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[1] Statistical cloud schemes with prognostic probability distribution functions have
become more important in atmospheric modeling, especially since they are in principle
scale adaptive and capture cloud physics in more detail. While in theory the schemes
have a great potential, their accuracy is still questionable. High-resolution
three-dimensional observational data of water vapor and cloud water, which could be
used for testing them, are missing. We explore the potential of ground-based remote
sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments
using the “perfect model approach.” This means that we employ a high-resolution
weather model as virtual reality and retrieve full three-dimensional atmospheric
quantities and virtual ground-based observations. We then use statistics from the virtual
observation to validate the modeled 3-D statistics. Since the data are entirely consistent,
any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we
find that the mean ratio can be evaluated decently but that it strongly depends on the
meteorological conditions as to whether the variance and skewness are reliable. Using
some simple schematic description of different synoptic conditions, we show how
statistics obtained from point or line measurements can be poor at representing the full
three-dimensional distribution of water in the atmosphere. We argue that a careful
analysis of measurement data and detailed knowledge of the meteorological situation is
necessary to judge whether we can use the data for an evaluation of higher moments of
the humidity distribution used by a statistical cloud scheme.
Citation: Grützun, V., J. Quaas, C. J. Morcrette, and F. Ament (2013), Evaluating statistical cloud schemes: What can we gain
from ground-based remote sensing?, J. Geophys. Res. Atmos., 118, 10,507–10,517, doi:10.1002/jgrd.50813.

1. Introduction
[2] Feedbacks between clouds and the climate system

have been identified as one of the greatest challenges in
refining climate change projections [LeTreut et al., 2007].
Though many processes in clouds are well known, details
about the cloud physics remain a challenge and are not com-
pletely understood. Even if they were, their inclusion in
global climate models (GCMs) is not straight forward since
there is a huge gap between the scales of the physics and
the model grid: Cloud physical processes start in the range
of nanometers to millimeters for cloud nuclei and droplets
and range up to many kilometers for cloud systems. Global
climate models have horizontal grid lengths of hundreds of
kilometers, and regional climate models use grid lengths of
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tens of kilometers. Thus, clouds are normally subgrid-scale
features in these models and need to be parameterized.

[3] Of major interest in the simulation of climate is the
interaction of clouds with radiation. Thus, a correct predic-
tion of cloud cover within the grid boxes is essential. A
common approach to calculating the grid box mean cloud
cover is to assume that there is a subgrid-scale distribution of
humidity within the grid box and to calculate the cloud cover
from the portion of the distribution that is above saturation.
The distribution may be a simple top hat function with a
fixed distribution width as in LeTreut and Li [1991], or a
more sophisticated distribution described by a beta function
or multiple Gaussians. Such sophisticated schemes predict
higher moments like variance and skewness and are called
statistical cloud schemes [e.g., Tompkins, 2002]. They rep-
resent the cloud cover in a more physical way and have the
potential to describe the subcloud variability as well. Some
of these schemes even use joint distributions of total water,
temperature, and the vertical wind speed [e.g., Golaz et al.,
2002; Zhu and Zuidema, 2009] and thus attempt to cap-
ture the physics of clouds even better. However, there is no
detailed knowledge about the exact dependence of variance
and skewness of the total water distribution on cloud pro-
cesses such as turbulence and convection and many closure
assumptions have to be made.
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[4] To be confident that such sophisticated cloud schemes
work properly, a thorough evaluation of the prognostic
higher-order moments of variance and skewness is desirable.
A simple way to estimate these higher moments would be
to apply high-resolution modeling and perform a statistical
analysis of the model variables. The downside of this method
is that a very high resolution in the order of 10–100 m is
needed to simulate all relevant small-scale features of a
cloud field. For one, extensive realistic weather simulations
on such scales are not available yet. Another, even at such
high resolutions, still some processes such as cloud micro-
physics and turbulence remain partly subgrid scale and need
to be parameterized. We would prefer to access the statistics
through high-resolution measurements of the atmosphere.

[5] Suitable observation data and methods to do so are
scarce. One approach is to investigate the statistics of
observed column-integrated quantities like water vapor and
cloud water or ice from e.g., MODIS [King et al., 2003],
but these products cannot give detailed information about
the deficiencies on the process level, because they lack
the required vertical resolution. Vertically resolved infor-
mation at a global scale, in turn, has so far only be used
in a simplified framework [Quaas, 2012]. Data on cloud
properties at certain heights with high temporal resolution
can be obtained from aircraft measurements [Duynkerke
et al., 1999; Tompkins, 2003; Boutle et al., 2013]. If
airborne remote sensors are present, a high vertical res-
olution can be obtained. However, flights cannot deliver
long time series and long statistics of the situation but only
“snapshots” on certain flight legs.

[6] Longer time series originate from long-term ground-
based remote sensors, such as lidar, radar, and microwave
radiometers at certain locations. Combinations of various
instruments as described, e.g., in Löhnert et al. [2004] yield
additional quantities, which cannot directly be measured.
The high temporal and vertical resolution of such measure-
ments seems to have a unique potential to gain statistical
information about the atmospheric state to evaluate statisti-
cal cloud schemes. The great challenge in using these data,
however, is to compare time statistics of point measure-
ments, i.e., comparably tiny vertical columns measured from
one location at the ground, with the spatial snapshot statistics
from the huge model grid boxes.

[7] Such an approach has been used by many authors
in order to evaluate first-order moments such as the grid
box mean of variables like cloud cover, liquid water
path, and liquid water content [e.g., Mace et al., 1998;
Hinkelman et al., 1999; Hogan et al., 2001; van Meijgaard
and Crewell, 2005; Bouniol et al., 2010; Morcrette et al.,
2012]. It is not clear, however, whether the same approach
can be used to evaluate higher-order moments such as vari-
ance and skewness of the moisture distribution since only
few studies have been done on the applicability of the meth-
ods, and they indeed focus on the comparability of space-
borne or quasi-instantaneous 2-D line measurements with
3-D quantities [e.g., Astin et al., 2001; Uttal and Kropfli,
2001; Hennemuth et al., 2005].

[8] In this paper, we investigate in detail the compara-
bility of high temporal resolution single-column data with
high spatial resolution but instantaneous three-dimensional
data. We explore the potential use of ground-based remote-
sensing data to evaluate statistical cloud schemes by using a

“perfect model approach.” We employ the mesoscale, partly
cloud-resolving COSMO-DE model [Baldauf et al., 2011]
of the Deutscher Wetterdienst (DWD, German Weather
Service) as a “virtual reality” and simulate two cases. The
first case is a simulation of the weather over Germany on
16 June 2009, a day with synoptic forcing, which resulted
in a cloudy day with some moderate rain. Our second
case is 19 September 2012, a postfrontal case with locally
initiated convective clouds and no rain in our region of
interest. We concentrate on one COSMO-DE grid point serv-
ing as “virtual supersite” and construct a larger box around
it, corresponding to a grid column of the global circula-
tion model ECHAM6 (European Centre/Hamburg (GCM
model)) [Stevens et al., 2013]. Through COSMO-DE’s high
spatial and temporal resolution, the model offers both good
spatial statistics within the region representing the GCM
grid box and good temporal statistics, i.e., a statistics over
a certain length of a time series, with a high vertical res-
olution at the COSMO-DE grid point. Thus, the virtual
reality setup allows us to mimic the situation we would
have when evaluating a climate model with ground-based
remote sensors.

[9] Regardless of whether the COSMO-DE model cap-
tures the correct weather situation and all the subgrid-scale
processes well or not, we get a data set from the simula-
tion which is in itself consistent. In our virtual reality, we
have a perfectly simulated model grid box (i.e., the spatial
statistics in the global grid box) which is entirely consistent
with the observations (i.e., our virtual measurement). Thus,
any deviation between the statistics derived from the vir-
tual observations to those derived from the virtual GCM grid
box can exclusively be attributed to a lack of representativity
when using the time-height data.

[10] The paper is organized as follows: we describe the
methods we used in section 2, then we show and discuss our
results and present idealized artificial cases for clarification
of the results in section 3, and provide final thoughts and
conclusions in section 4.

2. Methods
2.1. What Do We Want to Gain From the Evaluation?

[11] To evaluate methods of testing statistical cloud
schemes with observational data, we first have to ask our-
selves what we actually need as data. Naturally, we are
interested in the (total) cloud cover, which is the “end result”
of our scheme. We can get the cloud cover from satellites.
We need to use the respective satellite forward operator in
the model and keep in mind the specific challenges of the
satellite retrieval and the model operator.

[12] However, once we realize that the cloud cover is not
well simulated, we would like to figure out why this is the
case. We can get an estimate by analyzing the error region-
wise [Weber et al., 2011], knowing that, for example, in
the tropics, convective processes are the dominant processes
[e.g., Morcrette, 2012]. But still, ideally, we would like to
assess the error on the process level to reformulate and cor-
rect the terms in the equations, and for this we need detailed
vertically resolved data.

[13] For an evaluation on the process level we need
to focus on the specific distribution moments used in the
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Figure 1. Retrieval of temporal statistics from time series
corresponding to spatial statistics within the model grid box.
(top) Example measurement of water vapor mixing ratio
from a differential absorption lidar located in Hamburg. The
blue circle marks areas where the data have to be excluded
or corrected. The red “time-height box” inside the plot corre-
sponds to the (bottom) red global model grid box assuming
a constant wind speed v.

scheme. In the case of the Tompkins scheme [Tompkins,
2002], for example, we need the mean, the variance, and
the skewness of the horizontal distribution of total water on
each model level. Ideally, this would be a spatial statistics
at a specific time, but since we have no access to the full
3-D information of the atmosphere from observations, time
statistics over high-resolution ground-based measurements

are often thought to be the way to get an idea about how the
model is behaving.

[14] The direct approach to compare the time series statis-
tics with the spatial statistics is to “just wait long enough.”
For the time of the spatial output from the model, we go
to the same time in the time series and put a time window
around it; the duration of which depends, for example, on
the wind speed. This is illustrated in Figure 1 at the example
of a differential absorption lidar (DIAL) data set measured
in Hamburg (H. Linné, personal communication, 2010).

[15] Because the time window is chosen to be symmetric
around the base time, the time t0 corresponds to the cen-
ter point of the grid box. Assuming a grid box width of,
e.g., 200 km and a wind speed of 10 m/s, the width of the
time window would be � 5.6 h. Figure 2 shows an exam-
ple of such a retrieval with a fixed window size of � 5.6 h
for a DIAL data set from 16 May 2006, measured in Ham-
burg. We notice that the general shape of the beta distribution
employed by Tompkins [2002] fits the data well, apart from
where there are double peaks in the data set. In addition
we find negative skewness, for example, for 0.6–0.9 km at
time 5.6–11.2 h, which is not allowed by the current imple-
mentation of that cloud scheme, and which seems to point
to errors in the scheme. The data look tempting to be used
for a thorough evaluation of our cloud scheme, because the
distributions look so nice and seemingly realistic already.

[16] On a closer look, immediately two challenges arise:
first, the wind speed might not be the same on all levels. This
could easily be corrected by choosing different time win-
dow lengths at the different levels [Illingworth et al., 2007].
However, this assumption would only work if the mean wind
vector is a fair representation of the true wind over the time
window. We ignore this problem in this study, since the
following point is much more severe and more difficult to
tackle: While the spatial data set is a snapshot in time, the
time series obviously undergoes a time evolution due to, e.g.,
the diurnal cycle or a changing weather situation, which is
not negligible in all cases. Also, our DIAL represents only
a tiny column of the GCM grid box. How representative is
one location of an entire GCM grid box whose sides are in
the range of tens to hundreds of kilometers? Although this
has not been clarified, line and point measurements have

Figure 2. Example distributions of water vapor mixing ratio (qv) retrieved from the DIAL measurement
shown in Figure 1 for (top and bottom) different heights and (from left to right) different times t0.
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Figure 3. (top left) COSMO-DE cloud cover for 16 June 2006 after 12 h of simulation and (bottom left)
accumulated precipitation after 24 h. The boxes over Northern Germany denote the grid box of ECHAM6
(T63 resolution) containing Hamburg, which we use for our evaluation, the dot marks the center of the
box, and the asterisk Hamburg, respectively. The cloud cover and precipitation for 19 September 2012
are shown in the right column.

frequently been compared with model data representing spa-
tial distributions in entire grid boxes. In the following, we
investigate this issue and analyze the usability of point or
line measurements for evaluating GCM subgrid-scale total
water variability.

2.2. Testing the Method
[17] COSMO-DE [Baldauf et al., 2011] is the opera-

tional weather forecast model of DWD. The model covers
Germany and the surrounding regions within Europe and
has a horizontal resolution of approximately 2.8 � 2.8 km2

(0.025ı � 0.025ı, see Figure 3). Hybrid terrain-following
Gal-Chen coordinates [Gal-Chen and Sommerville, 1975]
are used with a vertical resolution of about 20 m at the bot-
tom, up to 1 km at the top of the atmosphere and 50 height
levels reaching up to 22 km.

[18] The atmospheric profiles obtained at one COSMO-
DE grid box with a high temporal resolution are referred to
as “virtual supersite” for simplicity from now on, though we
can not only retrieve quantities a real supersite would see but
also the cloud water, vertical and horizontal winds, temper-
ature, and any desired quantity a “virtual experimentalist”
might wish for. The virtual supersite observes the atmo-
spheric column in 25 s intervals, which corresponds to the
COSMO-DE model time step.

[19] For our investigation, we chose the COSMO-DE
model grid box containing the city of Hamburg, Germany,
at 53.6ı N, 10.0ı E as location for the virtual supersite (indi-
cated in Figure 3). The corresponding ECHAM6 grid box on

the resolution of T63 is located between 52.2 and 54.1ı N (�
211 km), and between 8.4 and 10.3ı E (� 127 km). It con-
tains 3336 COSMO-DE grid points and is indicated as white
and black boxes, respectively (Figure 3). We also evaluate
the data at the center point of this global box, being located
at 53.1ıN, 9.4ı E. The region around Hamburg is conve-
nient for several reasons: First, a real DIAL was located at
Hamburg for some years providing us with measurements
which initiated this study on the method itself. Second, the
area around Hamburg is relatively flat (the maximum differ-
ence in COSMO-DE elevation within the ECHAM6 global
box is about 270 m, with the highest elevation in the South-
ern edge of the box), such that there are no distracting effects
from local orographic phenomena nor from numerical issues
associated with terrain-following coordinates, which can
cause large variances if not treated with care.

[20] The quantity we are going to look at is the total water
mixing ratio, i.e., the ratio of the mass of total water to
the mass of the dry air, because this is the most important
quantity for determining the cloud-related process for the
calculation of cloud cover in a statistical cloud scheme. For
these schemes, of particular interest is its subgrid-scale (to
the global model) distribution.

[21] In this study we focus on the mean, variance, and
skewness (first, second, and third moment) of the distribu-
tion. For discrete values these are defined as

mean Nx =
1
N

NX
i=1

xi, (1)
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variance � =
1

N – 1

NX
i=1

(xi – Nx)2 , (2)

skewness � =
1
N

NX
i=1

�
xi – Nx
p
�

�3

, (3)

with x the quantity which is evaluated, xi the values at the
different times or locations, and N the number of points in
the data set.

[22] The first case chosen for this simulation was 16 June
2009. This day was a cloudy and also partly rainy summer
day over Europe, subject to a large-scale forcing, with a
cloud system slowly moving over Germany from the north-
west to the southeast. No precipitation fell in the ECHAM6
grid box domain on this day and only a negligible amount
of ice clouds was present for some time at a small num-
ber of COSMO-DE grid points, near the upper edge of our
considered height range of 4 km. We choose such a situa-
tion to exclude the influence of complex microphysics on
the development of the distribution. Figure 3 shows the total
cloud cover after 12 h of simulation and the accumulated
precipitation after 24 h.

[23] The second case is 19 September 2012. This is a post-
frontal case and our focus is on locally initiated convective
clouds. As in the previous case, no precipitation fell in our
target domain and only a small amount of ice occurs at a
small number of grid points below 4 km height. This case
was chosen as an example for a situation with a variability
on smaller scales, which appears more favorable for a suc-
cessful application of our evaluation method. The respective
cloud cover after 12 h of simulation and the accumulated
precipitation after 24 h are also shown in Figure 3.

3. Results
3.1. Perfect Model Approach to Evaluation

[24] In the following, we first focus on 16 June 2009,
which is the synoptically forced day. Figure 4 shows the
time-height evolution of the mean, variance, and skew-
ness of the spatial total water distribution within the virtual
ECHAM6 box derived from all the COSMO-DE grid boxes
inside it. The distribution moments have been calculated for
each of the model output time steps (every 15 min). The
black contours show the condensed water mixing ratio, i.e.,
the location of the clouds. Remembering that we look at the
model as a virtual reality, these plots are what a statistical
cloud scheme should produce if it worked perfectly. These
statistics are also what observations would need to give us
in order to be of use for evaluating the cloud scheme.

[25] As mentioned before, the direct way to retrieve a
statistics is to wait some time. The estimation of a correct
waiting time is challenging. In the following we chose differ-
ent waiting times, which are constant with height. Assuming
a grid box size of 200 km, they correspond to wind speeds of
40 m/s (1.4 h), 10 m/s (5.6 h), and 5 m/s (11.2 h). We shift the
center point of the box through the whole time series with
a 15 min time step, which corresponds to the spatial model
output time step.

[26] Figure 5 shows the statistics which were derived
from the virtual time series at the Hamburg grid point at
53.6ıN, 10.0ı E of the COSMO-DE model (cf. Figure 3).
The white spaces at the beginning and end of the day

Figure 4. Time-height slices of spatial statistics of total
water mixing ratio in the virtual global grid box for 16
June 2009: (top) mean, (middle) variance, and (bottom)
skewness, retrieved from the 15-minutely spatial output
of COSMO-DE. The black contours show the grid box
mean cloud water mixing ratio with a contour spacing of
0.005 g/kg.

correspond to half a time window and are due to the choice
of the center point to evaluate the statistics inside this win-
dow. For a first evaluation it would be desirable to get at least
the time-height structures of the mean and variance and the
sign of the skewness right compared to the spatial statistics
shown in Figure 4. The larger the time window, the smoother
the evolution of the moments, which is reasonable because
(a) the statistics are based on a much larger data set if we
include more times and (b) the time windows overlap more
the larger they are. Thus, data points can contribute to and
influence several subsequent time windows.

[27] From the short time window, even though the mean
value is captured remarkably well, we cannot gain much
information about the higher moments of variance and skew-
ness. There are only a few times and heights with noticeable
variance, and the skewness is quite noisy. However, struc-
tures are noticeable in the skewness, like the development of
the boundary layer over the day. The higher accuracy of the
mean values becomes clear from the definitions of the three
moments as given in equations (1)–(3). We see that the dis-
tance of a single point to the mean value comes into play to
the power of two in the variance and to the power of three
in the skewness. Thus, the higher moments are much more
sensitive to outliers.
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Figure 5. Time-height slices of time statistics for 16 June 2009: (top row) mean, (middle row) variance,
and (bottom row) skewness for the location of Hamburg. A 15 min time resolution was chosen corre-
sponding to the spatial output time increment of COSMO-DE. Results are shown for a time window of
(left column) 1.4 h, (middle column) 5.6 h, and (right column) 11.2 h.

[28] For the 5.6 h time window the structures are clearer.
Also, at this window size larger areas of noticeable variance
occur, and its overall structure exhibits some similarities
with the reference spatial statistics shown in Figure 4. The
quantitative values are at least in the desired range to match
the reference spatial statistics. Comparing the skewness, we
notice that time, space, and even the sign of the skewness do
not match well. Hoping the statistics become more reliable
as we use a longer time window, we also show, as an exam-
ple, statistics from a 11.2 h time window, which represents a
length twice as large as our grid box for the assumed wind of
10 m/s. However, save for the fact that the statistics become
less noisy, which is especially evident in the skewness, we
do not get a much better estimate of the higher moments
at all.

[29] From these first results another challenge arises: The
values of the moments are highly sensitive to the time win-
dow. So an accurate window size is important. The only
quantity which is available to translate time into space is
the wind speed. A detailed knowledge of the wind profile
however, will not necessarily help us to sample the global
grid box decently. In meteorological situations with highly
variable wind speed, either in terms of magnitude or direc-
tion, we may not sample a fraction of the air mass which is
representative for the whole grid box.

[30] Looking at Figure 3 again, one might argue that the
Hamburg grid box of the COSMO-DE model is a bad choice
for the evaluation, since it is located near the upper right cor-
ner of our global ECHAM6 grid box. Thus we also evaluated
the time series at the center point of the box, and the respec-
tive results are shown in Figure 6. There is only a negligible
improvement of the results, and they remain unsatisfactory
for our purposes of evaluating a statistical cloud scheme on
the process level.

[31] In the model world we have the opportunity to cir-
cumvent the time versus space problem by introducing a

wide network of virtual supersites. Figure 7 shows results
from a network of 100 supersites evenly spaced in the Ham-
burg global grid box, sampling the spatial distribution at
each time step of the model. The statistics is done over these
100 supersites for each model output time step. The struc-
tures in the mean, variance, and skewness from the spatial
statistics are captured remarkably well. Even the sign of the
skewness is captured well in the lower two kilometers but
misses some features in the upper part of the height range
shown. However, due to the few points in space, i.e., a poor
statistics where each point has a big influence on the higher
moments, the variance is heavily overestimated. In principle,
a dense network of around 100 observational sites located
within a region comparable to a GCM grid box would be a
step in the right direction, but in reality such a high number
of facilities measuring high vertical resolution atmospheric
profiles would be far too expensive to implement.

[32] So far, we have only focused on one of our cases,
which contained a large-scale cloud system moving over
Germany and found that the evaluation method did not work
very well. We now look at our case from 19 September 2012,
where the clouds are locally initiated. The cloud field in
our target ECHAM6 grid box in this case varies on smaller
scales and has more random features than the previous case
(Figure 3). The hypothesis is that such a situation is more
favorable for an application of the method. From the previ-
ous results we saw that the short time window resulted in a
noisy statistics and that the long time window did not give
better results than the medium-sized one. Thus, for this case
we only show the medium time window of 5.6 h.

[33] Figure 8 shows the spatial statistics from the
ECHAM6 grid box domain, the temporal statistics from the
Hamburg grid point, and the temporal statistics from the cen-
ter point of our considered box. Again, the mean is captured
well, although some structure is missed by the virtual super-
site at the Hamburg grid point. The spatial variance in this
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Figure 6. Same as in Figure 5 but for the center point of the box.

case is smaller than in the previous case. Some basic features
of its structure are found in the temporal statistics of both vir-
tual supersites, but the similarities are not striking. At both
sites, the maximum variance is underestimated, and for the
center point site the variance looks slightly worse than the
one from the Hamburg site.

[34] The Hamburg supersite captures some features of the
skewness structure, which is a mainly positive skewness
above 1 km. The positive skewness below 1 km, however,
is missed. The clear distinction between positive skewness
above 1 km and the negative one below is not evident from
the center point supersite. While in the first case both sites
gave at least similar structures, here we are faced with a new
problem: the observed structure differs depending on where
we put our supersite. Even though this case is character-
ized by a much more randomly distributed convective cloud
field compared to our first case, again we do not find reli-
able statistics from our supersites, which could be used to
evaluate the global model’s statistical cloud scheme.

[35] The operational COSMO-DE model, which we chose
to obtain near-reality situations for our study has one great
disadvantage: its spatial resolution of 2.8�2.8 km2 limits our
potential choices for a suitable case, since not all small-scale
features of clouds and the moisture field can be resolved at
this scale. Especially, COSMO-DE is not able to simulate

shallow cumuli explicitly but parameterizes them. A field
of shallow cumuli or stratocumuli, however, would have a
great potential to be stationary long enough to allow for an
evaluation of the cloud scheme with ground-based remote
sensing. By applying a realistic high-resolution model with
horizontal grid spacings in the order of 10–100 m we could
gain an even better horizontal statistics and also the possi-
bility to find and classify situations in which our method
worked. This, however, is not the main purpose of this paper.
We intend to create an awareness of the problems arising
when ground-based remote-sensing data, especially higher-
order moments of their statistics, are used for comparisons
with models.

3.2. Artificial Test Cases
[36] To make it clearer why the assessment of higher-

order moments from ground-based remote sensing is so
challenging, we created four artificial examples of highly
idealized cloud fields (Figure 9). The colors represent dif-
ferent random numbers between 0 and 1 of arbitrary unit,
which have a triangular distribution as for example shown
in Figure 9a) next to the plane. Let us assume the num-
bers represent a humidity field and the plane represents
our global grid box, in which we want to evaluate the
spatial distribution.

Figure 7. Time-height slice of statistics from 100 supersites with a time resolution of 15 min for 16 June
2009. (left) Mean, (middle) variance, and (right) skewness.
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Figure 8. Statistics obtained from the simulation of 19 September 2012. (top row) Spatial statistics from
the ECHAM6 grid box; black contours show the grid box mean cloud water mixing ratio with a contour
spacing of 0.005 g/kg. (middle row) Temporal statistics for the location of Hamburg and (bottom row)
temporal statistics for the center point of the ECHAM6 grid box. (left) mean, (middle) variance, and
(right) skewness.

[37] Four realizations of the same triangular probability
density distribution are shown. In Figure 9a the numbers
have been randomly distributed over the area; in Figure 9b
they have been sorted by size, which may be representa-
tive for a spatial gradient. These two cases stand for the best
and the worst case. Figure 9c may represent a schematic
view of a frontal system, where the upper half of the random
numbers is randomly distributed in the northern part of the
plane, and the lower half of the numbers is randomly dis-
tributed in the southern half of the plane. In Figure 9d, these
two halves are distributed checkerboard-like, representative
for a schematic view of a cumulus cloud field. Of course,
these different realizations are a very crude approximation
of reality, but they can serve to explain some reasons for the
shortcomings of the method.

[38] Let us assume the weather situation does not change
with time except for translations in one direction, i.e., the
box is moving with the mean flow and the mean flow does
not change with time. We can then simulate a virtual super-
site measurement of this humidity field by taking the values
along a straight line across the area. Immediately, it becomes
clear how much the results of such a measurement depend on
the underlying situation. In case of Figure 9a the orientation
of the line does not matter, and as long as we have a large
enough sample, we will get a very good estimate of the spa-
tial distribution. The diagonal line (3) has the same length as
the other two lines, so the statistics is equally good (or bad).
The resulting (not normalized) distributions from the differ-
ent virtual measurements are sketched in the diagrams next
to the plane.

[39] In Figure 9b we have a very different situation. If we
follow the north-south line, the distribution might be well

met (line and diagram (1)), but if we go along the east-west
line, one single, narrow peak will be the result (2). Its posi-
tion will depend on where we put the line. Even the diagonal
line will miss out the tails of the distribution, since we were
aiming for the same sample length as in the north-south and
east-west line (3). Thus, we would get quite a wrong view of
the distribution if we looked in the wrong direction or with
the wrong winds.

[40] Of course, the latter cases are very unrealistic. But
also in the slightly more realistic cases in Figures 9c and
9d the retrieved distribution depends on where we put the
line. Again, the north-south lines for both cases estimate the
distribution well (diagrams (1)). In Figure 9d, which stands
for a schematic cumulus case, also the east-west line gives
good results (2), while in Figure 9c, a schematic frontal case,
it depends on its position in the plane whether we sample
the upper (2) or the lower half (3) of the distribution. Here,
a diagonal line will give a good estimate (4). The diagonal
line in Figure 9d demonstrates that even in such comparably
well mixed cases, we might be very unlucky and miss out
part of the distribution (3), e.g., in cloud streets.

[41] From these simple examples it becomes clear that
(1) without the knowledge of the meteorological situation
and (2) a good planning of the tracks through the respec-
tive situation, we do not have a chance to retrieve the right
2-D spatial distribution from a line or point measurement.
We should also keep in mind that these examples do not
even include a time evolution of the cases as before but
only a transport of a static field over the virtual supersite.
A time evolution of the system complicates things even fur-
ther. The difficulty when using ground-based remote sensing
to retrieve the distributions is that we have no chance to plan
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Figure 9. Different representations of a horizontal triangular probability density distribution of random
numbers between 0 and 1 within a plane: (a) randomly distributed, (b) sorted, (c) 0 to 0.5 randomly
distributed in the southern half of the plane, 0.5 to 1 randomly distributed in the northern half of the plane,
and (d) similar, but the different ranges are distributed checkerboard-like. The lines correspond to tracks
through the plane, and the distributions derived from these tracks are shown in the diagrams next to the
plane. Axis labels are in arbitrary units.

our track—we have to take what comes with the mean flow
and the local wind—and that most systems do not remain in
a stable state long enough.

3.3. Do We Have to Throw Away Our Measurements?
[42] No. The point we are making is that we have to deal

with our data very carefully and keep the specific mete-
orological situation in mind instead of blindly using time
series to retrieve distribution moments higher than the mean,
which was captured decently. It is likely that the higher
moments can be reasonably well captured when the atmo-
spheric conditions are such that the cloud and humidity fields
are self-similar with respect to being rotated relative to the
direction of the mean flow. This will for example be the case
for unorganized fair weather cumulus, a large number of
which will be present within a region comparable to the size
of a GCM grid box. There are severe challenges to estimat-
ing the higher-order moments of the humidity distribution,
however, if the cloud and humidity fields exhibit any orga-
nization on scales comparable to the size of the grid box or
if they are in some way organized relative to the direction of
the mean flow.

[43] So far, we have looked into comparably short times
in the range of hours, trying to investigate on a moment-
by-moment way if the model works correctly, and we found
that a direct translation from time into space is not adequate
to evaluate the higher distribution moments of variance and
skewness. Let us now think of the spatial pattern of the
total water as only one representation of the respective dis-
tribution. As we saw in Figure 9, there are many ways this
distribution may be realized in a certain box. On long time
scales, being in the order of years, we may then find an
ensemble of different spatial representations of the same

distributions, where each ensemble member is found at a
different time. If we have a remote-sensing instrument at
one location, we then have a fair chance to sample the
whole distribution by sampling the same point each time
the distribution is found. We call this “ensemble method”
or a probabilistic approach to the evaluation of statistical
cloud schemes.

[44] First tests using the perfect model approach, i.e.,
using a long-term model run and a high number of data sets,
which are generated consistently with that simulation, show
a great potential of this method, though challenges arise
with regard to building the ensembles and the recognition of
model errors. The method is currently further investigated.

4. Conclusions
[45] Statistical cloud schemes are increasingly used in the

global modeling of the atmosphere. They are based on a
prognostic horizontal distribution of the total water mixing
ratio in a grid box, where moments such as variance and/or
skewness are prognostic quantities. These schemes have the
great potential to represent the cloudy part of the model
grid box in a much more physical way than simple rela-
tive humidity schemes and are scale adaptive at the same
time, which makes them especially useful for the new model
generation employing local grid refinement.

[46] The downside, however, is that the schemes have, so
far, been hardly evaluated since the full three-dimensional
total water in the atmosphere cannot be measured. Either
we have a sufficient horizontal resolution, e.g., from satel-
lites, or a sufficient vertical resolution, but not both from
the same instrument. Thus, we cannot directly assess the
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specific processes which are responsible for failures of the
cloud schemes, which may be evident from, e.g., a wrong
cloud cover compared to satellite measurements. Long-term
ground-based remote-sensing data sometimes appear to be
the solution to this problem due to their high time and
height resolution.

[47] In this paper we explored the potential of ground-
based remote sensing of a vertical column of atmospheric
total water to evaluate statistical cloud schemes in global
models by employing the so-called perfect model approach.
We have used the COSMO-DE model [Baldauf et al., 2011]
of DWD and simulated one case with a large-scale forc-
ing with moderate rain and a cloud deck moving over
Germany and a second, postfrontal case with locally initiated
convective clouds. From these simulations we got spatial
statistics in a box which represents a global model grid box
and within that box a high resolution and height resolved
“virtual measurement” time series which is entirely consis-
tent with the distribution within the box. The data sets were
consistent, and the working hypothesis was that if a method
for evaluation of a statistical cloud scheme with ground-
based remote-sensing measurements was viable, then using
it with these entirely consistent data sets would result in per-
fect model agreement. However, we find large errors in the
statistics we gain from the virtual global box and from the
virtual supersites which stem from the method.

[48] First of all, for both cases we find that the statistics we
gain from the virtual supersite time series strongly depends
on the waiting time we employ. Short waiting times naturally
lead to very noisy statistics. However, the mean values of the
distribution are already captured remarkably well. But even
if we can get rid of the noise by choosing a longer waiting
time, the higher moments of the distribution do not com-
pare well with the ones from the spatial distribution obtained
from the global grid box, because long waiting times tend to
include too much time evolution and thus are not represen-
tative of a spatial snapshot anymore. The variance exhibits
at least quantitative values in the right range, but the time-
height structure does not resemble the one from the spatial
statistics very well.

[49] The skewness in the synoptically forced case of 16
June 2009 shows some basic features such as the deepen-
ing of the boundary layer, which is comforting—but neither
the size nor the sign of the skewness is captured correctly.
The system is not ergodic, and the time and spatial statis-
tics cannot be assumed to be the same. For the locally forced
case of 19 September 2012, we do not find such pronounced
features, but at least some similarities of the skewness struc-
tures for one of the supersites. The other one, however,
differs strongly and it became evident that the location where
we measure is also an important factor in the evaluation of
the statistics. As a result, an evaluation of statistical cloud
schemes is not possible with this approach.

[50] Also, even if a time evolution of the system is
neglected, comparing 1-D (lines) versus 2-D data (planes)
can already cause very large errors. By using artificial
fields generated from the same triangular distribution, we
have shown that the line statistics differ strongly, depend-
ing on the underlying spatial pattern of the quantity and the
direction of the line.

[51] Ground-based remote-sensing data, however, can be
used on much longer time scales in a probabilistic approach,

which we call ensemble method. The method is based on a
categorization of the distributions found in the model with
regard to the variance or skewness, where the times that cat-
egory is matched is building the ensemble. We are currently
investigating this basic method, and first results show its
great potential to evaluate statistical cloud schemes on long
time scales.
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