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ABSTRACT

The effect of longwave radiative cooling at the planetary boundary layer (PBL) top in determining the
entrainment rate was examined in this study. The entrainment rate equation that accounts for longwave radiative
cooling can be formally derived from the following steps: 1) Derive the mean buoyancy budget in the thin layer
between the averaged entrainment flux (i.e., the minimum buoyancy flux) level and the top of the entrainment
zone where turbulent fluxes vanish. 2) Use the Deardorff entrainment closure assumption that the entrainment
buoyancy flux is proportional to the vertically averaged buoyancy flux over the whole PBL, which is a generalized
form of a widely accepted entrainment closure for the surface-heated convective PBL. This leads to an entrainment
velocity that depends linearly on both the inverse of the interfacial Richardson number and the radiative flux
divergence above the entrainment buoyancy flux level.

The relative importance of these two terms was examined through large eddy simulations (LESs) of several
smoke-cloud-topped PBLs with various radiative forcings, radiative properties, temperature inversion strengths,
and numerical advective schemes. These PBLs are driven only by cloud-top radiative cooling. The LESs were
performed with a fine-grid nesting layer in the entrainment zone where the grid size is about 16 m and 8 m in
the horizontal and vertical, respectively, which should be sufficient to resolve entrainment processes, at least
for cases with weak capping inversions. The LESs showed that the contribution to entrainment rate from the
radiative flux divergence term was either larger than or about equal to that of the interfacial Richardson number
term. The LESs also showed that this radiative flux divergence occurs within cloudy regions below the local
cloud tops.

The analysis was extended to the stratocumulus-topped PBL by using a stratocumulus-like smoke layer, and
the result showed that the radiative flux contribution to the entrainment rate was still significant. Based on the
physical understanding that this portion of the radiative flux divergence occurs within the upper half of cloud
(or smoke) hummocks, the authors were able to analytically derive a relationship that links the radiative flux
divergence to the cloud-top fluctuations, which were then empirically related to the interfacial Richardson number.

1. Introduction

Entrainment is perhaps the most challenging problem
in planetary boundary layer (PBL) research. We do not
understand very well what physical processes control
entrainment and what physical variables determine the
entrainment rate. The entrainment problem is particu-
larly important for stratocumulus-topped PBLs.
Through an entrainment instability mechanism (Lilly
1968; Deardorff 1980; Randall 1980a), stratocumulus
may thin or dissipate totally. Entrainment may also
strongly affect the drop size distribution near the cloud
top, and hence cloud albedo and drizzle formation.
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However, determining the entrainment rate is known to
be one of the most difficult closure problems (e.g., Stage
and Businger 1981; Randall 1984; Moeng 1987) in
mixed-layer modeling of stratocumulus-topped PBL.

For the clear convective PBL with small wind shear,
the entrainment rate normalized by the convective ve-
locity scale is often assumed to be proportional to the
inverse of an interfacial Richardson number, and the
proportionality constant is often taken to be 0.2. In sec-
tion 2 we revisit this entrainment rate equation, which
can be derived from the buoyancy jump condition along
with the closure assumption that the entrainment buoy-
ancy flux is proportional to the vertically averaged buoy-
ancy flux over the whole PBL (which, in the limit of
surface buoyancy driving only, is the same as assuming
that the entrainment buoyancy flux is a fixed fraction
of the surface buoyancy flux). From such a mathematical
derivation, we are forced to define the interfacial Rich-
ardson number based on the buoyancy jump between
the entrainment buoyancy flux level and the top of the
entrainment zone where turbulent fluxes vanish, which
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is different from many previous investigators (e.g.,
Bretherton et al. 1999, hereafter BR99).

The stratocumulus-topped PBL turbulence can be
driven by many forcings, such as surface heating, cloud-
top longwave radiative and evaporative cooling, con-
densation, and wind shear. The most typical and long-
lasting stratocumulus-topped PBLs are dominated by
cloud-top radiative cooling. We do not understand very
well how entrainment processes vary between the sur-
face-heated and the top-cooled PBLs. Questions as to
how the entrainment rate depends on the cloud-top ra-
diative forcing remain to be answered.

A heated debate took place in the late 1970s about
the effect of distributed radiative cooling on entrainment
(e.g., Deardorff 1976; Kahn and Businger 1979; Lilly
and Schubert 1980; Randall 1980b; Stage and Businger
1981; Nieuwstadt and Businger 1984). In a mixed-layer
framework, the cloud-top longwave radiation effect is
inevitably split into two portions because of the aver-
aging procedure. When the averaging is made over an
Eulerian coordinate,1 one portion of the radiative flux
divergence ends up in the conservation equation for the
mixed-layer mean buoyancy, while the other portion
enters into the entrainment rate equation. This led the
above researchers to argue that these two portions of
radiative flux divergence must play different roles in
determining the entrainment rate. Because of their math-
ematical appearance, it looks as though the part in the
conservation equation can directly generate turbulence
and hence ‘‘indirectly’’ affect the entrainment rate,
whereas the other portion ‘‘directly’’ affects the entrain-
ment rate because it shows up in the entrainment rate
equation. The physical interpretation these previous
studies offered for the latter portion of the radiative flux
divergence was that it cools the clear air above the cloud
edge, and by making the clear air colder it reduces the
local inversion strength and thus makes entrainment eas-
ier. We will show in this study that this physical inter-
pretation is wrong.

We will show that physically both portions of the
radiative flux divergence are located within cloudy air
(although in nature there exists some clear-air longwave
radiative cooling, but its magnitude is much smaller than
the in-cloud longwave cooling we refer to in this study);
physically, they play the same role in promoting tur-
bulence and entrainment even though they show up in
different mathematical equations after averaging. We
will revisit an entrainment rate equation for a cloud-top

1 Lilly and Schubert (1980) and Nieuwstadt and Businger (1984)
argued that if an averaging is made over a vertical coordinate that
follows the local cloud top, none of the in-cloud radiative flux di-
vergence would show up in the entrainment rate equation. Here we
prefer to use the concept of averaging over an Eulerian coordinate
system because it is difficult, if not impossible, to observationally or
numerically obtain the ‘‘entrainment’’ buoyancy flux averaged along
the local cloud tops, and this flux may be quite different from the
entrainment flux that is defined as in an Eulerian framework.

radiatively driven PBL that divides the entrainment rate,
normalized by the convective velocity, into two terms:
one inversely proportional to the interfacial Richardson
number, and the other proportional to the radiative flux
jump above the minimum buoyancy flux level, within
the entrainment zone. We used large eddy simulation
(LES) to check this entrainment rate equation and to
examine the relative importance of these two terms. To
provide a clear physical picture of this radiative flux
divergence, we decide to use a smoke cloud to avoid
the complications due to latent heating. A smoke cloud
may exaggerate the importance of the radiative flux di-
vergence, but it allows us to clearly demonstrate the
physical origins of such flux divergence and so provides
a basis for parameterizing this radiative flux effect.

Can the LES technique be used to predict entrainment
rates accurately? An LES study by Moeng et al. (1996),
which intercompared ten more or less independently
developed LES computer codes for a stratocumulus-
topped PBL case, showed that the entrainment rate pre-
diction is quite sensitive to the treatments of longwave
radiation, numerics, and subgrid-scale (SGS) turbulence
and condensation. That study showed that the range of
the predicted entrainment rates among 10 different LES
codes was as large as a factor of 8! BR99 carried out
a further LES intercomparison study that eliminated
most of the complications due to radiation and conden-
sation treatments. In that study, a smoke-cloud case was
chosen so that the uncertainty due to condensation and
evaporation effects could be eliminated. And all LES
codes used the same longwave radiation formulation to
ensure that cloud-top cooling was comparable. That
study gave a more promising result: if the vertical grid
size is fine enough to resolve the horizontal variability
of the local inversion height (i.e., cloud-top undulations
or hummocks), all participating LESs give entrainment
rates within 630% regardless of their treatments in the
SGS turbulence (e.g., using different SGS length scale
or different dissipation constant) and numerics (e.g., us-
ing monotone or nonmonotone schemes). We shall keep
in mind this uncertainty of LES in our analysis.

Section 2 gives a review of the derivation of a com-
monly used entrainment rate equation for the clear con-
vective PBL driven by surface heating only. In section
3 we extend the derivation to obtain an entrainment rate
equation for the PBL that is driven by cloud-top radi-
ative cooling, describe a suite of smoke-cloud LES so-
lutions, use them to examine the entrainment rate equa-
tion, and provide a physical interpretation of the radi-
ative flux divergence that appears in the entrainment
rate equation. Section 4 extends our discussion to the
marine stratocumulus-topped PBL. Section 5 gives a
summary and draws conclusions.

2. Review of the commonly used entrainment
rate equation

The virtual potential temperature is a conserved
quantity in a dry adiabatic process, and thus the gov-
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erning equation of the mean virtual potential temper-
ature Qy is

]Q ]wuy y5 2 , (2.1)
]t ]z

where wuy is the virtual potential temperature flux (here
we ignore the g/T0 factor and refer to this term as the
buoyancy flux) associated with turbulent motion. The
capital-lettered Qy and the overbars represent ensemble
averages. The quasi-steady state is defined as the state
when the profile of the mean gradient of Qy remains
unchanged in time; that is,

2] ]Q ] wuy y5 2 5 0. (2.2)
2]t ]z ]z

So under a quasi-steady state the buoyancy flux is linear
with height.

Integrating (2.1) over a finite-depth, thin layer at the
PBL top, from the entrainment buoyancy flux level [zfl,
following the notation used by Lock and MacVean
(1999, hereafter LM99) to stress the entrainment flux
level] to the top of the entrainment zone ( ) where1zfl

turbulence fluxes vanish and making the ‘‘thin layer
assumptions’’ to be described later, we obtain the buoy-
ancy jump condition

5 2weDQy ,wu |y zfl
(2.3)

where we [ dzfl/dt 2 WLS is the entrainment velocity
and WLS is the environmental large-scale vertical mo-
tion. This jump condition describes the mean buoyancy
budget within the entrainment zone: cooling due to the
turbulent flux jump balances warming due to entrain-
ment. The minimum buoyancy flux at the cloud top is
associated with entrainment, and thus is also referred to
as the entrainment buoyancy flux. Note that the jump
condition D defined in this paper is strictly based on the
above mathematical derivation; it represents the differ-
ence of quantities between the entrainment flux level zfl

and a level above where the turbulence vanishes. Such
defined DQy , therefore, does not necessarily represent
the full inversion strength, which is traditionally defined
as the total buoyancy jump between the well-mixed lay-
er and that above the entrainment zone.

The ‘‘thin layer assumptions’’ used to derive (2.3) are
(a) both zfl and levels are lifted up at the same rate1zfl

(i.e., dzfl/dt 5 /dt) and (b) the time-rate-of-change1dzfl

of Qy dz is negligible (e.g., Lilly 1968). Recently,
1z
fl∫zfl

vanZanten et al. (1999) and Sullivan et al. (1998, here-
after SU98) showed that the second assumption does
not hold for their surface-heating-driven PBL simula-
tions, which is understandable because both surface
heating and entrainment warming tend to increase the
magnitude of Qy dz. This, however, may not be the

1z
fl∫zfl

case for the radiative-cooling-driven PBL because the
effects of radiative cooling and entrainment warming
tend to cancel each other. We will test the above as-
sumptions for our smoke-cloud simulations in section 3.

To obtain an entrainment rate equation from (2.3), a
closure assumption is needed. A closure assumption,
proposed by Deardorff (1976), is to set the entrainment
buoyancy flux proportional to the layer-averaged buoy-
ancy flux; that is,

zfl

wu | 5 2A9 wu dz/z , (2.4)y z E y flfl

0

where A9 5 0.5 is assumed by Deardorff (1976). This
closure is physically plausible because entrainment flux-
es depend mainly on the turbulence intensity, and tur-
bulence intensity is measured mainly by the whole layer-
averaged buoyancy flux, at least for the buoyancy-driv-
en PBL.

In the limit of the clear convective PBL where the
surface buoyancy (wuy)0 is the only source of turbu-
lence, the buoyancy flux is linear with height as shown
in (2.2), and thus wuy dz/zfl 5 [ 1 (wuy)0]/2.zfl∫ wu |0 y zfl

So (2.4) reduces to

A9
wu | 5 2 (wu ) 5 2A(wu ) . (2.5)y z y 0 y 0fl 1 22 1 A9

This is a commonly used entrainment rate equation for
the clear-convective PBL (e.g., Carson 1973). It states
that the entrainment buoyancy flux is proportional to
the surface buoyancy flux. The proportionality constant
A [[A9/(2 1 A9)] is often set to 0.2. The observed values
of A may vary between 0.1 and 0.5, but the larger ob-
served A values are likely due to large shear effects, as
demonstrated in Moeng and Sullivan (1994). For the
free convective PBL, the value of 0.2 is reasonable (Stull
1976) although Sorbjan (1996) suggested that A depends
on the lapse rate above the capping inversion. Recently,
based on their clear convective PBL simulations, SU98
also showed that the A value (which in their notation
is Awu) may increase with the interfacial Richardson
number Ri for Ri , 30 but then reaches an asymptote
of about 0.17 for large Ri.

Using (2.5) in (2.3) yields the well-known entrain-
ment rate equation for the clear convective PBL (when
shear is negligibly small):

w Ae 5 , (2.6)
w Ri*

where

1/3g
w [ (wu ) z (2.7)y 0 fl* 1 2T0

is the convective velocity defined by Deardorff (1974),
and the interfacial Richardson number of the inversion

Ri [ 2(g/T )z DQ /w0 fl y * (2.8)

(e.g., Deardorff 1981). From the above derivation, we
are forced to define Ri based on DQy—the buoyancy
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jump between the entrainment buoyancy flux level zfl

and the top of the entrainment zone .1zfl

Equation (2.4) can be seen as a generalized closure
assumption of (2.5), which may then be applied to any
buoyancy-driven PBL, including not only the surface-
heating driven PBL, but also the cloud-top radiative-
cooling-driven PBL or the combination of the two. In
the next section, we will use exactly the same procedure
to derive an entrainment rate equation for any buoyantly
driven PBLs, but will use the radiatively driven PBL as
an example.

3. Entrainment velocity in radiatively driven
smoke-cloud-topped PBLs

a. Derivation of the entrainment rate equation

In the presence of radiation, buoyancy is not con-
served and thus the buoyancy flux is no longer linear
with height even in a quasi-steady state. It is the net
heat flux wuy 1 FR /r0cp that is linear with height be-
cause the governing equation for the mean buoyancy is
now

]Q ]wu 1 ]Fy y R5 2 2 , (3.1)
]t ]z r c ]z0 p

where FR is the horizontally averaged longwave radi-
ative flux, r0 is the reference air density, and cp is the
specific heat of dry air at constant pressure.

We will now follow the same procedure as in section
2 to derive an entrainment rate equation for the radia-
tively driven PBL. Again, in order to obtain a jump
condition that relates the entrainment buoyancy flux to
the entrainment velocity, we integrate (3.1) from the
most negative buoyancy flux (i.e., entrainment buoy-
ancy flux) level, zfl, to the level above the PBL top where
the buoyancy flux vanishes, , and use the ‘‘thin layer1zfl

assumptions.’’ These manipulations lead to the heat bud-
get within the thin jump layer:

1
wu | 2 DF 5 2w DQ , (3.2)y z R e yfl r c0 p

where DFR [ FR ( ) 2 FR(zfl) is the jump of longwave1zfl

radiation flux between the zfl and levels. Equation1zfl

(3.2) describes the heat budget in this thin jump layer:
cooling due to turbulent flux divergence and radiative
flux divergence balances warming due to entrainment.
Note again that DQy here represents the Qy difference
between zfl and , and so does not necessarily represent1zfl

the whole inversion strength, which is often defined as
the total buoyancy jump above the well-mixed layer.

We now apply the same closure assumption as that
for the bottom-heating driven convective PBL (2.4),
which we repeat here for clarity:

zfl

wu | 5 2A9 wu dz/z . (3.3)y z E y flfl

0

Using (3.3) in (3.2) yields

w A DFe R5 1 , (3.4)
w R r c w DQc ic 0 p c y* *

where A [ A9/(2 1 A9) and w*c is the generalized con-
vective velocity defined by Deardorff (1976),

1/3zfl

w [ (2 1 A9)(g/T ) wu dz , (3.5)c 0 E y* [ ]
0

which equals (2.7) for bottom-heated convective PBL
cases and the convective Richardson number is

Ric [ (g/T0)zflDQy / .2w c* (3.6)

The closure (3.3) is similar to that proposed by Schubert
(1976) if the minimum buoyancy flux occurs at the cloud
top.

The entrainment rate equation (3.4) reduces to (2.6)
when there is no radiative forcing. The extra term in
(3.4) is proportional to the longwave radiative flux jump
between the entrainment buoyancy flux level and above
it where the turbulence vanishes. So, we see there is
indeed some portion of radiative flux divergence that
occurs within the entrainment zone. The questions are,
how important is this divergence in determining the en-
trainment rate and what is the physical interpretation of
this radiative flux divergence term? To answer these
questions we use large-eddy simulations.

b. The smoke-cloud LESs

To simplify our discussion, we will focus on radia-
tively driven smoke-cloud PBLs. Possible applications
to the stratocumulus-topped PBL will be discussed in
section 4. By smoke cloud, we mean a layer that radiates
as liquid water but does not go through a phase change.
The use of smoke cloud as a prototype stratocumulus
was suggested by Lilly (1968) and has been used by
many investigators (e.g., Schubert et al. 1979, Nieuw-
stadt and Businger 1984; Moeng et al. 1992; BR99).
Like stratocumulus, a smoke cloud also emits longwave
radiation as a graybody. This results in a sharp diver-
gence of the longwave radiation flux near the cloud top,
leading to strong radiative cooling that can buoyantly
drive turbulence, just as in the stratocumulus-topped
PBL. Thus, a smoke-topped PBL-shares with the stra-
tocumulus-topped PBL the essential features of turbu-
lence and entrainment driven by radiative cooling.

The smoke-cloud case considered here has no surface
heating, no wind shear, and free slip (i.e., no stress)
bottom and top boundary conditions. This case was de-
signed for and used in the second intercomparison study
of the GEWEX Cloud System Study (GCSS) Boundary
Layer Cloud Working Group, which focused on entrain-
ment rate prediction (BR99). In the smoke cloud, the
longwave radiative cooling at the cloud top is the only
source of turbulence.

A total of nine smoke-cloud cases were simulated (as
summarized in Table 1). (The CONTR* run listed in
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TABLE 1. LES parameters.

Experiment
F0 (W
m22)

Initial
inversion

strength (K)
kR (m2

kg21)

Vertical
derivative

scheme

CONTR
FR30
XKR-S
XKR-L

60
30
60
60

1.25
1.25
1.25
1.25

0.02
0.02
0.01
0.04

Centered finite
Centered finite
Centered finite
Centered finite

INV2
INV3
INV3-MFC
MFC

60
60
60
60

2.50
7.00
7.00
1.25

0.02
0.02
0.02
0.02

Centered finite
Centered finite
Monotone
Monotone

CONTR* 60 1.25 0.02 Centered finite

the table will be described in section 4.) Variations
among CONTR, FR30, XKRpL, XKRpS, INV2, and
INV3 resulted from different prescriptions of the radi-
ative forcing, the depth of the radiative cooling zone,
or the temperature inversion strength, as listed in Table
1. The MFC and INV3-MFC cases are designed to check
the sensitivity to numerical schemes. Representations of
vertical derivatives by second-order centered finite-dif-
ferencing schemes is known to lead to overshoots in
smoke concentration (and other scalar fields) near the
inversion where strong vertical gradients exist. Thus, to
test the solution’s sensitivity to this advection scheme
we ran MFC and INV3-MFC using a second-order mass
flux–corrected upwind scheme with monotone proper-
ties (Beets and Koren 1996; Koren 1993) for the cal-
culation of the vertical derivatives of the smoke and the
uy fields. This advection scheme prevents spurious os-
cillations in the smoke field near the inversion by adding
an implicit numerical viscosity.

Our sounding is the same as that of the GCSS smoke-
cloud case (BR99), except that for most cases we choose
a much smaller temperature inversion. Most cases have
an inversion that is 3 to 6 times smaller than the GCSS
case, except for the two INV3 cases, which have the
same inversion strength as the GCSS study. The purpose
of choosing weaker capping inversions (which produce
larger cloud-top undulations) is to have better resolved
entrainment processes and a more accurate entrainment
rate prediction. We also adopt the nested-grid LES code
developed by Sullivan et al. (1996), in which an outer
(coarse) grid covers a 3200 m 3 3200 m 3 1250 m
domain with 64 3 64 3 50 grid points, with a nested
(finer) grid covering a 3200 m 3 3200 m 3 250 m
domain at the entrainment zone with 192 3 192 3 30
grid points. Thus our grid mesh in the entrainment re-
gion is three times finer in the horizontal directions and
also three times finer in the vertical compared to the
standard resolution run of the GCSS study. The time
step is about 3 s with the explicit third-order accurate
Runge–Kutta scheme also described in Sullivan et al.
(1996).

As in the GCSS study, we used a simple exponential
formulation to compute the longwave radiation flux:

`

F (x, y, z) 5 F exp 2r k s(x, y, z9) dz9 , (3.7)R 0 0 R E[ ]
z

where s(x, y, z9) dz9 is the vertically integrated smoke-`∫z

cloud concentration above the reference level z; kR,
which controls the depth of the longwave radiative cool-
ing zone, is taken to be constant following BR99; and
F0 is the net longwave radiation flux at the top of the
numerical domain representing the maximum rate at
which energy can be extracted. We vary the magnitudes
of kR and F0 among our LES cases as described in Table
1. Use of (3.7) implies that all clear-air radiation is
excluded. We set r0 5 1.1436 kg m23 in the radiation
calculation to be consistent with the GCSS intercom-
parison study (BR99), even though the reference air
density in our LES governing equation (which is a Bous-
sinesq model; see Moeng 1984) is hardwired to 1 kg
m23. Thus, our conversion of buoyancy flux units from
W m22 to m K s21 is simply a multiplication factor of
1000, for cp 5 1000 J K21 kg21.

We ran each case for 150 simulated minutes, which
is about 11 large-eddy-turnover times. The three-di-
mensional instantaneous flow fields were stored at 5-min
intervals over the last 80 min of the simulation, so that
17 LES flow fields were available for analysis in this
study. We found that averaging over the 17 flow fields
is adequate for the LESs studied here.

c. LES results

Figure 1 shows the temperature contours at the in-
version and the flow velocity vectors from the CONTR
run. In the upper-right corner, we also plot the grid mesh
in the entrainment zone. Compared to the grid mesh,
the cloud-top fluctuations are clearly well resolved as
evidenced from the several entrainment events at y ;
(400, 650, 1000, and 2600) m where wisps of warm air
are being incorporated into the PBL.

In Fig. 2, we plot a sequence of snapshots of the event
at y 5 2600 m at ;30 s time interval. This figure il-
lustrates how warm air is incorporated into the PBL at
the edge of a cloud-top hummock associated with a
strong updraft. Based on many LESs of buoyantly driv-
en PBLs, we see that strong updrafts are the main driver
of the entrainment process, as discussed in more detail
by SU99.

1) THE MEAN SMOKE-CLOUD-TOP HEIGHT

We need to find the entrainment buoyancy flux level,
zfl, in order to estimate the jump conditions and the
entrainment rate. The most straightforward way to de-
termine zfl is to identify the level of the most negative
buoyancy flux in each (simulated) instantaneous, hori-
zontally averaged buoyancy flux profile. However, zfl

defined in this manner fluctuates greatly in time, as
shown in Fig. 3 (these fluctuations are much more pro-
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FIG. 1. A vertical cross section showing the temperature field near the boundary layer top (temperatures below
287.8 K are shown as white in this color table) and flow velocity vectors from the CONTR run. Several wisps
observed in this plot may be responsible for most of the entrainment.

nounced for the clear convective PBL, as shown in SU98
and LM99, and are likely due to the sampling problem
of the limited horizontal domain size), and hence is
difficult to use for our analysis. (At certain instantaneous
times, the negative buoyancy flux at the cloud top may
disappear all together, e.g., at ;105 min of the XKRpS
simulation. This makes the use of such defined zfl more
difficult.)

Here we used an alternative method. We calculated
the mean-smoke-cloud-top height based on the smoke
concentration field and used it to represent zfl. Following
BR99, we first searched for the local cloud-top heights
ztop(x, y) as the levels where the smoke concentration
equals 0.5 at each grid column. (The initial condition
of the smoke concentration is 1 inside the PBL and 0
above. Thus, 0.5 is the mean of the initial maximum
and minimum concentration values). We then horizon-
tally averaged these local cloud-top heights to find the
mean-smoke-cloud-top height, zi, at each recorded time
record. The time evolution of zi calculated in this manner
is given in Fig. 4. Compared to Fig. 3, we found zfl

fluctuates about the zi level for most of the simulations,
but for those with stronger capping inversions (e.g.,
INV2, INV3, and INV3-MFC), zfl is more likely to stay
below zi throughout the simulation time; the latter fea-
ture was also found in LM99.

For most LES runs, zi is nearly linear in time and
hence computing we ([dzi/dt) is straightforward. For
some, like the MFC run, however, the slope changed
over the last 80 min of simulation time. We estimated
its entrainment rate averaged over the whole analysis
time period and also over the last 40-min time period,
and found the difference to be about 16%. We consider
this difference to be within the uncertainty of LES.

We found from the time-averaged buoyancy flux pro-
files, later shown in Fig. 8, that zi, after time averaging,
coincides with the time-averaged zfl except for the cases
with stronger capping inversions. Thus, we will first use

zi to approximate zfl for our analysis but will perform a
sensitivity study on this approximation later.

The time evolution of the layer-averaged buoyancy
flux B [ wuy dz/zfl is given in Fig. 5 for all cases;zfl∫0

it reaches an asymptote during the last ;60 min of the
analysis time period.

2) STATISTICAL PROFILES

Figure 6 shows the following statistics of the CONTR
case: (a) mean virtual potential temperature Qy , (b) tur-
bulent kinetic energy (TKE), (c) buoyancy flux wuy , (d)
longwave radiative flux FR , (e) total heat flux wuy 1
FR /(r0cp), and (f ) smoke flux. These averaged statistics
were constructed in a three-step procedure: (a) individ-
ual time records of turbulence quantities were averaged
over x 2 y planes, (b) horizontally averaged statistics
were interpolated onto a vertical grid normalized by the
mean-cloud-top height zi at the time of the record, and
then (c) the height-normalized statistics profiles were
averaged over the 17 time records.

As we can see from Figs. 6b, 6c, and 6f, most of the
TKE and turbulent fluxes reside in the resolved scales
of the simulation; only a small portion comes from the
subgrid scales. Figure 6e shows that the total heat flux
is nearly linear with height within the well-mixed layer,
again indicating that the simulated turbulent field has
reached a quasi-steady state. From the normalized buoy-
ancy flux profile, we see that the level of the most neg-
ative flux is at the zi level in this case, so zfl 5 zi is a
good approximation. Figure 6f shows the total smoke
flux; it is not exactly linear with height, but close enough
for our analysis.

In order to see the cloud-top jump more clearly, we
present in Figs. 7 and 8 the vertical profiles of Qy , wuy ,
and FR from z 5 0.9zi to z 5 1.1zi. We can see clearly
that some portion, albeit small, of the horizontally av-
eraged radiative flux divergence occurs above the zi (or
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FIG. 2. Same as Fig. 1 but for a limited domain, from y 5 2000–3000 m. (a)–(h) Time sequence of snapshots.

zfl) level. It exists within the entrainment zone. (Sim-
ulations with centered finite differencing reveal the two
known spurious features: above the level where the tur-
bulent flux is supposed to vanish, there exists a small
positive buoyancy flux and a radiative flux that does not
converge to F0. These make centered finite differencing
less appealing than monotone schemes, but we would
like to point out here that monotone schemes also have
spurious numerical flaws, although they are not as read-
ily apparent.)

To calculate the jump conditions DQy and DFR, we
first set zfl 5 zi and 5 1.05zi for all cases, where1zfl

1.05zi is the location where the virtual potential tem-
peratures remain unchanged throughout the simulations

for most cases. (Because the jump conditions and Ric

depend on the definition of zfl and we will perform1zfl

a sensitivity study that uses different heights to check
if our conclusion still holds.) We then estimate the time-
averaged mean smoke-cloud-top height (from Fig. 4);
the entrainment rate (i.e., the averaged slope of the
curves in Fig. 4); the layer-averaged buoyancy flux over
the whole PBL; B (from Fig. 5); the entrainment buoy-
ancy flux (from Fig. 8); and the jumps DQy (from Fig.
7) and DFR (from Fig. 8). These values are given in
Table 2. Inserting these values into (3.5) and (3.6), we
can compute w*c and Ric, which are given in Table 3.

Table 2 shows that the radiative flux jump above zfl,
DFR, is only a small fraction of the total radiative flux
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FIG. 3. Time evolution of zfl from the eight smoke-cloud LESs. FIG. 4. Time evolution of zi from the eight smoke-cloud LESs.

FIG. 5. Time evolution of the layer-averaged buoyancy flux from
the eight smoke-cloud LESs.

jump across the cloud top; it is less than 20% of F0 for
most of the cases. This fraction becomes larger with
thinner radiative cooling zone (comparing XKRpL to
XKRpS), weaker inversion strength (comparing CONTR
to INV2 and INV3), and the use of a monotone advec-
tion scheme (comparing MFC to CONTR).

3) EXAMINING EQUATIONS (3.2), (3.3), AND (3.4)

The jump condition (3.2) was derived based on the
‘‘thin layer assumptions.’’ In our LESs the depth of the
actual jump layer ranges, as seen from Fig. 8, from
0.01zi (such as FR30) to about 0.06zi (such as MFC).
Using the LES solutions we calculated both right- and
left-hand sides of (3.2), which are plotted in Fig. 9. All
LES data points lie close to the diagonal, indicating that
the jump condition (3.2) is quite satisfied for all cases
despite the use of the ‘‘thin layer assumptions.’’ This
suggests that the jump-layer temperature, Qy dz, in

1z
fl∫zfl

these radiative-cooling-driven smoke-topped PBLs is
nearly constant in time, unlike the surface-heated PBL
where the jump-layer temperature increases signifi-
cantly in time as demonstrated by SU98. We speculate
that cloud-top radiative cooling nearly cancels out en-
trainment warming within this thin jump layer.

Next we check the closure assumption (3.3) in Fig.
10, which plots the ratio A9 of the entrainment buoyancy
flux to the layer-averaged buoyancy flux, as a function
of the layer-averaged buoyancy flux. [The error bars in
Fig. 10 represent the standard deviations (in time) of
A9; these time variations result from the fact that the
predicted entrainment buoyancy flux fluctuates greatly
in time. For some LESs, the entrainment buoyancy flux
may even become slightly positive for some short pe-

riods of time. Because the frequency of these fluctua-
tions is approximately we/Dz, where Dz is the vertical
grid size, we suspect that the vertical grid discretization
is the main cause for the large time fluctuations in the
predicted buoyancy flux.] Overall, the A9 value in (3.3)
is close to 0.5 except in the INV3-MFC run.

Both INV3-MFC and INV3 have the strongest cap-
ping inversion (7 K jump in the initial temperature field)
among all cases studied here, and hence their cloud-top
undulations are not as well resolved as those with weak-
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FIG. 6. Vertical distributions of (a) the mean virtual potential tem-
perature; (b) the resolved (dotted), subgrid-scale (dashed–dotted), and
total (solid) turbulence kinetic energy; (c) the resolved (dotted), sub-
grid-scale (dashed–dotted), and total (solid) buoyancy fluxes; (d) the
longwave radiative flux; (e) sum of the total buoyancy and longwave
radiative fluxes; and (f ) the resolved (dotted), subgrid-scale (dashed-
dotted), and total (solid) smoke flux, from the CONTR run.

FIG. 7. The mean virtual potential temperature in the layer between
0.9zi and 1.1zi for all eight smoke-cloud cases. The dotted lines in-
dicate the bottom of the jump layer.

er capping inversion (e.g., that shown in Figs. 1 and 2).
This makes their results on the entrainment-related
quantities less reliable. One important point to note is
that the only difference between these two LESs is the
use of the advection scheme for the scalar fields—INV3
uses centered finite differencing and INV3-MFC a
monotone scheme. Comparing these two runs shows that
a monotone advection scheme tends to produce a larger
numerical diffusion (as widely recognized and also ev-
idenced by the more smoke produced in the entrainment
zone), and hence a larger entrainment buoyancy flux.
This numerical effect is more pronounced with a stron-
ger capping inversion. We are currently examining the
numerical effects on the entrainment-buoyancy-flux pre-
diction from LES.

Applying A9 5 0.5 for all cases, we plot in Fig. 11

the predicted entrainment rate normalized by w*c (which
is given in the third column of Table 3) against the sum
of the two right-hand-side terms in (3.4). All data points
lie very close to the diagonal line, showing that the
entrainment rate equation works quite well for all eight
simulated smoke-cloud cases. The two terms on the
right-hand side are shown in the fourth and fifth columns
of Table 3, respectively. We see that the DFR term is
larger than the A/Ric term for most of these smoke-
cloud cases, despite the fact that DFR is only a small
fraction of F0 for most of the cases. The relative con-
tribution of the radiation term to the entrainment rate,
compared to the A/Ric term, is larger for thinner radi-
ative cooling zone, weaker inversion, and the use of a
monotone advection scheme.

Despite the numerical effect, there is one thing we
can learn from the strong capping inversion cases. Even
with the much larger A9 value in the INV3-MFC case,
the entrainment rate equation (3.4) still holds quite well
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FIG. 8. Same as Fig. 7 but for the buoyancy flux (solid) and long-
wave radiative flux (dotted).

TABLE 2. LES output.

Experiment zi (m) we (cm s21) B (W m22) wu |zfi (W m22) DQy DFR (W m22)

CONTR
FR30
XKR-S
XKR-L

786.1
747.6
767.8
804.8

1.27
0.73
0.98
1.58

12.0
5.3

11.6
10.1

25.91
22.92
25.73
24.74

0.90 (0.89)
0.94 (1.00)
1.02 (1.06)
1.05 (0.92)

9.47 (8.16)
4.40 (5.64)
5.87 (7.30)

15.05 (11.72)
INV2
INV3
INV3-MFC
MFC

746.6
717.0
734.9
788.8

0.74
0.35
0.45
1.58

11.3
11.4

9.7
12.2

26.50
27.41

210.73
26.86

1.83 (2.13)
4.22 (2.88)
4.15 (5.27)
1.05 (0.99)

7.96 (9.69)
6.00 (7.98)

10.50 (14.36)
12.58 (8.81)

CONTR* 776.6 1.10 14.8 26.15 1.02 (1.05) 4.90 (8.35)

for this case because of the following reason. If we use
A9 5 1 for the INV3-MFC case, A ; 0.33, which yields
a 50% increase on the A/Ric term in (3.4) compared to
using A 5 0.2. Because the A/Ric term contributes only
about half of the total right-hand side of (3.4), as shown
in the fourth and fifth columns of Table 3, a larger A9
(from 0.5 to 1) for the INV3-MFC case increases the
right-hand side of (3.4) by only about 25%. In other

words, with the contribution from the DFR term, the
entrainment rate prediction is not as sensitive to the A9
value we set in the closure assumption.

If neglecting the DFR term and plotting we/w*c versus
A/Ric, we obtain Fig. 12a. All data points lie around
the A 5 0.5 curve fit; this suggests that the simple
parameterization we/w*c 5 A/Ric also fits our LES so-
lutions reasonably well but with an A value that is about
2.5 times larger. This larger A value is needed to com-
pensate for the omission of the DFR effect.

If we calculate Ric using the full temperature jump,
that is, the temperature difference between the mixed-
layer value and that above the turbulent layer, as used
by previous studies (e.g., BR99), then all data points lie
about the we/w*c ; 0.8/Ric curves as indicated in Fig.
12b. (The full temperature jump is about 1.5 K for all
weaker inversion runs, about 2.8 K for INV2, and about
7.3 K for INV3 and INV3-MFC runs during the last 80
min of the simulation.) Our result is consistent with
BR99 where they found we/w*c ; 0.7/Ric for all high-
vertical-resolution smoke-cloud simulations.

There is about a 25% difference in the entrainment
rate prediction between CONTR and MFC (also be-
tween INV3 and INV3-MFC) due to different numerics,
implying a 25% uncertainty in our LESs for the en-
trainment rate prediction. LES with a monotone scheme
tends to predict a larger entrainment rate, which is also
found in BR99, and also gives a larger DFR term. The
latter is due to the fact that monotone scheme gives a
more diffusive smoke concentration into the entrainment
zone. Thus, both sides of (3.4) increase with the use of
monotone schemes.

4) SENSITIVITY TESTS

To see if our results depend sensitively on the choice
of the jump layer, we now choose zfl and levels dif-1zfl

ferently. We define zfl at the actual height where the
minimum buoyancy flux occurs and where the buoy-1zfl

ancy flux becomes zero, as found from Fig. 8, so these
heights are now different for different LES cases. For
example, for INV3 we now use zfl 5 0.99zi and 51zfl

1.01zi and for MFC zfl 5 1.01zi and 5 1.07zi. We1zfl

then recompute the jumps, DQ and DFR, and all other
parameters that depend on these jumps. This new set of
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TABLE 3. LES output.

Experiment w*c (m s21) Ri we/w*c 0.2/Ri DFR/r0cpw*cDQy

CONTR
FR30
XKR-S
XKR-L

0.917
0.687
0.899
0.872

27.5 (27.2)
48.7 (51.8)
31.6 (32.9)
36.3 (31.8)

0.0139
0.0106
0.0109
0.0181

0.0073 (0.0074)
0.0041 (0.0039)
0.0063 (0.0061)
0.0055 (0.0063)

0.0100 (0.0088)
0.0060 (0.0072)
0.0056 (0.0067)
0.0144 (0.0128)

INV2
INV3
INV3-MFC
MFC

0.883
0.874
0.835
0.923

57.2 (66.6)
129.4 (88.3)
142.9 (181.5)

31.8 (30.0)

0.0084
0.0040
0.0054
0.0171

0.0035 (0.0030)
0.0015 (0.0023)
0.0014 (0.0011)
0.0063 (0.0067)

0.0043 (0.0045)
0.0014 (0.0028)
0.0027 (0.0029)
0.0114 (0.0084)

CONTR* 0.979 27.0 (27.8) 0.0112 0.0074 (0.0072) 0.0043 (0.0071)

FIG. 10. The ratio A9 vs the layer-averaged buoyancy flux from the
eight LESs.

FIG. 9. The right- and left-hand sides of the jump condition, Eq.
(3.2), calculated from the eight LESs.

values is given inside the parentheses in Tables 2 and
3. We then replot the right-hand side of (3.4) in Fig.
13. The results are similar to those of Fig. 11, showing
that the DFR term still contributes significantly to the
entrainment rate.

The MFC and INV3 cases have the biggest changes
in their DFR term, mainly because of the difference in
defining zfl. The new jump layer of MFC is now from
1.01zi to about 1.07zi. This slightly higher zfl level re-
sults in a ;30% reduction in DFR, and therefore a small-
er right-hand side of (3.4). For INV3, the jump layer is
now from 0.99zi, which gives a larger DFR term. The
results are less sensitive to the location of .1zfl

The new relationship between 0.2/Ric and we/w*c re-
mains similar to that shown in Fig. 12a, again indicating
the need to increase the A value in order to compensate
for the omission of the DFR effect.

d. Physical interpretation of DFR

We have demonstrated that the radiative flux jump
across the thin jump layer (from zfl to ) is important1zfl

in the equation of the entrainment rate in a radiatively
driven PBL, even though that part of radiative flux jump
accounts for only 20% or less of the total jump, F0.
Since we do not include clear-air radiation in the sim-
ulations, all of the radiative flux divergence must exist
inside the smoke region. The DFR portion apparently
results from smoke concentration between zfl and .1zfl

Figure 14 shows the instantaneous smoke concentration
in an x–z cross section from the CONTR run. The shaded
area has smoke concentrations larger than 0.5, and the
contour lines above the shaded region represent smoke
concentration contours s 5 0.4, 0.3, 0.2, and 0.1, re-
spectively. Note that zfl is close to the horizontally av-
eraged (over the whole numerical domain) height of the
s 5 0.5 contour line. So, about half of the local smoke-
cloud tops, that is, z top(x, y), are above the mean zfl level.
We can see clearly there is a considerable amount of
smoke above zfl, which leads to a nonzero DFR.

It is therefore clear that DFR, even though it shows
up explicitly in the entrainment rate equation, represents
radiative cooling inside the smoke (or cloud) region.



1042 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 11. The right-hand and left-hand sides of the entrainment
equation, Eq. (3.4), calculated from the eight LESs.

FIG. 12. The ratio we/w*c vs 0.2/Ric (a) where Ric is computed
based on the buoyancy jump between zfl and and the solid line1zfl

represents we/w*c 5 0.5/Ric; and (b) where Ric is computed based
on the full buoyancy jump and the solid line represents we/w*c 5
0.8/Ric.

The cooling does not exist in the clear air region above
the smoke edge, so it does not promote entrainment by
weakening the local inversion as has been previously
argued. However, we should point out that in nature
there does exist some longwave radiation in the clear
air part of the inversion layer due to the temperature
and water vapor distributions, but that clear-air radiative
cooling is excluded in our simulations and should not
be confused with the effect of DFR. Also, we believe
that in nature the magnitude of the clear-air radiative
flux divergence (or convergence) is much smaller than
that of DFR. Since DFR represents radiative cooling
within cloud elements, we have no reason to think that
it plays a different role in generating turbulence and in
promoting entrainment compared to the other part of
radiative cooling that exists below zfl, even though after
averaging they show up in different equations.

For marine stratocumulus applications, we expect the
DFR term to play a smaller role in (3.4), because the
‘‘cloud’’ amount above zfl is much smaller in stratocu-
mulus cases than in smoke cloud cases. This is because
cloud droplets evaporate quickly in the dry and warm
environment in the inversion layer, leading to a nearly
discontinuous liquid water mixing ratio across the local
cloud top as often observed in stratocumulus. In the
following section we will discuss applications of the
entrainment rate equation to a smoke-cloud analog of
stratocumulus, and with the understanding of the phys-
ical origin of the radiative flux divergence DFR we will
propose an analytical method to relate DFR to the cloud-
top fluctuations.

4. Applications to marine stratocumulus topped
PBLs

Many studies of stratocumulus (e.g., Turton and Nich-
olls 1987; Bretherton and Wyant 1997) assumed that

the entrainment rate normalized by w*c depends only
on the inverse of a bulk interfacial Richardson number,
that is, we/w*c 5 A/Ric (note their Ric is defined slightly
differently from ours; their Ric is computed based on
the full temperature jump). Most of the studies derived
this simple entrainment rate equation based on simple
scale analysis, which does not provide any physical in-
sight into how and why radiation affects entrainment.
In appendix A, we derive an entrainment rate equation
for stratocumulus using the same procedure as in section
3, which is similar to that by Deardorff (1976) and by
Stage and Businger (1981). Through the derivation, we
can see that three assumptions have to be made in order
to arrive at an entrainment rate that can be expressed
as A/Ric. First, the entrainment buoyancy flux was as-
sumed to be a fraction of the layer-averaged buoyancy
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FIG. 13. Same as Fig. 11 but with different levels of zfl and .1zfl

FIG. 15. The area coverage by smoke concentration larger than 0.5
in the entrainment zone from the CONTR* run.

FIG. 14. A vertical cross section showing the smoke concentration field from the CONTR run. The shaded area
includes smoke concentration larger than 0.5 and the contour lines above this area are for concentration levels 0.4,
0.3, 0.2, and 0.1, respectively. The zfl level is indicated by the solid line while the is close to the top of the1zfl

plotted domain.

flux. Second, all of the air parcels at zfl were assumed
to be saturated, which is clearly not the case because zfl

typically lies in the middle of cloud hummocks. Third,
the DFR term in (A.5) was neglected or assumed to be
proportional to the inverse of Ric. The first assumption
was shown to work reasonably for the clear and smoke
cloud cases, but how well it applies to stratocumulus
should be investigated further. The second assumption
looks illogical but how it affects the entrainment rate
solution is not known. Here we will discuss only the
third assumption.

To mimic a more realistic stratocumulus case, we gen-
erated another control case (CONTR*) in which we set
a threshold value on the smoke-cloud concentration for
it to become radiatively active. In this case, we use the
threshold value s 5 0.5—the same value that defines
the smoke-cloud top. In other words, we allow only
smoke that is below ztop(x, y) to be radiatively active.

Smoke that has a concentration less than 0.5 is excluded
in the radiation calculation in (3.7). This is analogous
to a real cloud case in that smoke with concentration
larger than 0.5 can be seen as the cloudy region and
that less than 0.5 as the cloud-free region. This results
in a smaller DFR because the local radiative flux be-
comes exactly zero above all local cloud tops. The only
contribution to DFR comes from the upper part of
‘‘cloud’’ hummocks.

It is not surprising that zi defined as the horizontal
average of the s 5 0.5 isosurface agrees well with the
zfl level. As seen from Fig. 15 from CONTR*, the frac-
tional area covered by this isosurface is about half at
the zi level. And from the laboratory study by Deardorff
et al. (1980), they showed that ‘‘the height of most
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FIG. 16. Vertical distributions of the buoyancy flux (solid) and
longwave radiative flux (dotted) in the entrainment zone from the
CONTR* run. The straight dotted line indicates the bottom of the
jump layer.

FIG. 17. The probability distribution of the smoke-top fluctuations
from the CONTR run (solid) and of a Gaussian random variable
(dotted). The inset shows the same figures but using a logarithmic
scale in the abscissa.

negative mean buoyancy flux is found to agree roughly
with the height where mixed-layer fluid occupies one-
half the area.’’ Thus, the zfl level in stratocumulus-
topped PBLs is likely to occur at the level where cloud-
top hummocks occupy about half of the area and the
inversion air the other half.

Figure 16 shows the buoyancy and radiative fluxes
of the CONTR* case, and the last row of Tables 1–3
reports those parameters. With only ;5 W m22 radiative
jump in the jump layer in CONTR*, this radiative-flux-
jump term still contributes significantly to the entrain-
ment velocity. [Note that for a smoke cloud, which has
no latent heating effects, a 5 1 and b 5 0 in (A.5).]

The cutoff of the smoke concentration level, used here
in order to obtain a radiative cooling zone similar to
that of a stratocumulus case, should vary depending on
the amount of liquid water at the cloud top and the
moisture in the inversion. As suggested by one of the
reviewers, for a stratocumulus capped by a drier air, the
cutoff should be larger than 0.5 and thus the contribution
to the entrainment rate from DFR could be even smaller.

Because DFR exists within a thin layer at the cloud
top, it may be difficult to measure in the field and may
not be resolved in an LES that has a grid mesh too
coarse to resolve cloud-top undulations. It is also im-
possible to obtain from any one-dimensional numerical
model, which cannot simulate cloud-top undulations.
For practical purposes, this radiative flux divergence
needs to be related to quantities that are measurable.
Giving the above physical interpretation of DFR, we
were able to analytically relate this flux divergence to
cloud-top fluctuations, as shown in appendix B. There

we assumed that the cloud-top fluctuations are a Gauss-
ian random variable (which is a reasonable assumption
as evidenced from the LES solution, Fig. 17) and the
radiative active trace species is piecewise constant lo-
cally in any vertical column, that is, 1 below and 0 above
the local cloud top. Then, the following analytical re-
lationship can be derived to link DFR to (the standardszi

deviation of cloud-top fluctuations) for a given kR:

F0 2yDF 5 {1 2 e [1R 2

r k s0 R zi2 erf(y)]}, where y 5 .
Ï2

(4.1)

For small y (which one would expect for most marine
stratocumulus cases), DFR can be approximated by a
linear function as shown in Fig. 18; that is,

DFR/F0 ; 0.46y for y , 0.3. (4.2)

The standard deviation of cloud-top fluctuations szi

can be estimated from the LESs. Standard deviations
are plotted as a function of the Richardson number from
a variety of LESs in Fig. 19 (those clear-air PBL sim-
ulations denoted by crosses are from SU98); it shows
a curve fit as

; 0.6 21s /z Rz i ici
(4.3)

over a large range of PBL parameter space. One problem
with this curve fit is that it gives an infinite large stan-
dard deviation of cloud-top fluctuations when Ric ap-
proaches zero. A more useful curve fit may take the
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FIG. 18. The solid line shows the theoretically predicted longwave
radiative flux jump from Eq. (B.8) as a function of y; the dashed line
represents a curve fit of DFR/F0 5 0.46y; the 3’s are calculated from
Eq. (B.8) with obtained from ztop(x, y) of the LES runs; the openszi

circle shows the flux jump directly from the CONTR run; and the
asterisk shows the flux jump directly from the CONTR* run.

FIG. 19. Standard deviation of the cloud-top fluctuations, normal-
ized by zi, as a function of the interfacial Richardson number from
the nine smoke-cloud runs (solid circles) and from several clear con-
vective PBL runs reported in SU98 (crosses). The solid line shows
a curve fit given in Eq. (B.9).

form 1/(a 1 bRic) (D. A. Randall 1998, personal com-
munication), but this requires knowing the asymptotic
value of / when Ric → 0. For now, we will use (4.3)s zz ii

just to demonstrate the importance of the DFR term in
the entrainment rate equation. Using (4.2) and (4.3),
(A.5) becomes

w 1 aF ze 0 i5 A 1 B ,[ ]w R w (aDQ 1 bDQ )c ic c l T* *

0.6(0.46k ) 0.004Rwhere B 5 ø . (4.4)
cc Ï2 pp

The importance of the radiation term increases as kR

increases (i.e., thinner radiative cooling zone), aDQl 1
bDQT decreases (weaker capping inversion), and F0 in-
creases (larger radiative forcing), consistent with that
shown in section 3c(2).

For most of our smoke-cloud simulations, F0 5 60
W m22, a 5 1, DQy ; 1 K, zi ; 750 m, and w*c ; 1
m s21. Using these values in (4.4), we obtain ;0.2 for
the second term in the bracket, which is close to the
magnitude of the A term. In other words, the radiative
flux term has about the same magnitude as the inverse
of the Richardson number term, consistent with what
we showed in Table 3.

5. Summary and discussion

An entrainment rate equation can be derived based
on (a) the cloud-top jump conditions and (b) a closure

assumption that relates the entrainment buoyancy flux
to the averaged buoyancy flux over the whole PBL. This
led to an entrainment rate that depends not only on the
inverse of interfacial Richardson number, as in the clear
convective PBL, but also on the longwave radiative flux
jump above the entrainment buoyancy flux level.

Smoke-cloud LESs were then used to check the rel-
ative importance of these two terms in determining the
entrainment rate. From the eight smoke-cloud simula-
tions, we found that the contribution from the radiative
flux jump term is either larger than or about equal to
the interfacial Richardson number term. Since smoke
cannot evaporate like cloud droplets in the warm and
dry inversion environment, the smoke-cloud LESs may
exaggerate the importance of the radiative flux jump
term. To see if the radiative flux jump term is still im-
portant for stratocumulus-like cases, we generated a
smoke-cloud case that assumed all smoke concentration
above a certain cutoff level to be radiatively inactive,
in order to mimic the sharp drop of liquid water mixing
ratio above stratocumulus. We found that the radiative
flux term still contributes significantly to entrainment
rate in this case.

The radiative flux divergence that appears explicitly
in the entrainment rate equation actually exists within
smoky (or cloudy) regions, just like any other part of
the radiative flux divergence. It actually cools the cloudy
air and thus enhances the local inversion strength; it
does not make entrainment easier by reducing the in-
version strength as has been previously argued. Math-
ematically it shows up in the entrainment equation, but
physically it exists within the turbulent layer, cools the
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cloudy elements, and should therefore enhance turbulent
mixing just like the other part of radiative flux diver-
gence.

Using this physical understanding, and assuming a
Gaussian distribution for the cloud-top fluctuations, we
were able to analytically derive a relationship that links
this radiative flux jump to the cloud-top fluctuations.
The cloud-top fluctuations were then empirically related
to the inverse of the interfacial Richardson number. Us-
ing this analytical expression for the radiative flux term,
we showed analytically that both terms in the entrain-
ment rate equation have about the same magnitude,
which was consistent with our numerical results.

These results may explain partially why the ratio be-
tween we/w*c and calculated from the GCSS21Ric

smoke-cloud simulations reported in BR99 was at least
2;3 times larger than the ratio suggested for the clear
convective PBL. We believe this larger ratio is needed
in part to compensate for the omission of the contri-
bution due to the DFR term in (3.4).

Quantitatively, the simulated amount of DFR is sen-
sitive to numerics (centered finite differencing vs mono-
tone schemes) or LES grid resolutions. A coarse grid
LES that poorly resolves cloud-top undulations may
generate spurious values of DFR. The question of how
grid resolution and numerics affect the magnitude of
DFR is interesting, but is beyond the scope of this study.
Here our main goal is to point out that DFR exists phys-
ically within the cloudy region and yet can be a dom-
inant term in the entrainment rate equation.

We realized, only after finishing the manuscript, that
Deardorff (1981) gave the same argument. He stated
that the portion of radiative flux divergence that exists
in the entrainment zone, that is, r in his notation,
‘‘should be defined in a manner consistent with the av-
eraging method utilized in defining the turbulent flux-
es,’’ which in common practice is horizontal averaging.
This averaging puts a portion of in-cloud radiative cool-
ing inside the entrainment zone. He then argued that ‘‘a
stratocumulus growth/decay model needs to treat the
fraction of the overall radiative flux difference existing
above the well-mixed height as a variable quantity.’’

We would also like to mention a similar study by
LM99, which was submitted to Quart J. Roy. Meteor.
Soc. for publication at about the same time as this man-
uscript. Through LES they also argued that the radiative
flux divergence that appears explicitly in the entrain-
ment rate equation exists inside the simulated smoke
(or cloud) region, and that part of flux divergence is no
different compared to the rest of the radiative flux di-
vergence in physical sense in driving turbulence and
entrainment.

The radiative flux jump term in the entrainment rate
equation is likely to be smaller for stratocumulus, but
whether it still plays an important role in directly de-
termining entrainment rate and whether it can be pa-
rameterized as (4.2) requires LESs that can well resolve
the cloud-top undulations.
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APPENDIX A

Entrainment Rate Equation for
Stratocumulus-Topped PBL

With latent heating the virtual potential temperature
is no longer a conserved variable in a moist adiabatic
process. We instead need to use a thermodynamic quan-
tity that is conserved in a wet atmosphere, such as equiv-
alent potential temperature, liquid potential temperature,
or liquid water static energy, to derive a jump condition
similar to (3.2). Here we choose liquid water moist static
temperature ul defined as u 2 (L/cp)ql, where u is the
potential temperature, ql is the liquid water mixing ratio,
L the latent heat of condensation, and cp the specific
heat of air at constant pressure. [Here ul is an approx-
imate, linearized form of the liquid potential tempera-
ture, or is the liquid water static energy without the
factor cp. The following discussion remains the same
no matter what conserved variable one chooses. The
only difference is the thermal coefficients shown in
(A.3).] Thus,

1
wu | 2 DF 5 2w DQ . (A.1)l z R e lfl r c0 p

Similarly for the total mixing ratio qT:

5 2weDQT,wq |T zfl
(A.2)

assuming no precipitation. Again, the capital-lettered Q l

and QT represent ensemble averages.
We apply the same closure assumption (3.3), that is,

the entrainment buoyancy flux is assumed to be a frac-
tion of the vertically averaged buoyancy flux, for the
radiatively driven PBL.

To use (3.3) in (A.1) and (A.2), we have to relate
to and . Most often we assume thatwu | wu | wq |y z l z T zfl fl fl

all air parcels at zfl are saturated, which is of course not
true because cloudy and clear air coexist at this cloud-
top excursion level. Because representing the averaged
buoyancy flux in a partly cloudy area is difficult (Rand-
all 1987), most studies assume all air parcels at the zfl

level are saturated, which leads to the following relation
between the entrainment buoyancy flux and the entrain-
ment ul and qT fluxes:

5 1wu | awu | bwq | ,y z l z T zfl fl fl
(A.3)

where coefficients a [ (1 1 1.609eg)/(1 1 g) and b [
(L/cp)(1 2 e 1 0.609eg)/(1 1 g), e 5 cpT0/L, g 5
(L/cp)(]qs/]T), qs is the saturation mixing ratio, and T0

is a reference temperature. Here we use the approximate,
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linear relationships: uy 5 u 1 0.61T0qy 2 T0ql and
; (cpg/L)u9.q9y
Using (3.3), (A.1), (A.2), and (A.3), we obtain

a
2w (aDQ 1 bDQ ) 1 DFe l T Rr c0 p

zfl2A
5 2 wu dz. (A.4)E y1 2 A 0

Using the definition of w*c (3.5), we obtain

w A aDFe R5 1 . (A.5)
w Ri r c w [aDQ 1 bDQ ]c c 0 p c l T* *

Here the interfacial Richardson number Ric is now

Ric [ (g/T0)zfl(aDQ l 1 bDQT)/ .2w c* (A.6)

APPENDIX B

Relating the Radiative Flux Jump to Cloud-Top
Fluctuations

Let us denote by z* the deviation of the local cloud-
top height, ztop, from the mean cloud-top height zi; that
is,

z* 5 ztop 2 zi, where zi 5 ^ztop&. (B.1)

If z* is a centered Gaussian random variable with stan-
dard deviation , its density function ) iss f (z ; sz zi i*

21 2z*f (z ; s ) 5 exp ,zi 2* 2ss Ï2p zz ii

2` # z # `. (B.2)*

In practice one may treat each vertical column at each
time as an independent event, so z* may be thought of
as a function of (x, y) and integrations over z* may be
thought of as integrations over (x, y). However, in the
subsequent discussion, and in keeping with the theory
of probability, we will not make further reference to this
event space.

If we assume that the smoke concentration s(z, z*) in
any vertical column is a Heaviside function centered at
ztop 5 z* 1 zi, then the local smoke concentration is
unity for z , z* 1 zi and zero elsewhere. Consequently
the smoke path above some level z, S(z, z*) is simply

z 1 z 2 z for z , z 1 zi i* *S (z, z ) 5 (B.3)* 50 otherwise,

whose expected value is
`

^S (z; s )& 5 S (z, z ) f (z ; s ) dzz E zi i* * *
2`

`

5 (z 1 z 2 z) f (z ; s ) dz . (B.4)E i zi* * *
z2zi

At z 5 zi the expected value of the smoke path depends
only on the breadth of the distribution function describ-
ing the cloud-top height as

` 2 Ï2sz 2z zi* *^S (z ; s )& 5 exp dz 5 .i z Ei 21 2 *2s ps Ï2p z0 z ii

(B.5)

Our entrainment formula requires some model for the
jump in the radiative flux DFR 5 F0 2 ^F(zi)&. Thus
we are interested in the expected value of the radiative
flux at zi. Equation (3.7) describes the dependence of
the radiative flux F(z; c) on the value of the smoke path
at z. Because, in our model, this smoke path depends
on both z and z*, we will write the value of the radiative
flux at some level z as

F(z, z ; k )R*

F exp[2r k S (z, z )] for z , z 1 z0 0 R i* *5 (B.6)5F otherwise.0

The expected value of F is denoted by ^F(z)& and is
given by

`

^F(z)& 5 F(z, z ; k ) f (z ; s ) dz . (B.7)E R zi* * *
2`

Using Eq. (B.3) in Eq. (B.6) and substituting above
allows us (in the special case when z* is a centered
Gaussian random variable) to solve for the expected
value of the radiative flux analytically. At z 5 zi its
expected value has a particularly simple form, which is
only a function of the parameter y 5 / 2:r k s Ï0 R zi

` 2F F 2z0 0 *^F(z ; y)& 5 1 exp 2 k z dzi E R21 *2 *2 2ss Ï2p z0z ii

F0 2y5 {1 1 e [1 2 erf(y)]}.
2

(B.8)

Here ^F(zi)& is a strictly decreasing function of y, which
decreases from a maximum of F0 at y 5 0 to 0.5F0 as
y goes to infinity. In Fig. 18 we plot the fractional jump,
DFR/F0, predicted by Eq. (B.8) using the solid line. It
has the expected behavior, decreasing as the optical
thickness or thickness of the inversion zone decreases,
increasing otherwise. For most of the experiments we
use kR 5 0.02 and is typically about 10 m. Henceszi

y is generally less than 0.4, and DFR/F0 is well ap-
proximated by 0.46y (i.e., the dashed line in Fig. 18).

Our ability to represent ^F(zi)& by an analytic form
rests on three key assumptions. First, we assumed that
cloud-top heights are well described by a Gaussian ran-
dom variable; second, we assumed that the smoke con-
centrations were piecewise constant; and third, we took
advantage of the simple analytic form for the radiative
flux as a function of smoke path [e.g., Eq. (3.7)]. The
third assumption is commonly made and is known to
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well represent the first-order effects of clouds on the
longwave radiative fluxes. The second two assumptions
are discussed further below.

In the simulations the cloud-top height tends to de-
viate from a pure Gaussian distribution, as values of the
skewness in z* tend to be around 20.3 and the flatness
is typically closer to 4 (for a Gaussian distribution these
should be 0 and 3, respectively). These departures from
a pure Gaussian process can be seen in Fig. 17 which
compares the actual distribution of cloud-top heights
from experiment CONTR, with that predicted by a
Gaussian distribution with the same variance. The de-
viation from a Gaussian distribution is mostly evident
in the tails of the distribution and does not significantly
impact our results. To substantiate this claim, we use
the ztop(x, y) data obtained by the LES and then artifi-
cially assume (as is done in the theory) that the smoke
concentration is unity above and zero below z 5 ztop.
We then solve for DFR by numerically integrating FR

over this distribution for each of the LES experiments.
The results are shown by the 3’s in Fig. 18. The de-
viation of the 3’s from the solid line reflect the extent
to which the deviation of the cloud-top heights from a
Gaussian distribution impact the estimate of DFR. Clear-
ly, from the perspective of the radiative calculations,
the assumption that z* can be modeled as a Gaussian
random variable is a good one.

The theory departs more substantially from the LES
on the assumption that the smoke concentration is well
described by a Heaviside function. The open circle in
Fig. 18 shows that the model-derived value of DFR for
the control experiment departs significantly from the
theory. Most of the disagreement is, however, due to
the peculiar nature of the smoke cloud; smoke does not
evaporate like water cloud droplets. In real clouds or in
simulations of real clouds, the gradient in the radiatively
active component (liquid water) is strongly constrained
thermodynamically. Small amounts of water diffusing
into the inversion typically evaporate quickly and hence
do not become radiatively active until saturation is
achieved. In other words, the liquid water content in
real clouds is expected to vary much more sharply
across cloud top. We mimic this cloud-top discontinuity
in the smoke cloud by letting only smoke concentrations
greater than 0.5 be radiatively active. This was done in
experiment CONTR* and (as evidenced by the asterisk
in Fig. 18) it leads to much better correspondence be-
tween the numerical simulation and our simple analytic
model.

To close this theory, all that is needed is some way
of estimating . On dimensional grounds one mightszi

expect to scale inversely with the interfacial Rich-szi

ardson number of the flow. This expectation is supported
by results from the LES. In Fig. 19 the value of /ziszi

is plotted versus the Richardson number for experiments
involving both smoke clouds and clear convective
boundary layers (the latter cases were described in
SU99). The experiments suggest that is a decreasingszi

function of Ri. If we want to relate the cloud-top fluc-
tuations to the inverse of the Richardson number, the
following curve fit (shown as the solid line in Fig. 19)
is reasonable:

; 0.6 .21s /z Rz i ii
(B.9)
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