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Abstract

Palaeoclimatic records and climate models indicate a decline of vegetation cover in North Africa during
the mid- to late Holocene due to a change in orbital forcing. As atmosphere-vegetation feedbacks are par-
ticularly important in North Africa, the region represents a part of the climate system where sudden and
non-linear responses to small changes in external conditions or even multiple equilibria may occur. Us-
ing the North African atmosphere-vegetation system as an example we assess different methods for the
detection of multiple equilibria and the analysis of abrupt transitions in climate models. To this end, we
couple a global atmosphere model of intermediate complexity with a simple dynamic vegetation model
(PlanetSimulator-VECODE) and perform transient and stationary simulations with different orbital forc-
ings.

We show that due to spatial complexity and temporal variability any of the assessed methods can yield
misleading or inconclusive results. In particular, a detection of bistability with a stability diagram can fail
because of spatial heterogeneity and spatial interactions, and the frequency distribution of a system’s state,
the existence of a hysteresis and the dependency on initial conditions are affected by atmospheric vari-
ability and inherent non-linearities. Mechanistic understanding is therefore essential when such diagnostic
methods are applied. We also analyse the implications of climate variability for the abruptness of a vegeta-
tion decline. We find that a vegetation collapse can happen at different locations at different times. These
collapses are possible despite large and uncorrelated climate variability. Because of the non-linear relation
between vegetation dynamics and precipitation the green state is initially stabilised by the high variability.
When precipitation falls below a critical threshold, the desert state is stabilised as variability is then also
decreased.

In addition, we assess the applicability of so-called Early Warning Signals (EWS) to analyse abrupt
transitions. EWS, such as rising variance and autocorrelation, can be indicators of a decrease in stability
of a current equilibrium state. However, EWS are mostly applied in one-dimensional or idealised systems
of predefined spatial extent. In a more general context like a complex climate system model, the critical
subsystem that exhibits a loss in stability (hotspot) and the critical mode of the transition may be unknown.
We document this problem with a simple stochastic model of atmosphere-vegetation interaction where EWS
at individual grid cells are not always detectable before a vegetation collapse as the local loss in stability can
be small. However, we suggest that EWS can be applied as a diagnostic tool to find the hotspot of a sudden
transition and to distinguish this hotspot from regions experiencing an induced tipping. For this purpose we
present a scheme which identifies a hotspot as a certain combination of grid cells which maximise an EWS.
In a second step, we apply the method to PlanetSimulator-VECODE by using a surrogate stochastic toy
model. For each of two vegetation collapses we find a hotspot of one particular grid cell. We demonstrate
with additional experiments that the detected hotspots are indeed a particularly sensitive region in the model
and give a physical explanation for these results. The method can thus provide information on the causality
of sudden transitions and may help to improve the knowledge on the sensitivity of climate models and other

systems.
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Chapter 1

Introduction

1.1 Termination of the African Humid Period

The Sahara is today’s largest desert, receiving only a few mm of annual rainfall in vast parts
(Rudolf and Schneider, 2005). To its south, the Sahel forms the transition region to the densely
vegetated tropics. Life in the Sahel crucially depends on the precipitation mainly provided by the
West African monsoon (WAM). Palaeo records show that North Africa experienced several peri-
ods of moist and green conditions during the last 120 000 years (Tjallingii et al., 2008). The last
of these periods, the African Humid Period (AHP), started around 14 k (kiloyears before present)
at the end of the last ice age and was at its climax during the mid-Holocene. Palaeohydrological
records provide vast evidence that today’s Sahara and Sahel region was covered with lakes and
wetlands, connected through a vast network of aquifers (Lézine et al., 2011a). Pollen records
document that vegetation established under these humid conditions (Jolly et al., 1998a,b; Prentice
et al., 2000), forming the so-called Green Sahara. Remnants of freshwater animals, mammals and
human civilisation have been identified from that period (Petit-Maire and Riser, 1981).

Climate modelling studies have revealed the change in earth’s orbital parameters as the crucial
forcing to explain the existence of the Green Sahara. In the early to mid-Holocene, obliquity and
precession lead to a larger summer insolation on the northern hemisphere compared to present-
day, thus enhancing the WAM (Kutzbach, 1981) and providing energy for convection. In addition,
the state of the rest of the climate system impacts North African climate, in particular the ocean’s
meridional overturning circulation (MOC) (Claussen et al., 1999; Tjallingii et al., 2008), the Indian
monsoon (Marzin and Braconnot, 2009) and the ice sheets in higher latitudes which lag the orbital
forcing by thousands of years (Claussen et al., 1999).

Apart from such external conditions, local feedbacks involving terrestrial vegetation and the
ocean are crucial to explain the large climate anomaly in the mid-Holocene (Ganopolski et al.,
1998; Hoelzmann et al., 1998; Braconnot et al., 1999, 2007b). While in an idealised setting the
higher sea surface temperature (SST) would reduce the pressure difference between land and
sea and thus the monsoon circulation, local characteristics of the spatial SST pattern and sea-
sonality (Kutzbach and Liu, 1997; Liu et al., 1999, 2003; Braconnot et al., 2007b), as well as
feedbacks involving evaporative cooling (Liu et al., 2003, 2004) and Ekman transport (Liu et al.,
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2004; Braconnot et al., 2007b), lead to a positive atmosphere-ocean feedback. Regarding terres-
trial vegetation cover, its low albedo as compared to the desert soil can increase the net-radiative
balance at the surface and thus enhance convection as realised already by Otterman (1974) and
Charney (1975). Charney (1975) and Charney et al. (1975) hypothesised that this effect could
imply a positive atmosphere-vegetation feedback in the Sahara and Sahel region and also explain
precipitation variability in the Sahel. However, changes in cloud cover and, most importantly,
evapotranspiration (ET) need to be taken into account (Charney et al., 1977; Claussen, 1997), as
water availability is determined by moisture convergence rather than precipitation alone. Conse-
quently, changes in atmospheric circulation features such as the North African jets also need to be
considered (Patricola and Cook, 2007, 2008).

Although some climate models imply a negative effect of vegetation on ET (Notaro et al., 2008;
Wang and Kutzbach, 2008), the atmosphere-vegetation feedback in the Sahara and Sahel is most
probably positive on timescales beyond decades due to vegetation and soil dynamics (Claussen,
2009). The magnitude of the feedback is directly related to the question of rapid transitions and
multiple steady states of Saharan vegetation cover (see Section 1.2). Adopting a simple dynamical
systems framework, the non-linearity introduced by a strong feedback implies a large sensitivity of
a deterministic equilibrium state to changes in external conditions (Fig. 1.1b). In the extreme case,
multiple stable states can emerge and the system can collapse when the external forcing passes a
bifurcation point (Fig. 1.1c). This collapse would be irreversible as opposed to a simple threshold-
behaviour where climate can be interpreted as an external forcing of vegetation dynamics.

Therefore, the understanding of physical processes and the knowledge on the phenomenology
of the transition imply each other to some extent. Unfortunately, both aspects are still not well-
known in case of the termination of the AHP as model results differ and reconstructions are sparse
and uncertain. While earlier studies with models of different complexity revealed a multistability
when choosing different initial conditions for certain orbital forcings (Claussen, 1994, 1997, 1998;
Brovkin et al., 1998; Wang and Eltahir, 2000; Zeng and Neelin, 2000; Irizarry-Ortiz et al., 2003)
and a rapid decline of vegetation cover in the mid-Holocene (Claussen et al., 1999), other models
rather show a gradual decline (Schurgers et al., 2006; Renssen et al., 2003, 2006) or a collapse
due to an ecological threshold (Liu et al., 2006, 2007; Lézine et al., 2011b). Current climate
models indicate a rather weak atmosphere-vegetation feedback and a gradual vegetation decline,
but also fail to reproduce the full extent of the Green Sahara as seen in reconstructions (Braconnot
et al., 2007a; Claussen, 2009). Palaeoproxies do not reveal a precise spatio-temporal pattern of
the end of the AHP due to their scarcity and dating uncertainties (Weldeab et al., 2011) and the
low temporal resolution (Gasse, 2002). Although the asynchrony of the transition seems to reflect
the local hydrological properties of different sites (Lézine, 2009), there is evidence that the AHP
ended earlier and more gradually in the eastern Sahara as compared to the west (Kroepelin et al.,
2008; Lézine et al., 2011a), where deMenocal et al. (2000) found an abrupt increase in terrigenous
eolian sediment material around 5.5 k in a marine sediment core. However, model results by Hély
et al. (2009) and Lézine et al. (2011a) indicate that an atmosphere-vegetation feedback is not
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necessarily required to obtain a later and more abrupt transition in the western Sahara.

Apart from the strength of the atmosphere-vegetation feedback, the role of internal climate
variability must also be considered in its spectrum and amplitude. Fluctuations not only affect the
timing but also the abruptness of a transition on decadal to centennial timescales and can alter the
steady states of a system in non-intuitive ways. In particular, Liu et al. (2006, 2007) demonstrate
that a rapid transition in a weak-feedback case with threshold-behaviour is still possible when
large red noise is imposed. The analysis of model results concerning multistability and abrupt

trancitions therefore reanires awarenecs of the limitatione of the annlied method< and caoncente

System state
System state
System state

External conditions External conditions External conditions

Figure 1.1: Sketch of the dependency of a system’s equilibrium state on external conditions. (a) almost
linear response due to small feedbacks, (b) non-linear tipping in a small parameter regime, (c) large
feedbacks lead to bistability with bifurcations points F] and F;. Solid blue lines: stable equilibria;
dashed blue line: unstable equilibrium. Red arrows indicate the flow towards equilibrium when starting
from a non-equilibrium state. This figure is a modification of Fig. 1 in Schefter et al. (2001).

1.2 Tipping Points and their analysis via slowing down

Climate feedbacks in North Africa provide one example of potentially strong non-linearities in the
climate system, which can generate a large sensitivity to changes in a specific forcing (external
conditions in Fig. 1.1; orbital forcing in case of the Green Sahara). The phenomenon that small
changes in external conditions can lead to large changes in equilibrium climate when a certain
threshold is reached is often referred to as a Tipping Point (Lenton, 2011). A climate change
is then called to be abrupt (Alley et al., 2003), as it happens much faster than the change in
forcing (compared to the system’s sensitivity at previous parameter values). In this thesis, we
adopt Lenton’s rather phenomenological and qualitative definition. The term Tipping Point thus
does not imply anything with regard to the mechanism that causes this sudden and large sensitivity
to external conditions except that it is caused by internal feedbacks which tend to destabilise a
subsystem of the global climate system.

As mentioned in Sect. 1.1 very strong feedbacks can lead to the emergence of several stable
equilibria for one and the same parameter value (Fig. 1.1c). We refer to such a case as multista-

bility, or in the special case of two stable equilibria, bistability. In this deterministic context, an
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equilibrium represents a stationary solution of the system’s dynamic equations. When an external
parameter is varied, it can happen that the deterministic solutions show a qualitative change at a
threshold value where different branches of solutions touch, a phenomenon known as bifurcation
(Guckenheimer and Holmes, 1983; Simonnet et al., 2009). For example, the number and/or sta-
bility (stable or unstable) of solutions suddenly changes at this bifurcation point. In practice, if
a system is in some stable equilibrium and a parameter is then slowly varied across a bifurcation
point (as slowly as necessary to keep the state close to equilibrium), the equilibrium can disappear
and the system will approach another stable equilibrium far from the old state. Such an event is
classified as a catastrophic bifurcation (Thompson et al., 1994; Thompson and Sieber, 2011b) and
is a special case of a Tipping Point. Points F; and F; in Figs. 1.1 ¢ and 1.2 provide an example.

Based on knowledge on particular feedbacks in specific regions of the earth, it can be speculated
if and where subsystems with a Tipping Point exist. For example, Lenton et al. (2008) compiled
a list of such potential Tipping Elements in the earth’s climate system (while it must be noted
that their definition of a Tipping Point is less specific than in Lenton (2011) and this thesis).
Prominent examples of such potential Tipping Elements besides the Green Sahara are the decline
of the MOC due to freshwater forcing, the loss of Arctic sea ice and the Greenland ice shield due
to warming, and the dieback of Amazon rainforest due to changes in hydrology (see Lenton et al.,
2008, and references therein). Although at present, a multistability in most of these potential
Tipping Elements seems unlikely and projections for the coming centuries with modern earth
system models show rather gradual changes (Meehl et al., 2007), an abrupt event could have
devastating impacts and in the case of a bifurcation the resulting climate change can even be
irreversible. The irreversibility leads to a static hysteresis when the external parameter is slowly
varied forwards and backwards (a static hysteresis is due to the bistability in the system, not only
due to the system’s delayed response to the forcing; Bordi et al., 2012; Fraedrich, 2012). From a
risk perspective, it is therefore politically advisable to study methods of stability analysis that can
be applied to complex climate models or even observations. Also scientifically, it is beneficial to
understand the effects of climate feedbacks and the susceptibility of the earth system to changes
in external forcing.

The theory of dynamical systems provides a useful framework for such analysis (Ghil, 2001).
In this framework, a climate model constitutes an (autonomous) evolution operator f(x) which
describes how the climate system’s state evolves from one time to another (Strogatz, 1994). In
case of a time-continuous system:

% = f(x) (1.1)

The state x can be thought of as a location in phase space, a space that is spanned by the system’s
variables. In this thesis, we follow the concept of dynamical systems theory and therefore refer
to the number of variables as a system’s dimension (i.e. dimension of phase space in contrast to
physical space). In particular, we make use of the concepts of bifurcation theory and linear stabil-
ity analysis. Although the global structure of a system may be very non-linear as in Fig. 1.1 b and
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Figure 1.2:  Sketch to illustrate
changes in stability when approach-
ing a bifurcation point. The bottom
plane represents Fig. 1.1c. Above,
a potential landscape represents the
stability structure at five different
conditions. Potential wells indicate
the basins of attraction, potential
minima represent stable equilibrium
points, the maxima unstable equilib-
ria. The (inertia-free) ball represents
the system’s state. When a change in
external conditions drives the system
towards Fj; on the lower branch, or
F, on the upper branch, the well of
the according equilibrium flattens
until it disappears and the ball rolls

Q‘-’ towards the remaining minimum.

.'Qo Also, a random perturbation can push

{\b\ the ball over the threshold before

o the bifurcation point. This figure is
Q’} a modification of Fig. 3 in Scheffer

et al. (2001).

System state

¢, the dynamics close to an equilibrium X that is stable or unstable in any particular direction (a
hyperbolic fixed point) can be approximated by a local linearisation. The topological equivalence
between the actual and the linearised flow close to the hyperbolic fixed point is addressed by the
Hartman-Grobman theorem (Guckenheimer and Holmes, 1983). Considering a one-dimensional
case and denoting the small anomaly y = x — Xxo, the linearisation reads

dx dy
—_— === ~A 1.2
it (v) = 4y (1.2)
and has the solution
Y = Yiniexp(At). (1.3)

The real part of the eigenvalue A describes the linear stability of xo. A negative real part in-
dicates a stable fixed point, a positive real part an unstable fixed point. In case of a stable fixed
point, 1/Re(A) is the timescale of the relaxation (the time until the initial perturbation yj,; has
decayed to a fraction of 1/e). The smaller the absolute value of A, the slower the relaxation. This
effect is often illustrated with the prototype example of a one-dimensional potential whose shape
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determines the system’s deterministic dynamics, and a ball (without inertia) which characterises
its state (Fraedrich, 1979; Scheffer et al., 2001). A stable equilibrium state is represented by a
local minimum in the potential. In physical terms, Re(A) then describes the restoring force due
to locally stabilising feedbacks. If by varying an external control parameter the potential becomes
flatter (Fig. 1.2), the linear relaxation time increases and Re(A) as determined by a linear stability
analysis increases in a time-continuous system. When a bifurcation point is approached where the
stable equilibrium is destroyed, Re(A) approaches 0 from below; in the case of maps (dynamical
systems discrete in time), A crosses the unit circle. A very common case is the saddle-node bifur-
cation, where a stable and unstable fixed point annihilate each other (points /] and F; in Figs. 1.1c¢
and 1.2). In this thesis, we refer to the increase of a system’s relaxation time due to a loss in stabil-
ity as slowing down. Slowing down has been studied in many contexts, e.g. theoretically (Wolff,
1990) and observationally (Collins and Teh, 1973) in physical systems, and in ecological systems
(Wissel, 1984). We do not use the popular term critical slowing down in this thesis because it
often also addresses the phenomenon of algebraic decay and universal scaling laws in systems
with second order phase transitions (Strogatz, 1994).

It must be noted that although a changing potential is a useful illustration, the existence of a
potential function that can be derived from the evolution operator is not a necessary condition for
slowing down (Guttal and Jayaprakash, 2008). Furthermore, the restriction to only one dimension
in Egs. (1.2) and (1.3) does not imply any loss in generality here, as we only discuss local bifur-
cations involving fixed points. In the case of higher dimensions, there will still be one eigenvalue
of the linearised Jacobian matrix approaching O as there is one particular direction in phase space
in which the bifurcation occurs. A suitable rotation of the coordinate system would then provide
a similar view as Fig. 1.2 (Simonnet et al., 2009). Likewise, it is sufficient to assume the variation
of only one external parameter (codimension-1 bifurcation) which can in fact be a fixed combi-
nation of several parameters with different physical meaning. Although there are bifurcations of
higher codimension where more than two regimes of solutions meet at a cusp point (Strogatz,
1994), it is only possible to hit this one point on purpose and can practically never happen by
chance in a climate model. The one-dimensionality in terms of phase space and parameter space
is thus not a conceptual limitation (although we will demonstrate in this thesis some of its practical
limitations).

More importantly, the climate system displays permanent and irregular fluctuations on various
timescales as opposed to the concept of a deterministic stable equilibrium introduced above. In this
thesis we restrict ourselves to systems where there is a clear separation of timescales (Berglund and
Gentz, 2006; Kuehn, 2011) between a slow subsystem (vegetation dynamics) and a fast subsystem
(the atmosphere, showing variability in precipitation). The slow subsystem (slow manifold in
terms of dynamical systems theory) is interpreted as a set of deterministic dynamic equations.
The fast subsystem, although potentially deterministic in its physical nature, is described by a
white noise approximation and thus introduces a stochastic term in the model equations. It is

important to note that our discussion of a model’s stability properties (e.g. multistability) refers
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to the slow deterministic part of the system. The inference of its properties from the noisy and
spatially complex model output is the leitmotif of this thesis.

As the underlying dynamics are rarely known in complex systems, it has been suggested to infer
stability changes of a current state from statistical indicators (Wiesenfeld, 1985a,b; Wiesenfeld and
McNamara, 1986; Kleinen et al., 2003; Held and Kleinen, 2004). If the system’s state is subject to
external random perturbations (usually assumed as white noise of constant noise level), a loss in
stability will lead to an increase in autocorrelation and (at least if the noise is additive) variance.
The problem can be formulated as a first-order autoregressive process (AR(1) process), which is
discrete in time. The only parameter of such a process, c, is identical to the autocorrelation at
lag 1. The state at each time step ¢ is the result of the linear decay of the previous time step ¢ — 1

plus a random perturbation 1) with noise level o:

y =y lexp(A Ar) +on'~L, (1.4)

Again, A is the eigenvalue of the time-continuous system. As 7 is a random variable so is
y. We address the corresponding process which generates the time series of y as Y. It can be
seen directly from Eq. (1.4) that exp(A At) (the eigenvalue of the time-discrete system) yields the
autocorrelation ¢ of the process Y. Furthermore, its variance can be shown to be

Var(Y) =

[ (1.5)

Hence, when A increases towards O due to a loss in stability, autocorrelation will tend to 1
and variance to infinity. In terms of Fig. 1.2, as the potential well becomes flatter, the return to
equilibrium becomes slower, and the state at a certain time will thus be more similar to the previous
state. In addition, the random perturbations can add up while the state is anomalously large or
low, and the system is less able to absorb the regular shocks by returning close to equilibrium in
between, which leads to larger excursions from the well’s minimum.

It 1s apparent that this feature already implies a limitation of concept: As soon as variance
increases considerably, two problems arise. First, the small noise approximation is not valid
anymore and the relation between local stability and the system’s fluctuations depends on higher
order terms of the potential’s shape. Second, in case of a multistability, the system can experience
an early escape when the noise pushes it over the threshold before the deterministic equilibrium
point (Scheffer et al., 2009; Ditlevsen and Johnsen, 2010). The timing of such a transition can then
only be assessed in probabilistic terms (e.g. Guttal and Jayaprakash, 2008; Thompson and Sieber,
2011a). However, in many practical cases, changes in statistical indicators like autocorrelation and
variance can be measured if the system is not too close to the bifurcation point and if the change
in external conditions is slow enough to allow a sufficiently precise sampling. Assuming that the
existence of a non-linear threshold is known, then it can be attempted to predict when a sudden
transition will occur (Thompson and Sieber, 2011a,b). For this reason, statistical indicators of
slowing down have been named Early Warning Signals (EWS; Dakos et al., 2008; Scheffer et al.,
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2009). It must be noted though that EWS are not related to the existence of a bifurcation as any
change in stability will be reflected in a change in EWS (if the underlying conceptual assumptions
are met).

The generality of the concept has recently inspired the search for slowing down and EWS in
various contexts such as ecological models (Carpenter and Brock, 2006; van Nes and Scheffer,
2007; Guttal and Jayaprakash, 2008; Contamin and Ellison, 2009); living populations in labora-
tories (Drake and Griffen, 2010; Veraart et al., 2012) and real ecosystems (Carpenter et al., 2011),
geological climate records (Dakos et al., 2008; Ditlevsen and Johnsen, 2010), and climate mod-
els (Kleinen et al., 2003; Held and Kleinen, 2004; Livina and Lenton, 2007; Lenton et al., 2009;
Lenton, 2011). In this thesis we add another field of application by using models of atmosphere-

vegetation interaction.

1.3 Thesis outline

The motivation of this thesis is to assess and develop methods to analyse the stability properties of
numerical models. The improved understanding of climate models may then contribute to reduce
their shortcomings or suggest new possible ways to interpret observational or proxy data.

Simulations of the end of the AHP provide test cases to reveal the performances of the ap-
plied methods. These simulations are not designed to reproduce the termination of the AHP
as realistically as possible. To perform the simulations we couple the PlanetSimulator (PlaSim;
Fraedrich et al., 2005a; Fraedrich, 2012), an atmosphere model of intermediate complexity, to the
dynamic vegetation model VECODE (Vegetation continuous description model; Brovkin et al.,
1997, 2002). In addition, we perform experiments with simple stochastic models. They follow
the tradition of simple conceptual models describing potentially bistable systems like the MOC
(Stommel, 1961), Snowball Earth (Budyko, 1969; Sellers, 1969; Fraedrich, 1978; North et al.,
1981; Pierrehumbert, 2010) or the atmosphere-vegetation system (Watson and Lovelock, 1983;
Brovkin et al., 1998).

Strategies to identify multiple solutions in numerical models often follow the logic of such sim-
ple one-dimensional deterministic models. In particular, we will address the choice of different
initial conditions (usually spatially idealised and extreme in their numerical values), the construc-
tion of a stability diagram in a plane, hysteresis experiments and the calculation of an empirical
probability density function (pdf). The latter strategy is usually applied in a stochastic but still
simplified framework.

In contrast to simple conceptual models, our atmosphere-vegetation model PlaSim-VECODE

possesses the following properties:
e [t accounts for spatial heterogeneity.

e [t features climate variability. The amplitude of this variability is large as compared to com-

mon Earth system models of intermediate complexity (EMICs), and it interacts with the non-
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linearities in the model.

e Atmosphere and vegetation can be coupled in a transient mode (where deviations from the

equilibrium vegetation cover can occur) and in an equilibrium asynchronous mode.

Chapter 2 of this thesis addresses this contrast between the concepts of multistability and the
strategies to detect multistabilities on one hand, and the properties of complex climate models on

the other hand. Specifically, we investigate the question:
(I) How do strategies for the detection of multistability perform in PlaSim-VECODE?

As discussed in Section 1.1, the large variability raises the question how the state of the model
depends on external conditions. We therefore also discuss:

(II) What conclusions do these strategies allow regarding the possibility of a rapid transition?

Chapter 2 has been published in Climate Dynamics '. The article is reproduced here with minor
extensions.

In similarity to methods for the detection of multiple states or regimes, indicators of slowing
down are basically used in a one-dimensional or spatially homogeneous framework. In contrast,
complex climate models involve a vast number of degrees of freedom and the system boundaries
of Tipping Elements are not known and hard to define. Again, we take the termination of the
AHP as an example case of a potential Tipping Element and study the applicability of EWS as a
diagnostic tool by asking:

(IIT) How can EWS be applied to infer information on the structural stability of PlaSim-VECODE?

Chapter 3 specifically addresses this question. In Section 3.2 we document the limitations of
EWS with regard to spatial complexity. In addition, we develop a stochastic algorithm to identify
the spatial origin (hotspot) of a rapid transition at a Tipping Point and apply this algorithm to
P1aSim-VECODE in Section 3.3. Sections 3.2 and 3.3 have been submitted to Earth System

2 3 as companion papers. Both articles are reproduced here with minor changes for

Dynamics
the sake of the thesis’ consistency. Chapter 4 provides a final summary and discussion of our
results as well as perspectives for future research on stability properties of climate models and the

termination of the AHP.
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Chapter 2

Implications of climate variability for the
detection of multiple equilibria and the
possibility of rapid transitions

2.1 Introduction

Various palaeo records have revealed that the Sahara was considerably greener and wetter during
the early Holocene (Prentice et al., 2000). The reason lies in the earth orbit’s precessional cycle
and the earth axis’ obliquity, which caused an increased summer insolation and thus more precip-
itation. In particular, the West African Monsoon was enhanced due to an increased land-ocean
temperature contrast. However, the extent of these changes can only be explained with positive
feedbacks in the climate system (Braconnot et al., 2007b). According to climate models an impor-
tant contribution is the atmosphere-vegetation feedback (Claussen, 2009). First, the high albedo
of bare soils in the Sahara with values up to 0.5 (Pinty et al., 2000) implies a low energy input to
the overlying atmosphere. Therefore, the negative atmospheric radiative budget has to be partly
compensated by diabatic warming caused by sinking motion. Convection and thus precipitation
are then suppressed and vegetation cannot establish, a feedback proposed by Charney (1975) for
the Sahel region. Second, vegetation can act to increase evapotranspiration at the expense of
drainage and runoff, thus moistening the atmosphere and allowing for more precipitation (Hales
et al., 2004). In addition, the contribution of the ocean-atmosphere feedback to the strength of the
Holocene West African Monsoon is also supposed to be positive (Liu et al., 2003, 2004).
Previous climate modelling studies suggested that the atmosphere-vegetation feedback in West-
ern Africa might allow for multiple equilibria of vegetation cover. This possibility can be illus-
trated with the conceptual model of Brovkin et al. (1998), which consists of two equilibrium
curves V*(P) and P*(V), where V stands for vegetation cover and P for precipitation in a specific
area (Fig. 2.1). While V*(P) is of non-linear shape due to ecological thresholds, P*(V) is gener-
ally approximated as linear because the impact of vegetation dynamics on precipitation is often
small compared to geographical influences (Zeng et al., 2002). The intersections of the two curves

determine the equilibrium points of the coupled system.

11
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Figure 2.1: Stability diagram after Brovkin et al. 1+
(1998) for k = 300. The blue lines represent
the equilibrium of annual precipitation, calcu-

0.8
lated from P*(V) = Py+ kV for different
P;. P is in mm/year. The green line repre-
sents the equilibrium vegetation cover fraction 0.6
V*(P) in VECODE for dry deserts (Eq. 2.1) with =
GDDy = 10000K. 0.4r
0.2
0
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To detect multiple equilibria of vegetation cover in models, mainly two strategies have been
applied so far: the choice of idealised initial conditions (such as complete forest and desert states),
and the construction of a stability diagram similar to Fig. 2.1 with various methods. By choos-
ing different initial conditions in ECHAM3-BIOME, Claussen (1994, 1997, 1998) has found two
stable states for the Western Sahara for present day orbital forcing. Similar results have been
obtained in models of intermediate complexity: Zeng and Neelin (2000) have identified multiple
solutions for present day, though only ”in a range of parameters at the margin of realistic esti-
mates” (Zeng and Neelin, 2000). Wang and Eltahir (2000) have found even three stable states at
present day, while Irizarry-Ortiz et al. (2003) have detected two stable states in the mid-Holocene.
Multiple states in vegetation cover have even been obtained in tropical South America by Oyama
and Nobre (2003) in an atmospheric general circulation model coupled to a potential vegetation
model.

By using the conceptual model as a graphical method of stability analysis, Brovkin et al. (1998)
have explained the existence of multiple equilibria in ECHAM3-BIOME by deriving parameters
for the two equilibrium curves from the model output. For ECBilt-Clio-VECODE, a stability
diagram also suggests the existence of multiple solutions (Renssen et al., 2003). Based on a
similar approach Levis et al. (1999) and Brovkin et al. (2003) have concluded that no multiple
equilibria are possible in boreal latitudes, despite a substantial positive feedback between near
surface temperature and forest cover.

The possibility of multiple states in vegetation cover suggests the occurrence of sudden transi-
tions between these states, which are either noise-induced (caused by an external disturbance), or
the result of a bifurcation at a critical parameter value (Tipping Point). Indeed, there are proxy
records showing a rapid decrease in West African vegetation at the end of the African Humid Pe-
riod, some thousand years before present (e.g. deMenocal et al., 2000; Salzmann and Hoelzmann,
2005). However, the timing and abruptness of this transition is site dependent. Other records in-
dicate a more gradual transition in more easterly locations (Kroepelin et al., 2008; Lézine, 2009),
and in tropical Africa (Vincens et al., 2010).

12
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The abruptness of this decline in vegetation cover also differs among climate models. While
Claussen et al. (1999) have obtained a transition that is much more rapid than the change in
orbital forcing, Renssen et al. (2003, 2006) as well as Schurgers et al. (2006) have only obtained
a gradual vegetation decline. Furthermore, multistability does not necessarily imply an abrupt
transition, or vice versa. The reason lies in the versatile effects of climate variability. Variability
can smooth the gradients in vegetation cover and even lead to steady states that are distinct from
any deterministic equilibrium (Zeng and Neelin, 2000; Zeng et al., 2002; d’Odorico et al., 2005).
Furthermore, variability can even lead to the establishment of multiple stable states, as has been
demonstrated with a coupled climate-ecosystem model by Liu (2010), and with a box model for
the MOC by Timmermann and Lohmann (2000). If it is sufficiently high, variability can obliterate
a system’s dependency on initial conditions (Wang, 2004) and remove hysteresis effects (Guttal
and Jayaprakash, 2007). In turn, variability itself can be influenced by the stability properties. For
example, a flickering between two regimes can cause low-frequency variations (Wang and Eltahir,
2000; Wang, 2004) and a bimodal probability distribution (Livina et al., 2010). The transition of a
system passing a deterministic Tipping Point may then be only gradual, in the sense that the state’s
probability density changes only gradually when the critical parameter is varied. In contrast,
rapid shifts are also possible in monostable systems: To explain the rapid vegetation decline in
the complex atmosphere-ocean-land model FOAM-LPJ, Liu et al. (2006) have suggested low-
frequency variations in precipitation, independent of vegetation dynamics. Due to the vegetation’s
non-linear dependency on soil moisture in arid regions, a rapid vegetation decline is then possible
even in case of an only weak atmosphere-vegetation feedback.

In this chapter we further investigate the implications of climate variability for the detection
of multiple equilibria and the possibility of rapid transitions. In Section 2.2 we describe the
models and our experiment setups. We then present transient simulations of the mid-Holocene
(Section 2.3), and apply and assess the methods of stability diagram analysis (Section 2.4.1) and
extreme initial conditions (Section 2.4.2). We explain our results with a simple stochastic model,
and in Section 2.5 apply it to document a new mechanism of vegetation collapse. Section 2.6
provides a short summary, a discussion of the implications for reality and other models, and our

basic conclusions.

2.2 Model and Experiment Setup

2.2.1 Atmosphere model

The Planet Simulator (PlaSim; Fraedrich et al., 2005a,b) is a global spectral climate model of
intermediate complexity, which is freely available as an open source code (http://www.mi.uni-
hamburg.de/Planet-Simul.216.0.html). We run PlaSim with T21 horizontal resolution and 10
vertical layers in all experiments presented in this thesis. As we only consider biogeophysical

land-atmosphere feedbacks, atmospheric CO; is set to 280 ppm in all experiments, and ocean sur-

13
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face temperatures and sea ice properties are prescribed from present day observations and are the

same in each year.

2.2.2 Vegetation model

Vegetation dynamics are represented by VECODE (Brovkin et al., 2002), a dynamic global veg-
etation model of reduced complexity. With a time step of 1 yr, the equilibrium cover fractions of
trees, grass and desert are calculated from precipitation, growing degree days above 0 °C (GDDy),
and temperature. For this transformation analytical functions are used whose parameters have
been tuned in order to match the observed relation between vegetation distribution and climate
(Brovkin et al., 1997). For dry deserts, the equilibrium vegetation fraction V* is calculated from

annual precipitation P via

0 if P< P
. 1 ifP>pP
v= 1.03 — 1.03 5 otherwise, @
I+a (—P_ d )
\ exp(y6)

with

P = Bexp(y5/2)
Py = Bexp(yd/2)+ SRIO)

V0.03a

Parameter values are « = 0.0011, 8 = 28,y = 1.7 x 1074, and 6 = GDDy — 900 (GDDy
is in Kelvin, but from hereon given as a unitless number like the other parameters). The second
condition corresponds to resetting d* to 0 once it becomes negative.

For exploring abrupt vegetation dynamics, we create a second, more sensitive model by setting
B = 140 and y = 1.7 x 107 (Fig. 2.2, dashed line). By doing so we accept that the modified
VECODE (VECODEm) is less realistic than the original one (VECODEo). As the strength of
the atmosphere-vegetation feedback and the existence of multiple steady states in reality remains
unclear (Liu et al., 2007; Claussen, 2009), we aim to also represent a case of a particularly large
feedback. To do this, we prefer the mentioned approach because the sensitivity of VECODE can
be changed much easier and more directly than the sensitivity of the atmosphere model.

2.2.3 Coupling procedure

VECODE is coupled to PlaSim in two ways, equilibrium mode (PlaSim-VECODE-eq) and tran-
sient mode (PlaSim-VECODE-tr). In equilibrium mode we run the atmosphere model for 10 yrs
(if not stated otherwise), and average the climate over this period. The corresponding equilibrium

14
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1 ‘ ‘ ‘ ‘ Figure 2.2: Equilibrium vegetation cover frac-
tion V*(P) for both VECODE versions. The
08l | blue line shows the spatial mean P*(V) response
of uncoupled PlaSim simulations with fixed uni-
0.6 form grass cover in the Sahara/Sahel region and
> ' present day orbital forcing.
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cover fractions then provide the boundary conditions in PlaSim for the next iteration step. This
approach is similar to previous studies like Claussen (1994) and Liu et al. (1999). In transient
mode, the cover fractions are updated each year (index t in Eq. 2.2) and approach their (annually
changing) equilibrium values on the basis of a linear relaxation law commonly used in simple dy-
namic vegetation models (e.g. Zeng and Neelin, 2000; Zeng et al., 2002; Wang, 2004; Liu et al.,
20006):

V*(Pt) _Vt

vitl =yl ¢ (2.2)

A similar equation is solved for tree cover. The cover fraction of grass is then determined as
the difference between vegetation and tree cover, so that there is coexistence but no competition
between trees and grass. In the dry regions of the Sahara/Sahel, vegetation almost completely con-
sists of grass so that vegetation dynamics can be described by Eq. (2.2) with 7 as the timescale of
grass. In the case of very dry conditions, a weighted average between the timescales of trees and
grass is used, which can produce a narrow and discontinuous peak in the pdf of vegetation cover
at low values. In the following, we ignore this artificial effect because it is irrelevant for the mech-
anisms we discuss in this thesis. In VECODE, 7 is calculated from net primary production (NPP),
which depends on annual precipitation, annual mean temperature and atmospheric CO,. These
dependencies are implemented as least squares fits of analytical curves to global observations of
NPP, living phytomass, and climate. Interannual changes in 7 are mostly due to the variability in
precipitation: In wet years, vegetation dynamics are faster than in dry years (Fig. 2.3).

In each coupling step, the land cover types have to be transformed to surface parameter val-
ues. In PlaSim, the four parameters that are substantially affected by vegetation are background
(snowfree) surface albedo, surface roughness length, bucket size and a parameter that controls the
fraction of soil water available for evaporation (Fraedrich et al., 2005b). For each land cover type
(trees, grass and desert) we assume constant parameter values (Table 2.1) that are combined by
weighting with the land cover fractions in a particular grid cell. Most parameter values for trees
and desert are from Fraedrich et al. (2005b), in the other cases we choose values in agreement

15



CHAPTER 2 IMPLICATIONS OF CLIMATE VARIABILITY

Figure 2.3: Timescale for shifts in grass frac-
tion in dependence on annual precipitation, at
a temperature of 27 °C, and 280 ppm CO, in
VECODE.
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Table 2.1: Attribution of surface parameter values to VECODE land cover types.
a) value from Fraedrich et al. (2005b), b) value from Claussen (1994).

background albedo roughness length [m] bucket size [m] fractional parameter

trees  0.12¢ 1.5° 0.5¢ 0.01¢
grass  0.16° 0.05° 0.2 0.1
desert 0.287/0.4 0.05% 0.14 0.49

to the typical biomes in Claussen (1994). In the case of roughness length we average the cor-
responding momentum transfer coefficients for neutral atmospheric stability at a height of 1000
m (Stull, 1988). In addition, this bulk vegetation roughness length is combined with orographic
roughness by taking the root of their summed squares (Claussen, 1994). Surface albedo, bucket
size and the fractional evaporation parameter are averaged linearly. For soil albedo Fraedrich
et al. (2005b) choose a value of 0.28 globally, which is the maximum surface albedo at snow- and
icefree land cells in the uncoupled PlaSim. However, as the large differences in surface albedo
between bare and vegetated ground in the Sahara/Sahel region are required to capture the local
vegetation-atmosphere feedback, we modify the desert background albedo in Northern Africa and
Arabia (Fig. 2.4). There, we assume a value of 0.4, while for the rest of the world we choose
0.28. This distinction, although very idealised, is motivated by observations (Pinty et al., 2000;
Hagemann, 2002).

2.2.4 Experiments

We perform different types of experiments (Table 2.2), whose details will be explained together
with the results in the following sections:

e Experiments in transient mode with continuously changing orbital parameters, corresponding
to the period from 8000 yrs before present (8 k) to 2000 yrs before present (2 k)
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Figure 2.4: Soil albedo in PlaSim-
VECODE. Green areas: 0.28 (default
value in PlaSim); brown areas: 0.4;
blue areas: ocean. The area enclosed
in red is referred to as Sahara/Sahel re-
gion in the text and used for Figs. 2.2,
2.5,2.9,2.11 and 2.14.

e Experiments starting from idealised initial conditions (forest and desert world) with fixed orbital

forcing, for both ways of coupling and both VECODE versions

e Uncoupled PlaSim experiments of several thousand years length, with fixed orbit year, and sur-
face parameters fixed to the mean conditions obtained from the transiently coupled experiments

(after a steady state was reached)

e Experiments with a simple stochastic model that is based on Egs. (2.1) and (2.2), but describes
atmospheric variability as a random process 17 with noise level op. In analogy to the stability
diagram of Brovkin et al. (1998) we assume a linear relation between equilibrium precipitation
and vegetation cover fraction:

P =P;+kV' +o0pn'. (2.3)

In this regard our stochastic model is essentially the same as in Wang (2004) and Liu et al.
(2006). In the following, we provide P;, k and op without units for simplicity, although the

value of P represents mm/yr.

2.3 Vegetation dynamics from 8k to 2k

We run PlaSim-VECODE in transient mode and with both VECODE versions under changing
orbital forcing from 8k to 2k. Each experiment is conducted twice with the same settings but
different initial conditions in order to get an impression on the stochasticity of the time series.
These alternative initial conditions are created by keeping the initial vegetation cover fixed for
two years instead of one. In the following, we refer to the area at approx. 15° W=35°E, 12-33° N
(excluding the north-western ocean grid cell) as the Sahara/Sahel region (Fig. 2.4). In this section
we only use descriptive terms like vegetation decline regardless of the underlying mechanism,
while we reserve the term collapse for transitions that are related to a bifurcation.

In all transient experiments, mean vegetation cover in the Sahara/Sahel remains almost sta-
tionary during the first 2000 yrs, whereas a comparatively rapid decrease occurs between 6 k and
5k (Fig. 2.5). For VECODEQo, large fluctuations occur in the 100 yrs moving averages during
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Table 2.2: List of experiments with PlaSim-VECODE. r = transient coupling mode, eq = equilibrium
coupling mode. In case of the uncoupled PlaSim experiments the initial surface conditions provide the
boundary conditions during the complete experiment. Default refers to the original surface parameters
in PlaSim. The existence of multiple states was determined by eye from the according time series, like
those in Fig. 2.9.

Experiment Coupling mode VECODE Orbit  Initial surface Multiple
and frequency  version year conditions states
T-Orig-forl tr. orig 8k-2k default
T-Orig-for2 tr. orig 8k-2k default
T-Mod-forl tr. mod 8k-2k default
T-Mod-for2 tr. mod 8k-2k default
T-Orig-back1 tr. orig 2k-8k default
T-Orig-back2 tr. orig 2k-8k default
T-Mod-back1 tr. mod 2k-8k default
T-Mod-back?2 tr. mod 2k-8k default
E1F-Mod-8k eq., 1 yr mod 8k forest world o
E1D-Mod-8k eq., 1 yr mod 8k desert world
E3F-Mod-8k eq., 3 yrs mod 8k forest world o
E3D-Mod-8k eq., 3 yrs mod 8k desert world
ESF-Mod-8k eq., 5 yrs mod 8k forest world
E5D-Mod-8k eq., S yrs mod 8k desert world 7
E7F-Mod-8k eq., 7 yrs mod 8k forest world
E7D-Mod-8k eq., 7 yrs mod 8k desert world  7°
E10F-Mod-8k eq., 10 yrs mod 8k forest world
E10D-Mod-8k  eq., 10 yrs mod 8k desert world 7
E20F-Mod-7k eq., 20 yrs mod 7k forest world
E20D-Mod-7k  eq., 20 yrs mod Tk desert world 7
E10F-Mod-7k eq., 10 yrs mod 7k forest world o
E10D-Mod-7k  eq., 10 yrs mod Tk desert world
E10F-Mod-6k eq., 10 yrs mod 6k forest world o
E10D-Mod-6k  eq., 10 yrs mod 6k desert world
E10F-Mod-5.5k eq., 10 yrs mod 5.5k forest world o
E10D-Mod-5.5k eq., 10 yrs mod 5.5k desert world
E10F-Mod-5k eq., 10 yrs mod 5k forest world
E10D-Mod-5k  eq., 10 yrs mod Sk desert world  ¥°
E10F-Mod-4.5k eq., 10 yrs mod 4.5k forest world
E10D-Mod-4.5k eq., 10 yrs mod 4.5k desert world  7°
E10F-Mod-0k eq., 10 yrs mod Ok forest world o
E10D-Mod-0k  eq., 10 yrs mod Ok desert world

18



2.3 VEGETATION DYNAMICS FROM 8 K TO 2 K

Table 2.2: Continued.

Experiment Coupling mode VECODE Orbit Initial surface Multiple
and frequency  version year  conditions states

TF-Mod-8k tr. mod 8k forest world o
TD-Mod-8k tr. mod 8k desert world
TF-Mod-4.5k tr. mod 45k forest world
TD-Mod-4.5k tr. mod 45k desert world no
TF-Mod-0k tr. mod Ok forest world
TD-Mod-0k tr. mod Ok desert world no
E10F-Orig-8k eq., 10 yrs orig 8k forest world o
E10D-Orig-8k eq., 10 yrs orig 8k desert world
E10F-Orig-6k eq., 10 yrs orig 6k forest world o
E10D-Orig-6k  eq., 10 yrs orig 6k desert world
E10F-Orig-5.5k eq., 10 yrs orig 5.5k forest world o
E10D-Orig-5.5k eq., 10 yrs orig 5.5k desert world
E10F-Orig-5k eq., 10 yrs orig 5k forest world o
E10D-Orig-5k  eq., 10 yrs orig S5k desert world
E10F-Orig-4.5k eq., 10 yrs orig 4.5k forest world o
E10D-Orig-4.5k eq., 10 yrs orig 4.5k desert world
E10F-Orig-Ok eq., 10 yrs orig 0k forest world o
E10D-Orig-Ok  eq., 10 yrs orig Ok desert world
T-Mod-8k tr. mod 8k default
T-Mod-7k tr. mod Tk default
T-Mod-4.5k tr. mod 4.5k default
T-Mod-4k tr. mod 4k default
T-Mod-3.6k tr. mod 3.6k default
T-Orig-8k tr. orig 8k default
TU-8k uncoupled - 8k yrs 300-1000

from T-Orig-8k
T-Orig-5.5k tr. orig 5.5k default
TU-5.5k uncoupled - 5.5k yrs 300-1000

from T-Orig-5.5k
T-Orig-0k tr. orig Ok default
TU-0k uncoupled - Ok yrs 300-1000

from T-Orig-Ok
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Figure 2.5: Evolution of spatial mean vegetation cover fraction (left) and precipitation in mm/yr (right)
in the Sahara/Sahel region in two PlaSim-VECODE experiments with VECODEOo (four top panels) and
VECODEm (four bottom panels). Thin line: annual data; heavy line: 100 yrs running mean.

the transition period, until the rate of vegetation decline decreases again around 5 k. For VECO-
DEm, this vegetation decrease is more abrupt and occurs in one major event. The evolution of
spatial mean precipitation in the Sahara/Sahel region closely resembles the vegetation dynamics,
although absolute changes are small between 5k and 2 k.

An analysis of the local changes reveals that the rapid transition also occurs in Central Arabia
and the Middle East. For VECODEm, a second, even more pronounced vegetation decline occurs
between 4 k and 3 k in the south-western Sahara (Fig. 2.6). While these features can be seen in all
experiments, the shape of each time series and the exact timing of the transitions differ among the

two ensemble members.

2.4 Detection of multiple equilibria

2.4.1 On the use of stability diagrams

Stability diagrams like Fig. 2.1 illustrate the nature of multistability, but they have also been used
to infer the equilibria for a particular region in a complex climate model (Brovkin et al., 2003;
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Figure 2.6: Evolution of vegetation cover fraction at two adjacent grid cells in the western Sahara
(approx. 0°, 12-22° N; Fig. 2.8), for the transient experiments T-Orig-forl (left panels) and T-Mod-
forl (right panels). Thin line: annual data; heavy line: 100 yrs running mean.

Wang, 2004). When simulating the Holocene with ECBilt-CLIO-VECODE, Renssen et al. (2003,
2006) obtained a rather gradual decline in vegetation cover in the Sahara/Sahel region, even more
gradual than our result with VECODEOo, considering the smaller region in their Fig. 1¢ (Renssen
et al., 2003). However, the construction of a stability diagram lead to the conclusion that multiple
equilibria exist in the early to mid-Holocene in ECBilt-CLIO-VECODE. The gradual decline
in vegetation cover was explained with the large atmospheric variability that supposedly caused
frequent shifts between the equilibrium states.

The specific method to construct a stability diagram differs among publications. Renssen et al.
(2003) derived the P*(V)-line by connecting two points in phase space: the mean state of a coupled
experiment and the mean state of an uncoupled experiment with fixed vegetation cover. Both
points are averages in space and time. In all cases the following limitations have to be considered:

(1) The time mean of the coupled model’s state does not necessarily correspond to a determin-

istic equilibrium.

(i) The effects of spatial complexity cannot be adequately represented in a simple one-dimensional

model.

(iii) The equilibrium curve P*(V) is not strictly linear.

21



CHAPTER 2 IMPLICATIONS OF CLIMATE VARIABILITY

(iv) Other state variables may exist. In the case of PlaSim-VECODE, growing degree days affect
V* and depend on the location and on vegetation cover itself.

Section 2.4.2 will provide examples for argument (i). To demonstrate argument (ii) we extend
the conceptual deterministic model to two spatial points (indexed i = 1,2) with vegetation cover

(V1, V) and precipitation (P, P):

2
P, = Pdi + Z kij Vj. (24)
j=1

At each of the two points, equilibrium vegetation cover depends only on the local precipitation
according to Eq. (2.1), but local precipitation P; depends on vegetation cover at both points ac-
cording to Eq. (2.4). Hence, k is now a 2 x 2 matrix. As examples we distinguish four systems
whose stability diagrams and actual equilibria are compared in Fig. 2.7. For each system we take

the original V*(P) with GDDy = 10000. For system 1 and 2 we set the following parameters:

2 2
System 1 and 2: k = ( 00 00)

120 120

0 110
Syst 1: P, = System 2: P; =
ystem o (110> ystem ] ( O)

In systems 1 and 2, there are no multiple equilibria. However, the stability diagram diagnoses
two stable states in both cases. The reason for this contradiction lies in the spatial heterogeneity
and the interactions between the two locations via the atmosphere. For example, when vegetation
cover in system 2 is set to 0, the resulting mean precipitation could not sustain vegetation if it
occurred at a single grid cell. Therefore, the one-dimensional stability diagram indicates a desert
equilibrium. In the spatially resolved model location 1 could nonetheless maintain vegetation
which in turn potentially increases precipitation also at location 2. The use of a forced climate state
far from equilibrium thus turns out to be problematic. In the light of this result, the multistability
in ECBilt-CLIO-VECODE postulated by Renssen et al. (2003, 2006) may be nonexistent. As we
also find that a strong atmosphere-vegetation feedback with large climate variability leads to a
vegetation collapse in VECODE, it is likely that ECBilt-CLIO-VECODE is monostable.

After all, is a stability diagram more reliable when only one intersection is obtained? Systems
3 and 4 show that this is not the case. In Systems 3 and 4, there is spatial heterogeneity, but no

spatial interactions are involved (k;; = 0 for i # j):

1
System 3 and 4: k = 00
0 300

50 180
System 3: P; = System 4: P; =
ystem ] (5()) ystem o ( 50 )
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' a. System 1 b. System 2

C. System‘S | | d. System‘ 4

100 200 300 400 500 100 200 300 400 500
P [mml/yr] P [mm/yr]

Figure 2.7: Stability diagrams for four example systems, compared to the true equilibria (red stars). In
case of three equilibria, the middle red star marks the unstable equilibrium point. The state variables
V and P represent the average of V| and V,, and P; and P, respectively. The blue P*-lines connect the
two points P(V =0) and P(V = 1) as obtained from Eq. (2.4).

Although one of the two spatial elements is bistable, the inclusion of monostable areas in the
spatial average hides the local bistability. In this regard, the approach by Levis et al. (1999) and
Brovkin et al. (2003) is also questionable, although it is physically plausible that there are no
multiple equilibria in the boreal atmosphere-vegetation system.

To further illustrate our arguments (i1) and (iii), we now construct a stability diagram for PlaSim-
VECODE 0k conditions with the following method:

e In 11 different experiments we prescribe a uniform and fixed grass cover in the Sahara/Sahel
region, with cover fractions ranging from O to 1 in steps of 0.1. Each of these uncoupled PlaSim
simulations has a length of 100 yrs, of which the last 90 yrs are averaged over time and over the
Sahara/Sahel region.

e The resulting mean annual precipitation values of the 11 experiments represent the equilibrium
precipitation curve P*(V) in the stability diagram.

e We draw the V*(P) curve (Eq. 2.2) by assuming a fixed GDDg-value of 10000. An analysis
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CHAPTER 2 IMPLICATIONS OF CLIMATE VARIABILITY

which takes into account that GDDy differs among grid cells and among the experiments leads
to a different vegetation curve, but similar results regarding the number of intersections between

V* and P*. Hence, argument (iv) is not important in this particular case.

The resulting stability diagram (Fig. 2.2) clearly diagnoses two stable solutions for VECODEm
that may also exist for VECODEo at an earlier time than Ok. Furthermore, connecting the end
points of the precipitation curve by a straight line would already suggest two stable equilibria for
VECODEo. However, we will show in Section 2.4.2 that no multiple equilibria exist for O k orbital
forcing, neither for VECODEm nor VECODEo.

Our results evoke the question of how to decide on a particular region where the stability anal-
ysis should be applied. On one hand, the land cover types of the surrounding areas can influence
the climate within the region. Hence, if grid cells that are vital for the multistability are excluded,
the analysis will indicate only one possible state that depends on the choice that has been made
on the surrounding land cover. On the other hand, if the analysis region is large then the spatial
heterogeneity might still lead to wrong conclusions as illustrated above. As all the interactions
between individual grid cells are generally not known, it is not possible to a priori determine the
particular region that could be appropriate for the construction of a stability diagram. In Chapter 3
we will return to this problem and propose a stochastic method for the detection of hotspots. We
also note that even when the number of equilibria is not altered, our arguments (i)—(iv) imply that
quantitative inferences on the stability of a certain state (e.g. in form of a potential) can still be
wrong. Altogether, we conclude that the construction of a stability diagram can yield misleading
results and focus on the method of different initial conditions in the next section.

2.4.2 Extreme initial conditions: desert and forest world
2.4.2.1 PlaSim-VECODE Results

In order to interpret the results of the transient experiments in terms of multiple equilibria, we
run the coupled PlaSim-VECODE model starting from different initial conditions. This strategy
may generally not be a trivial task, as it is not always clear how to choose the initial conditions.
Also, more than two possible solutions could exist (e.g. Wang and Eltahir, 2000; Dekker et al.,
2010). Putting these restrictions aside, we choose the extreme initial conditions of global desert
and global forest (Fraedrich et al., 1999; Fraedrich et al., 2005b). In both cases, all land points
except ice shields are initialised with the surface parameter values corresponding to complete
forest or desert respectively. To bring the free variables to an equilibrium with the extreme surface
parameters, we run PlaSim for 15 yrs under forest and desert world conditions. After this spin-up
time the land cover types are allowed to change. We use this initialisation procedure regardless of
the coupling method or VECODE version, and run the model until a steady state is obtained. The

results are summarised as follows:
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Figure 2.8: Equilibrium vegetation cover fractions for transient (tr) and equilibrium (eq) mode with
VECODEm. The second row of panels shows the steady state when starting from forest world condi-
tions, the third row shows the steady state when starting from desert world conditions (all with 10 yrs
coupling frequency). In the last row, the difference (di) between these states is displayed. Results for
8 k are in the left column, results for 4.5 k in the right column. The red crosses mark the two grid boxes
used for Fig. 2.6 and 2.12.

25



CHAPTER 2 IMPLICATIONS OF CLIMATE VARIABILITY

e For VECODEo we find no multiple steady states. All model trajectories lead to the same mean
state. This result is independent of time (between 8 k and 0k), the way of coupling (transient or

equilibrium mode) and the coupling frequency in equilibrium mode (up to 20 yrs).

e For VECODEm in transient mode, we find no multiple steady states, independently of the orbit
year (8 k, 4.5k, and 0Kk).

e For VECODEm in equilibrium mode, we find multiple steady states, whose extent and location
depends on the orbit year (Fig. 2.8). In 8 k the bistable region extends from the southern margin
of the Sahara desert to the central Arabian peninsula and the Middle East. In 4.5k, the only
substantial difference between forest and desert run occurs at eight grid cells at the southern
desert margin, now shifted to the south-west compared to 8 k. The green state in the bistable
regions resembles the steady state solution of the transient mode. However, in the monostable

desert regions the transient mode produces greener conditions than the equilibrium mode.

In short, multiple steady states occur only for VECODEm in equilibrium mode, but not between
approx. 7k and 5k (Table 2.2). The latter is probably due to low resolution of our model and the
concomitant large differences in precipitation between adjacent grid cells. As Fig. 2.1 illustrates,
multiple steady states can only occur for a certain range of background precipitation Py. Following
this concept, background precipitation at the grid cell line around 20° N after 7 k becomes small
enough that the desert state remains the only equilibrium, while a green equilibrium is still the
only possible state at the more southern grid cells around 14° N. When background precipitation
is further reduced, the bistability reappears at the southern grid cell line. In case of a higher
resolution we would probably obtain a continuous shift of the bistable area to the south-west until
its disappearance.

When comparing the geographical position of multiple states to the vegetation dynamics of our
transient runs in Section 2.3, it becomes apparent that the most rapid vegetation decline occurs
exactly in the bistable regions and shortly after the green state in equilibrium mode ceases to ex-
ist. In addition, the vegetation collapse is largest where the difference between the two states is
high. Hence, the collapses in the transient experiments (in the Sahara, Arabia and the Middle East
after 6k, and in the south-western Sahara after 4 k) can be interpreted as critical transitions result-
ing from a saddle-node bifurcation in the atmosphere-vegetation system. However, the question

remains why there is nonetheless no dependency on initial conditions in transient mode.

2.4.2.2 Interpretation with the stochastic model

The behaviour of a bistable system that exhibits variability is often exemplified with stochastic mo-
tion in a potential, whose two wells correspond to the system’s basins of attraction (e.g. Fraedrich,
1978, 1979; Wang and Eltahir, 2000; Renssen et al., 2006; Scheffer et al., 2001, 2009; Ditlevsen
and Johnsen, 2010). If the noise level is small, the residence time in each well is very large and

only one steady state can be observed in a time series. If the noise level is large compared to the
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Figure 2.9: Evolution of spatial mean vegetation cover in the Sahara/Sahel region starting from forest
(green) and desert world conditions (red), in equilibrium mode (eq) with different coupling frequencies,
as well as transient mode (transient). The x-axis is in units of coupling iterations (1 yr in case of
transient coupling). All experiments have been performed with VECODEm and under 8 k conditions.

potential barrier, a single peak is obtained in the probability density function (pdf) of the system’s
state variable at the potential’s centre of gravity. In case of an intermediate noise level the system
is supposed to flip irregularly from one regime to another, producing two separate peaks in the pdf.
This behaviour is similar to PlaSim-VECODEm-eq: The more we reduce atmospheric variability
by averaging over a larger number of years, the longer is the typical amount of time the system
remains in the green regime (Fig. 2.9).

However, this concept is inconsistent with our PlaSim-VECODE-tr results. The Lyapunov
potential following Brovkin et al. (1998) suggests two steady states for a certain range of Py (here,
we adopt the continuous equivalent to our time-discrete dynamic equation 2.2):

av._ dd V¥ PH(V))-V

dr — dv - n(PE(V)) (23)

To obtain the potential ®(V), Eq. (2.5) has to be integrated. As 7 decreases with V, the green
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regime will be stabilised in comparison with the desert regime, and the change in stability can hap-
pen faster than for constant 7. Nonetheless, the number and position of deterministic equilibria do
not change. The above-mentioned inconsistency therefore remains: If the noise level is considered
as small, the system’s steady state would depend on initial conditions. If the noise level is inter-
mediate, the stationary pdf should be bimodal. If the noise level is large, the mean state should
lie between the deterministic equilibria, and the observed variability should be larger in amplitude
than the distance between the deterministic equilibria. All this is not the case in our transiently
coupled experiments (ignoring the effect of switching timescales mentioned in Section 2.2.3).

The reason is that the noise does not directly act on the changes in vegetation cover in Eq. (2.2)
in the form of additive noise. Instead, a random precipitation anomaly in a particular year af-
fects the vegetation change via the non-linear relationship V*(P), on the basis of the interac-
tive timescale 7(P). Therefore, the noise must be interpreted as multiplicative (Horsthemke and
Lefever, 1984).

We document these vital differences by calculating the empirical pdf from a time series of
10 million yrs (Fig. 2.10) with our one-dimensional stochastic model Egs. (2.1), (2.2), and (2.3).
We choose the equilibrium vegetation curve from VECODEo, Py = 60, and k = 300, so that
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the corresponding deterministic system has solutions at approx. V. = 0, and V = 0.7. In the
following, we always choose GDDy = 10000 and T = 27 °C, as these are typical values in the
Sahara/Sahel region in PlaSim-VECODE. The pdfs are calculated with an advanced Gaussian ker-
nel density estimator for MATLAB (Botev et al., 2010). In order to always capture both possible
equilibria, we start from V = O and set V = 1 after half the total time. The 50 yrs following each
of these resets are not used for the analysis. In case a, we add Gaussian white noise directly to
the dynamical equation (Eq. 2.2), while precipitation is set to its equilibrium value P*(V') in each
year, and 7 is fixed at 5 yrs. For small noise levels, two peaks indicate the deterministic solutions,
whereas for very large noise levels the bimodality disappears. In this additive case, we allow V
to be larger than 1 or smaller than O, for the sake of simplicity. In case b, we use Eq. (2.2) di-
rectly, treat precipitation as a Gaussian white noise process (while resetting negative precipitation
values to 0), but still keep 7 fixed at S yrs. This case corresponds to the stochastic model in Liu
et al. (2006). Finally, in case c we also consider the dependency of precipitation on the vegetation
timescale. The stochastic conceptual model is then fully described by Eq. (2.1), (2.2), and (2.3).
For sufficiently large noise levels, the only steady state is again very similar to the deterministic
green equilibrium, while the desert state has disappeared. The fact that the timescale of expan-
sion is shorter than the timescale of vegetation dieback (Fig. 2.3) results in greener conditions in
comparison to the case with a fixed timescale. The reason that no multiple steady states are found
in transient mode is not simply the intensity of the noise itself, but rather the effect of the noise
on the stability properties of the system. This effect corresponds to the noise-induced stability
d’Odorico et al. (2005) have found in their dryland vegetation model.

Atmospheric variability is also the reason why monostable desert regions tend to be greener in
transient mode than in equilibrium mode: Although mean precipitation as such is not sufficient
for vegetation, the critical threshold can be exceeded in exceptionally wet years and vegetation
will temporarily establish. As vegetation cover cannot become negative, its temporal mean will
thus also be positive. This effect corresponds to the greening effect described by Zeng et al.
(2002), which adds to the general effect of an asymmetric potential (rectifier effect). All three
mechanisms (rectification due to interactive timescale, rectification due to non-linearity in V*,
and greening effect) provide further examples for our argument (i) against the use of stability
diagrams in Section 2.4.1. In equilibrium mode, however, VECODE simulates a complete desert
and the boundaries between desert and grass are more pronounced. Also in similarity to Zeng et al.
(2002), these boundaries are also more pronounced in VECODEm than in VECODEOo because the

V*-curve is then steeper.
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2.5 On the mechanism of vegetation collapse

2.5.1 Relation between system state and noise level

It has been claimed that large atmospheric variability must lead to an only gradual decline in
vegetation cover, for example as obtained in the intermediate complexity model of Renssen et al.
(2003, 2006), and in the stochastic model of Liu et al. (2006) in the case of white noise. Nonethe-
less, the standard deviation of precipitation in PlaSim-VECODE is of the order of 100 mm/yr, and
there can still be a vegetation collapse. Therefore, the question arises why PlaSim-VECODE can
exhibit rapid vegetation changes despite the large atmospheric variability.

To explain a similar behaviour in their model, Liu et al. (2006, 2007) suggested low frequency
climate variability. Due to the memory effect of soil moisture, a small but sufficiently long lasting
precipitation decline can cause a collapse in vegetation cover, even without a strong feedback
between atmosphere and vegetation. In the uncoupled PlaSim we do not find any substantial
autocorrelation of spatial mean annual precipitation in the Sahara/Sahel region (Fig. 2.11). Very
similar results are obtained for each single grid cell. It becomes obvious that the decorrelation
time of the atmosphere is considerably shorter than the timescale of grass in PlaSim-VECODE.
Even when we calculate the autocorrelation function of soil moisture instead of precipitation, the
results look very similar to Fig. 2.11. Hence, our assumption of white noise in the stochastic
model is justified and the mechanism of collapse is not the same as in Liu et al. (2006, 2007).

Instead, it has to be considered that the noise level and the state of the system affect each other.
In the dry desert with very low mean precipitation, the absolute variability must also be small. For
very low mean annual precipitation the distribution in PlaSim is similar to an exponential distribu-
tion but becomes more and more symmetric for increasing mean values. This property is obtained
at every grid cell in the Sahara/Sahel region and is also independent of the orbit year. To capture

these features as well as to avoid negative precipitation values we now represent precipitation as an
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Figure 2.12: Histograms of annual precipitation in the uncoupled PlaSim experiment TU-5.5k at the
two grid cells marked in Fig. 2.8. Mean p and standard deviation ¢ are in mm/yr. Each red line depicts
the analytical inverse normal distribution that correspond to the two moments.

inverse normal distribution in our stochastic model (Fig. 2.12). It is of further advantage that this
distribution is described by the same parameters as the Gaussian distribution, mean and standard
deviation. The mean pp still consists of the first two terms in Eq. (2.3). As the similarity between
Fig. 2.10c and Fig. 2.13a,b illustrates, our results do not qualitatively depend on the choice of the
distribution function.

To demonstrate the implications of the interaction between noise level and steady state we cal-
culate the pdfs of vegetation cover fraction in our stochastic one-dimensional model for different
values of background precipitation and two different noise levels op (Fig. 2.13 a,b). The deter-

ministic stability properties can be inferred from Fig. 2.1.

e For P, = 70 and P; = 60 two deterministic equilibria exist. The green state in this case is
so stable that it is the only steady state for both noise levels. When by chance a dry event with
only little vegetation occurs, and variability is reduced at the same time, the green state will

only become more stable and the system returns to green conditions.

e For P; = 40, the desert state is the only deterministic equilibrium, although in the presence of

large noise greener conditions occur as often as dry conditions.
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Figure 2.13:  Probability density
functions of vegetation cover in
the stochastic conceptual model for
different values of Py. (a) and (b) at
constant noise levels op, (¢) for inter-
active noise level. Values of Py and op
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is 107 yrs for fixed op, and 108 yrs
for interactive op. Up represents the
mean of the precipitation probability
distribution for a particular year.
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e For approx. P; = 50 the deterministic system is at a bifurcation point. The stability diagram

then suggests a stable desert solution while the green equilibrium is only marginally stable. In

the presence of large noise (Fig. 2.13a), green conditions still have maximum probability due

to the noise. However, if one assumes that the noise level is reduced as soon as a state of low

vegetation cover occurs, Fig. 2.13b applies. Suddenly, the desert state becomes more probable

and the system may not escape from its dry state anymore.

To illustrate this concept we do not prescribe a fixed noise level anymore but calculate it from

mean precipitation interactively, as suggested by our uncoupled experiments: For each single

grid cell the relation between mean and standard deviation of annual precipitation is close to

linear, especially under very dry conditions (Fig. 2.14). A similar relation holds in the transient

experiments presented in Section 2.3, independent of the time period or grid cell. Therefore, a

constant factor between mean and standard deviation of the precipitation distribution function,

r = up/op, seems justified, in analogy to d’Odorico et al. (2005). For the stochastic model we

choose a value of r = 2 (Fig. 2.14).
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2.5.2 The stochastic model with interactive noise level

As a result of coupling the noise level to vegetation cover, the pdf will not change qualitatively
in a large range of Py, whereas it responds quite sensitively to Py around 55 mm/yr, which is
slightly larger than the critical point of the corresponding deterministic system. As the mean of
the distribution rapidly shifts from high to low V' as Py falls below the critical threshold, the system
can tip from a green state to a desert state, in analogy to a deterministic Tipping Point. However, in
contrast to a deterministic catastrophic shift, no multiple states are involved: The stochastic model
only shows a bimodal pdf in a parameter range that is much smaller than the hysteresis loop of
its deterministic counterpart (approx. 50-60 mm/yr, instead of 50-80 mm/yr). Furthermore, the
relative size of the peaks is exchanged almost abruptly as Py is varied (Fig. 2.13).

It must be noted that the bimodal parameter range as well as the abruptness of a shift is much
dependent on our choice of r. When analysing the pdfs of vegetation cover in PlaSim-VECODE
(runs T-Orig-5.5k, as well as TF-Mod-4.5k or TD-Mod-4.5k), we also do not obtain any clear
bimodality, neither for the spatial mean nor at any particular grid cell. In addition, no considerable
hysteresis effect becomes apparent when comparing the experiments with forward (T-Mod-forl
and T-Mod-for2) and backward (T-Mod-back1 and T-Mod-back?2) orbital forcing. For values of r
around 2, the conceptual stochastic model comes closest to these properties of PlaSim-VECODE.
Hence, the conceptual model can explain the PlaSim-VECODE results, although we did not aim to
derive precise parameter values for the conceptual stochastic model from PlaSim-VECODE. The
agreement of r = 2 to the results from individual grid cells (Fig. 2.14) is therefore convenient,
but not compelling.

As in the deterministic case, the abruptness of the vegetation decline in our stochastic model
also depends on the strength of the atmosphere-vegetation feedback. However, the system’s be-
haviour during the transition period is subject to chance. To get an impression on the different

possibilities we run the stochastic model approx. 50 times for k = 200 (weak feedback; monos-
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Figure 2.15: Evolution of vegetation cover fractions in the stochastic conceptual model with interactive
noise level as P; is reduced linearly over time from 120 to 30. For each feedback strength, weak
(k = 200, upper panels) and strong (k = 300, lower panels), two realisations have been selected.

table) and k = 300 (strong feedback; bistable between approx. P; = 80 and P; = 50). Fig. 2.15
shows two realisations for each value of k. If the feedback is as strong as to allow for multiple
equilibria, then sudden transitions always occur. Sometimes an early collapse is obtained, after
which the system recovers before it finally drops into the desert state (k = 300, realisation 1), a
behaviour that resembles our experiment T-Mod-forl (Fig. 2.6). In other (or often the very same)
cases, a short post-collapse rebound occurs (k = 300, realisation 2), a feature that also exists in
some proxy records (e.g. deMenocal et al., 2000). In the case of the monostable system rapid
changes can still occur (k = 200, realisation 1), but usually the decline is more gradual as the
unimodal pdf smoothly shifts towards lower V (k = 200, realisation 2). Considering the one-
dimensional concept of the stability diagram, the system must show an increased variance when
the range of maximum slope in V*(P) is passed. This is due to the flattening of the correspond-
ing Lyapunov potential (Brovkin et al., 1998), that causes slowing down of the system (Scheffer
et al., 2009). The increased variability during the transition period in Renssen et al. (2003, 2006)
can also be interpreted as such a temporary slowing down, instead of flickering between multiple
states. In our stochastic model however, we generally do not obtain an increased variability in
the weak feedback case because the level of external noise is coupled to the state V of the system
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which shows an overall decrease.

If we choose a particularly small feedback parameter (below k = 200), the stochastic model
does not simulate any collapse. The stable collapse of Liu et al. (2006) (which is associated with
an only gradual decline in precipitation) then remains the only mechanism to explain an abrupt

vegetation decline.

2.6 Summary and conclusions

By performing experiments with PlaSim-VECODE for different ways of coupling, different strengths
of the atmosphere-vegetation feedback, and different orbit years in the Holocene we have inves-
tigated the stability properties of PlaSim-VECODE and the nature of the transient evolution of
vegetation cover in the Sahara/Sahel region. We have also illustrated our interpretation with a
conceptual stochastic model.

Qur results can be summarised as follows:

e A stability diagram is a good demonstration of the concept of multistability, but it must be
applied with care when inferring the stability properties of a spatially heterogeneous model. In
this case, it can show equilibria that do not exist.

e The detection of multiple equilibria by choosing different initial conditions depends on the
method of coupling between atmosphere and vegetation model. Atmospheric variability can
obliterate a deterministic bistability, but beyond that it can act as multiplicative noise and change
the stability properties themselves.

e A vegetation collapse is possible despite large and uncorrelated climate variability, provided 1.
a positive and sufficiently strong atmosphere-vegetation feedback, and 2. an impact of the sys-
tem’s state on the intensity of variability. PlaSim-VECODEm is an example for such a mech-
anism: Before the vegetation collapse, the green state is stabilised by the climate-dependent
timescale and the large atmospheric variability. Once the system comes close to the desert state
and background precipitation is sufficiently low, the desert state is stabilised due to the decrease
in variability.

Our results imply that climate variability, in interaction with non-linearities in the climate sys-
tem, as well as spatial complexity must be considered for stability analysis. It also becomes
apparent that the exact evolution of the system (such as abruptness of the transition, or the timing
and existence of a post-collapse rebound) can strongly depend on the realisation. Even a most
realistic climate model can then not be expected to agree with observations.

It also remains unclear which mechanism most appropriately describes the Saharan vegetation
decline in reality. This question cannot be answered on the basis of our model results alone.
Limitations arise from the low resolution and the simplicity compared to comprehensive Earth

System Models. Specifically, VECODE is an empirical rather than a process-based model, and
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it is lacking an annual cycle. Although soil moisture is an essential quantity of the atmosphere-
vegetation system (Wang and Eltahir, 2000; d’Odorico et al., 2005), it is not represented in the
model. However, as annual soil moisture in PlaSim also shows a white noise spectrum, a different
coupling would probably not affect our results. However, our way of calculating surface parame-
ters and evapotranspiration is very crude. Also, it is certainly not realistic to tie all physical surface
properties that depend on vegetation cover to the same timescale.

The treatment of this timescale 7 is a critical component in VECODE because of its influence
on the steady state. The relation T(P) originates from global observations of biomass turnover
time in different ecosystems (Brovkin et al., 1997). According to these observations, dry ecosys-
tems are dominated by woody plant types such as shrubs, which have a slower turnover rate than
grasses in wet ecosystems. It is thus not compelling that the same relation should also hold for
fast precipitation changes at a particular location. The model’s response to large atmospheric vari-
ability may therefore not be appropriate. For example, a sudden interruption of all precipitation
would result in an unrealistically slow dieback as between 4 k and 2k in Fig. 2.6 (top panels). On
the other hand, plant establishment and dieback in reality are due to very different biological pro-
cesses and plant traits are known to adapt to changes in climate. Assuming a constant timescale
as in previous conceptual studies may therefore also not be realistic. In this regard, our approach
tests the implications of a climate dependent timescale for a model’s stability properties such as
sensitivity to initial conditions. Furthermore, our main conclusions as summarised above do not
rely on the exact formulation of 7(P). In particular, a variable timescale is not an essential prereq-
uisite for a collapse of a system that is subject to white noise. The reduction of variability after a
shift has occurred can already be sufficient for a sudden transition, a feature that certainly applies
to dry deserts.

Concerning climate variability the lack of ocean dynamics is another limitation in our model
studies, as the ocean introduces more variability, especially at low frequencies. Including the
ocean would also influence the stability properties of the model (Zeng and Neelin, 2000), for
example, the SST-monsoon-feedback could enhance the effect of the atmosphere-vegetation feed-
back (Liu et al., 2003, 2004).

Apart from these uncertainties with regard to the real climate system, the question arises how
applicable our results are to other models. It is self-evident that conceptual vegetation models with
constant stochastic forcing and a fixed timescale can generally be described by the conventional
approach of stochastic motion in a deterministic potential. The stability properties of the system
may then be inferred from time series or even from the model formulation. However, both is not
the case for models of high complexity. Whether our findings apply to any particular complex veg-
etation model remains an open question because such models describe many different processes
on different timescales, while there is essentially only one variable and one timescale determin-
ing grass cover in VECODE. As the atmosphere model’s sensitivity to land cover changes also
affects the strength of the atmosphere-vegetation feedback, stability properties are not determined

by the vegetation model alone. In addition, the behaviour of the coupled model depends on the
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magnitude and the spectral properties of atmospheric variability. In the light of these aspects it is
suggestive that properties similar to PlaSim-VECODE may also occur in other models.
Therefore, general implications for the detection of multistability and Tipping Points in climate
models become apparent. Claussen (2008) summarises different methods that have been followed
to identify multistable regions or subsystems in the earth system: the choice of different initial
conditions, the construction of a stability diagram, the analysis of variability under stationary
conditions, the application of so-called early warning signals for a system that approaches a bi-
furcation point (Scheffer et al., 2009), and the identification and quantification of mechanisms that
can cause runaway feedbacks. Our results indicate that most of these methods may not be reliable
under all circumstances: While variability can impede the first, and spatial complexity the second
strategy, the stationary variability may also not provide the expected clues about the stability of
a system. PlaSim-VECODEm is a good example: Before the vegetation collapse in experiments
T-Mod-forl and T-Mod-for2, the system can reach a state similar to post-collapse conditions at
some times. However, the pdf remains unimodal. With regard to these results it is suggestive that
the applicability of early warning signals should be further studied, and that a good understanding

of the underlying processes may be indispensable to detect and predict Tipping Points.

37






Chapter 3

Detecting hotspots of atmosphere-
vegetation interaction via slowing down

3.1 Introduction

The existence of potential Tipping Points in the climate system has received growing attention in
recent years (Lenton et al., 2008; Lenton, 2011). In the narrower sense, a Tipping Point occurs
when a system becomes very susceptible to an external forcing due to large positive feedbacks. In
the extreme case the system’s attractor disappears at a threshold value of the forcing (bifurcation)
and the state has to approach a different attractor.

In order to predict the collapse at a preconceived bifurcation or to distinguish such changes
in stability from random state transitions, it has been proposed to exploit statistical precursors of
instabilities (Wiesenfeld, 1985a,b; Wiesenfeld and McNamara, 1986), also called Early Warning
Signals (EWS; Scheffer et al., 2009). The fundamental assumption behind their applicability is
that the system is close to a deterministic solution and perturbed by small fluctuations which can
be described as white noise. In case of the climate system this approach resembles Hasselmann’s
concept of stochastic climate models (Hasselmann, 1976). When the system’s stable fixed point
loses stability when approaching a local bifurcation (e.g. a saddle-node bifurcation), an eigenvalue
approaches O (if time is continuous). As a result, the linear relaxation time of the corresponding
mode increases (Wissel, 1984). This phenomenon has recently been referred to as critical slowing
down (Rietkerk et al., 1996; Scheffer et al., 2009; Ditlevsen and Johnsen, 2010; Dakos et al., 2010,
2011; Lenton, 2011; Lenton et al., 2012b). To avoid confusion with the phenomenon of algebraic
(rather than exponential) decay in systems with second-order phase transitions (Strogatz, 1994)
we will refer to the increased relaxation time simply as slowing down. As a consequence of
slowing down, the system’s autocorrelation and variance can increase (Scheffer et al., 2009), and
the spectrum is reddened (Kleinen et al., 2003). Considering non-linear terms in the stability
analysis, it follows that the skewness of the state variable can also increase in magnitude (Guttal
and Jayaprakash, 2008).

However, the external parameter change must be slow enough for the system to stay close to

equilibrium and to allow sufficiently long time series for a statistically significant detection of
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EWS. A lack of detectability can thus impede any final conclusion on the existence of slowing
down prior to an abrupt event. For example, Dakos et al. (2008) detected a consistent increase in
autocorrelation with 95% probability in only 2 out of 8 palaeo records (see their Table S3), and the
results seem to depend on the choice of the analysis method, parameter values and the particular
proxy (Lenton et al., 2012a; Lenton et al., 2012b). This problem becomes worse close to the
tipping point (for example see Dakos et al., 2012) because the uncertainty of an estimate from
one sample of a fixed number of data points increases. In statistical terms, the sampling variances
of the estimators of variance and autocorrelation increase with autocorrelation (Priestley, 1981).
Better resolved time series may not always provide a solution as a sampling below the dynamic
timescale of the system will not add relevant information.

Instead, the use of spatial EWS has been suggested (Guttal and Jayaprakash, 2009; Donan-
gelo et al., 2010; Dakos et al., 2010): in analogy to the time domain, spatial variance and cross-
correlations between different units of a spatially explicit system, as well as the spatial correlation
length increase towards a tipping point. Such spatial EWS use each time step as a sample to infer
the stability, while temporal EWS need a window of many subsequent time steps. As forcing
changes over time in transient cases, temporal EWS thus involve information on previous states
of the system. It is therefore often argued that spatial EWS could provide a more precise estimate
of the current stability. However, the latter studies involve two simplifications: first, the analysed
systems involve interactions which couple grid cells in a spatially homogeneous way. Second,
the grid is constructed from identical elements with individual tipping points and the system’s
boundaries are well-defined. In this regard, the interactions between terrestrial ecosystems and
the atmosphere pose a more difficult problem. Considering a global climate model, all land cells
are globally coupled via the atmosphere, the spatial coupling is inhomogeneous, and the critical
region producing a Tipping Point is embedded in a larger system with other dynamical character-
istics. In such a complex setting, it is of interest not only if or when a tipping occurs, but also
where it occurs and causally originates (hotspot). In previous studies on spatial EWS, the sys-
tem’s boundaries are known and well-defined. In addition, the application of the one-dimensional
concept of EWS to high-dimensional systems, though justified by theory (Ditlevsen and Johnsen,
2010; Sieber and Thompson, 2012), in practice requires a priori knowledge on the critical mode of
the transition (Held and Kleinen, 2004). This critical mode indicates in which direction in phase
space the bifurcation occurs and thus how the information should be combined to yield EWS.

In this chapter, we consider the case where both, the critical mode as well as the critical subsys-
tem, are unknown. In Section 3.2, we first demonstrate that under such general conditions EWS
may not be detectable at any particular location of the system. Second, we propose an alterna-
tive application of EWS: the diagnostic detection of critical regions of slowing down (hotspots)
in time series. In Section 3.2.1 we present a stochastic model of atmosphere-vegetation interac-
tion which produces a vegetation collapse when a control parameter is varied. We then use the
stochastic model to document a specific limitation of local EWS in a spatially explicit setting (Sec-

tion 3.2.2). Based on this finding we explain our concept of a hotspot and present an algorithm
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i Figure 3.1: Stability diagram for the
one-dimensional conceptual model
with & = 300. Blue lines: equilib-
rium precipitation, calculated from
P*(V) = Py + kV for different Py.
0.6 Green line: equilibrium vegetation
cover V*(P) (Eq. 3.1).
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for the detection of hotspots of slowing down (Section 3.2.3). We then discuss the performance of
this algorithm for different properties of the analysed time series and different parameter choices
and conclude in Section 3.2.4 by discussing possible applications and limitations of our approach.

In Section 3.3, we apply our method to the vegetation dynamics in PlaSim-VECODE. In Sec-
tion 3.3.1, we briefly reintroduce the two models, the methods of coupling, as well as the dynamic
vegetation changes simulated by PlaSim-VECODE. In Section 3.3.2 we discuss the restrictions
of applying EWS to time series generated by PlaSim-VECODE, introduce a regression model,
and derive parameter values to match our PlaSim-VECODE results. We then apply the hotspot
detection scheme to our regression model in Section 3.3.3. In Section 3.3.4, we verify the results
with PlaSim-VECODE and give a physical explanation of the model’s behaviour. Section 3.3.5

provides our conclusions.

3.2 A stochastic approach to hotspot detection

3.2.1 A stochastic model of atmosphere-vegetation interaction

In order to test the performance of EWS-related methods, we generate time series with a simple
stochastic model of vegetation dynamics in subtropical deserts. The structure of this model is sim-
ilar to the conceptual model of Brovkin et al. (1998), Wang (2004), and Liu et al. (2006): annual

precipitation P is a linear function of vegetation cover V, while equilibrium vegetation cover V*
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as a function of P is of sigmoidal shape (Fig. 3.1):

’

0 if P < P
. 1 ifP>pP
V= 1.03 — 1.03 5 otherwise, G-
a(P—H
( exp(y6)

with

P = Bexp(y8/2)
P, = Bexp(ys/2)+ 2200

V0.03 o

This function is the result of a semi-empirical fit to observations (Brovkin et al., 2002). Parameter
values in all simulations of Section 3.2 are & = 0.0011, B = 28,7y = 1.7 x 10~* (this set of
parameter values is referred to as VECODEo in Chapter 2), and 6 = 9100. For all time series we
analyse in this chapter, P is always between P; and P».

If the conditions of a specific region are described with only one value of each, V and P, the
system’s deterministic equilibria can be depicted as intersections of the green and blue curve in
Fig. 3.1. Reducing the external parameter Py describes the effect of decreasing Northern Hemi-
sphere summer insolation during the mid-Holocene, leading to a decrease in precipitation. When
the green equilibrium disappears the system experiences a saddle-node bifurcation and vegetation
cover has to collapse to the remaining desert state.

We extend this conceptual model by defining V and P for several elements with index i (for ex-
ample to represent different grid cells in a climate model). At each of the N elements equilibrium
vegetation cover depends only on the local precipitation according to V*(P). Vegetation cover is
updated every (yearly) time step via the dynamic equation

V(P —-V!
VIE) =V +oyn!. (3.2)

t+1 __ st
Vi =vi+
Following Liu et al. (2006) we fix the timescale T to 5 yrs. Due to atmospheric water transport and
circulation changes, local precipitation P, at a particular time ¢ depends on vegetation cover at all

elements:
N

P, =Py, +siB+ Y kijVi+opn; (3.3)

—— i=1
Py ’

Eq. (3.2) is the multidimensional generalisation of Eq. (2.2) — extended by a stochastic term —,

while Eq. (3.3) is the generalisation of Eq. (2.3). Due to the fast equilibration time of the atmo-

sphere, Eq. (3.3) is not dynamic (singularly perturbed; Berglund and Gentz, 2006), and the V; are

all the state variables of this dynamical system. The system is globally coupled via k and in this
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regard differs from reaction-diffusion models with interactions between adjacent elements only.
The choice of V*(P) and the interaction matrix k determine the strength and spatial structure of
the atmosphere-vegetation feedback and thus the stability properties of the system.

Brovkin et al. (1998), Wang (2004), and Liu et al. (2006) refer to the equilibrium precipitation
in the absence of any vegetation as Py. However, as Py may differ at different elements, we split
it into Py, which is variable in space but not in time, and s;B with a scalar B as external control
parameter. The local sensitivity of background precipitation to B is determined by parameters
si, which are also variable in space, but not in time. In physical terms, B describes the effect of
climate forcings, while the numbers we use are chosen arbitrarily.

The Gaussian white noise process 11 with small noise level ¢ is uncorrelated in space. We
distinguish two types of noise but always use only one of them in our experiments: oy controls
perturbations which are added to Eq. (3.2) directly (additive noise), while op controls perturba-
tions added to precipitation and whose impact on the state variable V; depends on the system’s
state itself (multiplicative noise). Atmospheric variability is more realistically accounted for by
the multiplicative noise case, whereas the additive noise case may describe disturbances other
than atmospheric conditions, such as fire, diseases or grazing. Only the additive noise case allows
rising variance to be a generic indicator of slowing down (Dakos et al., 2012), although we will
show that in our specific model rising variance is also a useful indicator in the multiplicative noise
case. In all our simulations we use very small noise levels of 6y = 0.00013 or op = 2.

3.2.2 Performance of Early Warning Signals (EWS) in spatially

coupled systems

In the following, we address the limitations of EWS at individual elements in a spatially extended
setting. All statistical indicators are calculated from time series of the state variables V;. Autocor-

relations are determined for lag 1, cross-correlations for lag 0.

3.2.2.1 First example: induced tipping

Consider the following simple system (system 1): 2 elements are coupled in a way that the first
element can be bistable due to a large local feedback between P and V. Precipitation at the second
element depends on vegetation cover at the first element, but not vice versa. We implement this
property by choosing the interaction matrix

and parameters
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Figure 3.2: Characteristics of system 1 in dependency on parameter B. (a) Equilibrium vegetation

cover, (b) autocorrelation (lag 1), (¢) variance (additive noise only), (d) variance (multiplicative noise
only).

As Bisreduced, element 2 (blue) collapses in response to the collapse of element 1 (red; Fig. 3.2a).
The curves in all our figures are derived from stationary time series. However, if B was very
slowly reduced during an experiment, the transient time series of the collapse would follow the
equilibrium curves like in Fig. 3.2a very closely because the noise level is small and because the
timescales of both elements are identical and small compared to the parameter change. Therefore,
it would not be possible to infer the causality of a transition from the timing of the collapses at
different elements.

As the collapse of element 2 is induced by element 1 it is not related to a substantial loss of its
own stability. It rather experiences the transition as an induced tipping caused by a sudden change
in external conditions that are imposed by element 1. The stability of element 2 is hardly affected
by B directly as the difference in s; and s, indicates.

Therefore, element 1 shows a clear increase in autocorrelation (Fig. 3.2b) and variance (Fig. 3.2¢)
in the additive noise case, but element 2 does not. Only when the noise is multiplicative the sys-
tem under consideration shows an increased variance (Fig. 3.2d; note that the scale differs from
Fig. 3.2¢ by a factor 100), but results for autocorrelation are similar to the additive noise case. The
increase in variance in the multiplicative noise case is specific to the conceptual model and results
from the increasing sensitivity of V* to precipitation changes when P is reduced (Fig. 3.1). In case
of a single isolated element without any P-V-feedback (k = 0) there would still be an increase in

variance in the multiplicative noise case, but not in the additive noise case. In our system 1, the
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slowing down at element 1 also affects element 2 due to the interaction term. This is the reason
for the rise of the blue curve in Fig. 3.2c.

To obtain sufficiently precise estimates of the statistical properties in Fig. 3.2 we performed
stationary time series of 10 million data points each for different values of B. In a transient
situation where the sampling error is much larger, the collapse of element 2 would hardly be
predictable with EWS.

3.2.2.2 Second example: collective bistability

To pursue this further, we now consider a system (system 2) with a different number of elements,
distinguishing versions with 1, 2, 5, 10, and 20 elements, where any particular element has the
identical parameters Py, = 0, s; = 1, and k;; = 300/N. By dividing the entries of interaction
matrix k by the number of elements in the system, we equally distribute the P-V-feedback over
all elements. When more and more elements are coupled, the spatial resolution increases but
the bifurcation diagram of this globally coupled system (Fig. 3.3a) does not change. As local
feedbacks (determined by k;;) are weak, no single element would be bistable anymore if all other
elements were fixed. This fact distinguishes our model from those in Guttal and Jayaprakash
(2009), Dakos et al. (2010) and Donangelo et al. (2010), where individually bistable elements are
coupled. However, the system as a whole still shows a bifurcation due to the spatial interactions
kij with i # j.

As we couple more and more elements, it is evident that EWS like rising autocorrelation and
variance at individual elements, as well as rising cross-correlation, tend to disappear (Fig. 3.3 b—
d). Again, variance in the multiplicative noise case (Fig. 3.3e) is an exception due to the increased
slope in V*(P). The one element-case here (red curves in Fig. 3.3) is identical to element 1
from system 1 (red curves in Fig. 3.2), and also to the system in Fig. 2.1. For EWS to appear
properly like in this single element case, the system’s time series need to be projected on the
critical mode of the transition, a technique introduced as degenerate fingerprinting by Held and
Kleinen (2004). The critical mode implies the direction in phase space in which the bifurcation
occurs. Slowing down particularly occurs for this mode and can be revealed by the appropriate
projection. In contrast, other modes of the system’s variability are not necessarily influenced
by slowing down as the changes of the stability landscape in other directions (characterised by
changes of the according eigenvalues) are unrelated to the bifurcation. Hence, EWS in projections
on other modes cannot be expected. The analysis of local EWS at individual elements would
generally contain information on these other modes of variability and would therefore be a futile
strategy. It has to be concluded that if the critical mode of the transition is not known beforehand,
the tipping can be unpredictable even in cases of very long time series.
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Figure 3.3: Characteristics of system 2 in dependency on parameter B for versions with a different
number of elements. (a) Equilibrium vegetation cover (identical for any number of elements), (b) au-
tocorrelation (lag 1), (¢) cross-correlation (no lag), (d) variance (additive noise only), (e) variance
(multiplicative noise only). Note that all elements of a specific system are identical and thus have the
same measured indicators.

3.2.3 Early Warning Signal — based hotspot detection method

So far we have chosen systems of simple structure. In a more general case like a spatially resolved
climate model, the stability structure will be more complicated. Certain subsystems of the climate
may show a loss of stability during a change in external forcing while the rest of the system may
respond only indirectly, or even evolve independently. In Section 3.2.2 we documented that in
multidimensional settings individual elements can fail to show EWS before a sudden transition.
While this constitutes a caveat for the prediction of sudden transitions, one may make a virtue
out of this caveat by using EWS to diagnostically infer information on the causality of a sudden
transition. In terms of system 1, we aim at finding the nucleus of slowing down (hotspot) by
distinguishing elements of the red and the blue kind. This is not possible by looking at the system’s
state directly because red and blue elements collapse in synchrony. Of course, in complex systems
there will be a continuum from red to blue and the definition of a threshold in between will be
somewhat arbitrary. We expect that the hotspot can be identified as the combination of elements
which (when projected on their critical mode) maximises an indicator of slowing down. In the

following, we present a scheme for hotspot detection which we apply to our stochastic model.
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Figure 3.4: Structure of system
3. Red: area with strong P-
V-feedback (hotspot), blue: pas-
sively dependent on red area,
brown: dry area, green: moist
area.

3.2.3.1 Highly idealised North African vegetation dynamics

As yet another example of the stochastic model framework in Section 3.2.1, consider 25 elements
which can be interpreted as a highly idealised Northern Africa (Fig. 3.4). We refer to this system
as system 3. Again we choose parameter values which lead to preconceived properties of the
model: 5 of the 25 elements gradually become desert when B is reduced (brown elements). 5
elements stay mostly vegetated (green elements), a set of 9 elements becomes bistable and finally
collapses due to a saddle-node bifurcation (red elements) and 6 elements substantially depend on
the red ones but show a much weaker local atmosphere-vegetation feedback (blue elements; see
Fig. 3.5). Elements with identical colours have identical parameter values and thus have the same
state in equilibrium. Hence, there are 4 s5; and Fy, (Table 3.1), and 16 k;; (Table 3.2). In similarity
to the examples in Section 3.2.2.2, no element is bistable on its own, as local feedbacks k;; are too
small. It is only due to the strong spatial interactions between the red elements that the system can

bifurcate and thus show a vegetation collapse at B ~ 43.

Table 3.1: Parameters P, and s; in system 3 for four different types of elements. Colours correspond
to those in Fig. 3.4.

red blue green brown

Py =50 40 210 40
s 1.7 08 02 0.9

The nucleus of the transition is the red area because this is where the system loses stability due
to strong atmosphere-vegetation interaction. In the following, we refer to the red area as a hotspot.

3.2.3.2 Strategy for the detection of hotspots

We now explain our method of analysis by applying it to system 3. As several modifications of
our algorithm are possible, we provide the explanation in two steps:
1. In this section we address the general strategy of our approach. This strategy sets the frame-

work of analysis which is presented in Fig. 3.6 and is the same for all versions of our method. To
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Table 3.2: Interaction matrix k in system 3, distinguishing four different types of elements. Colours
correspond to those in Fig. 3.4. A number in some row A and column B stands for the impact of any
single element of type B on any single element of type A (for example: impact of red on blue: 15,
impact of blue on red: 5).

red blue green brown

red 27 5 10 10

blue 15 4 3 3
green 8 2 15 2
brown 2 3 2 5

illustrate our explanation we complement our step by step description with a simple example. This
example is referred to at the end of each particular step and presented in Fig. 3.7 and Table 3.3.

2. The framework of analysis presented in this section is too general to cover all technical details
as presented in Fig. 3.7 and Table 3.3. These details can differ from case to case. We therefore
introduce the different versions of our algorithm together with a discussion of their advantages
and disadvantages in Section 3.2.3.3.

In all cases the analysis is applied to J preferably long stationary simulations for fixed but
different forcings B; (j = 1,2,...,J) before the bifurcation point. In our example and for all
figures which follow we choose time series of vegetation cover for By = 150, B, = 90, B3 = 55,
and B4 = 43 (hence J = 4; vertical dashed lines in Fig. 3.5). All steps that follow are an analysis of
these time series and do not involve the model which generated them. We describe the individual
steps of the analysis by starting with part B in Fig. 3.6, as this part of the analysis corresponds to
the original degenerate fingerprinting by Held and Kleinen (2004), without time aggregation.

B1. For a given part of the system with N, elements, we select a subset of n elements from these
N, elements. We refer to this subset as an area. Hence, there are three levels of selected
elements where each set is a subset of the previous one: The number of elements in the
complete system (N; here: 25), the number of elements in a part of the system (V,), and
the number of elements in an area of this part (n). Example: We choose elements 19, 20
and 25 as a part. Hence, N, = 3, and n can be 1 (3 possible combinations), 2 (3 possible
combinations) or 3 (1 possible combination).

B2. For the n selected elements we calculate the leading empirical orthogonal function (EOF;
eigenvector of the covariance or correlation matrix which represents the largest variance).
To construct the EOFs we use the freely-available linear algebra package LAPACK. In our
example, there are 7 combinations of the 3 elements (top left corner of panels in Fig. 3.7).
The 3 cases with single elements are trivial and each EOF is 1. The 3 cases with 2 elements
are also trivial (\/m, \/1_/2) because the (symmetric) correlation matrix contains ones on

its main diagonal.
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Figure 3.5: Equilibrium vegetation
cover at different elements of system 3
and for different bifurcation parameter

0.8) 1 values B. The colours correspond to
the elements in Fig. 3.4. The vertical
black dashed lines indicate the values

0.6/ | | of B used for the four stationary sim-

g | ulations (the smallest one also lying

0.4l | | above the tipping point). They cor-

) : respond to BV1 in Table 3.4 and are
| | used for Figs. 3.7-3.11 and Table 3.3.
0.2 ! ! |
: : :
= L : L : : L \ =
250 200 150 100 50 0
B
B3. In the general case, we calculate the leading EOF for all time slices B; from j = 2 to J. For
every EOF, we project all time slices from B; to B on EOF;. Special cases: The projection
of time series B; on EOF; is the principal component of EOF;. In case of areas consisting
of one single element, the projections are identical with the time series themselves. The
standard version of our algorithm only involves projections on EOF; (see Section 3.2.3.3).
In our example, there are therefore 4 projections for each area (small panels in Fig. 3.7).
B4. We calculate a statistical property like autocorrelation or variance of the corresponding pro-

jections to use it as an EWS. For all projections on some EOF; the result is a curve of this
EWS versus B, just like those in Figs. 3.2b—d and 3.3b—e, but less well resolved (j points
only). In our example, we use J = 4 and autocorrelation as EWS, hence there are 4 values

of AC for each of the 7 areas, shown as a line plot in each panel of Fig. 3.7.

To automatically compare the results for different areas, we expand this degenerate fingerprint-

ing method with the following steps:

B5

B6

As itis not the absolute value of a statistical property but its increase which indicates slowing
down, we shift the curve vertically in order to be 0 at j = 1. Fig. 3.7 (bottom right) shows
the shifted AC-curves of all 7 areas of our example.

Based on the aligned curves we define a signal which is one number to quantify the strength
of an indicator and to compare different areas. The definition of the signal can differ, but
it always involves all time slices. We do so to take into account not only the difference
between the first and last B, but the whole evolution of an EWS vs. B as is suggested by our
results in Fig. 3.2. Table 3.3 gives an example of all areas and their associated signals for

the part consisting of elements 19, 20, and 25.
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threshold = 99.5%
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Figure 3.6: General flowchart of the hotspot detection scheme.
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Figure 3.7: Example to illustrate the hotspot detection scheme using elements 19, 20, and 25 of system
3. All panels except bottom right: In each top left corner the particular area is highlighted by bold lines.
The numbers inside the elements give the eigenvectors of the correlation matrix (EOF) for B =43. All
four time slices (forcings BV1 as in Fig. 3.5) are projected on this EOF. The four time series in each
panel show a chunk of 500 yrs from these projections (normed to standard deviation 1 and mean 0).
The autocorrelation at lag 1 for each projection is depicted as a line plot in dependency on B. Bottom
right: all seven curves are shifted to 0 at B = 150 in order to compare the signals of the areas. Parameter
settings correspond to set 1 in Table 3.4.
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Table 3.3: Example signal list for elements 19, 20 and 25 in system 3. Parameter settings correspond
to set 1 in Table 3.4.

area signal x 1000

19 9.1611

20 4.8099

19, 20 11.5094

25 1.0391

19, 25 7.8746
20, 25 4.0192
19, 20, 25 11.7716

weights (19,20,25): 40.32,32.11, 24.70

We repeat steps B1-6 for all possible combinations of elements. If the NV, elements mentioned

in step 1 represent the whole system under consideration (N, = N), one can then determine the

area with the maximum signal, or the areas with a signal above a certain threshold. However, this

requires the calculation of 2V-1 such signals (not 2" because selecting 0 elements is not an option).

This becomes unfeasible already for N beyond 10. Therefore, not all possible combinations can

be calculated and we use an iterative selection process to decide which elements can be dropped

from the analysis:

A. We randomly divide the whole system into a number of non-overlapping parts. The number

52

of parts is calculated from the fixed parameter npax via the ceiling function [%1 The

number of parts is thus as small as possible for a given npax. The size of each part is then
determined by distributing the N elements as equally as possible, so that each N, fulfills
2 <= Np <= nmax-

. For each part, steps 1-6 are applied. As an example, imagine that system 3 is analysed with

nmax = 3. Hence, the system is subdivided into 9 parts, of which 7 parts contain 3 elements,

and 2 parts contain 2 elements.

. From a signal list like Table 3.3 the contribution of different elements can be disentangled,

with the aim to drop unimportant elements from the analysis completely. The removal of
an element means that it is not considered to be part of the system anymore and is not used
from that point on. In this sense, the total system size N successively decreases and with it

the number of parts is also reduced automatically.

In principle, our selection process resembles the logic of a football world cup: each team
(element) does not compete directly against every other team, but only against those of
the same group (part). Only teams performing well enough in their group remain in the

tournament.
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The best rules of how to remove an element can depend on the system and will be discussed
under the term elimination rule (ER) in Section 3.2.3.3.

D. As a criterion for removing elements we set a threshold which is adjusted interactively
to prevent that too many elements are removed at once and too early. The threshold is a
relative number in % and relates to different things depending on the elimination rule. In
our example as well as all following figures we set the initial threshold #,; to 5 %. As long
as no element can be removed in any part, we increase the threshold by £, = 5%. If the
threshold would reach or exceeded 100 %, we set the threshold to 99.5 %. If at least one
element can be removed we reset the threshold to its initial value #;,;. In both cases, we then

partition the remaining elements anew, starting from step A (large loop in Fig. 3.6).

This way, the considered number of elements is gradually reduced. After each calculation of the
signals in all possible areas of all current parts and the potential removal of elements the procedure
is repeated. It ends as soon as one of the following conditions is true: (1) the total number of
remaining elements is not larger than ny,x, in which case the analysis is repeated one last time
with one part only. (2) The relative threshold reaches 99.5 %, but still no elements can be removed
because the remaining elements are too similar to be discriminated.

The algorithm serves as a sieve in order to filter out the important elements with a sufficiently
small number of calculations. Without the removal of elements, the number of possible combina-
tions would be too large to achieve a robust hotspot detection within a feasible amount of time.
As the results depend on the random distribution of elements to different parts, they will be very
similar but not completely identical when the analysis is repeated. The hotspot of slowing down
can be identified if the time series are long enough (or if enough realisations are available) because
the remaining elements at the end of the analysis tend to contribute most to slowing down.

To obtain more quantitative results, all signals calculated during the procedure can be collected
in a sorted list for further analysis. Elements belonging to the hotspot tend to be part of the areas
with the strongest signals and are on top of the list. However, elements that have been removed
early during the analysis are not well sampled. The method therefore only provides information
on the nature of the hotspot, but less on the stability properties of the rest of the system.

3.2.3.3 Parameter options and performance analysis

It has become obvious in the previous sections that the algorithm involves a number of options and
parameter values which have to be chosen in advance. Also, the performance of the method will
depend on properties of the original time series. For a quantitative comparison of the algorithm’s
performance under different conditions (parameter settings, choice of algorithm and time series
properties), we perform 500 Monte Carlo experiments for each condition (Table 3.4).

In each experiment a new realisation of the time series is generated with system 3 and then
analysed with the hotspot detection algorithm. Figure 3.8 shows how often each element remains
until the end of each experiment for the additive noise case and a time series length of 2000 yrs.
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Figure 3.8: Performance of the hotspot detection algorithm for system 3 with additive noise using time
series of 2000 yrs. The frequencies show the number of times a particular element remains until the
end of the selection process for 500 repetitions. Each repetition involves the generation of a new time
series and its analysis with the hotspot detection algorithm. The solid black line marks the expectation
value for a random selection where all elements are selected with equal probability. The red dashed line
marks the 95% probability threshold of the corresponding cumulative binomial distribution. Parameter
settings correspond to set 1 in Table 3.4.

After the 500 repetitions we evaluate which fraction f| of the 500 X npax potentially identified
elements belongs to the hotspot, and which fraction f, of the actually obtained elements belongs
to the hotspot. fi and f> can differ because it is not always nmax elements that remain in the end.

As a measure of the method’s performance 11 we define for both variants of f:

H H

77172=(f1,2—ﬁ)/(1——), (3.4)

with N as the size of the system (25) and H as the size of the hotspot (9). If we assume that all
25 elements have an equal chance to be selected, the probability for any obtained element to be
part of the hotspot is H/N = 9/25. A detection which does not differ from this random case has
performance 0.

If exactly npmax elements are returned in every experiment, a detection which only returns
hotspot elements has performance 1 for both variants of f (which is of course only possible be-
cause we choose an np,x smaller than the hotspot). The expectation value for the occurrence
of every element would be 100 in case of performance O (the solid black line in Fig. 3.8), and
500 x 5/9 in case of performance 1 (end of vertical scale in Fig. 3.8). Potential deviations from

nmax €lements in the output can lead to performances lower than O and larger than 1 if we apply

fi.
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Figure 3.9: Autocorrelation changes
of projections on leading EOFs for
system 3 with multiplicative noise.
The leading EOFs have been calcu-
lated for (a) B, = 90, (b) B3 = 55,
(c) By = 43. In each case, all pre-
vious time series (including the one
used for the EOF) are projected on
the according EOF. The analysis is
applied to the full system (black) as
well as only parts of the system (other
colours). The colours correspond to
the elements in Fig. 3.4. Parameter
settings correspond to set 21 in Ta-
ble 3.4.

The decision for 500 repetitions can be justified by bootstrapping our Monte Carlo results

(Efron, 1979): for any list of 500 sets of residual elements we draw n sets and measure their

performances. We calculate the standard deviation of the obtained performances for many dif-

ferent n. It turns out that for 500 repetitions the standard deviation is approx. 0.015 and rather

independent of the parameter and time series properties. Therefore, we round all performances

in Table 3.4 to 2 decimal places. Above 500 repetitions, the uncertainty of the performance de-

creases very slowly while the computation time for the Monte Carlo experiments increases beyond

feasibility.

From theoretical considerations, the performances in Table 3.4 as well as the qualitative ap-

pearance of the resulting signal lists we draw the following conclusions with regard to different

parameter choices and time series properties:

 Different EWS can be used within the same framework. Here, we use the increase in auto-

correlation (AC) and the relative increase in variance (var). Relative increases in variance

usually show better performances because of a larger signal-to-noise ratio, in agreement

with Ditlevsen and Johnsen (2010). However, AC is the more generic EWS and also works

if multiplicative noise leads to a reduction in variance (Dakos et al., 2012). For Figs. 3.7—

3.11 and Table 3.3 we use AC as an EWS.
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* We distinguish two signal definitions (SD). The most simple approach is to only use the

projections on the EOF of the last time slice (B4 in our example). The analysis is based
on the assumption that this pattern resembles the critical mode, if the selected area is the
hotspot. We then integrate the EWS-curve over B (calculate the area of the J — 1 segments).
We refer to this signal definition as SD1. SD1 is used in our example Fig. 3.7 and Table 3.3.

An alternative (referred to as SD2) is to also consider projections on previous EOFs. This
approach can add information if the leading EOF smoothly approaches the critical mode
when B approaches the Tipping Point. We thus obtain J — 1 curves of an EWS vs. B
(Fig. 3.9). To calculate the signal for a specific area, we perform a double integration. In
terms of Fig. 3.9: first, we calculate the area under a curve with a certain colour for EOFp_g¢
(Fig. 3.9a), EOFp_s5 (Fig. 3.9b), and EOFp_43 (Fig. 3.9c). The resulting trajectory of inte-
grated EWS is then again integrated over B. This way, not only the shape of the projection

on the last EOF is accounted for, but also the shape of previous projections.

The choice of an elimination rule (ER) should be adapted to the signal definition. Again,
we distinguish two elimination rules, ER1 and ER2. For SD1 we use ER1, which works as
follows: For each specific element, we add up the signals of all areas this element is part of
(last row, second column in Table 3.3), and refer to it as the element’s weight. The threshold
to remove unimportant elements is defined relative to the maximum weight of all elements
in a specific part. The absolute value of the threshold therefore depends on the maximum
weight and differs among the system’s parts, while the relative threshold is a parameter that
is independent of the parts. For example, a threshold of 70 % means that all elements with
a weight smaller than 70 % of the maximum weight are removed. In our example (Fig. 3.7
and Table 3.3), element 19 belongs to the hotspot, so it contributes more to the signal than
elements 20 and 25, whose weight is therefore smaller. Element 25 has a particularly small
weight (24.70) as it neither belongs to the hotspot nor is it much affected by it. Its relative
weight compared to the maximum weight of 40.32 is below 70 %. It would therefore be
removed from the analysis if the threshold is above 70 %.

For SD2 we use a simpler approach, referred to as ER2: We divide the signal list in the
set of signals above the current threshold and the set of signals below this threshold. All
elements which are part of any area above the threshold remain, the other elements are
removed. Hence, the threshold is directly applied to the signals itself without the calculation
of weights. This measure allows a better discrimination of the elements. In the additive
noise case it cannot be applied because there the maximum signal usually belongs to the

complete area.

EOFs can be calculated as an eigenvector of the system’s covariance matrix or alternatively
its correlation matrix. If based on the covariance matrix, elements with large variance will
be emphasised. Whether this improves the performance of a hotspot detection generally de-

pends on the system under analysis. In case of system 3 with multiplicative noise, variance
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SD2 with ER?2 yield the most significant results when using covariance-based EOFs.

In general, other signal definitions and elimination rules could be devised that may be tailored
to a specific system.

The most generic approach is to use SD1 in combination with ER1, correlation-based EOFs
and autocorrelation as EWS. The last EOF (the only one used in SD1) must resemble the critical
mode in any system approaching a bifurcation (although it can be difficult to come very close
to the edge of the Tipping Point in practice). In the case of additive noise, considering previous
EOFs like in SD2 may not improve the signal-to-noise ratio because the signal is much weaker
away from the Tipping Point. This is of particular importance if the curves of EWS vs. B do not
differ substantially between different EOFs. Furthermore, autocorrelations and correlations are
more generic indicators while variances can be affected by multiplicative noise in any way. When
analysing a system whose variability is of unknown nature, the generic approach is thus probably
the most adequate choice. Fig. 3.10 shows the resulting signal list when using time series of length
100.000 yrs and such generic options (referred to as set 1 in Table 3.4).

Although these options should be applicable to many systems, they may not lead to the most ro-
bust results. In system 3 with multiplicative noise, SD2 and ER2 in combination with covariance-
based EOFs are of particular advantage. Fig. 3.11 shows the signal list for the multiplicative noise
case when using time series of length 10.000 yrs and options as set 21 in Table 3.4. While for
the additive noise case the AC’s trajectories at the hotspot (red area) and the complete area al-
ways look alike (not shown), they differ substantially in the multiplicative case: At the hotspot
the signal starts to emerge early, even when projecting on a leading EOF far from the Tipping
Point (red curves in Fig. 3.9). This is not the case for the other areas because the variability of

the system differs substantially from the critical mode. As variances at the hotspot are very small,
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in the projection. Close to the Tipping Point, the variance at the hotspot increases not only due
to slowing down, but also due to the multiplicative noise which enhances variance as vegetation
cover decreases. Therefore, the relative increase in variance is particularly large at the hotspot.
Close to the Tipping Point, the system’s variability becomes dominated by the critical mode and
slowing down can be seen in the complete as well as the hotspot area. By using SD2, ER2 and
covariance-based EOFs we use this property of the system to better distinguish the elements from
each other. As a result, the hotspot can be detected much easier than in the additive noise case.
Using time series of 10 000 yrs each, the hotspot is clearly visible in the signal list for nyn,x = 5
(Fig. 3.11). Hence, an even more robust hotspot detection can be achieved from time series ten
times shorter than in the additive noise case.

In a more general case, additive and multiplicative noise may occur at the same time. In our
system 3, the multiplicative noise would dominate the results if noise levels leading to similar
variance in V were chosen. However, it is not a priori clear what would happen in other systems
whose properties are not well-known. Under such conditions the generic approach using cross-
and autocorrelations with SD1 and ER1 would be the safest option in the light of our results.

We now continue with our list of conditions:

* The choice of time slices should cover a range of B where the changes in steady state are
already pronounced to achieve a good signal-to-noise ratio. In Table 3.4 we distinguish
three different vectors of B-values:

BV1: (150, 90, 55, 43),

BV2: (300, 200, 100, 75, 43),

BV3: (150, 90, 55).

For Figs. 3.7-3.11 and Table 3.3 we use BV1 (dashed vertical lines in Fig. 3.5).
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* The initial threshold, #,;, and increment, #;,., should be chosen small (a few percent of
the maximum signal). If they are larger, the calculation is faster and not necessarily worse
in performance, but the signal list will not be well sampled. A better sampling of each
element’s contribution to the signal allows a clearer discrimination between the elements
in figures like Figs. 3.10 and 3.11. Particularly low 7n; for some larger i, result from the
effect that too many elements are removed at once after increasing the threshold.

* The maximum number of elements per part, n,,x, can be chosen small for first results.
The smaller ny,x, the faster the algorithm. When repeating the analysis with larger npax,
the signal list gives an indication of the size of the hotspot (or hotspots). As long as the
maximum signal in the list clearly increases with np,x, the number of elements which form
a common hotspot is larger than npyax. As Figs. 3.10 and 3.11 document, the full hotspot
may already be identified for ny,x smaller than the hotspot, if #,; and ;. are small to allow
a robustly sampled signal list.

* The length of the time series, 7', as compared to the key variable’s timescale 7 has a major
influence on the method’s performance. As the time series provide only a limited sample,
the performance will increase with 7. If a single available realisation of the time series is
too short, the statistical properties of the variations are insufficiently sampled and a hotspot
detection can yield wrong results. It should therefore be checked whether the identified
hotspot is robust to 7 by comparing different parts of the time series. Methods of block
bootstrapping suited for time series (Politis, 2003) could in principle be applied to the full

analysis to derive uncertainty estimates.

» The detectability of a hotspot, given a specific length of the time series, very much depends
on intrinsic system properties like its connectivity and the strength of the destabilising
feedback. The more elements contribute to a hotspot, the more difficult it is to detect.
nmax should be chosen large in such a case to determine the large extent of the hotspot
which slows down the algorithm. More importantly, the stronger the slowing down and the
better the elements can be distinguished, the easier the hotspot detection. Our system 3 may
already provide a rather demanding case as several 10 000—-100 000 yr long time slices are
required for a robust hotspot detection. This time is rather beyond feasibility for climate
models of intermediate or high complexity and a hotspot like in system 3 would hardly
be detectable. However, if hotspots of a more pronounced structure exist, they could be
detected more easily. As an example, consider the most optimistic case of an univariate
process where autocorrelation increases substantially over time. This increase would be
detectable within the order of some 100 time steps (Ditlevsen and Johnsen, 2010). Part II of
our two-part paper presents a hotspot detection from climate model time series of hundreds
to thousands of years length as another example. It is therefore not possible to provide a
general statement on the required length of time series. The required length depends on

the nature of the potential hotspot, the exact thing that one aims to infer with the analysis.
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However, this problem does not impose any restrictions to the applicability of the method,
but it implies that a negative result can either be due to the non-existence of slowing down

at a hotspot or to too short time series.

3.2.4 Summary and conclusions

By applying a simple stochastic model we have demonstrated that EWS at individual elements
of a coupled system are no generic precursors of a sudden transition at a Tipping Point. If the
local feedback of a particular element is weak or if the element’s tipping is induced by other
elements, EWS are not apparent until the bifurcation parameter is very close to its critical point.
In this case the signal cannot be called early anymore, and a prediction of a sudden transition,
together with the area where it will occur, must fail. On the other hand, we have documented that
indicators of slowing down can potentially be used to infer knowledge on the causality of a sudden
transition from sufficiently long time series. To this end, we have devised an algorithm to detect
the hotspot or hotspots of slowing down in a many-element system. As slowing down indicates
a loss in stability of the current state, the detected hotspot indicates a region where the system’s
susceptibility to perturbations becomes large.

Although our system is meant to represent the vegetation-atmosphere interaction in Northern
Africa, the method of analysis is generic in the sense that it can be applied to any system satisfying

the basic assumptions common to EWS approaches:

* The system is supposed to be close to a deterministic state (in terms of dynamical systems,

a slow manifold), which loses stability.
* The system’s variability results from small white noise.

It should be noted that the existence of a bifurcation is not a prerequisite of our method. Even
in the case of weaker feedbacks and a more gradual transition will a change in stability be re-
flected in slowing down. However, the detectability of the signal tends to decrease as compared
to a bifurcation where the system approaches a random walk. The main difference to previous
applications of EWS is that our method does not only calculate the magnitude of slowing down
but also identifies the subsystem where it occurs.

In principle, a prediction of sudden transitions could also be attempted with this approach. As
new data points become available, new EOFs and projections may be constructed. As for any
prediction based on EWS it must of course be known in advance which maximum signal is to
be expected (Thompson and Sieber, 2011a). For example, autocorrelation only comes close to 1
when there is a bifurcation, but peaks at lower values in less extreme cases.

In addition, the very large data requirements imply a vast separation between the timescale
of changing external conditions and the intrinsic timescale of the system, a condition that is not
often satisified. Although we focus on autocorrelation and temporal variability, other indicators

of slowing down such as spatial variability could be applied within the same iterative framework
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and may lead to better performances. As our additive and multiplicative noise case illustrate, the
more the analysis method is tailored to a specific system, the more a priori knowledge on the data
generating process is needed. For example, variance may increase or decrease when approaching
a threshold, depending on the system under consideration (Brock and Carpenter, 2010; Dakos
etal., 2012).

Additional caveats are imposed by unaccounted or changing properties of the external noise,
which would affect EWS (Carpenter and Brock, 2006; Scheffer et al., 2009; Ditlevsen and Johnsen,
2010). In particular, we have only used white noise which is uncorrelated in space. However, it
would physically be more reasonable to account for spatial correlations in the atmospheric vari-
ability. This could reduce the detectability of hotspots because correlations between the state
variables could not be attributed to spatial interactions alone, but would partly result from corre-
lations in the noise.

Other problems may arise in cases of large noise. The local stability of the deterministic state
may not be represented well anymore in EWS, and the noise can lead to an early tipping. More
fundamentally, the system’s mean behaviour in the large noise regime may not reflect its deter-
ministic structure anymore due to noise-induced transitions (Horsthemke and Lefever, 1984). The
link between a system’s susceptibility and statistical properties of its variability breaks down under
such conditions.

Within these limitations, our results suggest an alternative applicability of EWS which may
contribute to a better understanding of numerical models. In this regard our study is a concretion
of Lenton’s recent conclusion: “Even if further research shows that early warning is unachievable
in practice, it could still provide valuable information on the vulnerability of various tipping el-
ements to noise-induced changes.” (Lenton, 2011). To this end, more systematic studies on the
performance of indicators of slowing down for different classes of models will be particularly

beneficial.

3.3 Application to PlaSim-VECODE time series

3.3.1 Mid-Holocene vegetation dynamics in PlaSim-VECODE

To simulate mid-Holocene vegetation dynamics in this Section 3.3, we use the modified VECODE
(VECODEm; Fig. 2.2) by choosing o« = 0.0011, 8 = 140,y = 1.7x 107>, and § = GDD, —
900 (with GDDy in Kelvin; see Section 2.2.2). VECODE distinguishes trees and grass as the
only vegetation types. The surface cover types, trees, grass and desert, have different physical
properties which are constant over time.

As explained in Section 2.2.3, PlaSim and VECODE can be coupled in two ways: in a tran-
sient mode (PlaSim-VECODEm-tr), we use an annual coupling, and vegetation cover fractions
at each grid box approach their equilibrium according to a linear relaxation law using a climate

dependent timescale. In equilibrium mode (PlaSim-VECODEm-eq), we iteratively run PlaSim
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Figure 3.12: Mean vegetation cover fractions (trees+ grass) in % from 9k to 2k in PlaSim-
VECODEm-tr. Vegetation cover is averaged over 200 yrs starting from the indicated year (7k, 6Kk,
5k, and 3k, respectively). Numbers 1 to 5 denote the individual grid cells referred to in the text. The
light red region encloses the 52 grid cells considered in RM1, the purple region encloses the 8 grid
cells considered in RM2.

with fixed vegetation cover for several years, and then set vegetation cover to its new equilib-
rium corresponding to the multi-year average of P and GDDy. This mode thus corresponds to an
asynchronous coupling.

When running PlaSim-VECODEm-tr with orbital forcing from 9k to 2k, we obtain two major
vegetation collapses in different regions at different times (Section 2.3). The spatial and temporal
features of these transitions are presented in Figs. 3.12 and 3.13. From 9k to 6 k, almost all land
cells are at least partly covered by vegetation and cover fractions show large fluctuations due to
natural climate variability but almost no trend. Around 5.5k, vegetation cover in large parts of
northern Africa and south-western Asia collapses and thereafter stays in desert-like conditions.
Interestingly, the timing of this collapse corresponds to palaeoclimate time series from a sediment
core (deMenocal et al., 2000) and earlier model studies (Claussen et al., 1999), despite differences
in the models and our modifications to the vegetation model. Around 3.5k, a similar abrupt event

occurs in a more confined region in the Sahel region. In the following, we refer to these two
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Figure 3.13: Vegetation cover fractions from 9 k to 2k in PlaSim-VECODEm-tr. Two single grid cells
are shown, indicated as grid cells 1 and 2 in Fig. 3.12. The vertical dashed lines indicate the B-values
of the 20000 yrs long stationary PlaSim-VECODEm-tr simulations used to construct RM1 (top) and
RM2 (bottom).

sudden transitions as collapse 1 (5.5 k event) and collapse 2 (3.5 k event).

The two vegetation collapses are related to the large atmosphere-vegetation feedback in the
model which can allow for multiple equilibria. In PlaSim-VECODE-eq, multiple steady states in
the region of collapse 1 can be found until approx. 7 k., and in the region of collapse 2 at 4.5 k-5 k
(Figs. 2.8, 2.9 and Table 2.2). For each of these orbital forcings, starting from a forest world leads
to a partly vegetated state (in the following called the green equilibrium), while starting from
desert conditions leads to a dry state (desert equilibrium) in PlaSim-VECODEm-eq. However,
due to the large climate variability and non-linearities in the model formulation, a noise-induced
transition (Horsthemke and Lefever, 1984) can occur and multiple steady states are not found in
PlaSim-VECODEm-tr, where natural variability is large. The collapses presented in Figs. 3.12
and 3.13, although a result of the intrinsic multiple states in the system, thus do not exactly co-
incide with the deterministic bifurcation points, but rather result from a sudden change in the

system’s probability density function.

3.3.2 A stochastic model for EWS analysis
3.3.2.1 Idealised model setup

To further analyse the stability properties of PlaSim-VECODE and to find hotspots in the model,
we apply our hotspot detection method.

In agreement with our algorithm for hotspot detection presented in Section 3.2, we first generate
a number of time slices for fixed orbital forcing. To analyse collapse 1, we choose orbital forcings
corresponding to 9k, 8.5k, 8k, 7.5k, 7k, 6.5k and 6k (dashed red lines in Fig. 3.13, top); to
analyse collapse 2 we choose 5.5k, 5k, 4.5k, 4k, and 3.6 k (dashed red lines in Fig. 3.13, bottom).
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As any year is associated with a particular orbital forcing we refer to this forcing as an orbit year.
Each time slice simulation consists of 20 000 yrs in transient coupling mode.
However, a direct application of the hotspot detection scheme to these time series is not ade-

quate for the following three reasons:

1. Due to the distinction of cases in Eq. (3.1), vegetation cover fraction V does not always show
free variations but is often exactly O or 1. The application of EWS is not suited for such a
case as the stability properties of the equilibrium cannot be sampled properly. For example,
before reaching a desert state, the vegetation cover fraction shows an exponential decay after
a particularly wet year and stays constant afterwards (Fig. 3.13). More importantly, the same
phenomenon occurs at the other limit of phase space, V = 1. EWS like autocorrelation or
variance then depend on the frequency of such cutoff events, which are not related to the

stability of a climate state.

2. The timescale 7 of dynamic vegetation cover change in VECODE depends on the system’s
state and thus contaminates the signal of slowing down. In particular, 7 is large for dry
regimes and small for wet regimes (Fig. 2.3). When background precipitation is reduced, an
increased timescale will be reflected in an increased autocorrelation. This state-dependent

slowing down is not necessarily related to any change in stability and thus distorts the signal.

3. Atmospheric variability in PlaSim-VECODE-tr is too large to justify the small noise ap-
proximation. As explained above, the two collapses cannot be expected to coincide with
a vanishing eigenvalue because they result from non-linear interactions between the ampli-

tude of the multiplicative noise and the system’s state (Chapter 2).

Insofar, the prerequisites for an application of EWS-based analysis are in conflict with the
case of PlaSim-VECODE-tr. We therefore perform an intermediate step by using the stochastic
model introduced in Section 3.2. In the stochastic model, vegetation dynamics are represented by
Eq. (3.2) with ¢ as the discrete time and a time step of one year. Precipitation P at any grid cell i is
described as a linear function of the vegetation cover fractions V; at all cells (Eq. 3.3, following the
concept of Brovkin et al. (1998), Wang (2004), and Liu et al. (2006). The bifurcation parameter B
now represents the impact of orbital forcing on northern hemisphere summer insolation and thus
convective precipitation. Spatial interactions are captured by matrix k;;, and climate variability is
accounted for by a Gaussian white noise process 7;, which is also uncorrelated in space.

In contrast to PlaSim-VECODE, the three caveats listed above can be resolved within the frame-
work of this stochastic model:

1. We remove the second condition in Eq. (3.1), thereby allowing for V > 1 which corre-
sponds to an extrapolation of the empirical P(V')-relation obtained in PlaSim-VECODEm.
As a maximum of V = 1.03 is still not exceeded, we accept the unphysical nature of cover

fractions larger than 1 in the stochastic model.
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2. Like in Chapter 2, we fix the dynamic timescale 7 to a the climate-independent value of
5 yrs in agreement with Liu et al. (2006).

3. We prescribe a particularly small and constant noise level of oy = 0.00013 with op =0
(additive noise) or op = 2 with oy = 0 (multiplicative noise).

We refer to this model as regression model 1 (RM1) when studying collapse 1, and as regression
model 2 (RM2) when studying collapse 2. Both models only differ in the number of grid cells and
the parameter values.

To keep the regression models as simple as possible, we only include grid cells in northern
Africa and south-western Asia which show substantial fluctuations in vegetation cover. Grid cells
with V permanently close to 1 or O in all time slices are static elements of the system under
consideration and can thus be interpreted as external conditions which are indirectly reflected in
the constants F,. For RMI, we include all grid cells where V averaged over time and all time
slices is between 0.1 and 0.96 (orange area in Fig. 3.12). For RM2 we select the 8 grid cells in the
south-west which show substantial collapse at 3.5k (purple area in Fig. 3.12).

Besides precipitation, growing degree days GDDy are also a space and time dependent variable
of the system which affects V* (Eq. 3.1). However, by choosing ¥ = 1.7 x 107>, the sensitivity
of V* to changes in GDDy is very small in VECODEm. Differentiation of V* with respect to d as
well as a graphical analysis reveals that shifts in P-direction do not exceed some mm/yr for typical
changes in 8. As plants in arid regions are limited by water rather than temperature, the neglect of
temperature fluctuations seems reasonable. Typical spatial differences in GDDg (time means are
between 7000 and 12 000) exceed the temporal variability in North Africa (approx. 1000 at most
grid cells) in PlaSim-VECODE-tr. Therefore, we prescribe a constant value of GDDg (and thereby
0) at each grid cell of our regression models. Each value corresponds to the average over all years
and time slices (9k—6k for RM1, 5.5k-3.6k for RM2). Hence, V*(P) very slightly depends on
the particular grid cell 1, but is constant in time.

It remains to determine suitable parameter values of Py, s;, and k;; to reproduce the stability
properties of PlaSim-VECODE with the regression models. To this aim, we fit these parameters
to our stationary PlaSim-VECODEm-tr simulations using a multivariate linear regression:

First, we extend the vector V; at every year from PlaSim-VECODEm-tr by one additional di-
mension, assigned with the orbit year corresponding to each time slice. Although V' actually
consists of trees and grass cover in VECODE, we can safely neglect this distinction, as tree cover
is always close to O in the grid cells we consider. Using the extended vector as a predictor and the
corresponding PlaSim-VECODEm-tr time series of P; as responses, we calculate regression coef-
ficients using the MATLAB function mvregress. Each F, is then obtained as the constant offset of
the regression line, s; is its slope with regard to orbit year, and k;; are its slopes with regard to V/;.
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3.3.2.2 Stability properties of the regression models

To investigate the stability properties of the two regression models over a range of B we numer-
ically determine deterministic equilibria and the eigenvalues of these equilibria as obtained from
a linear stability analysis (Fig. 3.14). To obtain the eigenvalues, we derive the Jacobian of the
corresponding time-continuous deterministic system (for which a bifurcation is indicated by an
eigenvalue approaching 0) and calculate its properties by inserting the numerically obtained equi-
librium state. For the first value of B (8.8 k for RM1, and 6 k for RM2) we use V; = 1 as an initial
condition and run the model to equilibrium. For all subsequent steps of B, we insert the previously
obtained equilibrium as an initial condition (which always results in the same solution as using
V; =1 for any B in our two regression models).

In both models the obtained equilibria are stable fixed points, as indicated by the negative real
parts of all eigenvalues. Before a sudden transition to a different equilibrium occurs due to a
saddle-node bifurcation, one eigenvalue approaches 0. A reversed scanning of the B-range with
our numeric approach to find equilibria indeed results in a static hysteresis (not shown). The
equilibria coincide well with the green and desert equilibria found with PlaSim-VECODEm-eq
(Chapter 2).

In RM1, there are several bifurcations along the forward branch, two in the B-range of inter-
est: at approx. 8 k, grid cell 3 (marked in Fig. 3.12) collapses. At around 6.7 k, most other grid cells
collapse in a second bifurcation. This second bifurcation clearly corresponds to the disappearance
of the green equilibrium in PlaSim-VECODEm-eq (Chapter 2). Considering that the variability
which is still present to some extent in PlaSim-VECODEm-eq prevents a detection of the green
equilibrium close to the bifurcation point, the timing of the bifurcation also coincides well. How-
ever, the collapse of grid cell 3 at 8k only occurs in RM1, whereas in PlaSim-VECODEm-eq
vegetation cover is gradually reduced over time. In contrast, the stability structure of RM2 is
much simpler and all cells collapse in synchrony.

The emergence of multiple equilibria from the noisy PlaSim-VECODEm-tr time series provides
further evidence that multiple deterministic equilibria are present in PlaSim-VECODEm but do
not become apparent in probability density functions due to a noise-induced transition (Chapter 2).
Using an interactive noise level and an interactive vegetation timescale as in Section 2.5.2 leads to
similar transitions as in PlaSim-VECODEm-tr, but in a spatially explicit way (not shown).

Altogether, the regression models therefore cannot reproduce the PlaSim-VECODEm results
in every aspect but qualitatively show many similarities and provide a simple and appropriate

framework for EWS analysis.

3.3.3 Hotspot detection in the regression model

We can now answer the question where each tipping in Fig. 3.14 originates by applying our hotspot

detection algorithm:

1. We generate time slices of 100 000 yrs each with RM1 and RM2. The chosen values of B
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Figure 3.14: Characteristics of RM1 (left) and RM2 (right), depending on parameter B. Top: Equi-
librium vegetation cover at all elements (greenest solution). The elements identified as hotspots are
dashed. Some elements are dotted only to be better distinguishable from others. Bottom: real part of
eigenvalues characterizing the linear stability of the corresponding solution of the time-continuous sys-
tem. The vertical dashed lines indicate the B-values of the stationary simulations used for the hotspot
detection (red: bifurcation 1 in RM1 and RM2, orange: bifurcation 2 in RM1).

for these time slices are again depicted as dashed vertical lines in Fig. 3.14. Two time series

are generated for each forcing, one with additive noise and one with multiplicative noise.

. As the noise level is small, some grid cells in RM1 are already unvegetated and thus can be
discarded as hotspot candidates (the desert cells in PlaSim-VECODEm-eq). We therefore
do not consider grid cells where V falls below 0.004 at any time step in any time slice.

. To the rest of the grid cells we apply the hotspot detection scheme presented in Section 3.2: in
short, we repeatedly apply a degenerate atmosphere-vegetation (Held and Kleinen, 2004) to
a random selection of grid cells and each time determine an EWS. During this analysis we
successively remove grid cells which contribute least to the signal and finally identify a
hotspot from the resulting signal list as the combination of grid cells which maximises the
signal.
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Figure 3.15: Contribution of grid cells to the increasing autocorrelation as obtained with the hotspot
detection algorithm, (a) in RMI, tipping point 1, (b) RMI1, Tipping Point 2, (c) RM2. The noise
in all time series was additive, hotspot detection was applied with ny,x = 3, elimination rule 1, and
covariance based EOFs. Numbers 1 to 5 denote the individual grid cells referred to in the text.

In order to illustrate the hotspots geographically, we indicate an element’s weight at its cor-
responding grid cell (Fig. 3.15). As a weight we define the sum of signals a certain element
contributes to, as illustrated by Table 3.3. It must be noted though, that the random sampling and
the systematic removal of elements during the hotspot detection algorithm only allows qualitative
conclusions like the position of the hotspot. The quantitative differences between the grid cells in
Fig. 3.15 should therefore not be over-interpreted.

We find that before the collapse of grid cell 3 in RM1, this grid cell is detected as a hotspot of
the transition. This is of course not surprising as this grid cell is the only one showing a collapse.
In the more complex case of collapse 2 in RM1, its neighbouring grid cell 4 is identified as the
hotspot of the transition. The collapse of the 8 grid cells in RM2 is detected to be initiated by the
most western grid cell (cell 5). Hence, each collapse in our regression models originates at one
single grid cell.

To investigate the robustness of these results, we apply the hotspot detection with different
parameter settings: all time series are analysed with elimination rules 1 and 2. Relative thresholds

tini and tjp. are always 5 %, for np,x we choose 3, 5, and 8. We construct the EOFs from the
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covariance matrix as well as from the correlation matrix. As EWS we use autocorrelation and
relative variance. For explanations of these parameter options see Section 3.2. We find that the
determined hotspots are always the same for all combinations of these parameter settings.

Excluding certain time slices from PlaSim-VECODEm-tr (9k, 8k, 8.5k, 5.5k) to determine the
regression parameters for RM1 also leads to similar results with regard to the system’s stability
properties and the determined hotspots. This even holds true if we replace the original PlaSim-
VECODEm time series by a set of 20 000 bootstrapped pairs of P and V (Efron, 1979), although
some realisations then show additional bifurcations in RM1. The tendency of RM1 to show more
bifurcations than PlaSim-VECODEm may thus result from intrinsic limitations of our linear fit.
For example, orbital forcing and its impact on annual precipitation certainly does not change
linearly over time.

When reducing the length of the time series we generate with the regression models the hotspots
clearly emerge from the noise until a total length of several 1000 yr in case of autocorrelations and
several 100—1000 yr in case of variances. RM2 is even more robust: 100 yr of each time series are
sufficient to detect the hotspot when using relative variance as an EWS.

In summary, our detected hotspots are a very robust characteristic of PlaSim-VECODEm. In
the following section we document that they are also meaningful, in the sense that they yield

information on the stability properties of PlaSim-VECODEm.

3.3.4 Evaluation of results with PlaSim-VECODEm

To verify the detected hotspots we seek evidence for their existence in PlaSim-VECODEm and an
explanation in terms of the model’s physics. As we apply PlaSim-VECODEm with low resolu-
tion, present day SSTs and a quite crude representation of physical surface parameters, the model
cannot be expected to provide a very realistic climate of the mid-Holocene.

Despite these limitations, the large-scale features of the North African summer circulation are
captured reasonably. We here focus on the conditions during July to September because in the
model most precipitation in northern Africa and south-western Asia occurs during these months.
The south-westerly monsoon flow is confined to the lowest model levels and advects moisture
over the North African continent towards the heat low in central north-western Africa (Fig. 3.16a,
b). The intertropical front is very prominently indicated by a surface convergence and a strong
jump in specific moisture around 15-20° N. To the north of this front, the north-easterly trades
advect dry air from the Mediterranean region.

As in observations, easterly winds prevail in all tropospheric levels above the shallow monsoon
flow. Due to the low model resolution, the African Easterly Jet (AEJ), Tropical Easterly Jet (TEJ)
and the low-level westerly jet (Patricola and Cook, 2007) cannot be captured well as the horizon-
tal gradients in zonal wind are small. Since precipitation in the Sahel is related to the strength
and position of these jets (Nicholson, 2009), the model cannot capture the small-scale nature of
precipitation events. The seasonal migration of the rainbelt and its northward shift during the
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Figure 3.16: Vertically integrated horizontal moisture fluxes (arrows) and vegetation cover (colours)
in PlaSim-VECODEm-eq. (a) green state for 8k forcing (vertical integral over two lowest atmosphere
levels only), (b) green state for 4.5k forcing (two lowest levels only), (¢) green state for 8 k forcing,
(d) green state for 4.5k forcing, (e) difference between green and desert states for 8 k forcing, (f) differ-
ence between green and desert state for 4.5 k forcing. Fluxes are in kg/(ms), vegetation cover fractions
in %. Numbers 4 and 5 denote the individual grid cells referred to in the text.

mid-Holocene are nonetheless captured by PlaSim-VECODE. However, the zonal structure of the
rainfall pattern is in conflict with observations. While the eastern Sahel is drier than the west
in present-day observations (Andersson et al., 2010), precipitation in PlaSim-VECODE strongly
increases towards the east. There, the south-westerly flow becomes even stronger and advects

moisture from central Africa. This azonal structure is present in the complete Holocene.

3.3.4.1 Collapse 2

The west to east gradient in precipitation and the advection of moisture are also the key to un-
derstanding why the westernmost grid cell (grid cell 5) is a hotspot in RM2. The substantial
precipitation gradient is reflected in the regression parameters Fy,. In addition, the interaction
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Figure 3.17: Fixed points of Egs. (3.1), (3.3), and (3.2) for 4.5k conditions. The regression involves
the 8 grid cells enclosed in the purple box; cover fractions outside this area are set to mean conditions
in PlaSim-VECODEm-eq.

matrix k;; reveals that the impact of grid cell 5 on other cells is exceedingly large for reasons
explained below. When orbital forcing evolves, the precipitation pattern shifts towards the east.
Therefore grid cell 5 is the driest element in RM2. Its influence on its easterly neighbors due to
moisture advection keeps the system green for a long time. When precipitation in cell 5 finally
is too low for vegetation to be sustained, precipitation in the other cells also decreases below the
critical threshold. Hence, these other elements experience an induced tipping and the hotspot is to
be found at cell 5.

The non-trivial structure of interactions k;; implies that more equilibria may exist in PlaSim-
VECODEm than those found by choosing global forest or desert initial conditions as in Sec-
tion 2.4.2. Our conceptual model framework (Eqgs. 3.1, 3.3, and 3.2) is suitable to determine
fixed points of the system in a more systematic way. To dispose of the deficiencies of including
time in the regression model, we now apply the regression to our 4.5 k simulation with PlaSim-
VECODEm-tr only, which corresponds to dropping the term s;B in Eq. (3.3). Again, we consider
the same line of eight grid cells as in RM2. As it is not possible to find the fixed points analyt-
ically, we randomly select 10 million initial conditions and run RM2 (without noise) to a steady
state. As a strategy to sample the initial conditions in phase space we apply a regular, completely
random, and a latin hypercube sampling (using MATLAB function lhsdesign). Independent of
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Figure 3.18: Equilibration of RM2 after choosing the initial condition V; = 1. Left: all timescales
7; = 10. Right: 7, =2, all other 7; = 10.

the sampling method we obtain 5 deterministic solutions (Fig. 3.17). By reintroducing these fixed
points as initial conditions in PlaSim-VECODEm-eq with a coupling frequency of 30 yrs we can
verify the existence of all five solutions in PlaSim-VECODEm-eq.

The structure of these solutions is suggestive with regard to the position of the hotspot: all
equilibria have in common that any green grid cell permits only green grid cells to its east. This
feature is due to the advection of moisture with the westerly monsoon flow. In addition to this
moisture recycling, the enhanced evaporation affects atmospheric stability and the circulation it-
self (Goessling and Reick, 2011). Also, an impact of easterly on westerly cells exists due to albedo
induced changes in monsoon strength. In case of grid cell 5 both effects work in the same direction
which explains its large importance: first, it supplies additional moisture to its eastward neighbors
via recycling. Second, it enhances the thermal low and thus the low-level south-westerly mon-
soon flow which supplies the more easterly region. As this flow is overcompensated by the export
of moisture towards the west in higher levels, the vertically integrated moisture flux is towards
the west (Fig. 3.16d), but the difference between green and desert state (Fig. 3.16f) indicates the
enhancement of low-level westerlies due to the vegetation.

In addition to this interpretation of our hotspot detection results, RM2 also provides an instruc-
tive example on the caveats of choosing initial conditions: Although the system collapses from its
greenest to its driest state after 3.5 k, there are other intermediate equilibrium states. In particular,
there is one solution which resembles the state in Fig. 3.17b. During the collapse, spatial mean
vegetation passes a value which is identical to this other intermediate equilibrium. However, the
trajectory of the collapse from green to desert does not pass the attractor basin of the intermediate
equilibrium. This intermediate equilibrium would therefore remain hidden to the modeller who
chooses extreme initial conditions and varies orbital forcing. This example demonstrates that ex-
treme initial conditions are not necessarily extreme in terms of phase space and may accidentally
even lie in the same attractor basin although other basins may exist. In RM2, hidden equilibria can
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Figure 3.19: Evolution of vegetation cover fraction in PlaSim-VECODEm-eq with perturbations
in different areas. All vegetation cover fractions are averaged over the complete region shown in
Figs. 3.20 and 3.15 (5° N-50° N, 14.6° W-76.5° E). The colours correspond to the areas marked in
Fig. 3.15, where vegetation cover is set to O (a) or 1 (b).

exist due to some negative values in interaction matrix k (in particular, the influence of elements
2 and 8). The adequate choice of initial conditions is therefore a non-trivial task.

Furthermore, even trajectories resulting from one and the same initial condition can end up in
different equilibrium states. Invoking an (imaginary) potential, a trajectory only follows the local
gradient if there is one timescale for movements in all directions. This is the case in our regression
models, but not in PlaSim-VECODE, where the timescale of vegetation changes at each grid cell
depends on local climate. As an example, we chose the initial condition V; = 1 for all i in RM2
with 3.2k conditions. If we set all 7; = 10, the system collapses to the desert equilibrium as we
know from Fig. 3.14 (Fig. 3.18 left). In contrast, if we set 7, = 2 (keeping all other timescales at
10), element 2 collapses quicker than the other elements, which enhances rainfall P at these other
elements. Although element 1 has also collapsed, vegetation can still exist at the eastern part of
the region (Fig. 3.18 right). This is the intermediate state mentioned above.

As we set all 7; =5 in our original RM2, the system stays in the greenest state for a long
time when B is varied (Fig. 3.14), while some of the fixed points with intermediate vegetation
cover disappear. When vegetation at the hotspot collapses, all elements collapse in synchrony,
precipitation at all grid cells becomes too low to sustain vegetation and the system drops into the

driest state.

3.3.4.2 Collapse 1

The zonal gradient in precipitation and its shift over time are also present from 9k to 6 k. Like
for RM2, the grid cells with the least precipitation are also at the western margin of the model
region. This is the reason for the collapse of grid cell 3 in RM1, which has no consequences for
the rest of the system. In contrast, our hotspot detection method identifies the rather wet grid cell
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Figure 3.20: Vegetation cover fractions (in %) in PlaSim-VECODEm-eq after initialisation in the
greenest equilibrium with no perturbation (a—c), no vegetation in area 2 (red grid box, d—f), and no
vegetation in area 4 (blue, g—i).

4 as the hotspot of collapse 1 (second collapse in RM1), implying a decreasing stability and thus
an increasing sensitivity to perturbations at this point. To verify this result we initialise PlaSim-
VECODEm-eq with 8k forcing and a coupling frequency of 20 yrs in the green and desert equilib-
rium but impose a perturbation in certain test areas (enclosed by coloured boxes in Fig. 3.15). In
case of the green initial state, we set the test area to desert conditions, in case of the desert initial
state we set it to 100 % grass cover. In the test areas, cover fractions are kept fixed at these initial
conditions, while the dynamic vegetation is still active in all other areas. As a result we find that
the complete system can be forced to flip into the opposing equilibrium by a perturbation at grid
cells 3 and 4 (area 1; Fig. 3.19). Even a perturbation just in grid cell 4 (area 2) has this effect,
though after some time in an intermediate state in the case of green initial conditions. In contrast,
the two westernmost grid cells in the Sahara (area 3) and even the complete north-eastern half
of the model region (area 4) do not have a comparable effect on V in the remaining system part,
which remains unaffected by the perturbations (Fig. 3.20).

An analysis of the moisture fluxes at 8 k reveals the reason for the model’s vulnerability at the
hotspot: North Africa, as well as south-west Asia, are both supplied by moisture which originates
in the Atlantic and Indian ocean and then passes over the Arabian peninsula (Fig. 3.16 a,c). There
the low-level circulation splits into an easterly part, turning back to North Africa, and a branch that

extends northward over south-west Asia, and joins the mid-latitude westerlies. Therefore, the west
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African part of the bistable region not only receives moisture from the direct low-level monsoon
flow but also from this moistening of the easterlies aloft. The contribution of these two sources
is most apparent in the difference between the green and desert equilibrium states in PlaSim-
VECODEm-eq (Fig. 3.16e). With vegetation present, both sources are enhanced and contribute
to the local convergence of moisture. The maximum surface pressure difference is located at the
northern Red Sea, coinciding with the detected hotspot. Hence, imposing desert conditions in
this key area weakens the heat low and the cyclonic circulation over Arabia and thus cuts off the
moisture supply to both circulation branches. Therefore, the rest of the vegetation disappears and
the resulting lack of moisture convergence leads to a rapid transition to the desert equilibrium in
PlaSim-VECODEm.

3.3.5 Summary and conclusions

The possibility to use indicators of slowing down to analyse the climate system has been docu-
mented extensively in recent years (Held and Kleinen, 2004; Dakos et al., 2008; Lenton et al.,
2009, 2012b). In Section 3.2 we have proposed a new method to infer the position of hotspots
in a diagnostic way from model output. Here, we have applied our method to a regression model
based on results from a global atmosphere-vegetation model, and have identified its hotspots.

We have thus documented that the hotspot detection method can provide information on the
causality of a tipping and on the sensitivity of the model under consideration. If the model rep-
resents reality in an adequate way, an analysis with EWS can indicate where the earth system is
particularly vulnerable to perturbations. On the other hand, if the model behaves in an unrealistic
way, a hotspot detection analysis may improve the knowledge on its shortcomings and make its
limitations more apparent. This knowledge can be beneficial for further model development. In
case of PlaSim-VECODEm, a perturbation of surface parameters at a single grid cell can change
the circulation on a regional to continental scale, and it remains doubtful if this result is realistic.
However, we have identified the Red Sea area in the model as a crucial region for the moisture
supply of Northern Africa and South West Asia at 8 k.

The application of EWS to infer this information was only possible via the somewhat technical
detour of fitting a regression model to PlaSim-VECODEm-tr. A direct analysis of the model out-
put, though technically possible, would have yielded inscrutable results as the requirements for
EWS are not met. This restriction illustrates that applying EWS based tools of analysis to data of
unknown origin is problematic. Instead, it should always be established if the conceptual frame-
work of analysis is an adequate description of the processes which have generated the data. In
the case of PlaSim-VECODE-tr, we have documented before that the large multiplicative noise is
in conflict with this concept (Chapter 2). Although the green equilibria in PlaSim-VECODEm-eq
disappear due to an instability at the corresponding hotspot, we therefore cannot draw a conclusion
regarding the causality of the collapses in PlaSim-VECODEm-tr. There, the large variability elim-
inates the complex deterministic stability properties and the hotspots of the model are probably
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much less focussed.

Another limitation of the hotspot detection method is the requirement of very long time series,
a condition hardly to be fulfilled by complex earth system models. In our example system 3 in
Section 3.2 we needed time series of the order of 10 000—100 000 time steps (the dynamic system’s
relaxation time being 5) to obtain robust results. In the case of our regression models the results
are much more promising. Even in RM1 with its 52 state variables, the hotspot is detectable
from several 100 to 1000 time steps, and is basically independent of parameter choices during the
analysis. The reason is that the hotspots consist of one single element which is well separable
from the others, in contrast to our idealised setting of 9 identical elements in Section 3.2.

It therefore seems possible that the hotspot detection method or related approaches can yield

useful information on the susceptibility in other climate models.
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Chapter 4

Conclusions

4.1 Summary of results

To summarise, we briefly readdress our leading research questions from Section 1.3:
(I) How do strategies for the detection of multistability perform in PlaSim-VECODE?

We have found that constructing a stability diagram from our uncoupled experiments yields
misleading results regarding the number of stable equilibria. The most important reason is the
spatial heterogeneity within the area under consideration. Furthermore, we conclude from our
experiments with PlaSim-VECODEm-eq that the coupled model has multiple equilibria for mid-
Holocene orbital forcing. Two solutions (green and desert state) are found by choosing different
initial conditions in PlaSim-VECODEme-eq as this system is close to equilibrium due to small pre-
cipitation variability and the mode of coupling. Further evidence for this interpretation is provided
by our regression models based on PlaSim-VECODEm-tr (Section 3.3), which verify the solutions
found in PIaSim-VECODEm-eq. However, the sensitivity to initial conditions depends on the way
of coupling: In PlaSim-VECODEm-tr the large variability allows only one possible steady state.
Also for the reason of large variability, no hysteresis is obtained in PlaSim-VECODEm-tr when
the orbital forcing is reversed in time. The shape of the pdf of vegetation cover is unimodal despite
the multistability in PlaSim-VECODEm. The reason is that the timescale of vegetation dynamics
directly depends on precipitation. The shape of the pdf does therefore not reflect the stability of
the deterministic part of the system.

The nature of the model’s variability is also the clue to our second question:

(IT) What conclusions do these strategies allow regarding the possibility of a rapid transition?

Despite the lack of a static hysteresis or a multimodal pdf and despite the large climate vari-
ability there are vegetation collapses at different locations and at different times. Because of the

non-linear relation between vegetation dynamics and precipitation the green state before each

transition is initially stabilised by the high variability. When precipitation falls below a critical
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threshold, the desert state is stabilised as variability is then also decreased. Our study with a
one-dimensional stochastic model proves that this interaction between noise level and state of the
system leads to a continuous but sudden change in the pdf when orbital forcing is varied. This
large sensitivity to parameter changes in a certain regime is the stochastic analogy to a determin-
istic Tipping Point in the absence of a multistability. Therefore, transitivity and unimodality do
not guarantee the absence of a Tipping Point. Due to the stochasticity the exact timing of the tran-
sition and its phenomenology are subject to chance. However, the likelihood of an abrupt change
decreases with the strength of the atmosphere-vegetation feedback.

Finally, we have addressed the limitations and the potential of EWS with regard to spatial
complexity by asking:

(IIT) How can EWS be applied to infer information on the structural stability of PlaSim-VECODE?

We have argued that in a general context like a complex climate system model, the critical
subsystem that exhibits a loss in stability (hotspot) and the critical mode of the transition may be
unknown. A detection of EWS at individual elements of a multidimensional-dimensional system
can therefore fail when the local loss in stability is small as in cases of an induced tipping or
collective multistability. However, EWS can therefore be applied as a diagnostic tool to find
the hotspot of a sudden transition and to distinguish this hotspot from regions experiencing an
induced tipping. For this purpose we have developed a stochastic algorithm to identify a hotspot
as a certain combination of grid cells which maximises an EWS.

When applied to PlaSim-VECODEm by using a regression model, we have identified a hotspot
of one particular grid cell for each vegetation collapse. We have demonstrated with additional
experiments that the detected hotspots are indeed a particularly sensitive region in the model and
have given a physical explanation for these results. The method can thus provide information on
the causality of sudden transitions and may help to improve the knowledge on the vulnerability of

certain subsystems in climate models.

4.2 Discussion

Our results as well as other studies can be brought into a broader context concerning the relation
between a model’s stability properties and its phenomenological behaviour (its response to initial
conditions or external forcing, as well as its statistical properties). Our results demonstrate that
this relation is crucially linked to spatial heterogeneity and the origin of temporal variability in the
model. However, a complex climate model is usually built from fundamental laws and specific
parameterisations, while spatial interactions and the nature of variability are emergent properties.
It is thus a common situation in practice that these properties are not perfectly known. This is
true especially if the model user is not the model developer. For the model user, the phenomeno-

logical behaviour is directly accessible and much easier to obtain than a complete mechanistic
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Table 4.1: Uniqueness of strategies to detect multiple equilibria.

method model result conclusion on comments
existence of
multiple stable
equilibria
. §everal sFable ambiguous S1, Tl
Construction of a intersections
stability diagram iny one stable ambiguous S1.T1
intersection
Sensitivity to initial yes (intransitive) yes
conditions no (transitive) ambiguous S2, T3, T4, TS5
Existence of static yes yes
hysteresis no ambiguous $3, T3, T4, T5
Probability density unimodal ambiguous T4, TS5
function of steady state multimodal ambiguous TS5

understanding. Essentially, the problem is similar to the inference of a data generating process
from data of unknown origin.

We therefore illustrate what conclusions different methods of analysis can potentially allow re-
garding the existence of multiple equilibria (Table 4.1) and Tipping Points (Fig. 4.1). We also list
several arguments with regard to spatial complexity (S) and different noise properties (T) which
explain the possible ambiguities of this inference problem. The numeration in this list is reflected
in Table 4.1 and Fig. 4.1.

Issues related to spatial heterogeneity and structural complexity:

S1. Stability diagrams are an unreliable tool for the detection of multiple equilibria in cases of

spatial complexity (Section 2.4.1).

S2. Extreme initial conditions in phase space may not lie in different basins of attraction (Sec-
tion 3.3.4.1), the identified equilibria may not be the only ones, and they could consist of
several independent multiple equilibria (Dekker et al., 2010). In extreme cases, riddled
basins of attraction may occur (Viana et al., 2009). Furthermore, the final state does not
only depend on the initial condition, but also the intrinsic timescales of the system (Sec-
tion 3.3.4.1).
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S3. A static hysteresis is only found if a critical parameter is varied across a bifurcation point
which involves the current state of the model and if the bifurcation is of catastrophic type
(Thompson et al., 1994). Moreover, when an external parameter is varied in practice, a dy-
namic hysteresis is obtained (Bordi et al., 2012; Fraedrich, 2012). This can lead to drastic
changes like in the case of a rate-induced tipping in a slow-fast dynamical system (Wiec-
zorek et al., 2011; Ashwin et al., 2012) or if the system’s state suddenly finds itself in another

basin of attraction.

S4. Indicators of slowing down (EWS) may fail if the system’s extent is ill-defined. The pos-

sibility of passive elements and collective bistabilities need to be addressed and can help to
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Figure 4.1: Inference of existing Tipping Points from other model properties.

Issues related to temporal variability (noise):

T1. Assoon as the noise is not small anymore, the mean of a steady state is not identical to the de-
terministic equilibrium (Section 2.4.1). It is therefore problematic to infer the deterministic

stability diagram from a steady state with variability.

T2. Also in all cases of substantial noise, EWS do not sample the local stability anymore and are
not directly related to an eigenvalue of the deterministic system. Potential indicators can

exist but are very system-specific (Section 3.2).

T3 - Intermediate additive white noise. Although the system’s long-term behaviour is indepen-
dent of the choice of initial conditions and shows no static hysteresis, the multimodal pdf
will reveal the number (though not the position) of deterministic stable states (Horsthemke
and Lefever, 1984). The abruptness of a forced transition then depends on the relation be-
tween the timescale of the external parameter change and the typical escape time (Thompson
and Sieber, 2011a).
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T4 - Large additive white noise. As before, the system is insensitive to initial conditions and
lacking a static hysteresis. In addition, the pdf is unimodal and shows no Tipping Point
(Horsthemke and Lefever, 1984; Liu et al., 2006) as the deterministic states are completely
obliterated by the noise.

T5 — Multiplicative white noise. In case of sufficiently large noise, the system is transitive (inde-
pendent of initial conditions) and cannot show a static hysteresis. However, as documented
in Chapter 2, the multiplicative nature of the noise can lead to sudden changes in the pdf
which results in a Tipping Point. The pdf does not allow direct conclusions with regard to
multistability (Chapter 2; Liu, 2010).

T6 — Additive red noise. In the case of red noise, a Tipping Point can exist if the timescale of
forcing is not too slow. This is even possible in case of a weak feedback (Liu et al., 2006).

Reverting the direction of reasoning in Fig. 4.1, the occurrence of a sudden transition does
also not allow unique conclusions on a model’s properties. First, a sudden transition may be
the result of a large change in forcing or a large perturbation unrelated to a parameter change.
Second, a Tipping Point may also exist when the feedback is not large enough to produce multiple
equilibria. Third, a sudden transition in a particular time series can even occur in the absence of
a large feedback due to intrinsic thresholds, red noise (Liu et al., 2006), or multiplicative white
noise (Chapter 2), or even chance (though this is improbable in PlaSim-VECODE; Section 2.5.2).
This stochasticity in PlaSim-VECODE and the related regression models also raises the question
how much palaeoclimatic records can be expected to reveal on specific mechanisms. In our one-
dimensional stochastic model it has become apparent that the existence and timing of a rebound
or early collapse depends on the realisation. Unfortunately, reality only provides one realisation
of the termination of the AHP. In this regard, a direct comparison between palaeoclimate proxies
and model results is problematic. Furthermore, even a perfect knowledge on the phenomenology
of the real transition could still allow for several interpretations. Hence, without any knowledge
on the system’s mechanisms and the nature of the fluctuations, one cannot infer the feedback from
the transition’s abruptness.

Returning to climate modelling, our compilation of results documents that apparently contra-
dictory results can be obtained when different methods are applied to a model. It therefore seems
problematic to infer anything on multistability on the basis of one particular method. Instead,
only an appropriate combination of methods can provide knowledge on the intrinsic properties
of a complex climate model. To this end, the specific advantages and disadvantages of methods
should be taken into account. For example, in cases of small noise and long time series indicators
of slowing down can be applied to investigate whether a sudden transition is due to a loss in sta-
bility or rather due to a threshold-behaviour or a random perturbation. In contrast, EWS can also
indicate a loss in stability in the absence of a Tipping Point (safe bifurcation; Thompson et al.,
1994). In cases of large noise, the phenomenology of a sudden transition such as the potential

overlapping of states can provide suggestions as to the nature of the variability. As documented in
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Section 3.3, a regression can contribute to the full picture, if the results are statistically robust and
if there is sufficient knowledge on the model’s structure. As we have shown in Chapter 2, an asyn-
chronous coupling of models, although originally invented primarily due to technical limitations,
can also be a fruitful strategy of analysis.

In addition, a fundamental mechanistic understanding is crucial to explain model results, and
the methods of analysis discussed in this thesis can only provide a complementary but no exclusive
strategy. It must also be considered that our list of methods and cases is by no means complete:
The interaction of noise with the slow variables of a system may give rise to phenomena that are
not addressed in this thesis, and global bifurcations for which EWS cannot be applied can also
exist in climate models (Simonnet et al., 2009). Moreover, our discussion is mostly restricted to
systems which can be separated into a slow deterministic part (involving stable fixed points) and
a fast stochastic part. If this is not the case, the task to determine the generating process behind
the time series becomes much more difficult. For example, even the cosine produced by a simple
linear equation yields a bimodal pdf. At the other extreme of complexity, chaotic dynamics can
give rise to a vast number of phenomena such as the existence of multiple regimes or sudden state
changes related to intermittency, which arise from the intrinsic dynamics and do not require any

external parameter perturbations.

4.3 Research perspectives

It is often stated that current earth system models do not show the multiple equilibria that have
been found in simpler models in the past, at least for the MOC (Drijfhout et al., 2010), North
African vegetation cover (Brovkin et al., 2009) and Arctic sea ice cover (Notz, 2009; Tietsche
et al., 2011). Our conclusions illustrate that there is no fail-proof method for the detection of
multiple equilibria in complex climate models. This fact could well be one reason for the failure
to find multistabilities in modern ESMs, where potential multistabilities are much harder to reveal.

To test this speculation, more studies involving a variety of methods are required. In addi-
tion to the methods addressed in this thesis, other numerical methods of bifurcation analysis such
as continuation methods (Dijkstra, 2007; Simonnet et al., 2009; den Toom et al., 2012) can be
useful, and all methods should be supplemented with a thorough mechanistic understanding of a
model’s properties. In particular, it needs to be established how the fast variability interacts with
the slower parts of the system and what determines the spectral properties of the variables under
consideration. If their applicability can thus be established, EWS may play a role in identifying the
structural stability of climate models. To this end, more systematic studies on the performance of
EWS in different model frameworks would be beneficial as previous modelling studies on EWS
have been based on only a few principle models such as logistic growth equations to describe
population dynamics (May, 1977) or ocean circulation models of intermediate complexity to sim-
ulate changes in the MOC (Held and Kleinen, 2004; Livina and Lenton, 2007; Lenton et al., 2009).
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We consider the application of EWS analysis to climate observations or proxies where the gen-
erating processes are badly understood as particularly problematic. In many cases, the system
under consideration may be too badly understood to establish the validity of the concept (Hastings
and Wysham, 2010; Dakos et al., 2011). For example, the phenomenology of Dansgaard-Oeschger
events (Crucifix, 2012) and glacial cycles (de Saedeleer et al., 2012) can be reproduced by a num-
ber of different dynamical systems. An increase in autocorrelation of temperature fluctuations
may then be completely unrelated to the phenomenon of slowing down. An increase in mixed
layer depth (T. M. Lenton, personal communication) or the interactive timescale of grass in VE-
CODE provide simple examples. In addition, changes in the spectrum of the externally imposed
perturbations have to be considered (Scheffer et al., 2009).

The use of EWS in the case of climate records is also limited by a lack of statistical significance
and robustness (Dakos et al., 2008; Lenton et al., 2012a,b), the question of spatial complexity
(particularly in the case of single proxy records), irregular sampling and dating uncertainties. If
EWS were to be used as a method to predict sudden changes, a reference system would be needed,
as it is otherwise unknown what maximum signal is to be expected, what constitutes the external
forcing to the tipping element and how this forcing will evolve in the future.

We therefore argue that the promise of an Early Warning System for Tipping Points based on a
general toolbox cannot be fulfilled. The application of EWS in a diagnostic framework, although
less popular, may therefore be more promising. Our hotspot detection algorithm provides one
example in this direction and could potentially be applied to other problems such as fluctuations of
sea ice cover close to a snowball earth instability. However, other methods with better performance
or a more stringent logic in terms of a physical interpretation may provide alternatives in the future.

In order to link such studies with fast (and thus rather simple) climate models to the real climate
system, a model hierarchy (as promoted by Ghil, 2001; Claussen et al., 2002; Fraedrich, 2012, and
others) is required. In such a setting it will be a crucial challenge to establish that the essential
stability properties carry over from complex to simple models and that they also represent reality

adequately (for example by using data assimilation).

As to the nature of the real termination of the AHP and the role of the atmosphere-vegetation
feedback, the possibilities to resolve this issue seem limited. First, palaeoclimate and palaeovege-
tation data for model evaluation are sparse, and will remain sparse as the North African soils from
the mid-Holocene have been eroded away. Second, the number of possible hypotheses is not easy
to be reduced. Even in the absence of stochastic effects addressed in the previous section, spatial
heterogeneity could have influenced the timing of the transition at different locations. In PlaSim-
VECODEm-tr, the two collapses in different areas are most probably a result of the low model
resolution. However, local characteristics such as topography are important for the establishment
of vegetation (Waller et al., 2007) and could have produced a similar effect in reality.

It has been argued by Williams et al. (2011) that the asynchronous termination of the AHP at
different sites suggests a weak atmosphere-vegetation feedback in North Africa. In the light of the
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arguments presented above this is not a compelling deduction. Although the spatial heterogeneity
does suggest a weak coupling between sites, the possibility of strong feedbacks on smaller than
continental or regional scales, in similarity to the hotspots in Chapter 3, cannot be excluded. The
modelling of reaction-diffusion equations on heterogenous grids by van Nes and Scheffer (2005),
Donangelo et al. (2010) and Dakos et al. (2010) provide simple examples of such desynchronised
tippings. There is also evidence from models and observations that small-scale feedbacks be-
tween vegetation and environmental conditions, such as water and nutrient availability, can play
an important role in the determination of critical thresholds and the formation of vegetation pat-
terns on a larger scale (von Hardenberg et al., 2001; Kéfi et al., 2007; Rietkerk et al., 2002, 2004;
Rietkerk and van de Koppel, 2008). We therefore agree with Scheffer et al. (2005) and Rietkerk
et al. (2011) that such ecological feedbacks and their potential impact on larger scales should be
further investigated. However, our results indicate that the role of temporal variability needs to be

addressed also in the context of small-scale feedbacks.
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