 0.01–0.05
FI-Sii 2005 Aurela et al.(2007) 0.4 –
FI-Sod 2001, 2005–2006 Suni et al.(2003a) 1.2 3.14
FR-Fon 2006 – 5.055 10.2
FR-Hes 1998, 2003–2006 Granier et al.(2000) 6.7 7.17 x 0.05
HU-Bug 2006 Nagy et al.(2007) 1.5 –
IT-BCi 2005 Reichstein et al.(2003a) 5.8 –
IT-Cpz 1997, 2003 Garbulsky et al.(2008) 3.5 4.31
IT-Ro1 2002–2005 Rey et al.(2002) 3.03,2.42 11.3 x
IT-Ro2 2002–2003, 2006 Tedeschi et al.(2006) 3.9 11.3
IT-SRo 2001–2003, 2006 Chiesi et al.(2005) 4.2 2.15 x
JP-Mas 2002–2003 Saito et al.(2005) 5.45 –
JP-Tom 2001–2003 Hirano et al.(2003) 9.2 – x
NL-Loo 2005–2006 Elbers et al.(2011) 2.03 2.4 x 0.03
RU-Fyo 1999–2000, 2003–2006 Kurbatova et al.(2008) 2.8 – x 0.05
SE-Nor 1996–1997 Lagergren et al.(2008) 4.53
UK-Gri 1998 Rebmann et al.(2005) 7 15
US-ARM 2003–2005 Fischer et al.(2007) 2.9,1.6 – x
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Table 1.Continued.

sites years reference LAI SOC LW d

US-Bkg 2005–2006 Gilmanov et al.(2005) 3 – x
US-Bo1 97–1998, 2000, 2005–2006Meyers and Hollinger(2004) 5.5 – x
US-Bo2 2006 Meyers and Hollinger(2004) – – x
US-FPe 2004–2006 – 2.5 – x
US-Goo 2006 – 2 – x
US-Ha1 1995, 1998, 2001 Urbanski et al.(2007) 4.5 8.8
US-IB1 2006 Allison et al.(2005) 1.75 6.3
US-IB2 2005–2006 Allison et al.(2005) 3.96,3.03 6.3
US-KS2 2002, 2004–2005 Powell et al.(2006) 2.5 3.6
US-MMS 2003–2005 Schmid et al.(2000) 4.7,4.8,4.4 6.6 x 0.05
US-MOz 2006 Gu et al.(2006) 4.01 – x
US-Me3 2004–2005 Vickers et al.(2009) 0.52 10
US-NR1 2000, 2002–2003 Monson et al.(2002) 5.6 16 x
US-Ne1 2003 Verma et al.(2005) 2.8 18.4 0.02
US-Ne2 2004 Verma et al.(2005) 4.4 21.1 0.02
US-Ne3 2003–2004 Verma et al.(2005) 4.27 – 0.02
US-PFa 1999 Davis et al.(2003) 4.05 20.2
US-SO2 2004–2006 Lipson et al.(2005) 3 0.87
US-SO3 2005–2006 Lipson et al.(2005) 1.1 –
US-SO4 2004–2006 – 3 –
US-SP1 2005 Powell et al.(2008) 5.5 8 0.1
US-SP2 2001, 2004 Bracho et al.(2012) 1.05,6.85 – 0.1
US-UMB 2000, 2002–2003 Nave et al.(2011) 4.59,4.26,4.47 3.6
US-Var 2001–2003, 2006 Xu and Baldocchi(2004) 2.5 –
US-WBW 1995, 1999 Wilson and Baldocchi(2001) 5.75 –
US-WCr 2000, 2002 Cook et al.(2004) 5.4 9.47 x

is a common value for green vegetation (Humes et al., 1994).
The correlation analysis here is based on the growing season
only, thus, minimising a potential effect of the seasonality of
the emissivity.

For the definition of the growing season (or carbon uptake
period), several methods for the extraction of the growing
season from GPP time-series are available. These methods
include curve fitting with logistic functions of the time series
and the use of derivatives of the smoothed time-series. The
use of simple thresholds has proved to be well-suited and
straightforward for this kind of application, particularly when
the growing season is extracted from a GPP time series (e.g.
Richardson et al., 2010). Here, we scaled GPP, such that the
0.05 quantile was zero and the 0.95 quantile was equal to one.
Then we extracted all the values between the first and the
last days in which GPP was higher than 0.2 (i.e., 20 % of the
0.95 quantile – 0.05 quantile range). The threshold of 20 %
was considered as a well-suited threshold, and it is similar
to values reported in literature for similar application (e.g.,
Richardson et al., 2010 uses 25 % of all GPP data).

Maximum leaf area index (LAI) and soil organic carbon
(SOC) data were used in the analysis of differences in air or
soil temperatures for flux partitioning, when these data were
available onwww.fluxdata.org.

A detailed set of soil temperature observations at Hyytiälä
in Finland, including 5 measurement depths at 5 locations
around the eddy-covariance tower, was used to investigate
the influence of measurement depth and the number of soil
temperature sensors.

2.2 Flux partitioning algorithms

Flux partitioning algorithms divide the net carbon exchange
into photosynthetic uptake and respiratory release based on
the fact that photosynthesis is zero during the night, i.e., with-
out light. Most algorithms rely on simple empirical models,
but neural network approaches or more complex land surface
models have also been applied (Desai et al., 2008). Here two
widely used approaches are included: one that fits nighttime
NEE data with a respiration model and another that avoids
nighttime data and uses a combination of a light response
curve and a respiration model to fit daytime NEE. Both
flux partitioning algorithms described here are also available
as online tools athttp://www.bgc-jena.mpg.de/∼MDIwork/
eddyproc/.
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2.2.1 Nighttime data based estimate

The first flux partitioning algorithm follows the description
in Reichstein et al.(2005). The algorithm fits a respiration
model to the measured nighttime NEE data and extrapolates
the optimised model to daytime periods using the respec-
tive temperature observations of the day. An Arrhenius-type
model afterLloyd and Taylor(1994) is used to derive and
extrapolate the temperature dependence ofReco:

Reco= rbexp

(
E0

(
1

Tref − T0
−

1

Tobs− T0

))
(2)

whererb [µmol C m−2 s−1] is the base respiration at the ref-
erence temperatureTref [◦C], set to 15◦C), E0 [◦C] the tem-
perature sensitivity,Tobs[◦C] is the observed temperature and
parameterT0 [◦C] is set to−46.02◦C as inLloyd and Taylor
(1994). ForE0 a constant value for each year is derived while
rb was estimated every 5 days using a 15 days window (as in
Reichstein et al., 2005). The difference between modelled
Recoand measured NEE yields the estimate for GPP. For this
algorithm, the absolute flux magnitude and, therefore, the pa-
rameterrb is mainly determined by the mean nighttime flux.

2.2.2 Daytime data based estimate

The daytime data based estimate uses an approach described
in detail in Lasslop et al.(2010). It is based on a light re-
sponse curve extended to account for the temperature sensi-
tivity of respiration by including the Lloyd and Taylor model
and a drought limitation of GPP.

NEE= −
αβRg

αRg + β
+ rbexp

(
E0

(
1

Tref − T0
−

1

Tobs− T0

))
(3)

where α [µmol C J−1] is the canopy light utilisation effi-
ciency and represents the initial slope of the light response
curve,β [µmol C m−2 s−1] is the maximum CO2 uptake rate
of the canopy at light saturation (see Eq.4), andRg is the
global radiation [W m−2]. The limitation of GPP due to high
water vapour pressure deficit (VPD) is included by reducing
the maximum carbon uptake with an exponential function for
VPD values higher than 10 hPa (VPD0). The strength of this
decrease is determined by the parameterk.

β =

{
β0 · exp(−k (VPD− VPD0)) if VPD > VPD0
β0 otherwise

(4)

Tref and T0 were fixed as in the nighttime data based ap-
proach. The parameterE0 was estimated using nighttime
data of 12 days (Rg < 4 W m−2), thenE0 was fixed andrb,
α, β andk were derived from daytime data using a 4 days
window. The estimation was repeated every second day and
yields time series of the empirical ecosystem parameters.
The rb parameter is mainly determined by the morning and

evening observations as they have the strongest influence in
the model range where radiation and, therefore, the contribu-
tion of GPP, approaches zero.

2.3 Statistical analysis

The correlation between the different temperatures and
nighttime NEE was performed for 12 days moving windows.
This is the window size that was used in theLasslop et al.
(2010) approach for the estimation of the temperature sensi-
tivity and is similar to the 15 days used inReichstein et al.
(2005), a scale in which the spectra of fluxes show a mini-
mum (Stoy et al., 2009). For each time window we computed
the correlation between nighttime NEE and the temperature.
We usedTair, Tsoil, the average of the two,Tmean, Tsurf and
an optimised temperature (Topt). Topt was computed as the
weighted average ofTsoil andTair, with a weight optimised to
maximise the correlation with night-time NEE. The weight-
ing factor was allowed to vary between the data windows.

The use ofTopt introduced an additional parameter com-
pared to the use ofTair or Tsoil. Therefore, for the selection
of the temperature driver that best explains the variability of
night-time NEE (i.e., the best linear model that relates NEE
with Tair, Tsoil or Topt) we used the Akaike’s Information Cri-
terion (AIC) (Akaike, 1973). AIC is a well-known metric for
model selection (Anderson et al., 2000). AIC is a measure
of the trade-off between the goodness-of-fit (model explana-
tory power) and model complexity (number of parameters).
Hence, using AIC we can evaluate if the increase in model
performance introduced by adding an additional parameter
is overcome by an introduction of additional uncertainty.

AIC = n · log(RSS/n) + 2 · (p + 1) (5)

where RSS is the residual sum of squares,p is the number of
parameters andn is the sample size. Given a dataset, several
competing models (e.g., in our study different models includ-
ing different temperature drivers,Tair, Tsoil andTopt) can be
ranked according to their AIC. The model having the lowest
AIC is considered the best.

For the flux partitioning the software package PV-Wave
(Visual Numerics, 2005) was used. For the statistical anal-
ysis the software packages R (R Development Core Team,
2010), and Matlab were used. The lag between the differ-
ent temperatures was computed by using a cross-correlation
function. The time lag was identified when the correlation
was at a maximum within a window of 24 h. The degree of
dampening was computed as 1 min the slope of the regres-
sion betweenTair andTsoil.

www.biogeosciences.net/9/5243/2012/ Biogeosciences, 9, 5243–5259, 2012
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Fig. 1. Illustration of the potential effects of using temperatures that are lagged or dampened on the fit with the respiration model.(a) Artificial
temperature time series,(b) respiration model output [µmol C m−2 s−1] with original (seea) temperature time series and parameter values
used, and(c) model output of(b) versus the respiration model outputs optimised for the model output of(b) using the lagged and dampened
time series of(a) and optimised parameter values.

3 Results and discussion

3.1 Effects of phase shift and dampening in
temperature data on the model fit

The general understanding of how air temperature re-
lates to soil temperature is that the amplitudes of soil
temperature are dampened and its phase is shifted
against air temperature due to heat transport processes
(Hillel , 2004; Monteith and Unsworth, 1996). Figure 1
shows the effects of dampening and phase shifts on the
model fit based on synthetic data. The synthetic respiration
rate is the output of the Lloyd and Taylor model driven
by the original synthetic temperature time series. If the
temperature is only dampened, the two temperatures could
still be used as proxies for each other and would only result
in different estimates of the temperature sensitivity and base
respiration, while the modelled respiration would be almost
identical. If the two temperatures are lagged, not only are the
parameters affected, but the modelled respiration is lagged
(Subke and Bahn, 2010) and the amplitude is decreased.

For most of the FLUXNET sites used here we found a time
lag of less than 12 h (Fig.2a). The dampening is considerable
for most of the sites (Fig.2b). Due to the frequent occur-
rence of lags across FLUXNET sites, differences between
flux partitioning estimates using one or the other tempera-
ture can be expected. As these lags can propagate into the
GPP andReco estimates, they should be used carefully when
exploring lags betweenReco and GPP or between the esti-
mates and environmental drivers. In this analysis the max-
imum acceptable lag was set to 24 h. Without this limita-
tion only a few sites/years showed a lag longer than 24 h.
These were sites/years where temperature was poorly cor-
related withReco. This phase shift directly propagates into
the flux partitioning estimates. Therefore, there is high un-
certainty at the hourly timescale, but more confidence in es-
timates using aggregated data (i.e., daily or monthly) when
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Fig. 2. Histograms of lags(a) and dampening(b) between air and
soil temperature (1-slope of the linear regression between the two).
Blue vertical lines indicate the median of the distribution. Both lag
and dampening was computed using the whole growing season time
series. Negative values of the dampening mean the soil temperature
has the higher amplitude.

analysing lags or correlations with other fluxes or environ-
mental drivers.

3.2 Correlation between nighttime NEE
and temperature

During the nighttime, NEE equals ecosystem respiration as
photosynthesis is zero in the absence of photosynthetically-
active radiation (PAR). The linear correlation between night-
time NEE and temperature is a first indication of the explana-
tory power of temperature as the main driver in a respiration
model. Individual temperature data streams cannot perfectly
represent the variability of respiration within an ecosystem.
In the correlation analysis we tried to identify the tempera-
ture that is the best proxy for mapping the variability of the
ecosystem respiration.

We compared the median of the correlations within a
12-day time window of nighttime NEE with temperature
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Fig. 3. Correlation with nighttime NEE withTair, Tsoil, the average
of the two,Tmeanand an weighted average with optimised weights,
Topt, is computed for 12 days time windows. The violin plot shows
the distributions of the median of significant correlations for the
growing season of each year across FLUXNET sites, the extent in
x-direction indicates the frequency of the y-axis value. The point
indicates the median, the thick black line is the interquartile range.
The median values are (from left to right) 0.315, 0.297,0.319 and
0.343.

observations, i.e.,Tsoil, Tair, the average of the two,Tmean,
andTopt during the growing season (Fig.3). Topt optimises
the correlation with a weight parameter. The correlation be-
tween nighttime NEE and temperature shows little difference
between the different temperature observations. The distri-
bution is bimodal with mostly positive correlations, but neg-
ative correlations also exist. All sites with negative correla-
tions either have a subtropical Mediterranean climate or a
climate characterised by hot warm summers. This suggests
that in these sites the NEE – temperature relationship may be
influenced by drought effects. Moisture can affect the rela-
tion between NEE and temperature either directly by limit-
ing respiration or by changing the transport processes of heat
and CO2. Another reason for negative correlations between
NEE and temperature has been revealed byPilegaard et al.
(2011). They found a change of the correlation sign (from
positive to negative) during leaf fall related to an increase of
substrate availability. Finally, negative correlations could oc-
cur due to advection, which can cause problems in eddy co-
variance nighttime data. For these sites the dynamics of the
estimated respiration are not reliable within the 12-day time
window as temperature sensitivity is forced to be positive in
both algorithms considered here.

Although the difference in the mean correlation between
NEE and different temperature streams (Tair and Tsoil) is
small, we observed a significantly stronger correlation of
NEE with Tair when excluding FLUXNET sites with neg-
ative correlations. On the other hand, the variability of the
correlation coefficients between sites is smaller forTsoil. The
largest part of ecosystem respiration is soil respiration, which
usually contributes more than 60 % (Bolstad et al., 2004;
Janssens et al., 2001; Zha et al., 2006), it is, therefore, sur-
prising that the correlation with air temperature is not sig-
nificantly lower than the correlation with soil temperature.
A reason why this is not captured in our correlation analysis
might be the variability of temperature in the soil and the lags
due to the transport of the respired carbon. During winter the
correlation withTsoil is expected to be higher as the vegeta-
tion is inactive, and a larger part of the respiration takes place
in the soil (Kolari et al., 2009). This seasonal variation of res-
piration sources could not be identified in the seasonality of
the weighting parameter computed for theTopt, which did
not show consistent patterns (not shown). The highest me-
dian of the correlations across sites with nighttime NEE was
observed for the optimised temperatureTopt. The optimised
temperature includes an additional parameter which also in-
troduces additional uncertainty. In spite of the penalty in the
calculation of the AIC score for the additional parameter,
the optimised temperature still performs slightly better (me-
dian AIC= 53) compared to onlyTsoil (median AIC= 60)
(or only Tair (median AIC= 57) (Fig. 4), as the lower the
Akaike criterion, the better the performance.

For a subset of sites, observations of the longwave radi-
ation were available andTsurf could be considered. For this
subset of sites, the mean correlation coefficients computed
between NEE and different temperature streams were not
significantly different. We again observed theTopt had the
greatest correlation with nighttime NEE (median= 0.367).
ForTmeanthe median correlation was 0.346, followed byTsurf
derived from longwave radiation (0.339) (no figure).Tsoil, for
this subset, showed a stronger correlation (0.332) than the air
temperature (0.325).

For the whole FLUXNET database the correlations do not
clearly give advice on which temperature stream is the better
proxy for ecosystem respiration. To gain additional insight
we analysed the weight parameter of the optimised temper-
ature. To remove the effect of the different variances of soil
and air temperature we normalised the temperature time se-
ries before computing the weights. The weights for the soil
temperature are close to 0.5, but for a large fraction of the
sites (83 %) the weight is smaller than 0.5. This indicates that
the optimised temperature is slightly stronger influenced by
the variability inTair (Fig.5) for many sites. For specific veg-
etation types, using soil temperature could be advantageous
as the correlation with soil temperature is higher for decid-
uous broadleaf forests, for example, while for grasslands or
wetlands the correlation is greater with air temperature (see
Fig. 6). Strong negative correlations occur less often with
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Tsoil. Overall, the correlation analysis suggests that neither
air nor soil temperature is clearly better suited, but analysing
the correlation of nighttime NEE with temperature can yield
results indicating one is better than the other for specific
datasets or sites. The higher or lower correlations cannot be
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the one or other ecosystem component to the total flux. How-
ever, in flux partitioning or gap filling procedures the tem-
perature which explains more of the variability in an eddy-
covariance time series should be considered the most useful.

Soil is a very heterogeneous part of the ecosystem; the
representativeness of soil measurements can be a limiting
factor and it might depend on the number and position of
soil temperature sensors. We performed an additional cor-
relation analysis for one site, Hyytiälä, where observations
of soil temperature at five observation depths at five loca-
tions around the tower were provided. The analysis showed
that the correlation between temperature and nighttime NEE
decreases on average with increasing observation depth (see
Fig. 7). The differences between the correlations at the first
two depths are already statistically significant (p = 0.03).
This supports our decision to always use the upper soil tem-
perature observation and emphasises the importance of mea-
surements in the very top layer (2 cm). For many sites the
uppermost soil temperature is measured at 5 cm depth (see
Table 1). As the measurement depth is not completely har-
monised within FLUXNET, differences in the soil temper-
ature measurement depth can explain part of the spread of
the correlations between nighttime NEE and temperature
across sites. The correlations of temperature measurements
with nighttime NEE from different locations (at a similar
depth) are very similar in their magnitude and variability (see
Fig.7b). Representativeness of the soil temperature measure-
ments is, therefore, not a critical issue at this site.
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Fig. 7. Correlations between temperature and nighttime NEE at the
Finish station Hyytïalä, based on temperature measurements in 5
depths(a) and the top measurement (0.02 m) at 5 locations(b).

3.3 Difference in flux components derived using air
and soil temperature

Both flux partitioning algorithms were run for the FLUXNET
data using either air or soil temperature. When comparing
the median of the differences in the annual estimates of the
flux components derived with air or soil temperature the two
algorithms applied differ: for the Lasslop et al. (2010) ap-
proach only the median of the differences in GPP estimates
across FLUXNET sites differed significantly from zero (me-
dian= −23.8 g C m−2 yr−1), for the Reichstein et al. (2005)
approach both flux components showed a small median dif-
ference of≈ −26.7 g C m−2 yr−1 (Fig. 8). The estimates us-
ing Tair were higher. The differences are the same for Reco
and GPP for the Reichstein et al. (2005) approach, because
GPP is computed as the residuum. The estimates of the two
flux partitioning algorithms were compared in a previous
study (Lasslop et al., 2010). The range of these deviations
due to the choice of the algorithm were about twice as high
as the differences found here due to the choice of the temper-
ature observations. However, the mean difference between
the two algorithms in this previous study was not significant
across the FLUXNET sites.

These GPP datasets were the basis for global estimates de-
rived by upscaling eddy covariance data to global gridded es-
timates. Assuming a constant bias of 25 g C m−2 yr−1 for all
sites a rough estimate for the effect of the choice of the tem-
perature stream can be estimated as 3.2 Pg C yr−1 for the
global GPP of 123 Pg C yr−1 (Beer et al., 2010) (value was
obtained by multiplying the 25 g C m−2 yr−1 with the global
vegetated area). This is a conservative estimate as one would
expect that the true value is between the two estimates while
25 g C m−2 yr−1 is the average difference.

The average diurnal cycles ofReco and GPP derived with
the two partitioning algorithms were further analysed. For
the Lasslop et al. (2010) approach the positive differences
of Reco during nighttime and the negative differences during
daytime cancelled out. This can explain why the differences

in the annual totals were close to zero. The GPP differences
of the same approach were zero at night as GPP is forced
to be zero with the light response curve. During day the dif-
ferences were negative on average and summed up (Fig.9),
here the differences in Reco propagate into the GPP estimate
as the difference between the two is fit to the observed NEE.
For the Reichstein et al. (2005) approach the residuals for
both estimates were zero on average during night and the
mostly negative differences during daytime summed up and
caused the difference in the annual estimates. The method-
ological difference between the algorithms that can explain
this effect is the estimation of the base respiration parameter
(rb), that determines the flux magnitude at the reference tem-
perature (Tref) as described in Eq. (2) and (3). The nighttime
based approach fits this parameter with all the nighttime data
and ensures a mean respiration during nighttime that equals
mean observed nighttime NEE using both temperatures. For
the daytime based approach this parameter is most strongly
determined by morning and evening observations. During
morning and evening hours the temperature is closer to the
mean temperature, while the nighttime values are lower than
the mean daily temperature. Thus, the temperature sensitiv-
ity parameter of the nighttime data based approach is used to
extrapolate only to higher temperatures while the flux mag-
nitude is fixed such that the mean nighttime flux equals the
respiration flux during night. For the daytime databased ap-
proach where the respiration flux magnitude is mainly de-
termined by the morning and evening values and the algo-
rithm relies on the temperature sensitivity estimate to com-
pute fluxes with lower temperature during night, but also for
higher temperatures during daytime. Thus, in this approach
when a bias in the temperature sensitivity parameter occurs,
the errors during the cooler night can be cancelled out by
estimates for the warmer day. On the other hand observa-
tions during morning and evening have a high relative uncer-
tainty (absolute uncertainty/flux magnitude), and can be an
explanation for the higher MAD of the differences in annual
Reco (Fig. 8) and the higher spread of the differenced diurnal
cycle. The half hourly values of the averaged diurnal cycle
show differences up to 1.5 µmol C m−2 s−1 between the soil
and air temperature estimate which is consistent with other
studies (Kolari et al., 2009; Ibrom et al., 2006).

3.4 Inter site patterns in the difference of
the estimates

Here we analysed whether parameters that are related to the
decoupling of soil and atmosphere can explain the variability
of the effect that the choice of temperature has on the result
of the flux partitioning algorithm. As the algorithms are ex-
actly the same and only the temperature input is changing,
the relationship between air and soil temperature could be an
indicator for the magnitude of the difference. To characterise
the relationship between air and soil temperature we used the
lag between the two. The relation between the differences
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Fig. 8. Difference in annual estimates using the Reichstein et al. (2005) method(a), (b) and the Lasslop et al. (2010) approach(c), (d), blue
vertical line indicates the median value, MAD is the median absolute deviation. Note that(a) and(b) are identical due to the methodology.

and the temperature lag was stronger for the nighttime based
method (Fig.10). The correlation was less significant for the
daytime based method. The relationship for the daytime data
basedReco was of opposite direction. The flux components
of the daytime based method are less strongly related as GPP
is not computed as the residual, but is based on the light re-
sponse. Including this additional model seems to make the
method less prone to biases. Other indicators for the strength
of the decoupling between soil and air temperatures are the
maximum LAI (LAImax) of the site and the soil organic car-
bon content (SOC). A high LAI decouples air and soil pro-
cesses and dampens the soil temperature (Zheng et al., 1993),
while a very low LAI and direct insulation on the ground can
heat up the soil faster than the surrounding air. Soil organic
carbon has a low heat conductivity and high heat capacity,
which can increase the lag between air and soil temperature.
Therefore, we would expect a correlation between values of
LAI max or SOC and the differences in GPP andReco due
to the choice of the temperature stream. The correlation be-

tween LAImax was of similar magnitude as for the tempera-
ture lag (Fig.11). For the SOC the correlation was not sig-
nificant (not shown). Unfortunately the high heterogeneity of
the soil and the not fully harmonised measurement protocols
hamper the comparison across sites and might obscure exist-
ing patterns.

When separating the differences into vegetation types, we
found a general tendency for the difference to increase with
increasing vegetation height (see Fig.12). The pattern was
less clear for the Lasslop et al. (2010) approach.

3.5 Influence on ecosystem parameters

As eddy-covariance data are increasingly used to derive
ecosystem parameters or to constrain and evaluate process
based land surface models for the water and carbon cycle
(Bonan et al., 2011; Knorr and Kattge, 2005; Mahecha et al.,
2010; Reichstein et al., 2003b), we analysed the effects of
the choice of temperature for three ecosystem parameters:
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Fig. 9. Mean diurnal cycle of differences [µmol C m−2 s−1] be-
tween the estimates using soil and air temperature, averaged over
the growing season for the Reichstein et al. (2005)(a), (b) and for
the Lasslop et al. (2010) approach(c), (d).

temperature sensitivity of ecosystem respiration, base respi-
ration and maximum carbon uptake rate. The largest differ-
ences were found for the temperature sensitivity (Fig.13).
Because the variance is higher for air temperature than for
soil temperature it yields lower estimates for the temperature
sensitivity when fitted to the same NEE data. In the short
term, a lower temperature sensitivity estimated for air tem-
perature would be compensated by the higher variability of
the air temperature, as in the case of the flux partitioning.
When a temperature sensitivity estimate is to be used in an-
other model, the driving temperature needs to have a similar
variability. A sensitivity parameter estimated with air tem-
perature should not be used for a model driven by soil tem-
perature (Mahecha et al., 2011; Graf et al., 2011). Avoid-
ing biases in the long term might be more problematic as
it will increase both temperatures, air and soil, in a similar
way. Thus, extrapolating this parameter to other time scales,
for instance by including this parameter in a process based
model for the use in climate projections, requires caution.
The base respiration is significantly higher for soil temper-
ature, which might be due to a parameter correlation of the
base respiration with the temperature sensitivity. The sign of
the difference depends on the relation between the mean of
the temperature observations used and the reference tempera-
ture. It can be minimised by setting the reference temperature
to the mean observed temperature.

The maximum carbon uptake rate value was lower with
the soil temperature estimate, as the GPP estimate computed
using soil temperature was lower. This should be considered
when optimising or evaluating models with estimates derived
with the algorithms presented here.

4 Conclusions

In this study, we analysed the uncertainty of GPP andReco
estimates caused by the choice between air or soil temper-
ature observations using two commonly used flux partition-
ing algorithms. The correlation analysis showed that the lin-
ear correlation between the different temperature observa-
tions and nighttime NEE was similar. However, the correla-
tion with air temperature was slightly but significantly higher
across FLUXNET sites. For specifically selected sites soil
temperature can explain more of the nighttime NEE vari-
ation. The highest performance was achieved with an av-
eraged temperature with optimised weights, in spite of the
cost of having an additional parameter. We recommend site-
specific evaluations to determine which temperature explains
most of the variability of the ecosystem respiration (night-
time NEE). As surface temperature showed a good correla-
tion with nighttime NEE, observations of longwave radia-
tion or surface temperature could be a useful extension of the
measurements at flux sites.

The differences inReco and GPP estimates using theRe-
ichstein et al.(2005) method are generally the same because
GPP is simply the difference betweenReco and NEE. On
the annual time scale they show an average difference of
26 g C m−2 yr−1. The median of deviations for GPP based
on Lasslop et al.(2010) is slightly smaller, and forReco it
is close to zero. The reason could be revealed by analysing
the mean diurnal cycles: for theReco of the Lasslop et al.
(2010) method nighttime differences are cancelled out by dif-
ferences during daytime. An estimate of the potential bias,
i.e., the difference owing to the choice of temperature, for
the global upscaling of eddy-covariance GPP is 3.2 Pg C per
year assuming a constant difference of 25 g C m−2 yr−1 for
the vegetated land surface.

The intersite pattern of annual differences can be partly
explained by the vegetation structure (e.g., vegetation types,
lag between temperatures). The time lag between soil and air
temperature was the best indicator for the difference between
the estimate using soil or air temperature, respectively.

The strongest influence of the choice of the temperature
observations for the ecosystem parameter values was on the
temperature sensitivity, but all parameters showed a signifi-
cant difference across sites.

At our current level of understanding of the magnitude of
uncertainties in flux partitioning algorithms, we recommend
using both soil and air temperature as drivers for partition-
ing algorithms and including both datasets to account for the
uncertainty due to the choice of temperature.
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Fig. 10.Annual differences between the carbon fluxes estimated with soil and air temperature versus lag between air and soil temperature
for the Reichstein et al. (2005)(a) and Lasslop et al. (2010)(b), (c) approach. Note that for the Reichstein et al. (2005) approach results are
the same for both components.
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Fig. 11.Difference in annual GPP estimates using the Reichstein et al. (2005) approach(a) (note that for theRecoestimates the plot would be
exactly the same) and in annual GPP(b) andReco (c) estimates using the Lasslop et al. (2010) approach versus the maximum LAI measured
at the site.
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Fig. 12. Difference in annualReco estimates using the Reichstein et al. (2005) approach(a) and the Lasslop et al. (2010) approach(b),
distinguished according to vegetation types (see Fig. 5 for vegetation types definition).
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Fig. 13.Differences in the estimates of the temperature sensitivity [◦C] (a), maximum carbon uptake rate [µmol C m−2 s−1] (b) and base res-
piration [µmol C m−2 s−1] (c) using soil and air temperature across FLUXNET sites. The histogram shows the differences of the parameters
derived with air and soil temperature across FLUXNET sites.
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