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Abstract

The hypothesis that rainfall might be a case of self-organized critical dynamics is tested using
long-term data sets from weather stations around the world. It is found that the distribution of
droughts in semi-arid regions obeys indeed a clear-cut power law. The statistics for rain intensity,
on the other hand, exhibits two distinct scaling regimes. (©)1998 Elsevier Science B.V. All rights
reserved

1. Introduction

The concept of self-organized criticality (SOC) introduced by Bak et al. [ 1-3] of-
fers an intriguing explanation for the dynamical and morphological characteristics of
various complex dissipative systems. Due to simple internal regulatory mechanisms,
such a system inevitably evolves into a statistically steady state which is sustained by
spatiotemporal fluctuations (“avalanches”) at all scales. Thus, the theory accounts, in
particular, for the emergence of 1/f* noise (f being a frequency, o>1) observed in
all kinds of phenomena, ranging from the seemingly erratic behaviour of electronic
devices to volcano activities [4] and earthquakes [5-9] originating from the move-
ment of tectonic plates. As a most important consequence, SOC theory may pave the
way towards an improved management (early warning, protection, adaptation, etc.)
of natural disasters triggered by geophysical forces. But note that the major sources
of catastrophes inflicted upon humankind are weather events and climate variability
[10]. It is therefore tempting to extend the SOC approach to the analysis of mete-
orological phenomena like droughts, inundations, storms surges and so on [l11]. A
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recent analysis [12] of historical records of the Southern Pacific sea surface tempera-
ture has pointed out that the El Nino may constitute an example of SOC in climate
phenomena.

The extreme complexity of atmospheric processes results from the coupling of sev-
eral non-linear processes having completely different temporal and spatial characteristic
scales. An every-day event like rainfall combines, for instance, the O(10~° m) droplet
condensation effect with the O(10°m) planetary transfer of air masses and moisture
[13]. Despite the richness of individual events, it has been more and more recognized
that several properties of the statistical distributions of pertinent meteorological fields
(temperature, air humidity, etc.) are independent of the particular (time or length) scale
at which they are observed [11,14-16], i.e., they obey hyperbolic distributions. We re-
call that the existence of such scale-invariant hyperbolic distributions are necessary
reflections of SOC behaviour, and that the reproduction of these features has become
a guideline for testing the different models which aim to describe weather phenomena
through SOC theory.

In this work, we assume a lower-key attitude towards that subject and simply ask
whether one can find sufficient evidence for SOC behaviour in long-term climate data
sets of precipitation. Microscopic theories of drop growth processes and precipitation
share several similarities with the most common SOC models, including the presence
of water pumping and release phases with an avalanche character. Thus, we concentrate
our attention on the analysis of rainfall regimes [16], exploring the properties of the
distributions in regions with very different climatic conditions. With this choice we can
discuss whether the SOC assumption for precipitation events would be relevant for any
region of the world and to what extent it is affected by the local differences of climate
conditions.

Our focus is further motivated by the prospect of anthropogenic global warming
in the next century, as corroborated by general circulation models (GCM) for the
coupled ocean—atmosphere system [17]: As a matter of fact, the amount and distri-
bution of rain will be the crucial environmental factor in this changing world. Semi-
arid regions (<700 mm annual precipitation) like Northeast Brazil, North Africa or
Rajasthan (India) already approach the brink of sustainability because of declining
fresh water availability. A precautionary development policy based on risk analy-
sis would be significantly facilitated by a succinct statistical description of present
and future rainfall behaviour. Our results show that such a description might be
achieved.

The rest of the paper is organized as follows: In Section 2 we present the ba-
sic ideas of SOC and discuss the relevance of this theory for precipitation phenom-
ena. In Section 3 we describe how the analysis of the data is performed. Section
4 presents the main results and indicates how they support our working hypothe-
sis. In Section 5 we summarize the main conclusions of the paper. In the appendix
we show that the effect of evaporation changes the character of a unimodal hyper-
bolic rain distribution on the cloud base into a bimodal distribution at the earth
surface.
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2. SOC and precipitation events

The SOC concept has been developed to characterize “discharge phenomena” in very
different physical systems, e.g., sand pile avalanches or earthquakes. The laws of evo-
lution for such systems are usually very simple and mimic two common properties:
(1) the ability of storing some amount of energy (or mass) for some time and (ii) the
sudden energy release if a certain threshold is reached. These features lead to the fol-
lowing dynamical behaviour: The system usually organizes itself towards a state which
is unstable in its immediate vicinity. When this neighborhood is reached the system
releases energy pushing itself away from that locally unstable state. Such avalanches,
which may be characterized by the energy they release, close a cycle which is then
repeated over and over again. Occurrence of SOC is related to this kind of statistical
steady-state behaviour. It is characterized by hyperbolic distributions of several quan-
tities: that of the relative frequency N of avalanches releasing energy (or mass) E,
ie.,

N(E)~1/E*, (2.1)
the relative frequency of avalanches which last a certain time At

N(At)~1/4t° (2.2)
and the relative frequency of time lags 7 between single avalanche events

N(T)~1/T7. (2.3)

These distribution laws reflect the absence of any characteristic length or time scale
for that particular dynamics, which is referred to as the celebrated scale invariance of
SOC systems.

In this paper we investigate the evidence for SOC behaviour in long-term data sets
of precipitation. In particular, we search for hyperbolic distributions of extreme events.
Though not entirely conclusive, the presence of such a scaling signature will strengthen
the link between rainfall dynamics and SOC. The existence of such a link can be
inferred also from theoretical arguments, both of global and microphysical type: The
overall balance of water content in the atmosphere is governed by evaporation from
subtropical oceans and transport within the atmosphere. After a certain residence time in
the atmosphere, this water is released in an avalanche-like event. The specific dynamics
of such an event is largely controlled by the physics of drop growth and subsequent
precipitation [18]. After nucleation, cloud droplets grow by diffusion of water vapour
to it surpassing the evaporation due to air flow around the droplets. Generally, clouds
exhibit a spectrum of different-sized droplets which broadens toward larger droplets
as a result of turbulent motion leading to collision and coalescence. The different
settling rates of the different-sized droplets cause the collisions to occur. Eventually,
cloud droplets are large enough for gravitation to overcome friction and updraft of air
masses. This picture is quite similar to the one employed in avalanche models quoted
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above, and it is corroborated by recent water avalanche experiments [19,20]. Related
arguments have been used to explain the formation of droplets around condensation
nuclei and to establish the link between SOC and air humidity fluctuations [21].

3. Analysis of data sets

In order to attain a comprehensive picture, we have analysed long-term daily rain
records of weather stations around the world with a special emphasis on the semi-arid
regions. These data sets were scrutinized with respect to three different, climatologically
relevant phenomena associated with precipitation: (i) droughts, (ii) rain duration, and
(ii1) rain intensity.

These three kinds of events can be brought into the context of SOC theory according
to the three different statistical laws quoted in the previous section. The first step is the
identification of rain events with fluctuations of the water content in the atmosphere,
hence with avalanches. Then we characterize droughts by the intervals / without pre-
cipitation. Within the SOC picture, these intervals are just the waiting times between
readjusting outbursts of the climate system (2.3). Rain duration R is the life time of
such outbursts (2.2) and rain intensity, defined as the total daily amount r of rain
collected by a given station, corresponds to the mass flow sliding downhill (2.1) in a
sand pile experiment [ 1-3]. A precise identification of the liquid actually released in a
single pouring event requires the determination of its spatial and temporal limits. This
can be achieved, for instance, by radar sensing [22], but these data sets are generally
rather small and sporadic. By way of contrast, weather station records offer large-scale,
coherent and systematic informations more suitable for climate characterization, which
lead us to a consistent statistical description of the phenomena (i)—(iii). In each case,
we determine the number of events as a function of a characteristic parameter (interval
length in days or daily rain quantity in mm).

Distributions n(x) of events with property x that behave like n(x)~x"" are most
conveniently analysed with the help of the integrated (cumulative) distribution function

—T

M

N(x)= / n(x)dx, (3.1)

X

where M is the maximal event encountered in the data set. By using the integrated
description instead of histograms we avoid data fluctuations in the low (high) value
regime induced by the choice of logarithmic (linear) bins. If M — oo (and if 7> 1) then
N(x)~x~%1. Our rainfall data are generally confined to the ranges 1</<100 days
and 0.1 mm <r<100mm, while significantly higher values are observed only in ex-
treme situations for semi-arid and monsoon regions, respectively. Therefore, we cannot
replace M by oo in Eq. (3.1) and obtain

_ 1 X 7—1
=N~ — [1 - (1\7) } . (3.2)
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Thus, the log—log plot of N(x) vs. x definitely departs from a straight line as x
approaches M.

4. Results

We have scrutinized the precipitation records of over 50 weather stations, located in
Northeast Brazil, India, Europe and Australia. The largest and the shortest time series
comprise 138 and 11 years of daily entries, respectively; the average observation time
is approximately 70 years. The number of recorded rain events per station generally
ranges from 10° to 10%.

In Fig. 1 we depict a typical result for the drought distribution function N (/) in
semi-arid regions (Terezina station, Northeast Brazil). The data exhibit an almost per-
fect scaling behaviour as described by Eq. (3.2), with t=1.88! In general, for other
stations in the semi-arid regions we have found 7 ~ 1.5-2.5. Rather than being regarded
as an independent property of the complementary set of wet days, this result should
be taken as a strong evidence that SOC dynamics is lurking behind the precipitation
phenomena in these parts of the world. Indeed, we recall that, within the SOC frame-
work, the waiting time statistics should have the same character as the one for the
size distribution of avalanches. This main finding of our study has a most important
practical consequence: The probability for extreme droughts decays in a hyperbolic
way only; so, under a long-term perspective, disasters are unavoidable! On the other
hand, the concise form of the observed drought statistics facilitates all types of risk
analyses that take into account water availability.

A somewhat more intricate drought pattern is found for the humid regions through-
out the temperate zones of the globe: N(/) exhibits a cross-over behaviour, which is
characterized by a scaling exponent 7; for small intervals, and a larger scaling expo-
nent 7, ~3-5 for large intervals. Fig. 2 illustrates this general observation with data
from Potsdam, where 7, =5.9. Note, however, that the tail of the drought distribution
for stations in the temperate zones can also be well fitted with exponential law. The
large value of the exponent 1, and the relative small value of the largest interval with-
out rain makes it difficult to make a definite statement about the statistics of large
drought events in the temperate zones. In any case, the qualitative difference between
the semi-arid regions, where severe droughts are more a rule than an exception, and the
more benevolent temperate zones is clearly and quantitatively reflected by the distinct
statistics. As a matter of fact, the bimodal character of N(/) for the temperate regime
guarantees a much smaller probability of drought disasters.

The results for the rain duration statistics N(R), on the other hand, exhibit an almost
ubiquitous bimodal behaviour, similar to that of the drought distribution in the temperate
zones. The generic values of the exponents 7; and 7, do not vary much between
the semi-arid and the temperate humid areas. The distribution tails can also be fitted
with exponential functions, but as the largest magnitude of the events (the number of
contiguous rainy days) is still smaller than in the former case, it is impossible to decide
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Fig. 1. Log-log plot of the distribution function N (/) for continous intervals / without precipitation for the
Terezina record (7= 1.88). Here and in Figs. 2—4 diamonds symbolize the empirical data, while the broken
lines represent unimodal and bimodal fits, respectively.
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Fig. 2. Log-log plot of the distribution function N (/) for continous intervals / without precipitation for the

Potsdam record (t; = 1.82,7, =5.89).

for the correct statistics. Only the records for several stations at the Indian west coast
(monsoon region) represent a remarkable exception to that rule: rain durations of up
to 100 contiguous days with a clear-cut unimodal scaling behaviour can be observed

(see Fig. 3).

Finally, the distribution of rain intensities for the stations investigated turns out to
be altogether of the bimodal scaling type. Fig. 4 presents typical results for N(r) as
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Fig. 3. Log—log plot of the distribution function N(/) for rain duration /
almost perfect unimodal behavior with 7=1.58.
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the Karwar record. It shows

Fig. 4. Log-log plot of the distribution function N(r) for daily rain amount r for the Paris station

(11 =1.1,1, =3.98).

exemplified by the records of Paris (France). Seasonal decomposition of the data does
not change the basic character of the statistics, although the exponents 7, and 7, for a
single-station pass through an annual cycle. The hyperbolic fitting of experimental data
for both small and large rain amounts is indeed quite well. However, in opposition to
the former two cases, fitting the data with exponential functions provides strong evi-
dences to exclude exponential behavior for the distribution tails, both in the temperate

as in the semi-arid regions.



564 R.F.S. Andrade et al.| Physica A 254 (1998) 557-568

The specific interplay between so-called large-scale and convective precipitation (i.e.
formation of precipitation in slowly upwelling air masses of wide horizontal extent and
in fast uprising convective elements, respectively) at a given location may play a key
role for the determination of the strongly varying ratio ¢ =7,/7;. For the stations in
Europe north of the Alps, where, on annual average, large-scale precipitation dominates,
we find that & fluctuates around a value of 4. In the tropical and subtropical regions
like Brazil, India and Australia, where convective precipitation abounds, the scaling
ratio is reduced to the range 2—3. Results from seasonally adjusted statistics for those
European locations, where convective precipitation rules during the summer, fit quite
well into this picture.

5. Conclusions

We have investigated long time series of precipitation records and succeeded in find-
ing evidence for hyperbolic distributions of events related to climatic disasters: droughts
and inundations. This supports the view that atmospheric dynamics is governed, at least
in part, by self-organized criticality.

Our study of rain intensity distributions is in line with former identifications of
power-law behaviour in single precipitation events [16,23], and is also related to recent
work of Fraedrich and Larnder [15], which detects two different scaling domains in
the rainfall spectrum.

Our systematic investigation of drought occurrence (intervals of rainless days) has
shown that the distributions of such events in semi-arid and humid regions have rather
different statistics, which reflect the catastrophic impacts that such events may have in
the former regions.

Both the single-exponent distribution for droughts in semi-arid regions and the more
common bimodal distributions for the other event types are consistent with the SOC
framework, which demands only asymptotic hyperbolic distributions. The multiple-
scaling character of atmospheric fields has generally been explained using the large-to-
small-scales cascade theory of multiplicative random processes [24,25]. This approach
is based on a physical mechanism well known from turbulence theory [26], namely the
transport of energy from large-to-small eddies. The SOC approach, by way of contrast,
considers the microscale dynamics of drops within clouds as the basis for large-scale
avalanche effects. A full theory needs to be developed along these lines in the coming
years.

Note that conventional SOC systems are generally driven by local input—output mech-
anisms, which do not account for the non-local character (e.g. moisture transport in
the atmosphere) of rainfall phenomena. So the SOC-characteristic strong correlation
between N(r)— and N(I)—I distributions does not necessarily exist here. Our results
show, indeed, that for the temperate regions both distributions exhibit a similar (bi-
modal) character, while in the drought-prone regions, where the non-local character
of the precipitation is more pronounced, unimodal N(r)—r behaviour contrasts with
bimodal N(/)-/ distributions.
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Several different local and non-local physical phenomena are summed up to yield
the final distribution of rain events. It is hardly difficult to take into account all of
the influences. The evaporation of water of the drops during their fall to the ground
is one of such phenomena. It constitutes an important contribution for decreasing the
magnitude of the rain events, specially in the semi-arid regions, where during drought
periods several rain events do not even reach the ground. In order to single out its
effect, we have assumed a pure power-law distribution of rain events at the cloud base
and evaluated its final form on the ground due to the effect of evaporation. The results
shown in the appendix indicate that, for values of all relevant parameters, the effect
leads to different distributions on the ground.

The present study has shown that rainfall records throughout the world can be cast
into a unified statistical description corresponding to various SOC patterns. Especially,
the unimodal drought distribution identified for semi-arid regions may have interesting
practical consequences: A “drought generator” as needed in risk analyses and computer-
aided management plans for such areas could be constructed, in principle, from the
single-scaling exponent 7.

An interesting perspective of the present study is the combination of GCM outputs
and the SOC approach. Therefore, it is necessary to set-up a relation among local
statistics and areal statistics. As the likelihood of rainfall changes when considering
a single location or an area, also the scaling exponents of rainfall distributions will
presumably alter. This “upscaling” (from the local scale to the scale of a GCM region)
might provide us with an extrapolation of the statistical drought simulation into the
future.
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Appendix A. Drop-evaporation model

Here we demonstrate how drop-evaporation effects may generate, within the SOC
picture, bimodal rain avalanche distributions in a straightforward manner.

As mentioned above, we do not intend here to delve deeply into the intricate details
of rainfall dynamics. Nevertheless, we will discuss an elementary geophysical effect that
may provide an alternative explanation of the bimodal distribution of rain amplitudes.
The basic assumption is as follows: Within the clouds, the growth of cloud and rain
droplets ensures almost pure SOC distribution of rain avalanches. This distribution
continuously fades away, however, due to partial or complete evaporation of the rain
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drops on their way down to earth. As a consequence, the crossover to a second scaling
regime is observed in the ground records.

Our analysis considers the evaporation of spherical water drops of radius a. The
process is governed by the differential equation [18]

da  M,D, {ed e,

— = <27 Al
adt pr Td Ta:| fv, ( )

where M,, denotes the molecular weight of water, p, is the water density, D, is
the diffusivity of water vapour in the air, and R the gas constant. ¢;, T, and e,,
T, symbolize water vapour pressure and temperature at the drop surface and in air,
respectively. Finally, fv is the ventilation coefficient for vapour diffusion.

The size spectrum of rain drops, s(a,i) describes the relative abundance of drops with
radius a as a function of the precipitation intensity i. Various functional forms have
been proposed in the literature for s(a;i). All of them agree, however, on certain main
features relevant for our purposes: s naturally decays with large a and the spectrum
broadens with increasing intensity i. These traits are generically represented by the
Lorentzian distribution

A
(@ — a2 + b
Here A is a normalization constant and » and f are parameters spanning the family of
spectra. The crucial entity is a,, which depends on the rain intensity i as follows:

s(a;i)= (A2)

am(i)=0.1 1og(0%1> . (A.3)

Evaporation takes place during the falling time ¢, of the drop under consideration.
Since the instantaneous falling velocity v(¢) is proportional to the drop radius [18], we
obtain a simple relation between the falling height z, and the life time ¢,

ty

zp~ / a(t)dt . (A4)
0

Using Eqgs. (A.1) and (A.4), the final radius a, is calculated from the initial radius
ap and release height z,. We can also compute the critical radius ¢* of drops that make
it to the earth’s surface just before complete annihilation. a* depends on the position of
the generating cloud, on the air temperature and on the water vapour pressure. If m(a)
represents the mass of a single drop of radius a, the total amount of water released by
a cloud and the amount that reaches the ground are, respectively, given by

oo

dn:/mMMmmm, (AS)
0

o0

re(i)= /m(af)s(a;i) da. (A.6)

a*
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Fig. 5. Illustration how evaporation on the falling rain drops affects the distribuition N(r). A pure SOC
statistics with 7=3 is assumed to describe correctly the distribution at the cloud base (Curve 1) The other
curves have been obtained by “aging” this distribution on the basis of formula (A.7). Curves 2—4 are
generated with ¢* =02 and f=1.5, 2 and 3, respectively. Curves 5 and 6 are obtained with f=2 and
a* =0.25 and 3, respectively. b=is kept fixed at value 0.6.

For the sake of simplicity let us assume homogeneous raining conditions. With the
help of Eqgs. (A.5) and (A.6) it is then quite easy to establish an explicit relation
between the distribution n. of precipitation events at the cloud base and the ground
distribution ny

ne(re)=nc(r(rs)) . (A7)

Fig. 5 shows how, using Eq. (A.7), an initially pure power-law distribution n.(r) ~
r~" fades away with different choices of the spectral parameters controlling Eq. (A.2).
We clearly find that due to a more effective evaporation of small drops and a broadening
of the size spectrum in high-intensity rainfalls the unimodal SOC statistics in the sky is
converted to a bimodal scaling behaviour at the earth’s surface. We also observe that the
size of the cross-over effect (expressed by the ratio ¢) and its location 7 strongly depend
on s(a,i) and a*. As the latter quantities, in turn, depend on the climate prevailing in a
given region, our approach actually may provide a geographically explicit explanation
of the empirical patterns. Finally, we point that if a Heaviside-type drop spectrum is
employed instead of Eq. (A.2), it can be shown analytically that the ground distribution
n(r) will behave like »=2%/° for very small r and like »—° for large 7.
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