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Abstract We quantify the feedbacks from the physical

climate system on the radiative forcing for idealized cli-

mate simulations using four different methods. The results

differ between the methods and differences are largest for

the cloud feedback. The spatial and temporal variability of

each feedback is used to estimate the averaging scale

necessary to satisfy the feedback concept of one constant

global mean value. We find that the year-to-year variabil-

ity, combined with the methodological differences, in

estimates of the feedback strength from a single model is

comparable to the model-to-model spread in feedback

strength of the CMIP3 ensemble. The strongest spatial and

temporal variability is in the short-wave component of the

cloud feedback. In our simulations, where many sources of

natural variability are neglected, long-term averages are

necessary to get reliable feedback estimates. Considering

the large natural variability and relatively small forcing

present in the real world, as compared to the forcing

imposed by doubling CO2 concentrations in the simula-

tions, implies that using observations to constrain feed-

backs is a challenging task and requires reliable long-term

measurements.

Keywords Climate feedbacks � Radiative forcing �
Climate sensitivity

1 Introduction

Climate models still give a wide range of surface temper-

ature responses to the same idealized external forcing, for

example a doubling of the atmospheric CO2 concentration

(Solomon et al. 2007). Most of these differences arise from

physical processes, which are usefully conceptualized as

feedbacks and can be isolated through a feedback analysis

(Cess et al. 1990; Colman 2003; Soden and Held 2006). A

variety of methods have been developed to isolate specific

feedback mechanisms in climate models, raising the

question as to how sensitive the results of such an analysis

are to the methods employed.

The climate system is often described as being in equi-

librium1 if the global mean surface temperature, Ts, does

not change (DTs

Dt
¼ 0) and the net radiation at the top-of-the-

atmosphere, R, is zero when averaged sufficiently long. If

an external forcing, F, is imposed, for example through a

change in greenhouse gas concentrations, the radiative

budget at ToA departs from zero, and the system can be

described as out of balance, or in disequilibirum. The cli-

mate system responds by changing the global mean surface

temperature. This leads to increased energy being radiated

back into space, so that the system can return to equilibrium.

(The response of the system whereby increasing tempera-

tures leads to increased outgoing radiation, is sometimes

called the ‘‘Planck’’ feedback). The change in temperature

affects other temperature-dependent climate processes. If

those processes in turn have an effect on the radiation

budget (and hence on temperature), they are referred to as
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climate ‘‘feedbacks’’, analogously to the feedback definition

in electronic circuits. Those feedbacks can have amplifying

(positive feedback) and dampening (negative feedback)

effects on the initial perturbation of the ToA radiation

budget. This feedback concept is summarized in Eq. 1,

where the feedback parameter k (in units of Wm-2K-1)

includes all physical feedback processes plus their mutual

interactions. DTs is the change in global mean surface

temperature. For a forcing from a doubling of the atmo-

spheric CO2 concentration, the equilibrium temperature

change is often referred to as the equilibrium climate

sensitivity.

DR ¼ DF � kDTs ð1Þ

Physical feedbacks can be linked to quantities that change

in response to a change in global mean surface tempera-

ture. The relevant physical quantities we will focus on in

this study are the temperature, water vapor, surface albedo

in snow and ice regions, and clouds. Other feedbacks, for

instance due to biogeochemical processes are not consid-

ered here (e.g., Friedlingstein et al. 2006).

The feedback factor k can be formally defined as

k ¼ oR

oTs

¼
X

x

oR

ox

ox

oTs

þ / o2
� �

�
X

x

kx ð2Þ

with

kx ¼
oR

ox

ox

oTs

ð3Þ

where x denotes individual feedback variables. The second-

order term and all higher-order terms represent the inter-

actions among different feedbacks. In a linear approxima-

tion, which may be considered valid for doubled CO2

conditions and the associated temperature changes (Boer

and Yu 2003), these interactions are neglected.

Four physical feedback processes are considered. The

total physical feedback factor k can be separated, under the

assumption of linearity, into a temperature (kT), water

vapor (kWV), surface albedo (kA) and a cloud (kC)

component:

k ¼ kPL þ kLR þ kWV þ kA þ kC: ð4Þ

The temperature feedback contribution (kT) to the total

feedback can be further separated into a contribution by the

Planck response kPL, or a homogeneous change in tem-

perature, and a contribution by the change in the tropo-

spheric temperature lapse rate kLR, which measures the

rate at which temperature decreases with height

(kT = kPL ? kLR). The Planck response is the most fun-

damental feedback, characterized by the temperature

dependence of the long-wave (LW) emission, where the

emitted energy is proportional to the fourth power of the

temperature, rT4 (r being the Stefan-Boltzmann constant).

It is also sometimes referred to as the ‘‘no feedback’’

response.

The linearization in Eq. 2 is useful to disaggregate

contributions of individual processes to the overall feed-

back and to estimate their relative importance. The quan-

tification of individual feedbacks then allows one to

compare models and quantify how various processes con-

tribute to the overall uncertainty, as measured by the dif-

ferences in the climate sensitivity across models (e.g.,

Bony and Dufresne 2005; Bony et al. 2006).

All processes in the climate system change in concert

when the climate is changing, as measured by the change in

global mean surface temperature. Different methods can be

utilized to break down k into the different contributions, all

having in common that forcing and response are separated.

How parts of the contributions are separated into forcing or

response depends on the framework that is adopted. For

instance, whether one adopts relative humidity or absolute

humidity as a thermodynamic coordinate has a bearing on

what will be identified as a feedback (Held et al. 2012).

Distinctions between feedbacks can also be arbitrary if

different physical feedbacks are related to the same pro-

cesses. For example, the water vapor feedback and the

tropospheric temperature lapse rate feedback are anti-cor-

related. In models for which the lapse rate feedback is

strongly negative (i.e., the lapse rate is reduced, leading to

a decrease in the greenhouse effect), the water vapor

feedback is strongly positive. The reason is that both

feedbacks are related to the same mechanism, which is a

change in deep convection. A weaker temperature lapse

rate is generated by a greater warming at high altitudes

than at the surface due to heat transport by convection. At

the same time, enhanced convection also leads to more

upper tropospheric water vapor (e.g., Cess 1975; Held and

Soden 2000). For this reason, these two feedbacks are often

added together and considered as a single feedback

(kWV?LR), in which they partly compensate each other. By

this the inter-model spread in the strength of this combined

feedback is reduced. Huybers (2010) reports further com-

pensations between different feedbacks (especially surface

albedo and cloud feedback), but argues that those relations

can in fact be an artifact due to, the methods used to

estimate the feedbacks, the representation of physical

relationships in the models, or how the models are condi-

tioned on some combination of observations and

expectations.

The concept of feedbacks, forcing and climate sensi-

tivity has proved to be helpful in the idealized model

world, but extrapolation to the real world has proven to be

complicated. Partial derivatives can hardly be derived from

observations, due to many interfering processes that are

difficult to separate and to isolate from the background

variability. But even in a model it can be difficult to isolate

1174 D. Klocke et al.

123



processes and estimate feedbacks, and as a result different

methods have been developed to estimate the strength of

feedbacks within models. And the question arises as to

what extent estimates of feedback strength depend on

methodological details.

Although the feedback parameters are defined in Eq. 2

are intensive properties of the climate system, they are

often estimated locally, in space and time. By estimating

these properties by averaging over local properties the

question arises as to how well such intensive properties are

sampled. Insufficient sampling, for instance over time

periods that are small compared to the timescales of

internal fluctuations within the climate system, may lead to

biased estimates of feedback strengths. A feedback esti-

mated for a certain year may be very different in other

years and may depend on the nature of the fluctuations, so

that the necessary averaging time may be different for

different physical processes. The largest problem arises for

clouds, which are highly variable in space and time, and

tend to fluctuate strongly in association with other internal

fluctuations within the climate system. This has implica-

tions for quantifying feedbacks from climate models and

for deriving feedback factors from observations, or finding

observational constraints.

The aim of this study is to compare and assess different

methods for quantifying the strength of specific feedbacks,

and to analyze the spatiotemporal variability that arise in

the local contribution to the estimates of the overall feed-

back. To do so, we use climate model simulations with the

atmospheric general circulation model ECHAM5 (Roeck-

ner et al. 2003), coupled to a mixed-layer ocean. This

idealized framework neglects factors contributing to natu-

ral variability such as volcanic eruptions, El Niño vari-

ability and varying modes of ocean circulations as well as

less well defined contributions to the forcing such as from

anthropogentic aerosols, or land use change.

In Sect. 2 we review the different methods to quantify

feedbacks, and in Sect. 3 we describe the experimental set-

up for the idealized climate change simulations. In Sect. 4

we analyze the different feedbacks, and discuss their geo-

graphical and temporal variability in Sect. 5 using the

different methods. These results have implications for

estimating feedback factors in the climate system from

observations, which is discussed in the conclusions,

Sect. 6.

2 Methods to quantify feedbacks in GCMs

Four different methods to estimate climate feedbacks have

been proposed in the literature. They are based on two

different principles. In this section we briefly describe these

four methods. The first two methods are centered around a

quantification of the sensitivity of radiative fluxes to per-

turbations from specific changes in the climate system, the

second two methods are developed around diagnosed dif-

ferences in the all-sky and clear-sky radiative fluxes. The

first principle, of recomputing radiative fluxes for changed

states, is less ambiguous, but involves performing radiative

transfer computations and special model diagnostics (the

kernel method helps to obviate this, by approximating the

partial radiative perturbation method, without the need for

repeated radiative transfer calculations on ancillary data).

The second principle, of using changes in radiative fluxes

from freely evolving runs, is only applicable to the cloud

component of the feedback parameter, but as climate

models differ mostly in the cloud feedback component, this

approach is often used to estimate the radiative impact of

changed clouds in a perturbed climate.

2.1 Partial radiative perturbation

This technique was first introduced by Wetherald and

Manabe (1988) and more recently applied to an ensemble

of atmosphere-ocean general circulation models by Col-

man (2003) and Soden and Held (2006). Offline radiative

transfer calculations are used to estimate the effect of

single variables such as temperature, water vapor, surface

albedo or clouds on the ToA radiation. Under the

assumption of linearity and separability each variable is

substituted separately, one at a time, from a perturbed

simulation, while all other radiation relevant variables are

taken from a control simulation. This allows one to cal-

culate each feedback factor separately for any variable

x, as follows.

kx ¼
DxR

Dx

Dx

DTs

ð5Þ

where Dx and DTs are obtained from the difference

between a perturbed and a control simulation, and DxR=Dx

is from off-line radiation calculations. In this equation, R

again is the top-of-atmosphere net radiation flux, DTs is the

surface temperature change, both spatially and temporally

resolved, and Dx the three-dimensional, time-resolved

change in quantity x. In the radiation calculation all other

fields are taken from the control simulation, with x replaced

by the field from the perturbed simulation. Specifically for

the lapse-rate feedback, the differences in temperature

changes within the troposphere (surface to tropopause) are

applied as perturbation. For the cloud feedback, both

changes in cloud fraction and cloud condensate mixing

ratio are used. The Planck response (spatially uniform

temperature change), water vapor feedback (change in

water vapor mixing ratio) and surface albedo feedback

(change in surface albedo) are straight forward to

implement.
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With this method the partial derivatives are calculated

directly and it is closest to the formal definition of the

feedback factor as defined in Eq. 2, with a few caveats.

These caveats, can be thought of as assumptions that rise

from a practical implementation of the method and are that:

interactions between feedbacks are neglected, the climate

change signal in any variable is the total derivative of

variable x with temperature instead of the partial deriva-

tive, and the difference between perturbed and control

simulations might not be small enough to allow for the

discrete approximation of the derivative by the

differentiation.

Colman and McAvaney (1997), Schneider et al. (1999)

and Soden et al. (2004) pointed out that the assumption that

all fields are uncorrelated introduces biases. Unintended

perturbations are introduced to the radiation by de-corre-

lating variables, but this can be partially overcome by

applying this method twice. Once forward (FW), by

substituting a variable from the perturbed climate (ptr) into

the control climate (ctl) (qptr-ctl Rx) and once backward

(BW) by taking a variable from the control climate and

substituting it into the perturbed climate (qctl-ptr Rx). The

final radiative perturbation is then better approximated by

the average of these two estimates,
optr�ctlRx�octl�ptrRx

2
:

Because the partial radiative perturbation (PRP) method

is more complex to implement than the other methods,

spurious differences may arise when utilizing different

radiative transfer codes for different models, depending on

the exact implementation. It is also computationally

expensive and needs special instantaneous model output.

Most importantly, the radiative transfer part of the climate

model needs to be isolated for the off-line radiative transfer

computations.

2.2 Radiative kernels

The kernel method, introduced by Soden et al. (2008), is

similar to the partial radiative perturbation (PRP) method,

except that instead of recomputing the radiative fluxes for a

given change in the state of the system, these fluxes are

estimated from a linearization of the radiative transfer

calculation. Instead of perturbing one variable at a time by

an increment defined from a perturbed and a control sim-

ulation, as described above for the PRP method, the mean

climate state is perturbed incrementally in the radiative flux

computations level by level for each variable at a time by a

pre-defined small unit increment, and the changes to the

ToA radiation balance are computed as a ‘‘radiative ker-

nel’’ for variable x (Kx) as a function of latitude, longitude,

model level and time. The kernel for each variable x rep-

resents first fraction of formula 5 and is multiplied with the

climate change signal from a forced simulation to calculate

kx. In contrast to the PRP, where offline radiation calcu-

lations are applied to every output step of the model, the

kernels are applied as monthly averages, while the climate

change signal still varies with the model output frequency.

The advantage is that once those kernels are computed,

offline radiation calculations are no longer necessary.

The temperature kernel (KT) is computed by perturbing

the temperature at every level at each time by an increment

of 1 K, while the specific humidity kernel (KW) is calcu-

lated by perturbing the specific humidity by an amount

corresponding to about a 1 - K warming at fixed relative

humidity. The 3-D surface albedo kernel is computed by

perturbing the surface albedo fields by a 1 % increment

(Soden et al. 2008).

A radiative kernel for clouds cannot be computed

because radiation responds very non-linearly to cloud

changes, and cloud changes themselves cannot be assumed

to be small relative to the pre-existing cloudiness. How-

ever, it is possible to estimate the cloud feedback by

splitting Eq. 2 into clear-sky and all-sky components and

defining clear-sky feedback factors from clear-sky kernels

(Kx
0) and full-sky kernels (Kx). The change between per-

turbed and control climate of the the difference between

full-sky and clear-sky situations yields for the right-hand-

side of Eq. 2 the change in cloud radiative forcing, D CRF

(see next section). This approach requires the definition of

clear-sky kernels for the temperature, water vapor and

surface albedo feedbacks, as well as the stratospheric

adjusted radiative forcing (G) and clear-sky stratospheric

adjusted radiative forcing (G0).

DCR ¼ DCRFþ ðK0
T � KTÞDT þ ðK0

W � KWÞDW

þ ðK0
A � KAÞDAþ ðG0 � GÞ:

ð6Þ

2.3 Change in cloud radiative forcing

This method is most commonly used and easiest to apply,

but is only applicable to the cloud feedback contribution to

the total climate feedback parameter. It makes use of

diagnostic variables that are commonly calculated on-line

in climate simulations (Cess and Potter 1987). Clear-sky

radiative fluxes are calculated (subscript clr), by setting the

radiation-relevant cloud-related variables (cloud water- and

cloud ice mixing ratios, as well as cloud fraction) to zero for

a second diagnostic radiation call. This is done for the short-

wave (SW) and long-wave (LW) components separately.

The difference between the full-sky radiative flux calcula-

tions and the diagnostic clear-sky calculations yields the

cloud radiative forcing (CRF), where the sum of the SW and

LW component is the net cloud radiative forcing.2

2 Negative radiative fluxes are defined here as energy loss for the

climate system, while positive radiative fluxes are an energy gain for

the climate system.
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CRF ¼ ðSW� SWclrÞ þ ðLW � LWclrÞ ð7Þ

The difference of CRF between a perturbed climate

(DCRFprt) and a control climate (DCRFctl) defines the

change in cloud radiative forcing (DCRF).

DCRF ¼ CRFprt � CRFctl ð8Þ

This quantity is often used as a proxy for the cloud

feedback.

The DCRF method is widely used, because it gives an

uncomplicated first estimate of the cloud influence on the

radiation budget, and is especially helpful when assessing

relative differences between climate models. Also, the

cloud radiative forcing in the present-day climate is

directly comparable with satellite observations (e.g. the

Clouds and the Earth’s Radiant Energy System, CERES,

Wielicki et al. 1996) in contrast to the offline calculated

derivatives from the PRP and kernel method. Although

comparisons with observations merit caution, because the

clear-sky radiative fluxes with models are often computed

differently than they are observed (Sohn et al. 2006).

The difficulty with this method lies in the components—

all-sky and clear-sky radiation fluxes—being very large, on

the order of hundreds of Wm-2, and still the the CRF in

either the control and perturbed climate still on the order of

tens Wm-2 (net CRF of about -20 Wm-2, Loeb et al.

2009), but the resulting DCRF is close to zero. Further-

more, the clear-sky components of the perturbed climate

include contributions from the temperature lapse rate,

water vapor and surface albedo feedback, which does not

allow for an accurate separation of the cloud feedback from

these other feedbacks. Some part of the change in cloud

radiative forcing does thus not result from changes in cloud

properties, but from a change in cloud masking, so that the

DCRF does not accurately reflect the cloud feedback

(Zhang et al. 1994; Colman 2003; Soden et al. 2004). It is

often negative, even though the actual cloud feedback is

generally slightly positive if diagnosed by the PRP method

(and thus presumably more accurately in terms of the

definition in Eq. 2) in climate models. However, when

compared across models, the differences in the cloud

radiative forcing predominantly arise from changes in the

clouds.

2.4 Linear regression of TOA radiative flux imbalance

versus surface temperature change

Gregory et al. (2004) proposed this method for use with

simulations in which a forcing is instantaneously intro-

duced, and then held constant over longer time periods (of

the order of years to decades). It makes use of the rela-

tionship of the change in global-mean surface temperature

(DTs) and the forcing (DF), which is expressed as the

energy balance at the top-of-atmosphere (DR) where DRðtÞ
and DTs are now considered time dependent.

DRðtÞ ¼ DF � aDTsðtÞ ð9Þ

The variations of DRðtÞ and DTsðtÞ with time are regressed

against each other as long term averages (e.g. yearly

averages). Usually the global mean quantities are consid-

ered. This yields a regression line with a slope, -a, and an

intercept, DF. The regression can be separated into the

short- and long-wave components of R and F, and—anal-

ogous to the DCRF calculations above—also for clear- and

cloudy skies, respectively. The regression slope -a for the

cloudy-sky analysis is proportional to the cloud feedback

estimate through the DCRF calculations. If regressed for

the net full-sky radiative ToA imbalance, the regression

slope is an estimate for the total feedback factor. The use of

clear-sky fluxes is identical to DCRF so this method is

facing the same interpretational issues.

The DTs intercept is equal to F a-1 which is the equilib-

rium DTs; or climate sensitivity if the applied forcing is a

doubling of atmospheric carbon dioxide concentrations over

pre-industrial levels. DR is approximately equal to the

combined radiative forcing due to the fast adjustments in the

troposphere and the stratospheric temperature adjustment,

for DTs ! 0 (see also Fig. 2). The advantage of this method

is that forcing, cloud feedbacks and climate sensitivity can be

estimated with the use of only a few years of model inte-

gration, without a need for any further diagnostics.

The regression method disaggregates forcing and

response by assuming that they act on different time scales.

This is different from the traditional separation of diag-

nosing a radiative forcing and considering the entire

adjustment of the climate system as response Hansen et al.

(1984). For example, clouds instantaneously respond to the

increased CO2 concentrations, due to changes in the heat-

ing rate profiles and subsequently fast changes in atmo-

spheric static stability, which is independent from the

response to changes in surface temperature (Gregory and

Webb 2008). This is referred to as a ‘‘ultrafast response’’

(Held et al. 2010) or, in analogy to aerosol indirect effects,

as the ‘‘indirect CO2 effect’’ (Stevens and Schwartz 2012),

or ‘‘semi-direct CO2 effect’’ (Andrews and Forster 2008).

In the regression method the fast responses are best inter-

preted as adjustments which correct the forcing, although

they would be interpreted as part of the feedback in the

other methods. Compared to other methods, the regression

method formalizes the forcing as the change in radiative

fluxes that cannot be attributed to changes in globally

averaged surface temperature, and in practice these are

identified through the assumption that adjustments are fast

compared to the timescale of surface temperature changes.

In the following, we will refer to this regression method as

the ‘‘Gregory-method’’.
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3 Model and experimental set-up

All feedback metrics are applied to the same set of simu-

lations, using ECHAM5.4 (Roeckner et al. 2003), with a

relatively coarse spectral resolution of T31 (approximately

3.75� resolution) and 19 vertical levels. First, a 20 years

control integration is conducted with prescribed present-

day greenhouse gas concentrations and with prescribed

monthly varying sea-surface temperatures and sea-ice

cover maps. The heat fluxes from this control simulation

are used for the mixed-layer ocean integrations, with a 50

m mixed-layer ocean. ECHAM coupled to the mixed layer

ocean is then integrated for a 20 years control integration

and a 50 years integration with doubled CO2 concentra-

tions, at which time a new equilibrium is reached. For our

analysis the last 6 years of the control and the perturbed

simulations are used. For all four applied methods, the

same six hourly model output is used. The radiation code

of ECHAM5.4, with 16 long-wave and 6 short-wave bands

(Cagnazzo et al. 2007), is isolated from the model and used

for the offline calculations for the radiative perturbation

method and for computing the radiative kernels. For the

calculations of the radiative kernels, incremental pertur-

bations are applied to output fields of temperature, specific

humidity and surface albedo from the control simulation.

For a quantification of the lapse rate feedback diag-

nostics of the tropopause height are necessary to exclude

the stratospheric temperature change. Here we use the

WMO defined tropopause of the control simulation which

is saved together with the other instantaneous model output

every 6 h.

By using the same model output and radiation code

throughout this study we strive to be as consistent as

possible. Differences in the results should thus only depend

on the method used and its underlying assumptions.

4 Feedback factors

Global-, long-term averages (6 years) of the physical

feedback factors analyzed using the different methods

described in Sect. 2 are shown in Fig. 1. The error bars

indicate the sampling error over the 6 years to give an

estimate of the accuracy of the mean estimate given the

limited sample used here. The boxes indicate ±1 standard

error of single year averages, while the whiskers indicate

the maximum and minimum value in a single year. Table 1

gives further details of the LW and SW contributions

separately. The cloud feedback factor, kC, is calculated

with four different methods, while for the tropospheric

temperature lapse rate, water vapor and surface albedo

feedbacks only the PRP and the radiative kernel methods

are applicable. For the PRP method the forward (FW)

calculated and the backward (BW) calculated feedback

factor along with the average values are provided.

The Planck response is the strongest negative feedback

with -3.23 to -3.08 Wm-2K-1, depending on the method

(see Table 1). These three estimates of the Planck response

are within the range of uncertainty as obtained from the

year-to-year variability. The tropospheric temperature

lapse rate feedback, kLR, is negative on a global, long-term

average. This feedback differs the most depending on

whether the FW or BW PRP is used, indicating non-lin-

earities and strongest perturbations by de-correlating the

different variables in the radiative flux calculations. The

radiative kernel estimate is comparable to the FW PRP, but

much larger in absolute terms than the BW PRP. The

estimates of kLR obtained with the two different methods

do not overlap within the standard error of the year-to-year

variability, if the FW and BW calculated PRP are com-

bined to a lapse rate feedback of -0.42 Wm-2K-1.

The water vapor feedback, kWV is the strongest positive

feedback. For the water vapor feedback, the PRP and

Fig. 1 Surface albedo (kA), cloud (kC), water vapor (kWV), tropo-

spheric temperature lapse rate (kLR) and the combined kWV and kLR

feedback factors calculated with different methods. FW PRP:

‘‘Forward‘‘ PRP applying the control climate and the perturbed

quantity from the climate change simulation, BW PRP: ‘‘Backward’’

PRP using the perturbed climate and the perturbed quantity from the

control climate. PRP combined is the average of FW PRP and BW

PRP. Each box is the 6-year mean feedback strength ± one standard

error over the six annual averages. The whiskers indicate the

maximum and minimum yearly averaged feedback strength of the

six analyzed years. For the Gregory method the whiskers are

calculated taking the maximum and minimum deviation from the

regression, while the box gives the standard regression error. The pink

shaded area indicates the range of feedback strength in CMIP3

models as published in Soden and Held (2006) for comparison
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kernel method differ the most in an absolute sense. The

water vapor feedback estimates derived with the PRP and

kernel method do not agree within sampling error of the

year-to-year variability. This is mainly due to the large

differences in the LW component of this feedback. This

feedback acts in both the SW and the LW spectra, but is

dominated by the LW contribution that is responsible for

*75 % of the total water vapor feedback. For the LW

contribution the water vapor feedback factor differs

strongly, depending on the method chosen.

Potential issues can arise through radiative artifacts

around the tropopause as we do not account for the change

in tropopause height in the offline radiation calculation.

The tropopause height increases in the climate change

simulations through the expansion of the troposphere.

Substituting the water vapor fields from double CO2 cli-

mate in the control climate can lead to high water vapor

concentrations in the lower stratosphere. Also the state

dependence of the water vapor kernel (Jonko et al. 2012),

which we computed only on the control climate, can lead to

inconsistencies between feedback estimates through chan-

ges in cloud masking.

The sum of the water vapor and lapse rate feedbacks,

kWV?LR, partly compensates the discrepancies between the

PRP and kernel methods. The offsetting effect between

those two feedback also leads to error compensation (see

also Fig. 3) in the combined feedback. The LW compo-

nents do not overlap within the standard error of the inter-

annual variability for either kLR or kWV between the two

methods, but they do in the combined feedback. This is

analogous to the feedback strength difference for kLR and

kWV among climate models, which decreases when the two

are combined (Colman 2003, see also Fig. 1). This does not

necessarily mean that models consistently simulate those

feedbacks, but that errors are related and can compensate.

The surface albedo feedback is only affecting the SW

radiation. In our simulations it is the smallest feedback,

with 0.22/0.16 Wm-2K-1 using the PRP method and

0.17 Wm-2K-1, if calculated with the surface albedo

kernel. These measures agree within the measure of

uncertainty used here, when the PRP-FW and PRP-BW are

combined, yielding a kA of 0.18 Wm-2K-1.

The cloud feedback affects the LW and SW radiation

strongly, but the globally temporally averaged feedback

factors are small. While the PRP method and kernel

method give a positive cloud feedback the DCRF and

Gregory-method give the opposite sign. This is expected,

as DCRF and the Gregory-feedback are defined differently,

and do not correspond directly to kC as defined in Eq. 2

(see Sect. 2). These differences arise from the cloud

masking effect in the DCRF calculation, as well as in the

Gregory method (see also Sect. 2). Despite not being

consistent with the formally defined feedback framework,

those two methods have both advantages, in terms of the

practicality.

Figure 2 shows DCRF in relation to the change in sur-

face temperature. The slopes of the regression lines for the

cloud LW and cloud SW components indicate the cloud

feedbacks. It is notable that both regression lines have a

non-zero intercept at the Y-axis, and thus are interpreted as

an adjustment to the forcing rather than a feedback

(Gregory and Webb 2008). The regression error is used as

the sampling error, comparable to the standard error of the

inter-annual variability and the maximum and minimum

Table 1 Feedback factors and their standard deviation between different years, calculated for 6 years with different methods for all components

kX Method LW LW std SW SW std Net Net std

kPL PRP (FW/BW) -3.23/-3.17 0.1/0.1 0.0 0.0 -3.23/-3.17 0.1/0.1

Kernel -3.08 0.1 0.0 0.0 -3.08 0.1

kLR PRP (FW/BW) -0.61/-0.23 0.05/0.06 -0.01/0.0 0.0/0.0 -0.61/-0.23 0.05/0.06

Kernel -0.68 0.1 0.0 0.0 -0.68 0.1

kWV PRP (FW/BW) 1.32/1.42 0.07/0.07 0.43/0.38 0.01/0.01 1.76/1.79 0.08/0.08

Kernel 1.71 0.08 0.37 0.02 2.08 0.09

kA PRP (FW/BW) 0.0/0.0 0.0/0.0 0.22/0.16 0.01/0.0 0.22/0.16 0.01/0.0

Kernel 0.0 0.0 0.17 0.01 0.17 0.01

kC PRP (FW/BW) 0.18/0.08 0.01/0.01 0.16/0.08 0.24/0.24 0.34/0.16 0.23/0.23

Kernel 0.25 0.03 0.08 0.17 0.33 0.18

DCRF -0.24 0.04 -0.11 0.16 -0.35 0.16

Gregory 0.19 0.06 -0.37 0.18 -0.18 0.19

kWV?LR PRP (FW/BW) 0.71/1.18 0.06/0.06 0.43/0.38 0.01/0.01 1.13/1.56 0.07/0.07

Kernel 1.03 0.09 0.37 0.02 1.40 0.09

Values are given in Wm-2K-1. The values calculated with the backward (BW) partial radiative perturbation (PRP) are multiplied with -1 to be

comparable to the forward (FW) calculated PRP

Assessment of different metrics for physical climate feedbacks 1179

123



distance from the regression line are used for the whiskers

in Fig. 1. The uncertainties inferred from this are large,

especially for the SW component.

The cloud feedback given by the Gregory-method would

be the same as DCRF, if the regression line would be drawn

between the zero intercept of the X- and Y-axis and the

cloud of points on the right-hand side of Fig. 2 when the

perturbed climate reached a new steady state. The fast

adjustments of clouds, independent of the changes in the

surface temperature, are considered part of the forcing and

explain the difference. The net cloud feedback in Fig. 1 is

similar to DCRF, as the fast adjustments (the Y-intercept)

partly compensates in the SW and LW component (see

Fig. 2). The fast adjustment is making the SW component

of DCRF less positive and the LW component less nega-

tive, which is consistent with results from the CMIP3

ensemble (Andrews and Forster 2008).

The instantaneous CO2 adjustment in the LW compo-

nent of the CO2 radiative forcing is larger in clear-skies

than cloudy skies, because optically thick clouds will mask

the effect on the outgoing long-wave radiation of the

underlying CO2 changes. This effect (G - G0) contributes

-0.55 Wm-2 for the model version used here.

5 Feedback variability

Feedback factors as they are customarily defined, are

intensive properties of the climate system, and can in

principal be estimated given sufficient sampling. When

they are estimated using a global model that spatially and

temporally resolves the climate system they can also be

estimated locally, in which case the feedback factor can be

interpreted as the average of feedback factors defined

locally. Estimated in this way, as is usually the case, the

question arises as to whether the sampling that underpins

the estimate of the global feedback is sufficient. As for

practical reasons feedback analyses are applied to rela-

tively short periods which can be too short, as compared to

the timescale of internal variability within the system,

resulting in sampling errors when estimating feedbacks.

The length of the averaging period depends on the feed-

back of interest and the tolerable error. In a climate model

many sources of variability can be eliminated to minimize

sampling requirements and to make the understanding of

the feedback processes easier. For the experiments used

here, we use a low resolution climate model (see Sect. 3),

coupled to a mixed layer ocean. Due to this simplification

the contribution of internal variability to sampling error is

minimized, nonetheless an analysis of how spatial and

temporal variability contribute to uncertainty in the esti-

mation of the feedback factor provides insight into how a

particular feedback functions, and a likely lower bound on

estimates of sampling uncertainty. In the following we

analyze spatial and temporal variability separately. As

already mentioned, this variability is minimized by our

experimental design, which does not incorporate a full

dynamical ocean, interactive vegetation, sources of vari-

ability like volcanoes, or a varying solar constant. These

additional factors are compounded by measurement

uncertainty, a smaller and evolving forcing, and the

shortness of the time-record when considering the natural

system, rather than just more complex simulations, and is

why observing feedback systems is so challenging.

5.1 Spatial variability

The geographical distributions of the surface albedo, water

vapor, cloud and lapse rate feedback factors are shown in

Fig. 4. Qualitatively the regional patterns of feedbacks do

not differ among methods, hence we only show the geo-

graphical distributions calculated with the PRP method.

The Planck response (not shown) is the first order feed-

back, and represents the effect of a uniform change in tem-

perature of the system in response to a forcing. It is strongly

negative everywhere with -3.08 to -3.23 Wm-2K-1 as a

global average, depending on the method (Table 1). As

temperature rises with increasing carbon dioxide concen-

trations, the forcing gets balanced at the ToA through

increased thermal radiation to space. The strongly non-lin-

ear relation (*T4) makes the Planck response strongest in

the tropics, where temperatures are already high, and

weakest in high latitudes, assuming a uniform temperature

change.

The surface albedo feedback is only appreciably in mid

to high latitudes (Fig. 4a) and mostly positive. Higher

Fig. 2 Change in net downward radiative flux regressed against the

change in global mean surface temperature for yearly averages. The

slope of the cloud components is proportional to the cloud feedback

strength
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temperatures under doubled CO2 conditions cause less ice

and snow to form in winter and lead to an earlier snow and

ice melting in spring. The snow melt period contributes

more potently to the feedbacks, because a phase lag with

respect to the solar cycle means that variability in snow-

melt occurs later in the spring than does snowfall in the

autumn. Although locally this feedback factor can exceed

3 Wm-2K-1 (1 Wm-2K-1 on zonal average) and reaches

its maximum in our simulations around 70-80� in both

hemispheres, its strength, 0.17-0.22 Wm-2K-1 is small

compared to the other feedbacks.

The water vapor feedback is strongly positive every-

where (Figs. 3, 4b) and geographical structures shows no

systematic dependence on how it is calculated. The cold

tropical tropopause and the dry subtropical subsiding

branches of the upper atmosphere are most susceptible to

changes in humidity, which leads to a maximum of kWV at

about 15� N.

The lapse rate feedback (kLR, Figs. 3, 4d) is positive

over large regions in the mid and high latitudes, mainly

continental areas. At low latitudes, the atmosphere warms

more at higher altitudes than at the surface, where the

vertical temperature profile remains close to the moist

adiabat due to the influence of deep convection. In mid- to

high-latitude continental areas the surface temperature

responds more strongly. A larger temperature response at

the surface than aloft leads to a positive lapse rate feed-

back. Here the tropospheric temperature lapse rate is

mainly controlled by baroclinic adjustment (Stone and

Carlson 1979). For the temperature lapse rate feedback the

difference is largest between the forward and backward

calculated feedback factor (Fig. 1). The local contribution

to the lapse rate feedback shows a sensitivity to the forward

versus backward PRP estimate. These differences are

strongest at high latitudes where the lapse rate feedback is

positive, and result in a qualitative shift in the overall

distribution of local contributions to the feedback factor

(not shown). In these regions artificial perturbations are

most relevant through de-correlation of the fields in the

PRP method. Also changes in cloud masking strongly

influence the results obtained when the PRP method is

applied only one way (i.e, only FW).

5.1.1 Spatial variability of the cloud feedback

The local contribution to the global mean cloud feedback

(Figs. 4c, 5) can be strongly negative or positive. On a

global average this nearly cancels out, so that the global

averaged feedback factor is close to zero (see Fig. 1;

Table 1) and depending on the method, this average

feedback can be positive or negative3 are consistent with

the estimates of the other methods. This makes the accurate

estimation of the cloud feedback particularly difficult.

Clouds can change their height, depth, size, frequency of

occurrence, reflectivity, phase, or any combination of

these. The cloud feedback thus affects the long- and short-

wave spectra and is highly variable in space and time.

The geographical distributions of the net cloud feedback

obtained from the PRP (Fig. 4c), kernels and DCRF

(Fig. 5) look similar, but on a global average DCRF is

lower, in our case in fact of a different (negative) sign. This

is due to the temperature and water vapor feedbacks in the

clear-sky component. Some parts of those feedbacks are

not separated from the cloud feedback when subtracting the

clear-sky component, if the cloud masking changes (see

Sect. 2). Nonetheless, the zonally averaged structure is

similar among the three methods, with a negative cloud

feedback in the inner tropics, positive cloud feedback in the

mid latitudes and again a negative feedback in the high

latitudes. The cloud feedback maps differ in their detail but

the corrected DCRF through the kernel method agrees

better in its geographical distribution, as well in its global

average, with the cloud feedback calculated using the PRP

method.

The bulk of the geographical variability comes from the

short-wave component of the cloud feedback, which shows

structures similar to the net cloud feedback (Fig. 7).

Changes in the SW CRF are mainly due to changes in

cloud cover (rather than cloud top height or cloud water

content).

The LW component of the cloud feedback is globally

positive except over subtropical oceans and polar regions,

where it is slightly negative (Fig. 7). In our simulations the

tropopause rises with increased warming, as the water

vapor emission remains effective through a deeper layer.

This leads to an upward shift of the profile of tropospheric

infrared cooling. This decoupling of LW emission at the

Fig. 3 Zonal mean of the lapse rate and water vapor feedback factors

estimated with different methods

3 Although it has been recognized that the CRF gives an estimate of

the feedback that, because of masking effects, is biased low.

Differences in sign of the cloud feedback for different regions.
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top of high anvil clouds from the surface emissions was

described by Hartmann and Larson (2002) and Zelinka and

Hartmann (2010), who hypothesized that through these

mechanisms all global climate models simulate a positive

LW cloud feedback.

The year-to-year variability in clouds is strong. If the

PRP method is applied to 2 years of the same climate state,

e.g. by taking cloud fields from 1 year and calculating their

radiative perturbation as they are set in the atmospheric

state of a different year, the radiative forcing can be of

comparable magnitude to the cloud feedback (Fig. 6). In

this—arbitrarily chosen—case the global mean ToA radi-

ative forcing is -0.55 Wm-2, but over several years this

averages out to zero. The main feature that gives confi-

dence in the feedback in Figs. 4c and 5 is its structure,

which is independent of the applied method. Especially the

zonal structure appears robust. Little structure can be

identified in the year-to-year variation of the cloud forcing,

which indicates that the cloud-climate feedback can be

separated from the natural variability in cloudiness.

5.2 Temporal variability

The climate feedback concepts are estimated by globally

and temporally averaging local contributions. Like the

geographic variations, the temporal variations in the local

contribution to the feedback factor also contain valuable

information. Especially, if the goal is to assess feedback

strength estimates from models using observations, or to

infer feedback strength directly from observations, the

variability characteristics become important if only as the

background noise out of which a signal needs to be

extracted. Figure 8 shows the temporal variability of the

different feedbacks as global averages, every 6 h for six

consecutive years, as calculated with the PRP method. The

standard deviations in Table 1 are calculated from different

yearly averages along each time series.

The time series in Fig. 8 for the globally averaged sur-

face albedo-, lapse rate- and water vapor feedbacks show

seasonality and vary within 0.5-1.0 Wm-2K-1 over the

6 years analyzed here. The variation in the lapse rate

feedback and the water vapor are weakly anti-correlated on

short (6 h) time-scales (correlation coefficient r = -0.21),

but strongly correlated (r = 0.71) when averaged over

3 months. A weak lapse rate feedback is caused by a

smaller temperature change aloft, leading to a small water

vapor feedback at the same time. Huybers (2010) reports

(a)

(c) (d)

(b)

Fig. 4 Geographical distribution of physical feedback factors calculated using the partial radiative perturbation method, as averaged over

6 years

Fig. 5 Change in net cloud radiative forcing as time average, divided

by the global mean surface temperature change
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further correlation between feedbacks across climate

models, which might not be entirely physical. We find

that the surface albedo feedback and the lapse rate

feedbacks have the strongest correlation (r = 0.31) on

short time-scales (probably due to their common geo-

graphical structure, 4), even stronger than the correlation

of the tropospheric temperature lapse rate with the water

vapor feedback. On longer time-scales however, the

correlation is only r = 0.5 related to the seasonal cycle.

The global mean values of the net cloud feedback are

correlated with the lapse rate feedback (r = 0.17 on

short time scales and up to r = 0.31 on the time-scale of

days) and a correlation between surface albedo and water

vapor feedback also exists (up to 0.5 depending on the

averaging time scale). All other combinations show little

to no correlation.

Seasonally specific, but globally averaged, contributions

to the surface albedo, lapse rate and water vapor feedback

all show systematic variants. This is especially true for the

surface albedo feedback, which is strongest in northern

hemisphere spring when solar radiation at high northern

latitudes starts to increase.

5.2.1 Temporal variability of the cloud feedback

The local contributions to the cloud feedback are much

more variable than they are for the other feedbacks, but

show no distinct seasonal variation in their global mean.

Similarly to the the geographical distribution of the local

contribution to the feedback strength, Fig. 4 in which

strong positive or negative signals are evident locally, the

global average of the local contributions to the cloud

feedback factor also varies on the 6-hourly time scale

by ±5 Wm-2K-1, although the time-averaged value

remains close to zero.

The largest part of the temporal variability comes from

the SW component of the cloud feedback (Fig. 7). This is

dominated by contributions from changes in low clouds,

which have a high albedo. Due to their low thermal con-

trast with the surface, the impact on the LW is much

smaller, and its variability is comparable to the other

feedbacks.

6 Implications and conclusions

By using different methods to separate physical feedbacks

in idealized climate simulations, through a consistent use

Fig. 6 Cloud radiative forcing, if the PRP method is applied to cloud

related fields switched from 1 year of a control simulation to another

year

Fig. 7 Geographical distribution of cloud short-wave and cloud long-

wave radiative feedback factor (left) and six hourly globally averages

(right) of the components of cloud feedback factor for 6 years (grey

lines), calculated using the FW PRP method. The red line in the time

series is the 5 month running mean and the horizontal black lines is

the mean over the entire time series. Note that the Y-axis range of the

short-wave is the same as the range for the net cloud feedback factor

and the range for the long-wave component is identical to all other

feedback factors in Fig. 8
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of model output and radiation code, we can explore

methodological artifacts on estimates of feedback param-

eters. The largest differences arise simply from different

definitions of forcing and feedback. Assumptions as to how

processes are disaggregated introduces further differences

among methods commonly used to diagnose feedbacks.

Finally, the complexity of applying the PRP and Kernel

methods can add further artificial contributions to the

feedback signal, which are related to the specific diagnostic

set up.

Overall the geographical distribution of the local con-

tributions to a feedback factor are comparable among the

methods, with robust regional features (although details

differ). For the cloud feedback the geographical structure is

consistent between years, giving confidence in the simu-

lated feedback.

We also show that local processes that contribute to a

feedback vary on different timescales and with a different

magnitude, even if many modes of variability are excluded

in our experiments. This makes long-term averages nec-

essary for stable estimates of feedback factors. The cloud

feedback varies the most in our simulations, especially in

the SW spectrum, thereby introducing large sampling

errors (on the order of magnitude of the actual feedback) if

only short global temporal averages are used. In our

simulations a single year is sufficient to estimate the sur-

face albedo feedback, taking into account the year to year

variability in Fig. 1. The tropospheric temperature lapse

rate feedback requires about 3 years averaging time,

although absolute differences are also large depending on

the method. For the water vapor feedback this is about

5 years and for the cloud feedback all years need to be

considered to obtain an accurate feedback estimate and

might possibly not be sufficient in many cases, considering

our very idealized experiments. For the latter, the sampling

error of single years, combined with the methodological

differences, can be as large as the inter-model difference in

the CMIP3 ensemble (Fig. 1) and might be even larger in

more complex models, let alone in reality.

Depending on one’s interest, even simple estimates of

the DCRF can give valuable and reliable information, for

example about the zonal structure of the cloud feedback.

For the PRP and the kernel method, where all contributions

to k are known, Eq. 1 can be evaluated for a climate in

equilibrium. This would verify whether all assumptions are

justified when disaggregating local contributions to the

feedback strength.

The forcing introduced by the doubling of the atmo-

spheric CO2 concentration, as done in the perturbed sim-

ulation, can be calculated online as the stratospheric

adjusted radiative forcing (see Stuber et al. 2001). This

yields 3.89 Wm-2 for the model configuration used here.

The forcing could also be estimated by using a CO2 kernel,

analog to the other kernels for the feedback calculations, or

taken from the Gregory method (3.91 Wm-2 in our case).

The equilibrium climate sensitivity for the model config-

uration used here is 2.98 K.

For the PRP method Eq. 1, with the feedback parameter

expanded as in Eq. 4, and with the radiation imbalance on

the right-hand-side set to zero assuming an equilibrium is

attained, yields:

0 � �0:36

¼ 3:89þ ½�3:23� 0:42þ 1:78þ 0:19þ 0:25� � 2:98

For the radiative kernel method, it yields:

0 � �0:66

¼ 3:89þ ½�3:08� 0:61þ 2:08þ 0:17þ 0:33� � 2:98

In both equations the residual is appreciably different

from zero. Sampling errors, assumptions in the feedback

diagnostic methodologies and specifics of how those

methodologies are applied can lead to an inconsistency

between feedbacks, forcing and climate response terms,

which can exceed single feedback contributions.
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