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Cover Picture: The spectrum from rainfed to irrigated - Diverse options for agricultural water management along the spectrum adapted  from  

Molden (2007) 

Managing water for agriculture includes a spectrum of options—from producing under fully irrigated to entirely rainfed conditions, to 

supporting livestock, forestry, and fisheries, and to interacting with important ecosystems. The continuum of water management practices 

starts with fields or grazing land entirely dependent on rainwater. On-farm conservation practices focus on storing water in the soil. Moving 

along the continuum, more surface water or groundwater is added to enhance crop production. This additional freshwater provides 

opportunities for multiple uses, including aquaculture and livestock within the production system. 
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ABSTRACT 

At the first sight, water management might appear to be focused on local matters only. In fact, water 

management also needs to consider many regional, international, or global factors. Catchments often 

deal with competitive water use, which means that the consumptive demand for water is higher than 

the sustainable production. Water resources, management and systematic approach have a direct 

relationship, because all of these are essential components in an integrated water management plan. 

Many of the existing irrigation systems are not capable of handling the agricultural water demand in 

the future. In addition, the cost for rearranging the water management systems would require large 

investments. Together with the technological improvements assumed in the future, crop yield would 

increase per additional unit of water, in both irrigated and rainfed systems. In contrast, the arable land 

per capita is decreasing apart from the soil degradation problem. Probable rainfall pattern changes and 

occurrence of intense droughts are included in predicted climate change scenarios and these 

deviations demand for new approaches of water resource planning.  

I have developed the ‘GWAMP’ and ‘ADAPT’ models to study opportunities for adaptation of water 

management for agricultural production and impacts of large scale water infrastructure developments 

on land and water resources and regional welfare. A secure supply of water and food, maintaining the 

sufficiency of water for food production, relies on the geographical and the climatic conditions as well 

as economic activities in a region. Water management is often too slow to adapt to the required 

changes. The first step in managing water is to estimate the physically available amount of water to 

manage and variations across spatial and temporal scales. Here, the available water quantity is based 

on the climate change SRES A2 scenario of the IPCC. The concept I present here is to use the 

adaptation measures to manage blue water, so that optimal production targets can be achieved. The 

EPIC model provides the blue water requirement/irrigation water requirements that are demanded by 

the growing crops. There, I try to evaluate the agricultural water requirements and use the adaptation 

techniques to optimize the scale of irrigation.   

The first part of this study describes a suitability assessment for water management structures within a 

river basin. I developed a model named Geographic Water Management Potential (GWAMP) that 

uses spatial data analysis techniques to assess suitability. GWAMP is applicable for varying climatic, 

geographic and socio-economic conditions. Input data are extracted from global data repositories and 

rescaled to a 30 arc-second spatial resolution. These data include precipitation, evaporation, land 

cover, soil properties, elevation, slope, population, road density and drainage network. An analytic 

hierarchical process (AHP) is used to combine suitability for individual factors in to an overall 

suitability index. The model identifies water harvesting and storage suitability for on-farm water 

storage, regional dams, check dams, contour bunts, stone terraces, roaded catchments, and percolation 

pits. The application of the model in six diverse water basins (Ganges, Nile, Sao Francisco, Tocantins, 
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Turkana, Xun Jiang) indicates plausible results in varying climatic, geographic and socioeconomic 

conditions, even in ungauged basins. The exclusive use of available global data sets permits this 

method to be used at global level with minor modifications. The identification of potential water 

management adaptation locations could substantially improve integrated assessment models. The 

GWAMP model is developed in a GIS environment and estimates suitability level information to 

implement adaptation technologies based on the decision rules provided. The rain water harvesting 

technologies considered here include moisture conservation techniques such as check dams, 

percolation pits and stone terraces on agricultural farms or nearby. Water storage technologies include 

regional reservoirs and smaller-scale farm tanks in agricultural areas. The significant feature of this 

decision support system is that decisions can be made based on expert opinion and available 

guidelines in different domains using a rule-based decision tree.  

Furthermore, I have developed the ‘ADAPT’ model to study in combination with the ‘GWAMP’ 

model the impact of water management adaptation on the land and water resources and regional 

agricultural welfare. In an integrated systematic approach, the planning of water storage structures 

needs to be well connected to the water supplies and demand sectors. The systematic approach is 

important to identify the correct components for an integrated system to analyse and improve the 

system. Each of the components requires as input resource endowments and produces outputs at 

optimal level to satisfy the demand attaining a certain level of welfare. The systematic approach for 

integrated water management, I have proposed here, starts from the runoff generation and extends 

until the demands for the agricultural production within a watershed are satisfied. The crop production 

relies on two main types of water reserves. The soil moisture reserves from the runoff (green water) 

and irrigation water (blue water) to compensate for the depleted soil moisture reserve. A secure 

supply of water and food, maintaining the sufficiency of water for food production, relies on the 

geographical and the climatic conditions as well as economic activities in a region. Water resources, 

management, and systematic approach have a direct relationship, because all of these are essential 

components in an integrated water management plan. The ADAPT model is designed to represent the 

dynamics of the water flow within a watershed and elaborately represent the water management 

activities. These include the dimensional measures of the water harvest and storage structures, 

material, installation and maintenance of large scale and small scale water infrastructure. The ADAPT 

model is a mathematical optimization model that jointly represents water management options used as 

adaptation strategies, land use decisions and crop production. I designed the water management within 

the model based on one of the fundamental laws of physics that states; ‘mass can neither be produced 

or destroyed’. Optimal management of water resources is a function of the growth and development 

of every aspect in a watershed. Traditionally, storage has been achieved with dams and surface 

reservoirs.   
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To sum up the insights gained from the studies in this thesis, I can recommend six key elements to 

adapt water management to ensure sound supply of irrigational water.  

• The application of GWAMP in the six case studies demonstrates its suitability to identify 

potential sites for rain water harvesting and storage. The results confirm that GWAMP is 

applicable in varying climatic, geographic, and socioeconomic conditions, even in ungauged 

basins. Furthermore, GWAMP can easily update suitability levels and weighted scores of 

decision factors on which the potential sites for rain water harvesting and storage are based.  

• The analysis of the effect of precipitation on the average suitability score confirms that 

reduced intensity of precipitation on assuming no change in spatial pattern cannot have a 

major effect on the average suitability for either water harvest or storage structures. The 

analysis of the effect of land use change in spatial on average suitability confirms that land 

use change can have a major effect on the average suitability of land parcels for water harvest 

and storage. 

• The cost incurred with the water management infrastructures is an important fact that needs to 

be considered in water resource planning. Extensively considering the cost, I developed the 

ADAPT model, which is coupled with the extensive bio-physical model like EPIC, 

GLOBIOM and geographical analysis models like HEC-RAS and GWAMP.  

• The scenario analysis shows that the water management can have a substantial impact on the 

extended resource as well as the development of welfare levels in the region. Water 

management together with foreign commodity demand and biofuel demand can have a 

combined effect compared to individual influence on the resource use and regional 

agricultural welfare. 

• The water management is moderately sensitive to the biofuel production. The cost of crop 

production is also increasing due to the initial establishment of water management structures. 

The water management is not only sensitive to the change in the share of biofuel demand but 

also sensitive to the overall crop production. 

• The simulation results show that the crop production is rather sensitive to the water 

availability, thus on the level of precipitation. The area of land, which is considered to be one 

of the resources, used for the crop production is also dependent on the level of precipitation. 

Specially, the cost incurred with water management is sensitive to the water availability and 

increases significantly at the reduced water availability. In addition, the marginal cost of 

water is more sensitive to the change in precipitation, rather than the change in crop 

production. 
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CHAPTER I 

General Introduction 

In 2007 a comprehensive assessment of water management in agriculture was published, which 

critically evaluated the benefits, costs and impacts of the past 50 years of water management (Molden, 

2007). In this assessment, the following question was raised: Are there enough land, water, and 

human capacity to produce food for a growing population over the next 50 years—or will I “run out” 

of water? 

The study’s answer can be summarized as follows:  

“It is possible to produce the food—but it is probable that today’s food production and environmental 

trends, if continued, will lead to crises in many parts of the world. Only if I act to improve water use 

in agriculture will we meet the acute freshwater challenges facing humankind over the coming 50 

years.” 

How can we achieve this? 

1 Agricultural water demand – current and future demand 

Humanity faces the unprecedented challenges of a rapidly growing food demand and a shrinking 

sustainable per capita availability of land and water resources. To make the situation more serious, 

water shortages in many parts of the world will grow worse due to anthropogenic global 

environmental change (Grafton and Hussey, 2011). In order to satisfy the needs of a growing 

population, the farmers have to meet the food demand with diminishing land and water resources. 

Water management thus may play a crucial role in the attempt to optimize the use of land and water 

available for agriculture.  

After understanding the importance of water management, it is necessary to assess the magnitude of 

the risk of unavailability of water to decide at which spatial resolution and complex level I should 

attempt to alleviate adverse effects. Many studies have already tried to estimate the current and future 

water demands for crop production. According to the Comprehensive Assessment of Water 

Management in Agriculture, the water demand is expected to increase from currently 7000 km3yr-1 to 

9000-11000 km3yr-1 by 2050 (Molden, 2007). Rockström et al. (2009b) estimate that along with the 

increased water productivity, the water demand for food will increase up to 9000-10000 km3yr-1 by 

2050. Today, 3800 km3 of fresh water is withdrawn per year, of which 70% (2700 km3yr-1) is used for 

irrigation. Uncontrolled extraction of water from rivers and unsustainable exploitation of ground 

water aquifers result in the degradation of water quality of many major rivers and their running dry 
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before reaching the ocean (Molden, 2007). In addition, a competition arises for water resources from 

non-food crop production like bio energy crops.  

Conway (1997) in the double green revolution suggests that over the next few decades, if mankind is 

to produce enough food for everyone, we shall have to increase food production at a greater rate than 

in the past 10 years, do so in a sustainable manner, without severely damaging the environment, and 

ensuring that the food is accessible to all. This entails an efficient management of not only green, but 

also blue water. Green water is the that infiltrate and remain in the soil and Blue water is the irrigation 

water. Existing irrigation systems may not be capable of handling the amount of water demanded in 

the future, yet the cost for rearranging the water management systems would require large 

investments. If these investments would be made and together with the technological improvements 

assumed in the future, crop yields could potentially increase per additional unit of water, in both 

irrigated and rainfed systems (Bouman and Tuong, 2001; Lobell et al., 2009). Furthermore, there is 

climate change: several projections show changes in rainfall patterns and higher occurrences of 

intense droughts (Sheffield and Wood, 2008), which make new approaches to water resource planning 

desirable. Declining runoff rates are recorded in Sub-Saharan Africa, Southern Europe, and parts of 

Southern Asia and Eastern Australia (Milly et al., 2005). Even though this could not conclusively be 

tied to anthropogenic climate change, the latest estimations on the radiative forcing, amounting to ~3 

Wm-2, correspond to a warming exceeding 2oC (Ramanathan and Feng, 2008). Hence, there is likely a 

severe local and global impact on water resource distribution and utilization. In drier climates,  

relatively small changes in the amount of precipitation or land use may potentially cause relatively 

large changes in the natural recharge rate of ground water (Eckhardt and Ulbrich, 2003; Scanlon et al., 

2005). In order to protect future water supply against these changes, more storage of water is needed 

including long-term storage to build water reserves in times of water surplus for use in times of 

shortage. It is therefore crucially important to identify strategies to manage water in such a way that it 

reaches the agricultural fields in demanded quantities and in the time of need.  

 

2 Established models and their major findings on water management 

issues  

The Food and Agriculture Organization (FAO) has used an integrated hydrologic and economic 

model designed to understand the key linkages among water, food security, and environment to find 

remedial strategies for water shortages. The model consists of two integrated modules: the ‘food 

demand and supply’ module, which was adapted from the International Model for Policy Analysis of 

Agricultural Commodities and Trade (IMPACT), (Rosegrant et al., 2008), and the ‘water supply and 

demand’ module, which uses a water balance model based on the Water Accounting framework 
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underlying the Policy Dialogue Model (PODIUM) (Giraldo et al., 2008), combined with elements 

from the IMPACT-WATER model (IWMI, 2007). The model estimates food demand as a function of 

population, income and food prices. Crop production depends on economic variables such as crop 

prices, inputs and subsidies on one hand and climate, crop technology, production mode (rainfed 

versus irrigated) and water availability on the other. Irrigation water demand is a function of the food 

production requirement and management practices, but constrained by the amount of available water. 

At the global level, food demand and supply are levelled out by international trade and changes in 

commodity stocks. The model iterates between basin, region and globe until the conditions of 

economic equilibrium and hydrologic water balance are met. The study concludes that there is a 

greater scope for increasing food production by improving output per unit of water in existing 

irrigated areas than by expanding irrigated area.  

In an optimistic yield growth scenario (Harris, 1996) show that  more than half of the additional food 

demand can be met by improving the output per unit of water on existing irrigated lands. In South 

Asia, for example, more than 50% of the cropped area is irrigated, yet productivity is low. If the gap 

between actual and obtainable irrigated yield could be bridged, the additional food demand by 2050 

could be met without expanding the area under production.  

According to the FAO’s estimations, irrigation can fulfil 75% of the food demand created due to the 

population increase projected for 2050. In order to achieve this target, the irrigated area needs to be 

expanded by 55% from the current level. These estimations imply that the investment on improving 

the efficiency and the productivity of water management structures is more profitable. Income per unit 

of water used in crop production is higher if the water use is diversified. 

In another attempt, the Water Balance Model (WBM) by Vörösmarty et al. (1998) was used. WBM 

and its descendants predict spatially and temporally varying components of the hydrological cycle and 

multi-constituent water quality variables (Vörösmarty et al., 1998). The model can be used to estimate 

the river discharge and impacts of irrigation. The model is a process model which implements the 

physical processes explicitly. 

The applications of the WBM model include quantitative assessments of local watersheds and river 

systems (Wollheim et al. 2008b, Stewart 2009), impacts of irrigation on climate (Douglas et al., 

2006), distribution of land use and hydrologic vulnerability (Douglas et al., 2007), impacts on the 

water cycle (Wisser et al. 2010, Fekete et al., 2010), and rainwater harvesting and storage for 

irrigation (Wisser et al. 2009). The study by Wisser et al.(2008) concluded that between 1963 and 

2002, global irrigation water used ranged from 2200 to 3800 km3 a-1, depending on the irrigation and 

weather data used. Weather driven variability in global irrigation was generally less than ±300 km3 a−1 

globally (<∼10%), but could be as large as ±70% at the national scale (Wisser et al. 2008).   
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The Water - a Global Assessment and Prognosis, (WaterGAP Model)  (Alcamo et al., 2003) considers 

the whole land area of the world and computes both the terrestrial components of water flow and 

storage, as well as water use (Gerten et al., 2004). The WaterGAP model has been used in impact 

assessments to study mainly the water scarcity issues on fresh water resources 

Another approach used is the Lund-Potsdam-Jena managed Land Dynamic Global Vegetation and 

Water Balance Model (LPJml mode) (Bondeau et al., 2007) to assess the green water productivity 

(Hoff, 2007).  

3 Techniques for water management 

The global water sector has problems, because the technical, economic and political developments in 

water management are often too slow to adapt to the required changes (Alcamo et al., 2007). At first 

sight, water management might appear to be focused on local matters only, such as managing a 

certain stretch of river. However, water management needs to consider many international or global 

factors: Catchments often deal with competitive water use, which means that the consumptive use of 

water is higher than its sustainable production. To properly respond to the complex system of water 

resources and different types of water users, it is important to verify the valuation methods and the 

parameters used, which makes the participation of all affected parties very important. The concept of 

Integrated Water Resources Management (IWRM) can be defined as the procedure that collectively 

integrates management activities on water resources as a systematic process for the sustainable 

development, allocation and monitoring of water resources (Biswas, 2004; Jønch-Clausen, 2004; 

Jønch-Clausen and Fugl, 2001). This promotes more coordinated management of land and water 

supplies and demands within the river basin. 

Water resources, management, and a systematic approach are all essential components in an 

integrated water management plan. During the recent decades, the interest in integrating water-

harvesting techniques in water management plans has increased. Many countries have shown the 

successful implementation of water harvesting techniques to increase the water availability, either by 

directly improving soil moisture content or storing water to use it during future stress periods (Ali and 

Talukder, 2008; DeBano, 2000; Deng et al., 2006; Fox and Rockström, 2000; Kronen, 1994; Li et al., 

2000; Li and Gong, 2002; Li et al., 2001; Mupangwa et al., 2006; Oweis and Hachum, 2006; 

Rockström and Falkenmark, 2000; Unger et al., 1991).  

There are many possible integrated water management practices proposed in many studies, often 

tailored to specific interests, perceptions, investments, priorities and locations of the communities 

involved. These techniques include applications of both traditional and modern methods. 

Traditionally, storage has been achieved with dams and surface reservoirs. However, appropriate dam 

sites with long-term usages are becoming scarce. In addition, dams have a number of disadvantages 
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including the interference with stream ecology, adverse environmental effects, displacement of people 

for new dam reserves, loss of scenic aspects and recreational uses of the river, high investment costs 

and potential risk of failure and limited lifespans due to sediment deposition.  

4 Shortcomings of existing approaches 

The above mentioned approaches consider the available water using a water balance approach, in 

which the water harvesting and storage capacity are not estimated comprehensively. These 

incomprehensively analysed factors include the different types of structures built with different 

materials, selection of appropriate geographic location and appropriate climatic condition. In addition, 

geographical conditions and agricultural and forestry management practices are not taken into 

consideration when estimating the cropping area expansion. Cost of installation and maintenance of 

water harvest and storage structures are not fully considered, which could have a profound impact on 

the final income. Two main drivers of the availability of irrigation water, i.e. bioenergy demand and 

precipitation patterns are not treated explicitly in the analysis, even though their impact on land and 

water resource availability and regional welfare is substantial. 

5 Contributions from this approach 

In this dissertation, I have developed the ‘Geographic Water Management Potential Model (GWAMP 

model) and Adapting the Irrigational Water Management Model (ADAPT model).to address some of 

the above mentioned shortcomings of the analysis in a regional context and to better understand the 

impact on the land and water resources and regional welfare. While the specific analysis is mostly 

limited to the Sao Francisco watershed in Brazil, the developed tools are suitable for application in 

other watersheds as well. 

Crop production relies on two main types of water reserves: The soil moisture (green water) and 

irrigation water (blue water) to compensate for the depleted soil moisture reserve. A sufficient and 

secure supply of water and food is dependent on the geographical and the climatic conditions as well 

as the economic activities in a region. The first step in managing water is therefore to estimate the 

physically available water to manage, as well as the distribution of water stress in time and space. In 

this approach, the available water quantity is based on the climate change SRES A2 scenario 

projections of the IPCC (Vera et al., 2006). Precipitation and runoff data are calculated for different 

land use classes, i.e. crop land, pasture lands, urban lands, forest and wetlands, with the EPIC model 

(Environmental Policy Integrated Climate, Sharpley and Williams (1990a)) and are used for the 

estimation of the green water amount. My aim is to manage green water in such a way that the 

resulting blue water can be used in the most productive and beneficial way. The runoff is calculated in 
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different land parcels as defined in the EPIC model (i.e. crop land, pasture lands, urban lands, forest 

and wetlands). The concept I present here is to use adaptation measures to manage blue water, so that 

optimal production targets can be achieved. The EPIC model provides the blue water requirement 

(irrigation water) of the growing crops. Here, I try to use adaptation techniques to minimize the gap 

between the supply and the demand for irrigation water by different crops. 

In an integrated systematic approach, the planning and management of water storage structures need 

to be linked to the water supply and demand. The basic principle of a system’s approach is 

connectivity. A system is a set of elements with connections between each other. Any system is 

composed of subsystems, each being autonomous and open, directly interrelated and integrated with 

its environment. The systematic approach is important to identify the correct components for an 

integrated system, to analyse and improve the system. Each of the components requires as input 

resource endowments and produces outputs to satisfy the demand to attain a certain level of welfare. 

The systematic approach for integrated water management that I propose here starts from the runoff 

generation and extends until the demands for crop production within a watershed is satisfied.  

With this approach I try to improve on the above mentioned shortcomings of the previous analyses 

and understand the impact of water management on land and water resources and regional welfare. 

6 Outline of the studies and chapters of this thesis 

Issues associated with water stress are rising in numbers and call for effective and efficient means for 

safeguarding the water for agricultural activities. The core to ensure an adequate supply of water for 

agricultural activities is to adapt water management activities. The efficiency and the effectiveness of 

water management activities may have a large impact on the land resource utilization and regional 

welfare. This thesis thus aims at facilitating and strengthening the application of adaptation measures 

for water management through a quantitative analysis.  

The methodological basis for the thesis is the development of the geographic information systems 

based model GWAMP (Geographic Water Management Potential) and the mathematical 

programming model ADAPT (Adapting the Irrigational Water Management Model). The GWAMP 

model is used to assess the land suitability for water management and the ADAPT model is used to 

assess the resource use, crop demand and the level of welfare attained within a watershed. Figure 1 

and Figure 2 present the schematic outlines of the GWAMP and ADAPT models. Setups and model 

procedures are described in detail in chapter II and chapter III, respectively.  

The spatial scope considered in the thesis for the GWAMP model comprises six watersheds with 

different geographical, climatic, and economic situations, namely the Sao Francisco, Turkana, Nile, 

Tocantins, Ganges-Brahmaputra and Xingjian basins. The Sao Francisco watershed is categorized as a 
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region having little or no physical and economic water scarcity under the FAO’s water stress index 

(Molden, 2007).  I thus use the spatial scope of the Sao Francisco as the reference watershed in the 

ADAPT model.  

 

The thesis chapters are based on four research papers:  

I  Weerasinghe H., U. A. Schneider, and A. Loew: Water harvest- and storage- location 

assessment model using GIS and remote sensing. Hydrol. Earth Syst. Sci. Discuss., 8, 3353–3381, 

2011. www.hydrol-earth-syst-sci-discuss.net/8/3353/2011/doi:10.5194/hessd-8-3353-2011 Received: 

15 March 2011 – Accepted: 18 March 2011 – Published: 4 April 2011  

This paper was presented at the BALWOIS in Ohrid, Macedonia (May 2010), and at the annual 

retreat of the International Max Plank Research School on Earth System Modelling (October 2010). A 

different version of the paper was published in the Hydrology and Earth System Sciences and 

Conference proceedings of the BALWOIS (2010): 

Weerasinghe, H., U. Schneider, A. Löw, (2010). "Water Harvest-and Storage-Location Optimization 

Using GIS and Remote Sensing" BALWOIS 2010. Ohrid, Macedonia. 

balwois.com/balwois/administration/full_paper/ffp-1653.pdf 

In this study, I investigated the suitability of installing water management structures within a river 

basin. I developed a model named Geographic Water Management Potential (GWAMP) that uses 

spatial data analysis techniques to assess suitability. GWAMP is applicable for varying climatic, 

geographic and socio-economic conditions. 

 

II  Weerasinghe, Harshi; Schneider, Uwe A, Schmid, E., (2011) Adapting water management to 

meet agricultural water demand 

This paper was presented at the EGU General Assembly 2010 in Vienna, Austria (May 2010) and at 

the annual retreat of the International Max Plank Research School on Earth System Modelling 

(October 2011). A different version of the paper was published in European Geosciences Union 

General Assembly Proceedings (2010): 

Weerasinghe, Harshi; Schneider, Uwe A, Assessment of economically optimal water management 

and geospatial potential for large-scale water storage. EGU General Assembly 2010, held 2-7 May, 

2010 in Vienna, Austria, p.6696 

This study demonstrates a method to integrate biophysical, trade, and irrigational water feedbacks and 

geographical suitability assessment in water management planning tools. To illustrate the effect of 
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adapting water management, the land use, level of welfare, water and land prices, and the 

establishment of water management structures were compared. 

 

III  Adapting water management to meet changing different bioenergy demand targets 

(Manuscript currently in progress) 

In this study, I investigated the effect of adapting water management to handle an increasing water 

demand of biofuel crops. The impact of adapting water management is assessed by comparing the 

land use, the level of welfare, water and land prices, and the establishment of water management 

structures. 

 

IV  Agricultural water management under changing precipitation (Manuscript currently in 

progress) 

In this study, I investigated the impact of adapting water management under changing precipitation 

scenarios by analysing the quantity of changed runoff due to climate change. The impact of adapting 

water management is illustrated by comparing land use, the level of welfare, water and land prices, 

and the establishment of water management structures. 
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GWAMP MODEL 

Optimization  
Multi-criteria evaluation using pair-wise comparison 

Scope 

Processes 

Output 

Spatial scope 
- Watersheds (Six 

watersheds with 
changing input data) 

Structure data 
- Storage structures 
- Harvest structures 
- Spatially resolved land 
suitability 

Objective 
- Location suitability maximization 

Optimization mode 
- Sequential 

Land suitability for Water Management  

- To establish water storage and harvest structures 

Other main input data 
- Climate     - Hydrology 
- Soil            - Topography     
- Socio-economic factors   

Figure 1: GWAMP model schematic outline 
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ADAPT MODEL 

Scope 

Processes 

Output 

Spatial scope 
- Sub watersheds 
-Homogenous Response Unit 
Temporal scope 
- Monthly 

Structure data 
- Storage structures 
- Harvest structures 
- Local structure dimensions  

Objective 
- Welfare maximization 
- Cost minimization (structure, crop 
production, water management) 
- Structure stabilization 

Optimization mode 
- Joint 
- Sequential 

Water Management 
- Use of harvest and storage structures established 
- Level of welfare achievement 
- Accomplishment of demand targets in water 
supply and crop production 
- Cost of water management 

Resource Utilization 
- Runoff capture 
- Stored water  
- Crop land area 
- Storage and harvest structures 

Optimization  
Relaxed mixed integer programming with CPLEX 

solver 

Other main input data 
- Precipitation 
- Land use 
- Crop production/cost 

Figure 2: ADAPT model schematic outline 
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CHAPTER II 

Multi-criteria evaluation to identify suitable locations for water 

 

This study describes a suitability assessment of water management structures within a river basin. I 

developed a model named Geographic Water Management Potential (GWAMP) that uses spatial data 

analysis techniques to assess suitability. GWAMP is applicable for varying climatic, geographic and 

socio-economic conditions. Input data are extracted from global data repositories and rescaled to a 30 

arc-second spatial resolution. These data include precipitation, evaporation, land cover, soil 

properties, elevation, slope, population, road density and drainage network. An analytic hierarchical 

process (AHP) is used to combine suitability for individual factors into an overall suitability index. 

The model identifies water harvesting and storage suitability for on-farm water storage, regional 

dams, check dams, contour bunts, stone terraces, roaded catchments, and percolation pits. The 

application of the model in six diverse water basins (Ganges, Nile, Sao Francisco, Tocantins, Turkana, 

Xun Jiang) indicates plausible results in varying climatic, geographic and socioeconomic conditions, 

even in ungauged basins. The exclusive use of available global data sets permits this method to be 

used at global level with minor modifications. The identification of potential water management 

adaptation locations could substantially improve integrated assessment models 
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1 Introduction 

According to the Intergovernmental Panel on Climate Change (IPCC, 2007), recent improved 

understanding of global precipitation patterns points to an increase in globally averaged annual 

precipitation during the 21st century due to global mean  warming leading to changes in atmospheric 

circulation and increases in evaporation and water vapour. However, changes in precipitation will 

vary from region to region. These changes include an increase in the intensity of precipitation events, 

particularly in tropical and high-latitude regions, and reduced rainfall over continental interiors during 

summer due to an increased evaporation. Therefore, many regions are expected to suffer from 

increased water stress to the point where they have insufficient water to meet basic needs, especially 

during low-rainfall periods.   

The world is facing critical challenges to sustain water resources for the future, and issues are 

aggravated by the impacts of global change and the necessity for efficient and effective adaptation 

measures. The term adaptation is widely used to denote measures to control substantial alterations to 

natural systems or society in the face of adverse impacts brought about by global change. Fresh water 

resources are often not efficiently used and regulated (Ambast et al., 2002; Seckler et al., 1999). 

Given the considerable uncertainties around projections of climate impacts on water resources at local 

and regional scales, adaptation to changing conditions in water availability and demand has always 

been at the core of water management (Kundzewicz, 2007; Richardson et al., 2009). Adaptation 

research in the water management sector has been developed over decades in different directions. The 

effectiveness of adaptation measures in dealing with global change varies widely. Döll et al. (2003) 

have tried to simulate global renewable water resources and identify the reduction of river discharge 

by human water consumption at a coarse resolution of 0.50. Integrated water management within a 

watershed is identified as one of the most effective autonomous adaptation strategies. The 

effectiveness of such adaptation measures and their changing suitability with global change is a field, 

which demands systematic study. Most of the existing approaches to delineate rain water harvesting 

potential consider input parameters that are not easily accessible at global or regional scales (Gupta et 

al., 1997). Therefore it is difficult to incorporate these methodologies into integrated land-use 

assessment models. Geographic Information System (GIS) techniques are increasingly used for 

planning, development, and management of natural resources at regional, national, and international 

level. These applications also include several water-related environmental challenges such as soil 

erosion, degradation of land by water logging, ground and surface water contamination, and 

ecosystem changes (Jasrotia et al., 2002). Sharada et al. (1993) studied the application of GIS in entire 

catchments for site prioritization with respect to soil conservation. The Soil Conservation Service 

Curve Number (SCS-CN) method (Mockus, 1972) is also used widely in GIS to determine the 

rainfall-runoff (Hariprasad, 1997; Jain et al., 1996; Srinivas, 1996). Sharada et al. (1993) argue that 
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composite map generation and calculating area statistics with geo-databases is much faster and more 

accurate. Ross (1993) integrated GIS into hydrologic modelling and found that it reduced the 

modeller’s subjectivity in parameter selection. Many of these existing approaches to identify water 

harvesting and storage potential use locally available datasets. Therefore, they are not easily 

applicable in different regions because the data used are not available at a global scale. Potential site 

selection is often based on assessment of the natural environment. Rather a limited consideration has 

so far been given to a holistic approach to identify optimal locations for water management measures 

considering geographic, technical, economic, and social aspects. As mentioned earlier, Global 

Climate Model (GCM) projections have already provided explicit explanations for potential change in 

precipitation and land use. However, so far, there has been no comprehensive analysis of the potential 

for managing a watershed as one unit, combining different adaptation strategies. 

The research question I try to address here is how to identify sites for water management in a holistic 

scenario using high-resolution global datasets. A holistic scenario is defined as containing climate, 

land cover, topographic, drainage, and socio-economic factors. Yet the key point is to identify a 

computationally feasible method, while maintaining the accuracy of the results. In this study, I 

identify potential locations for adaptation measures to harvest and store water. This is done using 

climate, land cover, topographic, drainage, and socio-economic data for six watersheds. I combine the 

study with a sensitivity analysis in order to understand changes in potential location identification 

according to changing precipitation and land use. To represent climate change, I use precipitation 

variability projected in different IPCC emission scenarios. (Ramankutty et al., 2006) have identified 

forest, agricultural lands, grazing lands, dry lands, and urban areas as the major drivers of land-use 

change.  To represent land-use change, I use urban, agricultural, and forest land-use scenarios.  

The remaining sections of the paper are arranged as follows: Section 2 provides details of the 

GWAMP model structure. Section 3 contains an explanation of relevant model theories. Section 4 

summarizes the adaptation techniques used in the model. Section 5 provides details of the model 

setup. Section 6 provides a summary of the results and section 7 a comparison of results with existing 

locations. Section 8 concludes the main findings of the study. 

2 Geographic Water Management Potential (GWAMP)  

2.1 Model concepts 

GWAMP is a spatially resolved model that results in suitability maps for harvesting and storage of 

rain water. The aim of the model is to identify potential adaptation techniques within a watershed that 

are applicable in different climatic and geographical conditions.  
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In contrast to existing approaches, GWAMP is designed to be used in different climatic and 

geographical conditions, eventually covering the entire land mass. In order to obtain an acceptable 

level of accuracy and maximize the model’s applicability, I have to compromise on scope. I use 

global datasets to avoid inconsistencies due to different definitions and qualities of local or regional 

data. Spatial and temporal resolution of the model is a compromise between local characteristics, data 

availability, and applicability of the model to other regions. Water management adaptation is an 

important aspect to consider in evaluating the impacts of global change on food production; however, 

so far, integrated studies have not considered water storage options (Schneider et al., 2011). 

Therefore, the applicability of GWAMP in changing climate and geographical locations is especially 

useful as a first step to improve integrated land-use studies. I have selected 1 km x 1 km resolution, 

with the intention of applying the method globally.  

Our approach calculates runoff at 1 km x 1 km resolution and estimates gross runoff potentials. 

GWAMP can be coupled offline to a GCM. This compatibility is an important feature for assessing 

adaptation strategies under changing climate. In addition, our approach offers a relatively fast 

preliminary site selection for water infrastructure development that avoids a time-consuming manual 

location search. In GWAMP, I consider an entire catchment as the appropriate spatial scale for water 

resource planning, development, and management. By applying an Analytic Hierarchical Process 

(AHP) on spatial data, I obtain a suitability score that enables me to determine an overall suitability 

score for both water harvesting and storage.  

I use the SCS-CN method (Mockus, 1972) to approximate the gross runoff potential. Since our land-

use and soil data are resolved at 1 km x 1 km, I believe that the accuracy is adequate for the intended 

purpose of our estimates. Our specific objective is to estimate the possible gross runoff volume 

generation, which adaptation techniques have to manage at a maximum occurrence. With the current 

database, the model can only approximate runoff on land parcels where the soil is not permanently 

frozen. Land parcels with long-term frost are not considered in the analysis. If more accurate runoff 

data were available from other sources, the model could be applied to land parcels with permanent 

frost cover as well. As noted above, the water harvest and storage suitability maps are designed to 

improve global integrated land-use models, for which land use and land management intensity are 

endogenous. Evaporation depends on land use and land management intensity (i.e. higher biomass 

yields usually imply more evaporation). Global integrated land-use models (Adams et al., 1994) are 

often linked to biophysical models, which compute specific evapotranspiration rates for each land use 

and land management intensity. Thus, the water harvesting and storage suitability estimate should 

reflect only the gross runoff potential, i.e. the volume of rainfall that can potentially generate runoff. 

The actual runoff can be calculated by the integrated land-use optimization model taking decisions to 

change land use into account. The model already has a developed database at 30 arc-second (~1 km), 

but it can be easily adjusted to finer or coarser resolutions. 
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2.2 Model Structure 

The GWAMP model is developed in a GIS environment and estimates suitability level information to 

implement adaptation technologies based on the decision rules provided. The rain water harvesting 

technologies considered here include moisture conservation techniques such as check dams, 

percolation pits, and stone terraces on agricultural farms or nearby. Water storage technologies 

include regional reservoirs and smaller-scale farm tanks in agricultural areas. The significant feature 

of this decision support system is that decisions can be made based on expert opinion and available 

guidelines in different domains using a rule-based decision tree. Figure 3 presents the hierarchical 

structure of the GWAMP model.  

From left to right, at the top level I define the main goal, which is to estimate the potential suitability 

for harvesting and storing water. At the intermediate level, I select, in broad categories, the factors 

that could affect the decision. At the bottom level, I define the input data. The next step is to combine 

the input data and develop thematic maps for the broad categories. Finally, combining the thematic 

maps, I derive suitability maps that present estimated suitability scores. To combine the input data and 

the thematic data, I use rules defined in the literature, which will be discussed later in this section. 
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2.3 Input data parameters and data base generation 

The required input data for the GWAMP model fall into five main categories, which are explained in 

the subsections below. I retrieve these data from global data repositories and rescale them to a 1 km 

spatial resolution to obtain a set of manageable input data at a global scale. The database is in 30 arc-

second spatial resolution (~1 km) and projected to the geographic coordinate system World Geodetic 

Survey 1984 and to the world cylindrical equal-area projected coordinate system. All the downloaded 

data are resampled and reprojected to match the database configurations. 

Overall site 
suitability map 

Top level 
Goal 

Intermediate 
level 

Bottom level Derived 
themes 

Outputs 
(Suitability) 

E
st

im
at

e 
w

at
er

 h
ar

ve
st

 a
nd

 s
to

ra
ge

 s
ui

ta
bi

lit
y 

Climate 

Hydrology 

Soil 

Topography 

Socio-economic 
factors 

Rainfall 

Evaporation 

Runoff 

Drainage 
density 

Soil depth 

Soil drainage 

Soil salinity/ 
sodicity 

Soil workability 

Slope 

Land Use Land 
Cover 

Population 
density 

Road density 

Climate 
Hydrology 
Soil 
Topography 
Social factors 
 

Figure 3: Schematic diagram of the GWAMP model framework 
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2.3.1 Climate data  

Climate data are represented by precipitation and evapo-transpiration. Present-day precipitation data 

are downloaded from the WorldClim global climate database (Hijmans et al., 2005) using 

observations from 1950–2000. Future precipitation data are based on simulations of the Hadley 

Centre Coupled Model version 3 (HadCM3), considering the A1B, A2a, and B2a scenarios in 2020, 

2050, and 2080 (Hijmans et al., 2005). Potential evapo-transpiration (PET) data are downloaded from 

the CGIAR-CSI data repository  (Zomer et al., 2007) at 30 arc-second resolution. Monthly averaged 

PET (mm/month) data are estimated using the Penman-Monteith equation. I combine these monthly 

data layers to estimate yearly average PET and this is used as a decision-making criterion in the 

model. Intensity and spatial distribution of rainfall in a given area are the basis for the design and 

implementation of a water harvesting or storage system. 

2.3.2 Hydrology data  

Hydrology data are represented by runoff volume and drainage network distribution. I use the 

equations from the SCS-CN method (Eq. 1 and Eq. 2) to estimate the runoff.  

 

1000
25.4 10S

CN
 = ⋅ − 
        Eq.1   
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P I S

−
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− +       Eq. 2 

where 

S = Maximum recharge capacity of watershed after 5 days rainfall, mm/month  

Q = Monthly runoff depth, mm 

P = Monthly rainfall, mm 

Ia = Initial abstraction of rainfall by soil and vegetation, mm 

CN = Curve Number (unit less), table by Mockus (1972)  

Ia contains all precipitation losses before runoff. It includes water retained in surface depressions, 

water intercepted by vegetation, evaporation, and infiltration. Ia is highly variable but is generally 

correlated with soil and cover parameters. A regression analysis performed by the Soil Conservation 

Service (USDA, 1972) using recorded rainfall and runoff data from small drainage basins resulted in 

an average relationship of Ia = 0.2S. This is used to eliminate Ia in Eq. 2. 
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CN, a dimensionless scalar between 0 and 100, reflects the overall runoff response related to land use, 

land treatment, hydrological condition, hydrological soil group, and antecedent soil moisture 

condition (AMC) in a drainage basin. The AMC refers to the soil condition before runoff occurs and 

is generally assigned to three classes. Here, I consider only AMC II, which is the average condition. 

The information from the soil map is reclassified into four hydrological soil type groups—A, B, C, 

and D—based on the infiltration and runoff generating potentials (Niehoff et al., 2002). According to 

the National Engineering Handbook (Boorman et al., 1995; Mockus, 1972), the characteristics of the 

hydrological soil groups can be summarized as shown in Table 1. The runoff values represent the 

cumulative annual runoff amount (mm) for each grid cell, estimated yearly cumulative runoff is used 

as a decision-making criterion in the GWAMP model.  

Table 1: Main characteristics of hydrological soil groups 

Hydrological 
soil group 

Main characteristics 

A 
Sand, loamy sand, or sandy loam soils with low runoff potential and high 
infiltration rates 

B Silt loam or loam soils with moderate to high infiltration rates 

C Sandy clay loam soils with low infiltration rates 

D 
Clay loam, silty clay loam, sandy clay, silty clay, or clay soils with very high 
runoff potential and low infiltration rates 

The drainage network data are classified into stream orders using Strahler’s method  (Strahler 1957).  

In this method, all stream links without any tributaries are assigned an order of 1 and are referred to as 

first order. Therefore, the intersection of two first-order links will create a second-order link, the 

intersection of two second-order links will create a third-order link, and so on. The intersection of two 

links of different orders, however, will not result in an increase in order.  Subsequently, I calculate the 

drainage line density, which identifies how well an area is drained. The drainage line density is used 

as a criterion for decision making in the GWAMP model. 

2.3.3 Soil data 

Soil data include information on soil texture, soil drainage, presence of problematic soils, soil 

workability, and effective soil depth. All of these data are extracted from the Harmonized World Soil 

Database v 1.1 (HWSD), downloaded from the International Institute for Applied Systems Analysis 
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(IIASA) data repository (Fischer et al., 2008). The soil workability reflects interrelated soil 

characteristics such as texture, structure, organic matter content, soil consistency/bulk density, the 

occurrence of gravel or stones in the profile or at the soil surface, and the presence of continuous hard 

rock at shallow depth as well as rock outcrops. The soil drainage class is defined based on the 

possibility of evacuating excess moisture from a soil based on the soil unit's classification name, the 

soil phase(s) indicated for the dominant unit, and the slope class. Soil drainage is mapped into seven 

classes ranging from very excessive to very poor. From different types of problematic soil conditions, 

I extracted only saline/sodic limitations, i.e. high salt content or exchangeable sodium saturation 

within 100 cm of the surface. The structure of the top soil influences the runoff and the infiltration and 

percolation rates. The soil depth, along with soil texture, determines the quantity of water, which can 

be stored in the soil. Data layers of soil texture, soil drainage, availability of problematic soils, soil 

workability, and effective soil depth are used as criteria for decision making in the GWAMP model, 

In addition, soil texture information is used to derive the soil hydrologic group to estimate runoff.  

 

2.3.4 Topography data 

Topographical data comprise slope and land-cover data. The slope is an important property to assess 

the suitability of an area for macro-catchment water harvesting. For a given inclination, the runoff 

volume increases with the length of the slope. The slope length determines the suitability for macro, 

micro, or mixed water harvesting systems (Prinz and Singh, 1999). Slope data are obtained from the 

IIASA data repository (Fischer et al., 2008). The slope map contains the average slope (ranging from 

0 to 90%) in each grid cell. The slope data are classified into seven categories according to the Food 

and Agriculture Organization (FAO) guidelines (Fischer et al., 2008). The objective of water 

harvesting structures on steep slopes is to slow down erosive fast flows, increase shallow ground 

aquifer recharge, and direct water to surface water storages. Slope class/range is used as a criterion in 

the GWAMP model.  

Vegetation is another important factor that determines surface runoff generation. Studies in West 

Africa (Tauer and Humborg, 1992) and Syria (Prinz and Wolfer, 1999) have shown that an increase in 

the vegetation density increases interception losses, retention, and infiltration rates, which 

consequently decrease the volume of runoff. Land cover describes the physical material on the earth’s 

surface. The dataset used here was developed within the Global Land Cover 2000 Project and uses the 

FAO Land Cover Classification System (Fritz and Directorate-General, 2003). Land cover data are 

used as a criterion in the GWAMP model to estimate runoff.  
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2.3.5 Socio-economic data 

Socio-economic data are represented by population and road density data. The socio-economic 

conditions of a region are important for planning, design, and implementation of any water-harvesting 

scheme. The farming systems of the community, the financial capabilities of the average farmer, the 

cultural behaviour and religious beliefs of the people, as well as public participation are important in 

implementing activities. I use gridded world population density data (GPWv3, 2005) from the Center 

for International Earth Science Information Network (CIESIN) data repository. The population 

density data layer is used as a criterion for decision making in the GWAMP model. Regions with high 

population density are not favourable for building water management structures. The world network 

of major roads was downloaded from the FAO spatial data repository (FAO/GIS, 1997). Road line 

density is determined based on the number of road lines present in a grid cell. Population density data 

and road density data are used in the GWAMP model.  

2.3.6 Elevation data 

I use digital elevation data indirectly to develop input parameters for the GWAMP model. I use 

NASA Shuttle Radar Topographic Mission-Digital Elevation Model (SRTM-DEM) data according to 

the method described by Reuter et al. (2007). I apply the Fill-Sink operation in ARC-GIS to the 

dataset to rectify the unusual appearance of sinks and peaks in data during data transfer and image 

mosaic operation. Seamless data of 3 arc-second resolution are downloaded from the CGIAR server 

(Jarvis A. et al., 2008). I use the processed DEM to develop the water flow path on the terrain surface 

and watershed boundaries. A rough boundary for each watershed is downloaded from the World 

Resource Institute website. Using the boundary data, DEM data are extracted for each watershed 

along with a 1 km boundary. I process the filled DEM to extract an accurate watershed boundary and 

flow network using flow direction and flow accumulation raster data. Using the rectified DEM, I 

create contour data at 50 m height intervals. Contour density, i.e. the number of contour lines per grid 

cell, is derived from contour data. This data layer is then used to identify valley locations for regional 

reservoirs. A 50 m contour interval is used in the analysis due to computational feasibility and to 

assess the variation of undulating topography within a 1 km grid box. 

2.4 Multi-criteria Evaluation (MCE) 

Suitability assessment tasks involve many decision-making aspects, diverse alternatives in possible 

outcomes and sometimes qualitative factors by which to assess the outcomes. The purpose of MCE is 

to investigate alternative choices under multiple, often conflicting, objectives (Voogd, 1983) and to 

generate overall rankings of these choices (Janssen and Rietveld, 1990).  Here, I use MCE to identify 

the suitability of each grid cell to implement adaptation strategies and represent the result of the 

process using a ranking score. Following sub sections explain the estimation procedures. 
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First, a suitability level index (SLI) is used to depict the suitability level of individual factors. The SLI 

is generated using actual data values and this helps to convert all qualitative and quantitative input 

data parameters into one common scale. The relative importance weight index (RIWI) is a weight 

score that represents the relative importance of each factor compared to other factors. The composite 

suitability index (CSI) is the product of SLI and RIWI.  

2.5 Suitability Level Index (SLI) 

To represent the suitability level I use a common numerical scale of 1–9 (Table 2). Suitability to 

implement an adaptation technique on grid cells is evaluated using literature. These rules are 

explained in sections 3.1 and 3.2. Using the numerical scale, the suitability of the actual parameter 

value to implement a structure is converted to a suitability ranking score. The chosen ranking system 

has been used in several previous studies (Diamond and Parteno, 2004; Gosschalk, 2002).  

 

Table 2: Numerical mapping of suitability levels 

Suitability level Numerical expression 

Optimal 9 

Highly suitable 7–8 

Moderately suitable 6–5 

Marginally suitable 4–3 

Not suitable 2–1 

Restricted 0 

 

2.6 Relative Importance Weighted Index (RIWI) 

The RIWI is calculated based on a method developed by Saaty (Saaty, 1980), where the overall 

ranking results from a hierarchy of components known as an Analytic Hierarchy Process (AHP). An 

explanation to AHP is given in the APPENDIX – A. This method considers the relative importance of 

a diverse set of factors and identifies the most suitable among alternative outcomes. This method 

largely stems from the theories of human behaviour, including thinking processes, logic, intuition, 

experiences, and learning theories (Saaty, 1987). 

The hierarchical process includes a top level, which comprises the overall objective of the ranking 

process, intermediate levels, which comprise the factor and sub-factors, and the lowest level, with the 

possible outcomes of alternative choices. I design the model based on the above hierarchical structure.  
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The AHP is constructed using a series of pair-wise comparison matrices, which relate each factor to 

every other factor. This comparison matrix estimates a weight for each factor that describes the 

importance of each input data parameter contributing to the overall objective. The main factors are 

then broken down to sub-factors, and pair-wise comparisons are repeated for each sub level of the 

hierarchy.  

2.7 Composite Suitability Index (CSI) 

Finally, combining RIWI and SLI I calculate the CSI. Following is the mathematical representation of 

the score calculations. 

Suitability level score at bottom level:                  , , bottom levelitjS i t j∀ =  

RIWI: 
                 ,jtW i t∀

 

Composite Suitability Index: =                  ,it ijt jtj
C S W i t∀∑ i  

1...   (Grid cell)

1...   (Operation level)

1...   (Water management technique)

i I

j J

t T

=
=
=  

The higher the index value, (itC ), the more suitable the grid cell is for the water harvest or storage 

technology.  

3 Adaptation Techniques 

I need to manage excess or depleted amount of water on time and space, which is needed for 

agricultural water use. In order to manage this water I implement adaptation techniques on the 

available water. Here, I consider two aspects in selecting and combining adaptation techniques for 

water management within the watershed, i.e. water harvesting and storage. Water harvesting in its 

broad scope can be defined as the collection of rainwater and runoff for productive use. Water storage 

is the collection of water for use when there is a lack of supply. Our objective in using a water harvest 

structure is to reduce the runoff flow velocity from upstream to downstream and provide an 

opportunity for further recharge of groundwater aquifers. Here I consider only macro-catchment and 

floodwater harvesting techniques because our spatial resolution is 1 km2. 

Suitability levels for small-scale farm tanks are determined based on the criteria defined by Lewis 

(2002). Additionally, the suitability for check dams, percolation ponds, stone terraces, and roaded 

catchments are determined based on recommendations by Mbilinyi et al. (2005) and Prinz (1996a). 
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3.1 Water harvesting techniques 

3.1.1 Check dams  

A check dam is a small barrier of rocks, gravel bags, sand bags, or reusable products, placed across a 

channel. Check dams reduce the effective slope of the channel, thereby reducing the velocity of 

flowing water. Usually, check dams are constructed at lower-order streams (up to 3rd order), when the 

terrain slopes are small to gentle. The water flow can thereby be retarded, and water can be retained 

temporarily at a lower-level wall. Also, in locations where water table fluctuations are high, check 

dams are preferable. Soils with low to medium permeability are preferred to allow some recharge 

downstream of the check dam if necessary. Check dams are mostly located close to agricultural areas 

and settlements. 

3.1.2 Contour bunts  

Contour bunts, sometimes also called contour ridges or contour furrows, are small earthen banks with 

a furrow on the higher side, which collects runoff from an uncultivated strip between the ridges. This 

technique helps to increase soil moisture under the ridge and the furrow and yield runoff from a short 

catchment length. Labour requirements are relatively low and contour ridges are easy to make using 

hand tools. Construction can be mechanized and the technique is therefore suitable for 

implementation on a larger scale as well as on both cultivated and uncultivated lands. Moderate slopes 

(0.5–5%) with light or medium soil texture and areas receiving less than 700 mm of rain per year are 

suitable for the construction of contour bunts. 

3.1.3 Percolation ponds  

There can still be runoff left in the field, even after the soil pores and farm ponds are filled. This 

rainwater excess can be collected by constructing percolation ponds in appropriate places. Usually 

percolation ponds are structures that increase water percolation and soil moisture and retain the silt 

flow, which would otherwise reach multipurpose reservoirs and reduce their functional lifetime. Flat 

terrains receiving less than 600 mm of annual rainfall on average and with slopes less than 2%, close 

to streams and agricultural lands, are preferable for percolation ponds (NRSA, 1995). Soils with 

adequate permeability are also important to facilitate additional recharge of shallow water aquifers. 

3.1.4 Stone terraces 

Stone terraces are normally constructed across hill slopes, thereby intercepting the surface runoff. 

They are normally built on land that receives 300–600 mm average annual rainfall and has a slope up 

to 25% inclination (Critchley and Siegert, 1991), and they are advantageous in retarding soil loss and 

conserving soil moisture. Spacing of stone terraces can range from 10 m to 30 m and can be adapted 
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depending on the slope. Soil excavated for the foundation of terraces is used to form a small bund on 

the upstream side of the terrace. A stone terrace is stabilized by planting suitable vegetation on the 

land. Construction is labour intensive.   

3.1.5 Roaded catchments   

A roaded catchment is a water harvesting structure designed to increase runoff inception from the 

catchment above a dam or a farm tank. The ‘roads’ of a roaded catchment are parallel ridges of earth 

with side slopes that cause runoff to be directed into troughs or channels. The surface is lined with 

clay and compacted to make it smooth and impervious to reduce infiltration and increase runoff. 

Capture of runoff is increased by increasing the slope of the surface, decreasing surface detention and 

reducing the permeability of the sloping surface. Medium-terrain slopes (5–16%) are usually used to 

construct roaded catchments. 

3.2 Water storage techniques 

3.2.1 Farm tanks 

Farm tanks are usually constructed on flat terrain with low soil permeability on, or close to, 

agricultural land. They are made either by constructing an embankment across a watercourse or by 

excavating a pit, or a combination of both. The main objectives of constructing farm tanks are to 

provide drinking water for livestock, to serve as water storage for irrigation of a limited number of 

fruit plants, and to moderate the hydrology of small watersheds. 

3.2.2 Dams 

Regional dams are usually created in low-level terrain with low-permeability soil, located closer to 

valley locations and main water courses. Major decision criteria considered here are 

geomorphological characteristics, storage capacity, runoff, and river reach. The width and slope of the 

valley at the dam location are important parameters, which determine the cost of the planned building. 

The slopes must be stable and resistant to deformation under all operating conditions, including rapid 

reservoir drawdown, and the overall intensity of the rainfall needs to be rather high. Here I consider 

medium size dams less than 15 m high, mainly for agricultural purposes. 

4 The Model Setup 

To test and validate GWAMP, I apply the model in six catchments with diverse geographic and 

climatic conditions (Table 3).. Here I considered the watershed for the Ganges and Brahmaputra   as 

one unit, since the outlet of the two rives cannot be distinctively demarcated. Last parts of both rivers 

intersect and merge in the lowlands where the two rivers outflow to the Indian Ocean 
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Table 3 summarizes the characteristics of all considered watersheds. I analyse the model in three 

setups: current situation, effect of rainfall pattern, and land-use change.  

Current situation  

To investigate the potential of water harvesting and storage, I run the model for current land use and 

recent precipitation data. 

Effect of rainfall pattern  

To investigate the effect of precipitation changes I use values for current climate and IPCC A1B, A2a, 

and B2a scenarios for the years 2020, 2050, and 2080. 

Effect of land-use change 

Numerous studies in the last two decades have estimated the rates of tropical deforestation and other 

kinds of land cover change around the world (Ramankutty et al., 2006). To understand the effects of 

these land-use changes I use four defined land-use scenarios, i.e. base, agriculture, forest and urban 

land-use scenarios. These scenarios are defined by allocating all possible land parcels having a 

possibility to be converted into the considered land-use class. 

Base scenario: Current land use  

Agriculture scenario: Allocating all possible land cover classes to agriculture to represent an extreme 

agricultural situation 

Forest scenario: Allocating all possible land cover classes to forest to represent an extreme forested 

situation 

Urban scenario: Allocating all possible land cover classes to urban lands to represent an extreme 

urbanization situation 

Runoff is calculated for each of the different land cover scenarios by replacing the existing land cover 

with the corresponding land cover. Subsequently, existing evaporation data are also replaced with the 

mean evaporation value for changed land cover classes in each month in the basin. 

In hypothesis I assume, Urban scenario will give most minimal runoff conditions while Forest 

scenario will give highest runoff conditions, compared to base scenario. 
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Table 3: Watershed characteristics 

 

 Land use / land cover 
variables (%)  

Basin area 
(km2) 

Average 
population 
density (per 
km2) 

Number 
of large 
cities 

Number of 
dams (15–
150 m ) 

Ganges  Forest  4.2 1,016,124 401 11 5 

Agriculture 72.4 
Urban 6.3 

Nile Forest  2.0 3,254,853 46 25 19 
Agriculture 10.7 

Urban 1.0 

Sao Francisco Forest  3.1 617,814 18 1 47 

Agriculture 60.2 

Urban 2.8 

Tocantins Forest  9.9 764,213 5 0 9 

Agriculture 61.5 
Urban 1.3 

Turkana Forest  11.9 209,096 61 0 1 

Agriculture 20.8 

Urban 0.1 

Xun Jiang Forest  9.6 409,480 194 4 47 
Agriculture 66.5 
Urban 5.3 
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Figure 4: Watersheds considered in the study 

5 Results and Discussion  

5.1 Current situation analysis  

Potential sites for rain water harvesting and storage technologies in the Ganges, Nile, Sao-Francisco, 

Turkana, Tocantins, and Xun Jiang basins as estimated by the GWAMP model are shown in Figure 5 

to Figure 10, respectively. Colour bands represent the suitability for each technique. These maps only 

show the suitability analysis for current climatic, geographical, and socio-economic conditions. I 

categorize the techniques into regional water storage, local water storage, and water harvesting.  Sao 
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Francisco and Ganges-Brahmaputhra region shows overall high suitability for most of the structures 

due to favourable precipitation, terrain and land use characteristics. In the Nile region water suitable 

areas for water management is concentrated in the mountain regions while desert regions become not 

suitable to build structures. Regional water storage represents regional dams, local water storage 

represents farm tanks, and water harvesting represents all water-harvesting techniques. GWAMP 

allocates potential sites for regional dams close to valleys in the centre of the catchment. Potential 

water-harvesting sites occur predominantly in the mountainous regions of the catchment, whereas the 

farm tank locations are distributed throughout the catchment. This is due to the spatial variability in 

topographical features. For example, towards the catchment boundary, the topography is largely hilly 

and with less continuous drainage networking compared to central valley regions of the catchment. 

Suitable sites for stone terraces, however, appear only on a small fraction of land in all catchments. 

The most suitable sites for regional dams are located close to the main river and have moderately 

undulating slopes (0–16%). The evidence of locations where reservoirs already exist agrees with our 

model results. The results also agree with findings by Mbilinyi et al. (2005), who argue that water 

reserves are constructed close to streams with slopes where water can easily enter and exit by gravity. 

Within agricultural areas, suitable sites for farm tanks are located in places with moderately 

undulating to steep slopes (16–30%) and with loamy sand or loamy clay soils. Suitable locations for 

percolation pits are found in areas, which combine moderately undulating slopes (5–10%) with clay, 

silty clay, or sandy clay soils. These characteristics agree with findings obtained by Prinz (1996a). 

Relatively fine grain soils such as clay and silt have a high water storage capacity and thus are not 

suitable for percolation pits. According to Hudson (1987) and Jasrotia et al. (2002), stone terraces and 

check dams are usually built on slopes with unstable soils of coarse texture, low organic matter 

content, or steep slopes. This characteristic is depicted by GWAMP, which places stone terraces and 

check dams on steep slopes. Soils with high shares of small clay and silt particles have a larger 

effective surface area than soils with larger particles, and therefore detain more water (Ball, 2001). 

This agrees with the model results on locating roaded catchments and farm tanks, which are mainly 

found on gently undulating slopes (2–5%) with clay, silty clay, and sandy clay soils. Our results are 

also in agreement with findings by Stanton (2005) that areas with low to medium slopes together with 

high water holding capacity soils such as clay, silty clay, and sandy clay, are suitable for on-farm 

tanks with roaded catchments. The relatively low cost of constructing roaded catchments on gently 

undulating slopes compared to higher costs on steep slopes is a contributing factor.   
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Figure 5: Estimated water harvest and storage suitability in the Ganges-Brhmaputra Basin 
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Figure 6: Estimated water harvest and storage suitability in the Nile Basin 
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Figure 7: Estimated water harvest and storage suitability in the Sao Francisco Basin 
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Figure 8: Estimated water harvest and storage suitability in the Tocantins Basin 
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Figure 9: Estimated water harvest and storage suitability in the Turkana Basin 
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Figure 10: Estimated water harvest and storage suitability in the Xun Jiang Basin 
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Effect of changed rainfall pattern  

Histograms in Figure 11 and Figure 12 present the average suitability score for water storage and 

water-harvesting structures, respectively. The rainfall patterns vary significantly in different regions 

where the watersheds are located, as mentioned before. However, no significant difference is 

observed in the average suitability among different precipitation scenarios over time for either water 

harvest or storage techniques. Rather, all watersheds show a similar trend. The average suitability 

score stays around 6 for water storage techniques and around 5 for water harvest techniques, which 

represent moderate suitability. Also no significant difference can be identified relative to the base 

scenario for either harvest or storage techniques. 

6 Model Evaluation 

I use the existing water management structures information obtained from Sao-Francisco and Nile 

basins to evaluate the performance of GWAMP. I used the ground truth data from the project “ 

Integrated management of land based activites in the Sao Francisco basin” (ANA/GEF/UNEP/OAS:  

http://www.ana.gov.br/gefsf/defaultXP_en.asp). For the Nile basin I used the data obtained by 

contacting the Ministry of water resources and energy – Ethiopia, Ministry of water and environment 

– Uganda and Awulachew et al. (2007). I test the parameterization used to develop the system on 

suitability levels and relative importance weights. If people behave rationally, the existing water 

harvest and storage locations should be located where the highest investment returns are achieved, i.e. 

where the highest economic suitability is. However, the objective of our model is to estimate the 

suitability of locations for water harvesting and storage based on natural conditions. I believe that 

economic suitability can only be adequately assessed by an integrated method which links geographic 

and economic analysis. Thus, I cannot really validate our model results. Nevertheless, it is sensible to 

assume that there is a substantial correlation between natural and economic suitability. For this 

reason, I compare our computed natural suitability estimate for harvesting and storage structures with 

existing locations for these structures. Here I calculate the percentage of overlap between suitable 

areas from the model results for the base scenario and the areas where the structures exist. The results 

are shown in Table 4. Most existing rain water storage technologies are found in areas classified by 

GWAMP as having very high or high suitability. The fact that most of the predicted rain water storage 

technologies are found within the very high to moderately suitable classes and areas producing high 

runoff indicates that the model can be used to predict potential sites for rain water harvesting and 

storage technologies.  
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Table 4: Suitability of locations obtained using the GWAMP compared to the existing 

structures  

Area belonging to each category as a 

% of the total area covered by the 

existing structures 

Sao Francisco basin Nile basin 

Very High High Medium Very High High Medium 

Regional dams 31.64 18.80 17.08 41.05 34.28 14.67 

Stone terraces 8.21 9.02 9.09 10.24 11.97 12.28 

Roaded catchments 22.39 28.20 29.48 10.39 10.70 1.15 

Percolation pits 11.11 13.61 14.22 6.69 14.65 21.78 

Farm tanks 14.93 17.67 19.28 11.12 18.20 21.84 

Contour bunts 32.84 25.56 23.69 36.03 31.66 29.17 

 

 

 



 

 

Figure 11: Average suitability level of land parcels change with precipitation change -water storage 

  



 

 

Figure 12: Average suitability level of land parcels change with precipitation change – water harvest 

 

  



 

 

Figure 13: Aggregated average suitability level of land parcels change with land use change  
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7 Conclusions 

Information on identifying potential sites for rain water harvesting and storage has been used for the 

development and operation of water management programs. This study demonstrates the capabilities 

of using global data sets and GIS in spatial analysis models. The application of GWAMP in the six 

case studies demonstrates its suitability to identify potential sites for rain water harvesting and 

storage. The results confirm that GWAMP is applicable in varying climatic, geographic, and 

socioeconomic conditions, even in ungauged basins. Furthermore, GWAMP can easily update 

suitability levels and weighted scores of decision factors on which the potential sites for rain water 

harvesting and storage are based. The analysis of the effect of precipitation on the average suitability 

score confirms that rainfall pattern change cannot have a major effect on the average suitability for 

either water harvest or storage structures. The analysis of the effect of land use change on average 

suitability confirms that land use change can have a major effect on the average suitability of land 

parcels for water harvest and storage. GWAMP is designed to be used on a global scale without 

additional data needs. In particular, it is designed to improve potential water management adaptations 

in global integrated assessment models and large-scale integrated land-use models.  
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8 APPENDIX – A  

Constructing the pair-wise comparison matrix 

A pairwise comparison matrix for F number of factors (X1, ......., XF), reflects the dominance of the 

factor in the left-hand-side column with respect to each factor in the top row.     
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Each matrix entry reflects a ratio scale of the underlying priority weights assigned to each factor, i.e. 

XFF’ = WF/WF’. The weights (WF) have to be derived from cell entries WFF’. Saaty has developed a 

nine point scale to define the intensity of importance. This scale fulfils two requirements. 

Distinct shades of difference in people’s feelings when they make comparisons are represented as 

much as possible. 

If scale values are denoted by X1, X2, ....... , Xp, then let 

X i+1 – Xi = 1,    i = 1, ....., p -1 

The scale is based on psychological experiments and is designed to best reflect priorities in 

comparisons between two items.  

In X, each cell entry is positive and the diagonal elements (xFF’) always receive a value of 1. If it is 

assumed that transitivity of preferences exist (i.e. that if X1 is preferred by a scale of 7 to X2, then X2 

is preferred by a scale of 1/7 to X1) then the reciprocal property xFF’ = 1/ xFF’  is satisfied and estimates 

are needed only for those cells which lie above the diagonal. Saaty proved that, if X displays 

‘cardinal’ consistency, in that xFF’ xF’F’’  = xFF’’, then by normalizing the positive reciprocal matrix X so 

that the columns sum to unity, a solution to w, the vector of overall priority weights, can be obtained 

by reading any column of the matrix, as each column in this normalized matrix will be identical 

(Saaty and Vargas, 1984). If I are to impose cardinal consistency on the matrix, then only one row of 

the matrix needs to be entered and all other values can be derived. If I do not impose cardinal 

consistency on the matrix, then each column vector may be different and it is necessary to average 

across the rows to determine the overall priority weights. Here, I can check whether the measures fall 

within acceptable bounds using Saaty’s approach. In order to estimate how each solution option 

performs with respect to each factor, a series of pairwise comparisons is carried out. For f =1…. F 

factors and i = 1… S different solution options, the pairwise comparison matrix comparing all plans 

under the criteria XF would be 
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The nine point scale provides the estimates for ratio weights, the afi, and the assumed reciprocal 

properties. The overall priority (OPi) of each solution option with respect to all factors can be 

estimated as follows. 

 OP1 = a11 (w1) + a21 (w2) +…+ aF1 (wF) 

 OP2 = a12 (w1) + a22 (w2) +…+ aF2 (wF) 

 OPI = a1I (w1) + a2I (w2) +…+ aFI(wF) 

The comparative importance of input data parameters (referred to as factors) is calculated with the 

CWI. Input data include raster maps, where each layer is a factor in the decision making (constrain 

layers). For each grid cell, all input thematic layer values are weighted based on the comparative 

importance of each factor.  

In order to obtain the weights from the calculated eigenvector, the values are normalized using the 

following equation.
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The consistency index is calculated using the following equation. 

1
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−
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Then the consistency ratio is calculated as the ratio of the consistency index and the random 

consistency index (RI). RI represents the consistency of a randomly generated pairwise comparison 

matrix. It is derived as the average random consistency index (Table 5). If CR(a) ≤ 0.1, the pairwise 

comparison matrix is considered to be consistent enough. The value of CR(a) depends on the number 

of criteria being compared. 
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Table 5: The fundamental scale of absolute numbers 

Intensity of 

importance 

Definition  

1 Equal importance Two activities contribute equally to the objective 

2 Weak or slight  

3 Moderate importance Experience and judgment strongly favour one 

activity over another 

4 Moderate importance  

5 Strong importance Experience and judgment strongly favour 

one activity over another 

6 Strong importance  

7 Very strong or 

demonstrated 

importance 

An activity is favoured very strongly over another; 

its dominance demonstrated in practice 

8 Very, very strong  

9 Extreme importance The evidence favouring one activity over another is 

of the highest possible order of affirmation 

Reciprocals 

of 

above 

nonzero 

If activity i has one of the 

above non-zero numbers 

assigned to it when 

compared with activity j, 

then j has the reciprocal 

value when compared 

with i 

A reasonable assumption 

1.1–1.9  If the activities are very 

close 

 

May be difficult to assign the best value but when 

compared with other contrasting activities the size 

of the small numbers would not be too noticeable, 

yet they can still indicate the relative importance of 

the activities. 

Source: (Saaty, 2008) 
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Table 6: Random consistency indices for different numbers of criteria 

n 1 2 3 4 5 6 7 8 9 

RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 

Source: Saaty (1982) 
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CHAPTER III 

Adapting water management to meet agricultural water 

demand 

1 Introduction 

Decisions on water resource systems design and management are usually based on qualitative and 

quantitative information as well as decision makers’ perceptions, which are often based on the 

interested groups’ priorities. In most of the instances, the decisions are in favour of a certain 

aspect depriving other aspects in the watershed. For the decisions on water resources systems 

design and management, it is important to consider the watershed as a whole and the management 

system as an integrative unit. Therefore, decisions based on an analysis that considers the 

watershed and management actions as an integrative system, is an important factor for the 

sustainability of the watershed. 

Management of watersheds encounters various activities from identification of the watershed 

boundary (watershed delineation) to monitoring different physical processes.  Identification of 

suitable land areas for investment and development of water management infrastructure should 

not only be based on physical parameters (terrain, soils, slope, etc.), but also on social and 

economic aspects that concern the demand for water. Therefore, integrated analysis is a crucially 

important factor in watershed planning and management as well as in maintaining the 

sustainability of associated environmental eco-systems.  

The concept of Integrated Water Resource Management has been developed during the last 

decades, in response to growing water demand and increasing water scarcity. The main objective 

is to find and implement suitable approaches to mitigate declining fresh water resources to 

eliminate the water scarcity. In the recent past, many countries have faced challenges of rapidly 

growing water demands driven by increased population, a higher per-capita water consumption 

rates, rapidly expanding economic activities, urbanization, industrialization and mechanization 

(King, 2004). 

In satisfying the dietary requirements of an increasing population, the pressure on finite water 

resources and available arable lands is persistently increasing and will no longer be expandable at 

some point. Therefore, improving the joint productivity of land and water becomes more 

important. In some parts of the world, water scarcity issues are aggravated by climate change. 
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According to the FAO, the global water demand for food production is expected to increase 

between 70% and 90% by 2050 from the current demand of 7130km3 (Molden et al.). Another 

study estimates that global water demand for food production will increase up to 9000-1000 

km3yr-1(Rockström et al., 2009a) by 2050. In general, rainfed agriculture is characterized with 

lower yields and lower water use efficiencies. With the implementation of water management 

schemes, crop yield can be increased to some extent, in both irrigated and rainfed systems. In 

addition, a new competition for water resources arises from increased non-food agriculture 

including bioenergy production. 

 Projected climate developments with changes in rainfall patterns and corresponding impacts on 

drought frequencies and intensities demand sophisticated approaches for water planning. Recent 

assessments indicate a higher frequency of extreme precipitation events, anomalies in rainfall 

totals over space and time (Bates et al., 2008). Though the specific cause is not clear, runoff in 

specific regions (Sub-Saharan Africa, southern Europe, parts of southern Asia and eastern 

Australia) is declining (Milly et al., 2005). The latest estimations on the climate forcing, 

amounting to ~3wm-2, corresponding to a warming exceeding 2oC (Ramanathan and Feng, 2008), 

indicate that there is a severe impact by human factor on water resource distribution and 

utilization, disregarding any complex multiple drivers that could potentially contribute to it. 

Sometimes slight changes could also affect the existing water resources to a considerable extent, 

which is commonly known as tipping points. For example, in a drier climate, little change in 

precipitation could cause significant change in the natural recharge of ground water. To protect 

water supplies against these extreme changes, more storage capacity of water is needed, including 

long-term storage to build up water reserves during times of water surplus for use in times of 

shortage. To make optimal decisions on water infrastructure development and investment, it is 

necessary to evaluate the cost and benefits of alternative scenarios for planning water 

management schemes and decision making. The feasibility of the Integrated Water Resource 

Management (IWRM) concept in solving the issues related to water availability in these 

alternative scenarios is not comprehensively understood so far.  

This chapter discusses our approach to study whether water scarcity can be eliminated by water 

management in the Sao Francisco region and develops alternative management scenarios as a 

solution. I develop the ‘ADAPT model’ - Adapting the Irrigational Water Management, for the 

above mentioned two purposes. The following sections explain the ADAPT model and its 

application in different management scenarios to derive water management solutions. 
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2 Water available to manage – water shortages 

Maintaining the sufficiency of water for food production depends on the geographical and the 

climatic conditions of a region. Therefore, the water availability to manage for crop production 

refers to not only the quantitative scarcity but spatial scarcity as well. In this study, I only 

consider the water available to manage by means of water quantity and geographical location. 

Crop production basically uses two main types of water reserves. These include the soil moisture 

reserve (green water) and irrigation (blue water) to compensate the depleted soil moisture reserve.  

The first step in planning water management is to understand the amount and distribution of 

available water resources. For this study, the available water quantity is estimated based on the 

climate change SRES A2 scenario of the IPCC. Precipitation and runoff data are taken from 

corresponding EPIC (Erosion Productivity Impact Calculator) model simulations (Schmid et al., 

2007) and are used as estimate for the green water amount. The runoff values differ across land 

use categories employed in the EPIC model (i.e. crop land, pasture lands, urban lands, forest and 

wetlands). The concept I present here is, using the adaptation measures to manage green water so 

that optimal production targets can be achieved. The EPIC model simulations also provide the 

blue water requirements for irrigated crop systems. There, I try to evaluate the water requirement 

of  the crop and use the adaptation techniques to minimize the gap between the demand and the 

supply of irrigation water. 

The global water sector has problems, because the technical and political developments in water 

management are too slow to adapt to the required changes. At first sight, water management 

might appear to be focused on local matters only. Such a perception is caused by tasks such as 

managing a certain stretch of river. Indeed, water management needs to consider many global 

factors. Catchments often deal with competitive water use, which means that the demand for 

water is higher than the sustainable yield. To correspond with the complex system of water 

resources and different types of water users, it is important to verify the valuation methods and 

the parameters used, which makes the participation of all affected parties very important. The 

concept of IWRM integrates water resources as a systematic process for the sustainable 

development, allocation and monitoring of water resources. This promotes more coordinated 

management of land and water, the river basin and upstream and downstream interests. 

During recent decades, the interest in integrating water harvesting techniques in water 

management plans has increased. Many countries have successfully implemented water 

harvesting techniques to increase the water availability, either by directly improving soil moisture 

content or by increasing water storage for use in water-limited periods in the future. These 

techniques include both applications of traditional and novel methods.  
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Traditionally, water storage has been achieved with dams and surface reservoirs. However, 

suitable dam sites with long term usages are becoming scarce (Hossain et al., 2009) and dams 

have a number of disadvantages including adverse impacts on i) stream ecology , ii) settlements 

which may need to be displaced, iii) landscape scenery, and iv) recreational uses of rivers. 

Furthermore, dams incur substantial investment and maintenance costs. In an integrated 

systematic approach, water storage structures are not managed alone. Storage structures need to 

be well connected to the water supplies and demand sectors as well. The basic principle of the 

systematic approach is the connectivity. A system is a set of elements with connections between 

each other. Any system is composed of subsystems, each being autonomous and open, directly 

interrelated and integrated with its environment.   

The systematic approach is important to identify a correct bundle of components for an integrated 

system, to analyse and improve the system. Each of the components requires inputs (resource 

endowments) and produces outputs at optimal level to satisfy the demand. The systematic 

approach for integrated water management that I propose here starts from the climate specific 

runoff generation and continues until the demands within a watershed is satisfied.   

 

 

3 Water resources and irrigation water use in the Sao Francisco 

watershed 

The Sao Francisco watershed has an area of about 629,885 km2, which is drained by the Sao 

Francisco river and its connected tributaries (Figure 14). Currently, there are about 20 major dams 

established mainly for irrigation and hydropower generation and several natural and artificial 

wetlands in the watershed. The ‘Sobradinho’ reservoir has the largest surface area in Brazil, 

having 4225 km2 and a capacity of 34,100 Million m3. The rainfall ranges from a wetter south, 

with an average annual rainfall of about 1400 mm, to a drier north with annual average rainfall of 

only 600 mm. The rain comes in a distinct wet season, which has a peak in December- January 

each year. This distinctive wet season causes a pronounced seasonal variation in the flow for the 

Sao Francisco River and its tributaries.  

Many discussions about global change stay on the global level. However, a more relevant 

question is how people can or could react to global change on a local or regional scale. How will 

agricultural systems perform as a result of environmental change?  Within agricultural 

management, irrigation systems, in particular, have developed a reputation of having low 

resilience, and are thus vulnerable to change. It is difficult to get exact figures on the total area, 
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currently under various water harvesting and storage structures that contribute to food production 

water demands. The data on semi-arid and arid regions are more common (Boers et al., 1986; Li 

et al., 2000; Li et al., 2001; Oweis et al., 2001) . Field studies suggest that yields could be 

increased by several times by coupling water harvesting with proper agronomic practices (Boers 

et al., 1986; Critchley et al., 1992; Lal, 2004; Rost et al., 2009). However, the cost of an improved 

water management scheme can be a major constraint for their widespread adoption. Therefore, it 

is important to identify the optimal size of the structures, which is economically feasible. 
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Figure 14: Surface water areas and water reservoirs currently existing in Sao Francisco 

watershed 

. 
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4 ‘Adapting Water Management’ Model 

I name the model ‘Adapting Water Management’ (ADAPT). ADAPT is a mathematical 

optimization model that jointly represents the investment and use of water management options, 

land use and land management decisions, food demands, and demands for non-agricultural water. 

I design the water management within the model based on one of the fundamental laws of physics 

that states; ‘mass can neither be produced or destroyed’, i.e. mass is conserved and although the 

energy can be changed, its form cannot be destroyed. Therefore, the two main concepts that 

connect the system components are mass balance and energy balance (Equation 1). 
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   △ △

Equation 1: Mass and energy balance  

 

4.1 Model resolution 

I use different resolutions: a) raw input data, b) supply components of model, c) demand 

components of model. Each is described separately in the input data section. I define the basic 

spatial unit for model simulations, adopting the concept of Homogenous Response Units (HRU) 

in the GEO-BENE database (Skalský et al., 2008). Unique spatial unit used here is the land unit 

delineated by the intersection of Sub-watershed and HRU. HRU is unique spatial delineation 

having the same altitude, slope and soil texture (HRU class definition is given in the Table 7). 

These characteristics are represented at 5’ spatial resolution grid. The HRUs found in the Sao-

Francisco watershed is presented in Table 7. 
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Input  
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Output 
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Unit Crop data  
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Contour Sub model 
 

Input  
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Input  
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demand 
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Figure 15 : Water Management Model Flow diagram 
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Table 7:  Topographic character specifications to delineate HRUs 

Topographic 

character 

Unit Classes 

Altitude Meters 1(0-300), 2(300-600), 3(600-1100), 4(1100-2500), 

5(>2500) 

Slope % 1(0-3), 2(3-6), 3(6-10), 4(10-15), 5(15-30) , 6(30-50) , 

7(>50) 

Soil Type Texture 1(sandy), 2(loamy), 3(clay), 4(stony), 5(peat) , 88(no-

soil) 

Source:(Skalský et al., 2008) 

Sub watershed is another spatial area demarcation used in defining the spatial unit for simulations. Here, I 

develop a river network up to 5th river order and derived sub watersheds based on this river network. 

Derived river network and sub watershed are presented in the Figure 17 

I develop the tributary network using the 3-arc second resolution digital elevation data downloaded from 

the CGIAR server (Jarvis et al., 2008). I use the processed digital elevation data to develop the water flow 

path on the terrain surface and watershed boundaries. The drainage network data are classified into stream 

orders using Strahler’s (Strahler 1957) method. In order to obtain a manageable set of data, I divide the 

Sao-Francisco watershed into 33 sub watersheds (Figure 18) and the Sao-Francisco river into 5 river orders 

(Figure 17).  I use 10-year mean precipitation values for the simulations extending from 1991 to 2100. 

Names used for different decades are shown in Table 8. 

Table 8: Temporal resolution 

Decade Corresponding years 

Decade_00 1991 – 2000 

Decade_10 2001 – 2010 

amesDecade_20 2011 – 2020 

Decade_30 2021 – 2030 

Decade_40 2031 – 2040 

Decade_50 2041 – 2050 
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Figure 16: HRU distribution in Sao-Francisco watershed 
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Figure 17: River network distribution in the Sao Francisco watershed 
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Figure 18: Sub watershed distribution in the Sao Francisco watershed 
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4.1.1 Demand data calculations 

I distinguish the demand for food crops from the local population of the Sao Francisco watershed 

and from the entire global population outside the watershed. The metabolic energy contained in 

the food crops is used to determine the minimum food demand from the local population. The 

computation of human dietary energy demands includes direct processing of crops for food as 

well as the indirect use of crops as livestock feed. Furthermore, I consider the use of crops for 

bioenergy production.  

The energy requirement of a healthy and well-nourished adult with average physical activity level 

is 10.29 MJ/day (University, 2004). I used this value as an average and multiplied by the 

population in the Sao Francisco basin to get the human dietary energy demand estimations. For 

the bio fuel energy demands, I used the estimations in the GGI A2r baseline scenario (Riahi et al., 

2006). In this analysis, I consider an extreme case scenario to experiment with the model 

behaviour.  

The Sao Francisco watershed’s internal energy demand is calculated with the following 

assumptions: The metabolic energy requirements by humans are fulfilled by carbohydrates and 

proteins from plant and animal sources. The metabolic energy requirements of animals are 

fulfilled by carbohydrates and proteins from crops. I explicitly represent 5 crops in the model, i.e.: 

rice, maize, soybean, sugarcane and wheat. Other crops are implicitly represented through a crop 

multiplier. Crop biomass and animal proteins need to satisfy 75% of the total human dietary 

energy intake; crop biomass is used to satisfy 60% of the total human energy requirement. The 

energy production is mainly constrained by the population and land limitations.  I consider the 

population share (in the GGI A2r scenario) with respect to the land share belonging to the 

watershed [number of persons yr-1]. The external crop demand (Trade demand) is derived from a 

global forest and agricultural sector optimization model (Gusti et al., 2008; Sauer et al., 2010) and 

downscaled to the watershed. Downscaling is done by multiplying the total demand with area 

based weight coefficient. The weight coefficient is the ration between the area of the considered 

sub-watershed and the total land area of the watershed. 

 

4.1.2 Crop data calculations 

The food crop demand consists of two types. In the local context, food crop demand represents 

the food crop requirement to satisfy the needs within the watershed. The metabolic energy 

requirement by humans is fulfilled by plant and animal carbohydrates and proteins. The plant 

energy supply is represented with 5 crop types in the model. i.e.: rice, corn/maize, soya bean, 

sugarcane and wheat.  In addition, this includes the demand of crops for bio fuel production, in 

order to satisfy the renewable energy demand. In the non-local food crop demand, trade demand 
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is represented. Therefore, the bio fuel energy demand by bio-diesel and bio-ethanol is considered. 

The food crop demand is estimated with the EPIC model (Sharpley and Williams, 1990b). 

Depending on the existing soil and land management possibilities, the EPIC model suggests crops 

possible to plant and their productivity for each HRU  

 

4.1.3 Available water for storage and water supply calculations 

Basic water supply data are taken from EPIC simulations. In these simulations, weather data on 

historical time series of global weather for the period from 1901 – 2000 and 16 climate change 

scenarios (further referred to as Tyndall, http://www.cru. uea.ac.uk 

/~timm/grid/TYN_SC_2_0.html) (Mitchell et al., 2004) were obtained from The Tyndall Centre 

for Climate Change Research of University of East Anglia, Norwich, UK (Skalský et al., 2008). 

SCS-CN method is then used to estimate the runoff for the entire watershed. This runoff 

generated in each sub-watershed is then diverted to streams of 5th order corresponding to each 

sub-watershed. 

Using the water flow network, the average travel distance between sub-watersheds and the slope 

of each stream segment, I calculate the maximum amount of water that is available in each sub-

watershed in each month. Using the travel distance of water and slope of each stream section, 

water availability is estimated at each section for the corresponding month. Adaptation options are 

applied on this runoff water to optimize its usage for agricultural needs. 

 

4.1.4 Land use calculations 

I use the land cover statistics from the FP6 GEO-BENE project’s data repository. This gridded 

data are developed using GLC2000 (Bartholomé and Belward, 2005) and GLU-IFPRI datasets 

(Skalský et al., 2008). The 23 land cover classes presented in the GLC2000 and GLU datasets are 

aggregated into 6 major classes for the optimization modelling, in the GEO-BENE dataset (Table 

9). The area available for producing selected crops is a fraction of the total area available for 

cropping. Land cost is accounted for, using the current agricultural area and additional area from 

other land cover classes 

Table 9: Land-cover categorization 

Land Cover Class Original GLC2000 classes 

Total Agricultural land 16,17,18 

Grassland 13 
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Forest 1,2,3,4,5,6,9,10 

Wetlands 7,8,15 

Other Natural vegetation 11,12,14 

Land cover classes not relevant 19,20,21,22 

According to the FAO statistics, the five crops considered occupied 25% of the total harvested 

area in Brazil at an estimated 0.01 average rate of change, during the period from 1991 to 2010 

per year.   

 

4.1.5 Contour sub Model 

I use pre-selected defined cross sections along the river to identify appropriate locations to 

establish dams and reservoirs. This sub-model generates a database of cross sections, which has a 

potential to establish embankments. First, I use the HEC_RAS (Ackerman et al., 2000) for 

defining the cross sections along the river and get the coordinates of the cross section line. Then 

these data are used to produce the graphs in Contour sub model. The contour sub model is used to 

estimate the embankment dimensions. This model estimates the maximum width and height 

possible to build an embankment for each proposed cross section by optimizing the maximum 

height that can be closed/linked in a cross section. In addition, based on the contour data at a 

defined altitude, the reservoir volume is also estimated at each cross section. 

 

4.2 Model components 

The main equations of the model are explained here. The explanation of the variables and 

parameters are given in Appendix 1. 
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Figure 19: Land area occupied by the considered crops in the Sao Francisco watershed: Rate of 

change of the occupied area by the considered crops :(FAOSTAT, 2009) 

 

 

4.2.1 Objective function 

The water management optimization model’s objective is to maximize the total benefits (Equation 

2) from food production in the Sao Francisco watershed over the entire time horizon considering 

the cost of water harvest and storage construction and maintenance, the cost of crop production 

and marginally increasing cost of water supply. Cost benefit items in future periods are 

discounted by factor τ. 
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Equation 2 Objective equation (1000 USD per year)  

 

4.2.2 Water Harvest calculations 

The amount of water harvested by all considered harvesting structures in each sub-watershed and 

in each month cannot exceed the available runoff after excluding a river base flow requirement 

from the total runoff (Equation 3).  

Water harvested in a HRU within a sub-watershed cannot exceed the maximum capacity over all 

structures installed within a certain time horizon (Equation 4). All active harvesting structures in a 

given decade, HRU, and sub-watershed cannot exceed the maximum number of harvesting 

structures (Equation 5). The total area allocated to water harvest structures cannot exceed the 

suitable land area for water harvesting (Equation 6). 

( ) ( ), , , , supply , , , ,s rivhvst y m s damhvststr y m hvstW Wγ η γ ηγ= = = =≤∑
 

Equation 3 Runoff and harvested water balance ∀s,y,γ,m [MCM] 

( ) ( ) ( ) ( )( )
| |

, , , , , , , , " " , , ,
y y y y y l

s y m hvst s r y volume s r ym
W e h Hγ η γ γ α γ

≤ ∧ − ≤
= =≤ ⋅∑ ∑

ɶ ɶ ɶ
ɶ ɶ   

Equation 4  Potential water harvesting capacity ∀s,r,γ,y [MCM] 

( ) ( ) ( )| |
, , , , " " , , , " "

y y y y y l
s r y Bunits s r harvestH h aγ γ α γ ϕ≤ ∧ − ≤ = =≤ ⋅∑

ɶ ɶ ɶ
ɶ

 

Equation 5 Maximum individual water harvest structure installation restriction ∀s,r,γ,y [units] 

( ) ( )( ) ( )| |
, , , , " " , , " "

y y y y y l
s r y Bunits s r harvestH h aγ γ α ϕ≤ ∧ − ≤ = =≤∑

ɶ ɶ ɶ
ɶ

 

Equation 6 Total area restriction for water harvest structure installation ∀s,r [1000 ha] 

4.2.3 Water tank calculations 

Water tank storage in a sub-watershed and month is limited by the storage level from the previous 

months minus the water released for irrigation plus the inflow of water by harvesting in this 

month (Equation 7). For any tank, the water release in a particular month cannot exceed the water 

storage capacity in each month (Equation 10). Water stored in tanks in each HRU in a sub-

watershed is less than the maximum capacity of total tanks installed in a certain decade (Equation 

8). Water tanks installed in each HRU and sub-watershed cannot exceed the total number of tanks 

allowed (Equation 9).  

( ) ( ) ( ) ( ), , , , "store" , , , 1, "store" , " ", , , " " , , , , " "+ -s y m s y m s road y m hvst s y m rlseW W W Wρ η ρ η γ η ρ η= − = = = =≤
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Equation 7 Water supply demand balance equations for water tanks ∀s,ρ,y,m [MCM] 

( ) ( ) ( ), , , , " " , " " , , ,, | |s y m store volume s r yr y y y y y l
W t Tρ η ρ α ρ= = ≤ ∧ − ≤

≤ ⋅∑ ɶɶ ɶ ɶ  

Equation 8 Water tank storage capacity restrictions ∀s,ρ,y,m [MCM] 

( ) ( ) ( ), , , , " " , , , "crop use"| | s r y volume s r yy y y y y l
T t aρ ρ α ϕ= =≤ ∧ − ≤

≤ ⋅∑ ɶɶ ɶ ɶ  

Equation 9 Maximum tank installation restrictions ∀s,r,ρ,y [number of units] 

( ) ( ), , , , " " , , , 1, "store"s y m rlse s y mW Wρ η ρ η= − =≤
 

Equation 10 Water release restriction for irrigation ∀s,ρ,y,m [MCM] 

 

4.2.4 Dam calculations 

Water stored in each dam location in each month is determined by the remaining storage from the 

previous months minus the water released to satisfy the river base flow plus the inflow of water 

from harvesting in this month minus water released for consumption in this month (Equation 11). 

For any dam, the water release in a particular month cannot exceed the initial water storage in 

each month (Equation 12). Furthermore, the water stored in each dam cannot exceed the available 

storage capacity of the respective dam (Equation 13). The total number of dams built over a 

limited time horizon cannot exceed the maximum number of potential dams (Equation 14). 

( ) ( ) ( ) ( ) ( ), , , , " " , , , 1, " " , , , , "supply" , " ", , , "supply" ,, , , " "-s y m store s y m store s rivbse y m s rivhvt y m s y m rlseW W W W Wδ η δ η γ η γ η δ η= − = = = = = =≤ + +
 

Equation 11 Water supply demand balance for dams ∀s,δ,y,m [MCM] 

( ) ( ), , , , " " , , , 1, "store"s y m rlse s y mW Wδ η δ η= − =≤
 

Equation 12 Water release restriction for irrigation ∀ s,δ,y,m [MCM] 

( ) ( ) ( )( ), , , , "store" , , , " " , , ,, | |s y m s volume s yy y y y y l
W d Dδ η υ δ α υ δυ= =≤ ∧ − ≤

≤ ⋅∑ ɶɶ ɶ ɶ  

Equation 13 Maximum dam storage restrictions ∀ s,δ,y,m [number of units] 

( ) ( ), , , , " ", , | | s y s county y y y y l
D dυ δ αυ δ =≤ ∧ − ≤

≤∑ ɶɶ ɶ ɶ  

Equation 14 Maximum number of dams restrictions ∀s,y [number of units per year] 
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4.2.5 Crop production calculations 

Area allocated to particular crops cannot exceed the pre-determined maximum share for each crop 

(Equation 15). Land area (1000 ha) allocated for all crops using all input systems in each sub 

watershed and HRU in each year for cropping cannot exceed the total available land area for 

agriculture in a given sub-watershed and HRU (Equation 16). 

( ) ( ) ( ), , , , , "crop share" , , , ,,s r c b y c s r c b yb c b
C n Cα=≤ ⋅∑ ∑

 

Equation 15 Maximum crop share restriction ∀s,r,c,y [tons per year] 

( ) ( ), , , , , , , "crop use", s r c b y s r yc b
C a ϕ=≤∑

 

Equation 16 Land area restriction for crop production ∀s,r,y [ha per year] 

 

4.2.6 Energy calculations 

The total dietary energy ( )yE  (Pcal) supplied in each year by all crops should fulfil the dietary 

energy requirements (Pcal/year) and trade crop energy (Pcal/year) requirements (Equation 17). 

Total dietary energy (Pcal) is a product of cultivated crop area times crop yield times a crop 

specific energy supply coefficient (Equation 18). 

( ) ( ) ( )"domestic food", "food trade",+y y yE g gπ π= =≥
 

Equation 17 Total energy demand restriction ∀y [Pcal per year] 

( ) ( ) ( ) ( )( ), "energy supply" , , , , , " " , , , ,, , ,y c s r c b y yield s r c b ys r c b
E n n Cα α= =≤ ⋅ ⋅∑

 

Equation 18 Total annual energy supply restriction ∀y [Pcal] 

 

4.2.7 Water balance calculations 

A fraction of runoff (MCM) should reach the river to sustain the base flow in each month and in 

each sub-watershed (Equation 19). The total runoff in each sub-watershed in each month is a 

product of water harvested in the same sub-watershed (MCM), inflow of runoff to maintain the 

river base flow (MCM), and water harvested in upstream sub-watersheds (MCM) (Equation 20). 

( ) ( ) ( ), " ", , , "supply" , "rivmin" , , , "actual runoff"s rivbse y m s s y mW j jγ η η ω= = = =≥ ⋅
  

Equation 19 Minimum runoff allocation for river base flow ∀s,y,m [MCM] 
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( ) ( )

( )( ) ( )

( ) ( ) ( )

( )

, , , , " "

, " " , " ", , , "supply" , , , "actual runoff "

, , , , "probability" , , , , " ",

1 j

s y m hvst

s loss s rivbse y m s y ms

s s m m s a y m hvsts m

W e

j W

h W e

γ η γγ

η γ η ω

ω η γ

=

= = = =

= =

 
 
 + − ⋅ ≤
 
 + ⋅
 

∑

∑

∑ ɶ ɶ ɶ ɶɶ ɶ  

Equation 20 Runoff water balance ∀s,y,m [MCM] 

 

4.2.8 Irrigation calculations 

The amount of irrigation water in each sub watershed and month cannot exceed the amount of 

water released from dams and tanks in the respective month and sub watershed (Equation 21). 

( ) ( )( )
( ) ( )

, , , " ", , , , , " ",,

, , , , " " , , , , " "                             

s r c b artirr y m s r c b artirr yr c

s y m rlse s y m rlse

i C

W Wρ η δ ηρ δ

= =

= =

⋅

≤ +

∑

∑ ∑
 

Equation 21 Irrigation water supply and demand balance ∀s,y,m [MCM per year] 

 

 

4.2.9 Calibration 

The model calibration uses a linear shadow price based cost adjustment which ensures the zero 

marginal profit condition of observed activities at the observed level to reveal the necessary 

shadow prices. Here, I first force the model to replicate existing water tanks and dams. From the 

forced model, the shadow prices of the calibration equations are used to adjust the objective 

function coefficients of water infrastructure variables (Schneider, 2012). 

5 Implementing adaptation options 

5.1 Regional dams/Reservoirs 

In order to restrict reservoir volume, I use two basic exogenous parameters, applied to gravity 

dams. I define maximum dam height and embankment lengths from the contour sub model. The 

maximum dam heights are the most stable dam heights identified by the World Commission on 

Dams (Dams, 2000) for irrigation dams.  I use a force balance (MANUAL, 1995) system 

approach to estimate the embankment volume. In order to assess the cost with different material 

combinations, three materials for the core are used. These include asphalt based cores, rock filled 

cores, and earthen cores. 
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Figure 20: Cross section view of the gravity 

 

 

 

 

The dimensions of dams are designed based on stability of the dam against overturning (Table 

10). Weight of the dam forces into the ground helps it to remain stable. According to the shape of 

the upstream face of the dam, the vertical component of the water forces on the heel. Horizontal 

component of the water acts on the dam wall, which is resisted by the dam fill material. Uplift 

 

 
 

Toe 

Figure 21: Forces acting on the dam and moments about the toe of the dam 

 

E 

 

D 

 

qBw 

qB 

qfh 

qah 
qwh1 

qwh3 

qAw qCw 

A 

B 

 

C 

qwh2 



 
C h a p t e r  I I I   P a g e | 80 
 

 

pressure is the upward pressure exerted by water as it seeps through the body of the dam or its 

foundation.   

The factor of safety against sliding is defined as the ratio between resisting forces to driving 

forces, which expresses the dam’s stability on the horizontal plain against the forces acting on the 

dam. The factor of safety against overturning is defined as the ratio between resisting and 

overturning moments, which expresses the dam’s stability against the moments acting on the toe. 

 

Table 10: Forces acting on the dam and moments about the Toe of the dam 

Dm- Density of dam-fill material, Dw- Density of Water, Le-Length of the dam 

 

5.2 Harvest structures 

Harvest structures are used in the system to alter the flow rate and direction of the overland water 

flow. This strategy is mainly used to allocate water to the storage structures so that over land flow 

can be utilized maximally to satisfy the needs. The standard dimensions for harvest structures are 

shown in Table 11.  

Force / direction Formula Length of action 

Dam weight 

    Section - A 0.5(qAw.qwh3.Le.Dm.g) qB-(2/3).qAw 

Section - B (qBw.qah.Le.Dm.g) qCw+(0.5qCw) 

Section - C 0.5(qcw.qwh1.Le.Dm.g) (2/3) qCw 

Water weight 

 Section - D 0.5(qAw.qwh3.Le.Dw.g) (QBw+qCw)+ (0.5qAw) 

Section - E (qAw.qwh2.Le.Dw.g) (QBw+qCw)+ 

((2/3)qAw) 

Horizontal water pressure/ 

Hydrostatic pressure 

0.5((qwh1)2.Le.Dw.g) qwh1/3 

Uplift pressure 0.5(qwh1.qB.Le.Dw.g) (2/3).qB 
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Figure 22: Harvest structures 
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5.3 Experimental setup 

The main research question of the simulation exercise is to investigate what agricultural benefits can 

be achieved through various water management investments. This question is important to consider 

because increasing water scarcity due to climate and socio economic changes may lead to high 

welfare losses if water management remains at the status quo. As mentioned earlier, I implement the 

cost of water management explicitly, considering both the installation and maintenance of water 

harvest and storage structures.  

Many studies mentioned in the introduction have tried to explain approaches to manage available 

water.  

In contrast, the approach in this study tries to manage the water from the point of generating runoff 

and alter the flow properties in space and time. Hence, the harvesting flow rate of the runoff is 

modified and the paths to travel until the storage points are altered with minimal loss and maximum 

possible efficiency. In the storages (local and regional), the water is stored and released at times, when 

the water is required.  

In order to obtain a quantitative solution to the availability of water, I use several alternative scenario 

settings.   

I. Water management scenario  

In this setup, I quantify the change on the resource use and the impact on the welfare indices at the 

presence of water management, considering the irrigation water demand for food crop production. 

Water management is obtained through implementing water harvesting and storage strategies. 

Scenario levels: No water management, Water management 

II. Bioenergy scenario  

In this setup, I distinguish different bioenergy targets.  

III. Trade scenario 

In this setup, I try to quantify the change on the resource use and the impact on the welfare indices at 

the presence of water management, considering the additional water required for crop production if I 

introduce trade in to the total crop production. Scenario levels: Doubling and halving of trade 

requirement 

IV. Combined scenario 

In this setup, I try to quantify the change on the resource use and the impact on the welfare indices at 

the presence of water management, considering the additional water required for crop production, if I 
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introduce both bioenergy and trade in to the total crop production. Scenario levels: Doubling and 

halving of trade requirement 

In order to distinguish the impact of water management on the above mentioned climate and energy 

drivers, I simulate each factor individually and jointly. The simulation events are presented in the 

Table 11.  

NWMGT denotes that no irrigation water is provided for crop production. For WMGT irrigation 

water is provided for crop production. T denotes the trade activities. Here, I consider 3 levels of trade 

activities that alter the demand function. No change in the current trade level for crops as 1T and 

increment of 50% from the current as (1/2) IT and reduction of 50% from the current trade as (1/2) 

RT. Furthermore, I consider two levels of bio fuel demand that alter the demand function. One event 

does not consider change in the bio fuel demand (0BF) and other is (3BF), three times increment 

compared to the current level. In order to understand the impacts water management on the above 

mentioned drivers in the basic scenario definition, I compare the results of the combined simulation 

results.  

Table 11: Simulation events 

 Scenario event 

Water management scenario 
NWMGT+0T+0BF 

WMGT+0T+0BF  

Bio-fuel scenario 
WMGT+0T+0BF  

NWMGT+0T+0BF  

Trade scenario 

WMG+50IT+0BF  

WMGT+50RT+0BF  

NWMGT+50IT+0BF 

NWMGT+50RT+0BF 

Combine Scenario 

WMG+ 50IT+3BF  

WMGT+50RT+3BF  

NWMGT+50IT+3BF 

NWMGT+50RT+0BF 

NWMGT+100RT+0BF 
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5.4 Input data for the base scenario 

The following figures illustrate the distributions and variations of input data for the ‘base scenario’. 

The ‘base scenario’ is constructed using the estimated data for the IPCC SRES A2r scenario data and 

existing condition for the Sao Francisco basin.  

 

The runoff is obtained from the EPIC model simulations for the A2r scenario precipitation projections 

for the Sao Francisco region. A small fraction from the total runoff is allowed for ecosystem services 

and recharges the River base flow. Here, I assumed that 2% of the total runoff is allowed for this 

fraction, which is not harvested or stored for utilization. Figure 23, and Figure 24 present total runoff, 

total allowance for river runoff and the usable run off, respectively. 

 

Figure 23: Total runoff for the Sao Francisco Basin 

 

Figure 24 presents the maximum monthly irrigation requirement for the considered crops, in 

the IPCC SRESS A2r projection. Figure 25 presents the step function to allocate land for land 

pricing and the Figure 26 presents the water resource allocation for pricing. The step function 
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for land does not change over the decades whereas the step function for the water resource 

allocation changes over time.  

Figure 24: Maximum monthly irrigation for the Sao Francisco basin 
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Figure 25: Land resource allocation for pricing for Sao Francisco 

 

 

Figure 26: Water resource allocation for water pricing for Sao Francisco basin 
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Figure 27 presents the crop yield for different irrigation systems used in the Sao Francisco basin. ‘ai’ 

denotes automatic irrigation, ‘an’ denotes automatic fertilization and ss denotes subsistence 

agriculture. Automatic irrigation yields the most while subsistence agriculture yields the least.  Figure 

28 illustrates the irrigation requirement for different crop type.  Sugarcane and wheat require most 

water per hectare. However, in all crops the irrigation requirement reduces over time possibly due to 

technological advancement.  Figure 29 presents the cost of crop production for different crops and 

Figure 30 shows the crop yield for different crop types. Figure 31 presents the energy demand over 

time in the basin and Figure 32 presents the crop production over time to satisfy the demand.  

 

Figure 27: Crop yield data (On crop Input system): ai-automatic irrigation, an-denotes automatic 

fertilization, ss-subsistence agriculture 
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Figure 28: Total Irrigation requirement for different crops: Soya-Soy bean, SugC-Sugar cane, Whea-

Wheat 

 

 

Figure 29: Crop cost data: Soya-Soy bean, SugC-Sugar cane, Whea-Wheat 
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Figure 30: Crop yield data (On crop Type)  

 

 

Figure 31: Energy demand data 
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Figure 32: Crop Production for different decades 

 

6 Simulation Results and discussion 

This section summarizes the results of the simulations explained in section 3. Here, the impact of 

water management is evaluated by taking a quantitative measurement on the change of resource 

use, product supply and demand, welfare indices and the water management infrastructure. 

The scenario results are rather extent since I use several scenario combinations over five 

decades and three main driving factors.  To provide an abstract idea about the impacts of 

water management on different driving factors, I aggregate results over the input parameter 

level and over time. For clarity and ease to understand, I categorize the results under resource 

use, demand and welfare indices. 

In this study, the precipitation is held constant, i.e. precipitation intensity and its distribution remain at 

present levels. The water management scenario is to identify the impact of water management keeping 

all the other climate, trade and energy variables constant at the current level. Then, I can explain the 

impact of introducing the water management activities to the current system when the food demand 

only comprises the demand for crops to satisfy the food requirements.  
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The bio fuel scenario identifies the impact of water management keeping all the other climate and 

trade variables constant at the current level. There, I can explain the impact of introducing the water 

management activities into the current system if the demand function is altered with the demand for 

bio fuel as well. In this study, I only consider the bio-ethanol requirements with sugarcane as the 

preferred crop. 

The trade scenario is to identify the impact of water management keeping all the other climate and 

energy variables constant at the current level. There, I can explain the impact of introducing the water 

management activities into the current system if the demand function is altered only by the demand 

for crops to satisfy the trade requirements.  I consider only the crop demand for the net trade of corn.  

Resource use 

Here, I mainly consider the use of land and water resources. One index to compare the land resource 

utilization is the land area used for crop cultivation under the different scenarios considered. Table 12 

summarizes the land area used in water management scenario and for crop cultivation.  In the 

simulations, with altered water management, I can observe a lower land area usage for the crop 

cultivation.  Comparatively water use in the biofuel scenario is slightly higher than for the water 

management scenario; however, the pattern of the water use is more or less the same. The energy 

demand for the bio fuel scenario in the Sao Francisco catchment is comparatively low compared to 

the other demands for the considered crops. 

 

No matter whether there is a bio fuel demand or not, sugarcane is the main crop while wheat and the 

rice occupy the smallest fractions land (Table 12, Figure 33). Trade demand also has a considerable 

impact. Then a considerable extension of land use can be seen. Soya and corn are produced on a 

considerable fraction of the crop land also at changed water management and extensive trade demand. 
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Table 12: Land area used for crop production (1000 ha) 

 Dec_00 Dec_10 Dec_20 Dec_30 Dec_40 Dec_50 

Water management 

scenario 

      

NWMGT+0T+0BF 3306.616 3711.229 2784.124 2411.19 1999.477 1979.264 

WMGT+0T+0BF  2036.555 2935.506 2142.834 1166.533 1721.527 1224.967 

Bio-fuel scenario       

WMGT+0T+300BF  2710.27 2714.584 2313.83 1530.891 1698.55 1479.618 

NWMGT+0T+300BF  4657.136 3834.108 3329.842 2282.118 2316.512 2199.61 

Trade scenario       

WMG+50IT+0BF  2128.942 2742.602 2425.1 1169.71 1736.687 1180.14 

WMGT+50RT+0BF  2021.426 2944.305 1928.979 1684.664 1405.111 1394.469 

NWMGT+50IT+0BF 3739.41 3320.777 2686.342 2477.473 1954.38 2041.384 

NWMGT+50RT+0BF 2875.407 3888.347 2803.931 2211.347 1946.527 2163.353 

Combine Scenario       

WMG+50IT+300BF  2931.574 2620.36 2024.523 1832.661 1762.957 1374.451 

WMGT+50RT+300BF  2319.793 2839.734 2543.63 1434.109 1797.48 1575.32 

NWMGT+50IT+300BF 3203.945 4492.46 2933.565 2114.141 2640.226 2052.761 

NWMGT+50RT+0BF 3727.138 4288.821 3181.958 2107.484 2514.222 2109.853 
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Figure 33: Land area occupied by different crops (WMGT+ 50IT+0BF) 

 

The aspects of water resource use can be derived from the marginal cost of water 

management. This gives the price that a customer has to pay if he takes an additional unit of 

water.  

Table 13: Marginal Cost of Irrigation water demand (USD) 

 0BF 300BF 

Dec_00 2.8 3.5 

Dec_10 1.892 2.364 

Dec_20 1.278 1.597 

Dec_30 0.863 1.079 

Dec_40 0.583 0.729 

Dec_50 0.394 0.492 
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Table 13 presents the marginal cost of irrigation water supply per year for different bio fuel 

scenarios. Compared to the 0BF scenario, the marginal cost of irrigation water demand is 1.25 

times higher in 300BF scenario. The cost of water management is less compared to 300BF 

scenario where the bio fuel production is much higher. I could reason this to be that the 

Sugarcane requires less water for irrigation compared to other crops but the revenue gain is 

higher per unit area. In both scenarios, marginal cost decreases over time.  All scenarios show 

that the shadow price is considerably low when the water management is done. In addition, 

the shadow price decreases over time in both scenarios. At the beginning the shadow price is 

higher since it includes the cost for installation. Over time with the depreciation of the 

structures and with the increased profits the marginal value decreases. Increased biofuel 

demands more water from dams (Figure 34, Figure 35) when the water management is done (Figure 

35). 

 

Figure 34: Water harvested for dams and tanks (WMGT+ 50iT+0BF).  
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Figure 35: Total Irrigation requirement (300BF + 50idT) 

 

 

Product supply and demand 

Here, I consider the contribution of crop production from the irrigated agriculture and rainfed 

agriculture. However, the increment or the reduction of trade demand does not show a 

significant impact on the relative share of the crop production. With extensive water 

management, the crop production shows a higher yield level.  

 

 

Figure 36 shows the crop production with and without bio fuel production. With changed water 

management, the crop production is much compared to the scenarios without water management. The 

crop production is slightly higher when the bio fuel demand is three times higher.  The difference 

between 0BF and the 300BF scenarios are not significant when the trade is not changed. One 

interesting feature is that crop production decreases over time.  The reason could be the improvement 
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in technology. Along with the increased efficiency, the output per unit of product increases, therefore 

the crop demand decreases over time. 

 

 

Figure 36: Crop production at changing bio energy targets ( WMGT+50iT) 
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Water Infrastructure 

 

 

Figure 37 and Figure 38 present the water infrastructure development and the investments for the 

water management infrastructures.  The required number of structures is significantly higher for the 

300BF scenario compared to 0BF. The interesting feature is that when the bioenergy target is 

increased, more dams are needed compared to the tanks. The number of tanks is two times smaller in 

the 300BF scenario while the number of dams is 1.5 times higher compared to the 0BF scenario. 

 

 

Figure 37: Number of water management structures (WMGT+300BF+ 0T) 
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Figure 38: Installation and maintenance cost of water management infrastructures 

(WMGT+300BF+0T) 

 

Welfare 

The level of welfare that can be attained under chainged water management and the combined impact 

of bio fuel crop production and trade demand on the resource use can be studied through several 

indices. 

One of the indices is the crop production cost with respect to crop type and the input system. 

First, the contribution of crop production from the irrigated agriculture and rainfed agriculture is 

considered. ‘ai’ denotes automatic irrigation and ‘an’ denotes the automatic fertilization. The irrigated 

agriculture always has a higher crop production compared to the rainfed agriculture due to the high 

inputs usage. However, the increase or the reduction of trade demand does not show a significant 

impact on the relative share of the crop production. With extensive water management, the crop 

production increases.  

Figure 39 presents the cost of crop production. The automatic fertilization cost is about four times 

higher than the automatic irrigation, which is about four times. Increase in trade does not  influence to 
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differentiate the cost. Figure 40 illustrates the crop production cost based on different crop types. 

Comparatively all crops cost is more when the water management is done. 

When considering corn, there is a large cost difference when it is produced at larger quantities for 

multipurpose use and when it is grown for a single purpose. Soya also shows a significant cost 

increment when the trade is increased. Rice sugarcane and wheat do not show extremely significant 

difference in the crop production cost.  The irrigated agriculture shows a significantly high cost 

compared to rainfed agriculture. 

 

 

 

Figure 39: Cost of Crop production for two t irrigation systems (NWMGT+0T+0BF) 
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Figure 40: Cost of crop production for different crops and scenarios WMGT+ 50RT+ 300BF  

 

 

Figure 41 and Figure 42 present the total cost and benefit of crop production over time, and for 

different biofuel target scenarios. The cost of production is much lesser in rainfed system compared to 

irrigated agriculture. In both rainfed and irrigated agricultural system, total cost as well as the benefit 

increase over time.  

The increment and the reduction of trade have a significant effect on both total cost and the benefit. If 

the water management is applied, the total cost gradually increases when the demand increases. The 

current crop production is incurred less cost than when the bio fuel production target is increased 

three times. When the water management is not present, the cost of production is not significantly 

different for current bio fuel target and when the bio fuel target is made three times higher. 
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Figure 41: Change in the total benefit relative to the base scenario for scenario WMGT + 50iT 

 

 

Figure 42: Change in the total cost relative to the base scenario for scenarios WMGT + 50iT 
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The Figure 42 presents the change in total benefit of crop production with and without water 

management. When the water management is present the total benefits are doubled than when the 

water management is not present. The total benefits does not show a significant difference when the 

water management is not present. 

7 Limitations of the model 

The total crop demand is determined by the bio fuel demand, foreign commodity demand and human 

domestic food demand. Irrigation water is supplied through only surface water storages. Groundwater 

aquifers are not considered for irrigation and water balance. Water harvesting is represented by 

selected structures for water harvesting and storage. The maximum shares of the area for the selected 

crops were decided by the historical data. But I cannot prove that it would remain the same for the 

total time considered in simulations. The costs for structure installation are represented using only the 

cost for material, labour and maintenance. Depreciation for the use of structures is not considered. 

This section has only summarized the results of all simulation results. The impact of water 

management is evaluated for resource use, product supply and demand, welfare indices and the 

water management infrastructure into account. The scenario results are rather voluminous 

since I use several scenario combinations over five decades and the three main driving 

factors.  To provide an abstract idea about the impacts of water management on different 

driving factors, I aggregate results over the input parameter level and time. For clarity and 

ease to understand, I categorized the results under resource use, supply and demand indices 

and welfare indices. 

 

8 Conclusions 

Following conclusions can be drawn from this study. 

The cost incurred with the water management infrastructures is an important fact that needs to be 

considered in water resource planning. Extensively considering the cost, I developed the ADAPT 

model, which can be coupled with the extensive bio physical model like EPIC, GLOBIOM and 

geographical analysis models like HEC-RAA and GWAMP.  

Here, I have evaluated the impact of water management on the resource use, product supply and 

demand, welfare indices and the water management infrastructure. One of the main 

assumptions is that the precipitation does not change and prevails at the current precipitation level.  
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When the foreign commodity demand is increased, a considerable extension of land use is needed. 

Compared to the 0BF scenario, the marginal cost of irrigation water demand is 1.25 times higher in 

300BF scenario. The cost of water management is less compared to 3BF scenario where the 

bio fuel production is much higher. The difference between 0BF and the 3BF scenarios is not 

significant when the trade is not changed compared to the base scenario. The required number of 

structures is significantly higher in 300BF scenario compared to the 0BF scenario. The 

interesting feature is that when the bioenergy target is increased, the model tries to install 

more dams compared to the tanks. The number of tanks is two times lower in the 300BF 

scenario while the number of dams is 1.5 times higher compared to the 0BF scenario. Without 

water management a change, the cost of production is not significantly different for current bio fuel 

target when the bio fuel target is three times higher. 

The scenario analysis shows that the water management can have a substantial impact on resource use 

as well as the development of welfare levels in the region. Water management together with foreign 

commodity demand and bio fuel crop demand can have a combined effect compared to individual 

influence on the resource use and regional welfare.  
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9 Appendix 1 

  : unit calculations[volume(mcm/unit) , cost(USD/unit), 

        Bunits(units/ha), count(Number of units), production(tons/ha)]

   : water use (supply, hvst, rlse, store, rivmin, loss)

   : da

Indices

α

η

δ m types

    : tank types

    : harvest types (road, rivhvst, damhvststr, rivbse)

  : station 

s    : sub watersheds (s' : from sub watershed)

r    : HRU

c   : crop (supply, price, demand, type, energy su

ρ

γ

υ

pply (Pcal/Yr), mean yield (tons), crop share)

b   : input system(artirr, ss)

y   : decadal years

m  : months (m'  : previous month)

x   : step (count, length, price)

  : area (harvest,crop use)[ha]

  : r

ϕ

ω unoff (coeff,  actual runoff [mcm/yr], probability)

  : energy demand(human food, trade, bio-energy)[Pcal/yr]π

 

 

e   : efficiency

h   : harvest data 

t    : tank data 

d   : dam data

a   :  area 

i    : Irrigation [mm]

j   : runoff

g   : energy 

n   : crop 

PARAMETERS
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W  : water 

H   : harvest

K : water step

Z   : objective / cost

T  : tank

D   : dam 

C   : crop 

E   : energy 

I    : irrigation

Variables

 

Table 14 : Major assumptions made 

Parameter Assumption Reference 

Climate scenario Since I are defining adaptations for water 

management, extreme climate situation is 

used to understand the model behaviour and 

possibility of integrating adaptation 

strategies 

- 

Population Population density share with respect to the 

land share                    [number of persons 

yr-1] 

FAOSTAT 

Harvest structure dimensions Number of units per ha, capacity [mcm], 

Efficiency, from field experiments as 

recommendations by FAO 

(Sivanappan, 1998) 

(Oweis et al., 2001; 

Prinz, 1996a; Prinz, 

1996b). 

Tank  structure  

dimensions 

Number of units per ha, capacity [mcm], 

Efficiency, from field experiments as 

recommendations by FAO 

FAO 

Dam dimensions Gravity dam structure calculations 

according to the recommendations by US 

Army Corps of Engineers 

U.S. Army Corps of 

Engineers publications 

: 

EM 1110-2-2200 

Storage and harvest structure 5% of the initial investment cost.  
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maintenance cost 

Cropping area Share from the total land area             [ha] EPIC model  

Maximum crop share for individual crops 

[ha] 

FAO-STAT 

Current per capita energy 

requirement 

Per capita daily energy requirement is 2790 

Kcal yr-1                           [Kcal yr-1] 

Protein and carbohydrate energy demand 

covers 75% of the total energy demand. 

This calorie need is only supplied through 

the representative crops selected in the 

model. 

FAO 

Crop energy values Energy supply from individual crops                           

[Kcal 100g -1yr-1] 

GLOBIOM 

Water balance Water inflow from runoff will end-up in 

river, harvest structures or tank structures 

 

Irrigation requirement Crop water requirement by irrigation under 

different crop management practices                        

[MCM] 

EPIC 

Trade data Import and export quantities [tons] 

Crop price [USD] 

GLOBIOM 

Crop demand  Crop demand is determined by foreign 

commodity demand  and domestic human 

food energy 

 Demand                   [tons] 

GLOBIOM 

Water availability/ Travel 

time 

Availability of water for harvest and 

storeage since the runoff is generated  

Probability of  water as 

a function of travel 

distance and time 

Benefit from selling crops Endogenous price calculations using price 

elasticities 

FAO base data 
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CHAPTER IV 

Adapting water management to meet changing bioenergy targets  

1 Introduction 

High dependence on fossil fuels is recognized as a major factor for global warming (Cerqueira Leite 

et al., 2009). Therefore, a responsive action is needed to reduce dependence and emissions derived 

from fossil fuel combustion. Some of the remedial reactions currently in practise are replacing the use 

of fossil fuels by renewable energy sources and bio-fuels. These interests are mainly motivated by 1) 

the rising oil prices and recognizing that the global oil reserves are exhausting fast, 2) concern about 

fuel emissions, 3) the requirements of the Kyoto Protocol and the Bali Action Plan on carbon 

emissions, and 4) the provision of alternative outlets for agricultural producers (Mussatto et al., 2010). 

In an attempt to reduce oil dependency, increase the share of renewable energies and contribute to a 

reduction in declining farm income governments across the world have approved legislative 

instruments that foster the bio-fuel industry (Sorda et al., 2010). Ethanol is considered as a good 

alternative to replace oil (Bai et al., 2008).  

However, all countries do not have the capacity and resources to produce bio-fuels to fulfil the 

demand. Some of the resources important in bio fuel crop production are land, water, society and 

economy. Past studies have addressed some of the governing factors. Cerqueira Leite et al. (2009) 

have studied the potential impact of land and infrastructure for substituting ethanol for 5% (102 

billion liters) of the world demand of gasoline by sugarcane ethanol in the year 2025.  

The international market in bio-fuel is still in its primary stage and its full development will require 

the diversification of production in terms of both feedstock and number of producing countries. This 

is evident when I consider the share fulfilled by bio-fuels from the total energy consumption and 

production. One important factor considering the bio-fuel feedstock is maintaining the sustainability 

of the production. Yet this should be defined to assure sustainability in a broad sense, so that it does 

not impose additional barriers to trade; policies should be defined to induce market competitiveness 

and sustainable development (Rosillo-Calle and Walter, 2006). There are several considerations how 

to integrate bio-fuel into the international energy market. Main feedstock that is used in bio fuel 

production includes some main food crops. For example sugarcane, sugar beet, sorghum, maize, 

wheat, cassava.. Therefore, bio-fuels have been at least partially held responsible for the increment in 

food prices between 2003 and 2008 (Mercer-Blackman et al.; Mitchell, 2008; Schmidhuber, 2007). In 

addition, some of the bio-fuel processing techniques have resulted in a net negative contribution to 
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reduce GHG emissions for specific types of feedstock crops (Crutzen et al., 2007; Macedo et al., 

2004; Pimentel and Patzek, 2005). 

Other major impact areas of bio-fuel production are land use and water. Concerning the impact on the 

land, bio-fuel plantations compete with conventional agriculture, marginal lands and ecological 

wetlands. Although it is uncertain and difficult to assess, bio-fuels are also debated with respect to 

wider ecological and socio economic issues (Upham et al., 2009). Bio-fuel assessments need a 

relatively - high spatial and technical disaggregation to adequately account for heterogeneous land 

qualities, technological differences and possible adaptations (Havlík et al., 2011).  Several studies 

have been conducted so far to understand the technical, geographical and socio economic potentials. 

Smeets et al. (2007) have studied the technical potential based on natural science, engineering and 

geographical factors. Schneider and McCarl (2003) have studied the economic potential based on 

farm level to global general equilibrium assessments. Bennett and Anex (2008) have studied this 

aspect using farm level models where the spatial extent is limited to specific regions and resource 

rents and commodity prices are constant. Yang et al. (2008) has studied the land use impacts and 

associated externalities using, global general equilibrium models and a top-down approach.  

In order to get an explicit idea about the impacts of bio fuels on the diminishing land and water 

resources as well as social welfare, thorough integrated global assessments are required, which link 

engineering, geographic and economic tools and address different land qualities, management 

adaptations and global market feedbacks (Havlík et al., 2011). In the same study, they have used 

GLOBIOM, the complex biophysical process model to simulate impacts on yields, GHG emissions 

and water requirements under different land qualities. The irrigation water use has been used as an 

indicator of intensification and production system change in agriculture and thus is strongly related to 

mitigating the indirect land use change effects of bio fuel policies. The limitation in the study with 

respect to water resource is that irrigation water management is studied using irrigation techniques 

such as ‘no irrigation, automatic irrigation’. The irrigation water supply and management are not 

considered explicitly. The runoff is directly considered as the available water to manage. Here, I try to 

address this factor concerning the water management and distribution. Using the ADAPT model 

together with GLOBIOM, I try to extend the study to following facets. From the location where the 

runoff is generated, I try to change the flow direction and flow rate so that the water coming to storage 

locations in a considered time period is altered. This altered flow is then diverted to storage locations 

so that it becomes available in non-rainy seasons and in added quantities. The water management is 

done using engineering structures and as an adaptation strategy to changing rainfall patterns. 

The following chapters are structured as follows. Section 2 provides a detailed description of the 

experimental setup and the methodology applied experimental setup and results presented in the 

section 3. Section 4 concludes the chapter.  
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2 Experimental Setup 

Over the last three decades, bio-fuels production has increased dramatically for both first and second 

generation bio fuels, though it is still not at a considerable fraction from world’s total energy 

production (Brown, 2011). During the period 1975-2010, bio ethanol production increased from 0.5 to 

83.0 billion-litres while biodiesel production increased from 0.1 to 19.7 billion-litres ( 

Figure 43). 

 

Figure 43: International Energy Statistics Note: Original data in US gallons.  

 

Source: http://www.earth-policy.org/books/wote/wote data (Brown, 2011) 

 

The most common types of bio fuels, bio ethanol and biodiesel,l are mainly produced in USA and 

Brazil. Currently Brazil is responsible for about 25% while USA is responsible for about 65% of the 

world ethanol production. When considering the period from year 2000 to 2011, the total bio-fuel 

production and consumption show an increasing trend in Brazil (Figure 44). 



 
C h a p t e r  I V   P a g e | 110 

 

 

Figure 45 shows the land suitability for sugarcane production in Brazil. The Sao Francisco basin 

comprises a large land area, which is naturally suitable for sugarcane cultivation. Being an intensively 

cultivated area, there is still a possibility of expanding commercial sugarcane cultivation.  Therefore, I 

selected the Sao Francisco watershed from Brazil and sugarcane crop to investigate the possible 

expansion of the bio fuel crop production. This selection is done considering the importance of bio 

fuel production in Brazil. The fuel ethanol production and consumption also show a gradual increase 

in average. Bio-ethanol production is mainly obtained from sugarcane in Brazil. The sugarcane 

production also shows a similar growth in average. Brazil has the most developed and integrated bio-

fuels program in the world and Brazil’s ethanol is recognized as the most price-competitive bio-fuel in 

the world. Moreover, Brazil is now also investing in bio-diesel (Sorda et al., 2010). The National 

Program on Biodiesel Production and Usage (PNPB), initially required 2% of petrol based diesel to be 

replaced by biodiesel from 2008 to 2012 and an increase to 5% from 2013 onwards (Colares, 2008). 
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Figure 44 : Yearly bio fuel production and consumption in Brazil since 2000 (International Energy statistics) 



 
C h a p t e r  I V   P a g e | 112 

 

 

3 Experimental Set up 

 

 

The main research question of the model experiment is what share of total energy supply can 

be achieved through adapting water management. In order to distinguish the impact of water 

management on the bio fuel crop production, I simulate the influence of each factor 

individually and jointly. The simulations are presented in the Table 15.  

Figure 45: Suitability of land area in Brazil for sugarcane production under rainfed agriculture. Source: World 

Food and Agricultural Organization 

Country boundary 
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Table 15: Simulation events 

 

Here, only scenarios with changed water management are considered, since in chapter 3 it was already 

concluded that changed water management is more beneficial compared to a situation where the water 

management is not changed. In addition, I try to understand the capacity for an increase in bio-fuel 

demand. Precipitation is not changed since the objective is to understand the capacity to expand the 

bio-fuel crop production under current climatic conditions. The irrigation water is provided for crop 

production, industrial demands and domestic water needs.  

T denotes the trade activities. Four levels of trade activities that alter the demand are considered. No 

change in the current trade level for crops is indicated by 0T and increases in the foreign commodity 

demand are denoted by 50%, 100%, 200% as 50iT, 100iT, 200iT respectively. Reduced trade 

activities (50%) are expressed as 50rT. Furthermore, I consider several levels of bio-fuel demand that 

alter the demand function. No bio-fuel demand is described as 0BF. 10BF, 25BF, 50BF, 75BF, 125BF 

150BF, 175BF, 200BF, 300BF consider the increases of bio fuel demand by 10%, 25%, 50%, 75%, 

125%, 150%, 175%, 200%, and 300%, respectively, compared to the current level. In order to 

understand the impacts of water management on the above-mentioned drivers in the basic scenario 

definition, I compare the results of the combined simulation results.  

Scenario Scenario conditions Description 

Water 

management 

BF levels : 0BF 

T levels : 0T 

 

Trade scenario BF levels : 0BF 

T levels : 50iT, 100iT, 200iT, 50rT 

Only foreign commodity demand  

changes  

Bio fuel 

scenario_100 

BF levels : 0BF, 10BF, 25BF, 50BF, 

75BF, 125BF 

T levels : 0T, 100iT 

Doubling of the current bio fuel 

demand together with foreign 

commodity demand  

Bio fuel 

scenario_300 

BF levels : 10BF, 25BF, 50BF, 75BF, 

125BF 150BF, 175BF, 200BF, 300BF T 

levels : 50iT, 100iT, 200iT, 50rT 

Three fold increase of the current 

bio-fuel demand together with 

foreign commodity demand  
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The water management scenario is to identify the impact of water management keeping all the other 

climate, trade and energy variables, at the current level. This is the base scenario for comparisons. 

The bio-fuel scenario is to identify the impact of water management keeping all the other climate, 

trade variables constant, at the current level. Only the bio-ethanol production from sugarcane is 

considered. The ‘Bio fuel scenario_100’ refers to a bio fuel demand increase by 100% and 

‘Bio fuel scenario_300’ refers to increasing bio fuel demand up to 300% , with respect to 

current demand levels. 

The trade scenario identifies the impact of altered trade, keeping all the other climate variables, at the 

current level.  

4 Simulation Results and discussion 

This section summarizes the results of the above mentioned simulations. Here, the impact of water 

management is evaluated by taking into account the change of resource use, product supply and 

demand, welfare indices and the water management infrastructure. The scenario results are rather 

extent since I use several scenario combinations over five decades and three main driving factors.  To 

provide an abstracted idea about the impacts of water management on different driving factors, I 

aggregate results for clarity and ease to understand, I discuss the results for changes in resource use, 

crop production, water management and welfare. 

 

Resource use 

I discuss the resources use with land and water resources use in different biofuel demand target 

scenarios. In the figures, ‘ai’ denotes automatic irrigation and ‘an’ automatic fertilization. ‘AI’ and 

‘An’ is the use of sophisticated irrigation systems to distribute water in the irrigation fields. In this 

setup, the effect of changing bio-fuel demand on the resource use can be isolated.  When I consider 

the different bio fuel crop demand scenarios, the area allocated for crop production under automatic 

irrigation is always higher compared to the area under rainfed agriculture. Automatic irrigation 

occupies about one fifth of the land area occupied by the artificial fertilization. When I compare the 

model results, the land area occupied by the automatic irrigation reduces over time and the area under 

automatic fertilization increases. The increase of area with automatic fertilization is about 4 million 

hectare compared to the base scenario (Figure 46). The reduction of area under automatic irrigation is 

about 2 million hectare compared to the base scenario. However, this is not is a large change in the 

expansion of the land area but a drastic change in the land area for different cropping systems. This 

result shows decreasing land fertility with time. However, overall land area expansion until 2050 is 

about 4% (Figure 47). Hence there is only a slight increase in the land area. One can reason that this is 
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due to higher efficiency per unit land area, and the increase of bioenergy use up to three times does 

not have much effect. In addition, the human dietary energy demand is much higher compared to the 

bio-fuel demand (Figure 52).  The results also show that the cost of crop production is about 4.5 times 

higher for the scenario under automatic fertilization compared to under automatic irrigation (Figure 

48). 

The other parameter to understand the resource use is water use. Water consumption slightly increases 

when the bioenergy target is 175% of the base scenario. However it increases significantly for the 

300% of the bio-fuel crop demand (Figure 46). The total irrigation water requirement scenario 

changes slightly only for different bio-fuel demands (Figure 49). Water demand is not uniform over 

the year in every month (Figure 51), with highest demands for, June, to September period. Comparing 

different bio-fuel demands, the irrigated area has increases to satisfy the excess demand, while the 

rainfed fraction remains the same. Irrigation water demand by different crops (Figure 50) changes 

strongest for Sugar cane, due to the use of sugarcane as main crop for bio-fuel. Even increased foreign 

commodity does not show a significant signal in the change of land and water resources. 

 

Figure 46: Land use change compared to the year 2000 for scenario: Trebling the bio-fuel use but no 

change in foreign commodity demand 
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Figure 47: Total land area for crop production for scenario including a doubling of trade and trebling of 

bio-fuel demand 

 

 

Figure 48: Cost of crop production depending on irrigation type for scenario: Trebling the bio-fuel 

demand and reducing the foreign commodity demand to half  
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Figure 49: Change Irrigation water for the scenario without trade but all bio-fuel scenarios  

 

 

Figure 50: Change in Irrigation water demand for different crops for scenario 200BF+50iT 
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Figure 51: Irrigation water demand in different months (300BF+ 50iT) 

 

 

 

Crop production 

With the crop production in different bio fuel scenarios, I can compare the level of demand 

satisfaction. According to our model results, with the increment of bioenergy target the crop 

production increases less than 10% from the total crop production (Figure 52).  The reason I don’t 

observe a significant different in the crop production is that the majority of the crop production goes 

for human needs. Even I change trade and biofuel demand that does not make a considerable 

difference in the total demand. When I compare the model results of the crop production against the 

bio fuel energy demand target (Figure 53) the production is achieved until the 300%. This shows that 

there is still a large capacity available to increase bio fuel crop production in the Sao Francisco basin. 

So far only about 5% of the total energy demand is fulfilled by bio fuels. With the results I can argue 

that, if I ignore the technological development for bio fuel crop production, there is about a chance to 

increase the share from the bio fuel crop production up to 15% under current conditions. 
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Figure 52: Crop production (100rT + 300BF) 

 

 

Figure 53: Crop production under changing bioenergy targets (100iT) 
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Water management 

Figure 54 illustrates the number of water harvest and storage structures built when both bio fuel crop 

demand and foreign commodity demand are present. The number and the capacity of dams built under 

high bio fuel crop demand are higher since the water required for irrigation is higher. Comparatively, 

in low water demand scenario, the capacity and the number of structures are low since the demand is 

low. When considering the water release, the model results show that always a higher amount of 

water is demanded from the dams compared to the tanks. This gives an indication that when the bio 

fuel demand is increased the mass water storages are always preferred for crop production than 

scattered tanks throughout the watershed. 

The quantity of demanded irrigation water slightly changes over time according to the demand. 

However, the demanded water quantity is moderately sensitive to the crop demand if it is used 

together with the water management, like the case I consider in this study. However, it is not sensitive 

to the increment of the bio fuel crop water demands only. Since a larger fraction of irrigation water 

requirement is always demanded by the bio fuel crop production. 

 

 

 

Figure 54: Cumulative number of water management structure (10BF + 100iT) 
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Figure 55: Water stored in water management structures (Decade 2020 + 100iT) 

 

 

 

Welfare change 

In the Sao Francisco region, the marginal value of land ranges between 25-30 USD when I increase 

the bio fuel energy demand target from the current level up until 300% (Figure 56). The marginal 

value of the land is associated with the water management. When the water management is always 

present, the marginal cost of land is lower when the irrigation water is easily available. In addition, 

the marginal value of the land decreases over time if it is used in crop production. Other interesting 

feature is that the marginal value of land is lower when the bioenergy target is increased. This is 

probably due to the fact that when the water management is installed; the crop production can be 

implemented without much of additional cost for crop production. 
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Figure 56: Marginal value of land (100idT) 

 

According to my model results, the Figure 57 and Figure 58 show the change in cost and benefit of 

crop production respectively including the change in foreign commodity demand . The cost of crop 

production drastically increases after 30 years and the benefit is also decreased after 30 years. Among 

the installation cost for water management and water harvesting, dam installation cost is the highest 

cost per million cubic meter, which is around 250 USD.  According to the assumption made in the 

base model, the reduction of live capacity is done mostly over 30 years. Therefore, after 30 years most 

of the damns become non-functional. Thus, a huge cost is incurred for water management structure 

installation. During the initial decade, the cost of crop production is higher compared to the other 

decades and the benefits comparatively decrease. This is also an indication of additional cost spending 

for water management structure installation. 

 

 

 

 



 
C h a p t e r  I V   P a g e | 123 

 

 

Figure 57: The change in the total cost (100iT) compared to the cost in 0BF+0T scenario for year 

2000 

 

 

Figure 58: The change in the total benefit for 100iT scenario, compared to the cost in 0BF+0T 

scenario for year 2000 
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5 Conclusion 

The results show that the land area occupied for cultivating considered crops is mainly under 

automatic irrigation and artificial fertilization. The increment of land area under irrigation is about 4% 

on average when I increase the biofuel energy up until 300% from the existing level. Due to the high 

turnout factor in bio fuel crops and the total demand quantity compared to human dietary energy 

demand, the impact on the total procedure by increasing biofuel crop demand up until 300% does not 

make a significant change for resource use. Increment in the biofuel demand encourages development 

of bulk water storages like dams over small scattered water storages like tanks in the Sao Francisco 

basin. There is still a large capacity available to increase bio fuel crop production in the Sao Francisco 

basin. So far only about 5% of the total energy demand is fulfilled by bio fuels.  

In the Sao Francisco basin, the marginal value of land used for crop production ranges between 25-30 

USD when I increase the bio fuel energy demand target from the current level up until 300%. The 

marginal value of land is lower when the bioenergy target is increased since the more the water 

management structure areas are installed; the crop production can be implemented without much of 

additional cost for crop production.  

The cost of crop production drastically increases after 30 years and the benefit is also decreased after 

30 years due to new constructions of dams and the increment of the share of high cost irrigation 

system installed cultivation lands. 

 

With the results I can argue that if I ignore the technological development for bio fuel crop 

production, there is about a chance to increase the share from the bio fuel crop production up to 15% 

under current conditions. This proves the policy outlook for Brazil to increase the bio fuel energy 

demand until 25% by 2020 (Ramos and Wilhelm, 2005) can make it a reality in Sao Francisco region.  
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CHAPTER V 

Agricultural water management under changing precipitation 

1 Introduction 

Throughout the history, the main sources of energy was fossil fuels (Azar et al., 2003; Demirbas, 

2008).  The current energy concept of our society is based on extensive use of fossil fuels, limited oil 

reserves, increase of oil prices and political instability creating in addition related problems climate 

change and environmental degradation (Baruch, 2008; Koh and Ghazoul, 2008; Stern, 2007).  There 

are two renewable liquid transportation fuels that might replace gasoline and diesel fuel: ethanol and 

biodiesel.  Ethanol is produced from sugar or starch crops, while biodiesel is produced from vegetable 

oils or animal fats (Demirbas, 2008).  Many studies have been conducted to understand and project 

the consumption of bio fuels (for example: (Havlík et al., 2011; Schneider and McCarl, 2003).  

However, there are also pressing concerns, whether the production of bio-fuels can meet the projected 

consumption.  The cultivation and production of energy feed stocks require substantial water input.  

Competing water uses at declining water resources raise the spectre of resource depletion and 

environmental degradation. Therefore, water management has become a key feature of existing 

projects and a potential issue in new ones. 

This is especially evident when projected climate changes are taken into consideration.  The 

assessment report 4 of the IPCC (Intergovernmental Panel on Climate Change) has reported on 

projections that the average global air temperature may increase until  2100 by 1.1 to 6.4 °C, relative 

to the baseline average for the period 1980-1999; precipitation may increase by 20% in some areas, 

but will decrease up to 20% in others (IPCC, 2007).  According to the recently observed trends, it is 

expected that above average temperature rise will occur over land, causing systematic changes in 

rainfall patterns.  The peak of the air temperature rise will occur in the area of high northern latitudes.  

The minor air temperature rise is expected to be in the area of Southern Ocean and northern North 

Atlantic.  At lower latitudes, especially in seasonally dry and tropical regions, crop productivity is 

projected to decrease for even small local temperature increases (IPCC, 2007).  It is argued that the 

main reach for the concurrent increase in surface temperature carbon dioxide and other greenhouse 

gas is the concentration increase during the past century.  The climate change has multiple effects on 

the precipitation patterns, droughts and floods.  In general, the larger and faster the changes in climate 

are, the more difficult it will be for human and natural systems to adapt (Stern, 2007).  As the crop 

production is highly sensitive to the climate conditions, the societal sector that would be mostly 

affected by climate change will be agriculture.  
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By using a statistical approach, (Fink and Medved, 2011; Motha and Baier, 2005; Salinger, 2005) had 

concluded that precipitation changes are not significant for bio fuel crop production.  Seasonal 

temperature is an important climatic factor that can have profound effects on the yield of crops and 

the changes in seasonal temperature affect grain yields, mainly through phenological development 

processes (Kalra et al., 2008).  Land and water resources are critical resources and precipitation is the 

climatic parameter associated with bio-fuel production. In the future climate scenarios, precipitation 

varies in wide range. In order to meet the water demand, water flow can be manipulated using 

adaptation strategies, so that the water becomes available when it is needed.  Given that many 

countries and regions in the world already experience pressure by changing rainfall patterns and land 

is needed for other socio-economic activities, converting existing cropland to or developing new land 

for bio-fuel production leads to many critical debates.  Factors in this debate include the challenges to 

subsistence farmers, possible increases of carbon emissions and threat to ecosystem services.   

Moreover, the above mentioned factors directly or indirectly are linked with land use and water use 

changes.  Thus, bio-fuel production may aggravate water stress, which is already a growing 

worldwide issue.  A fundamental uncertainty underlying the current understanding of these potential 

impacts is the water use change that will occur when bio-fuel production increases.  Today’s question 

is no longer whether renewable bio fuels will play a significant role in providing energy for 

transportation, but rather what are the implications of their use and how will it be reflected in the 

economy, environment, global security and health (Bernard and Prieur, 2007).  Historically, bio fuels 

have been produced from grain-based crops with water supplied solely by rainfall or together with 

irrigation.  Today, forest wood residues, agricultural residues, dedicated energy crops and other 

herbaceous biomass are being considered as feedstock for ethanol.  Although forest wood generally 

does not require irrigation, the impact of large-scale production of energy crops (especially dedicated 

energy crops) on water resource availability has not been fully examined yet.  However, the amount 

of water applied per acre has decreased from 25 inches in the 1970s to 20 inches today (Gollehon and 

Breneman, 2007).  This decline in water use is credited to biotechnology, increased use of water-

conserving irrigation practices, improved technical efficiency and high-energy costs.   

 The pressing question in this debate is whether or not the world has sufficient water to allocate it in 

bio fuel crop cultivation or could there be a potential to manage water as an adaptation strategy to 

changing climatic conditions that could be utilized without compromising the concerns described 

above.  More specifically, what types of water resources can be used for sustainable bio fuel 

production, in which quantities the water is available, what are the origins of water resources to 

manage, destinations of water resources to manage and how to change the current utilization.  

Answers to above mentioned questions provide the basis for justifying the potential of bio fuel and 

evaluating the associated environmental and socio-economic impacts.  The aim of this study is to use 

a numerical model based on data that can predict how the changing precipitation will affect yield of 
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feedstock for bio fuel production and examine the use of adaptation measures for the growing issue of 

water use in energy production by characterizing current consumptive water use. 

Fresh water is withdrawn from surface water to support agricultural operations or industrial processes 

or to be used as input to municipal water supplies.  Factors like climate, population and the 

concentration and water intensity of the local economy affect the amount and sustainability of water 

withdrawals for a given locality and region.  Here, only the water use by the agricultural sector is 

considered.  Almost 60% of the world’s fresh water withdrawals are used for irrigation.   

The following sections are structured as follows.  Section 2 provides a detailed description of the 

experimental setup and the methodology applied.  The results obtained are presented in the section 3.  

Section 4 concludes the chapter 

 

2 Current and Future precipitation scenarios on Sao Francisco 

Precipitation in the Northeast of Brazil is influenced by several large-scale precipitation mechanisms: 

inter-tropical convergence zone, upper air cyclonic vortex and cold fronts (Roucou et al., 1996).  The 

region is characterized by medium rainfall levels but high evaporation rates.  From south to north, the 

precipitation is decreases and low rainfall is registered in the north-eastern region of the Sao Francisco 

watershed.  In the semi-arid zones towards north, the rainfall is highly variable in space and time.  

Although it rains as much as in many other areas of the world, this semi-arid region is periodically 

affected by drought with partial or total loss in agriculture, which also affects water supply to the 

population.  The high evaporative demand of this region produces evaporation rates that can surpass 

10 mm day-1.  The mean deviation of the rainfall from the climatological normal is higher than 30%.  

The climate on the coast of the region is hot and humid while in the semi-arid is hot and dry.  The 

wet-season of the region is generally between January and June and the dry-season is generally 

between July and December.  The rainy season is centred upon March, April and May.  Statistically 

downscaled current climate data for the region shows the normal annual rainfall ranges from 1800 

mm on the coast to less than 250 mm.  When considering statistically downscaled data for the IPCC 

SRESS scenarios (IPCC, 2007), the precipitation pattern changes in magnitude, though there is no 

considerable change spatially.  In the a1b scenario, the magnitude range changes from 200-1820 mm 

in 2020 to 70-1860 mm by 2050.  In the a2a scenario, the magnitude range changes from 300-1900 

mm in 2020 to 250-1950 mm by 2050.  Thus, the average annual precipitation change in the climate 

projections varies between 5-16% compared to the current precipitation. 
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3 Virtual water (VW) and water footprint (WF)  

In order to determine the impact of bio fuel production on water resources, I use two physical 

indicators: virtual water (VW) and water foot print (WF).  With both indices, water content in a 

product or service can be estimated, but there are some important differences between them.  A 

description on how I define and use these indicators is presented below, including their differences.  

The virtual water content of a product is defined as the volume of water used for its production (Allan, 

1997).  (Hoekstra, 2003; Hoekstra and Hung, 2003) developed the most common methodology used 

nowadays to evaluate this index.  Virtual water is the water ‘embodied’ in a product, not in real sense, 

but in virtual sense.  It refers to the water needed for the production of the product (Hoekstra, 2003). 

The concept of virtual water gains relevance when applied to trade between countries or regions, 

because imports and exports involve ‘‘virtual water transfers’’(Velázquez, 2007).  As the endowment 

of water and the amount of water used vary according to the place of production, virtual water trade 

Figure 59: Average annual precipitation in the Sao Francisco basin in different SRESS scenarios 
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between countries can be a way to save water on a global scale (Chapagain and Hoekstra, 2003; Du 

Fraiture et al., 2004; Oki and Kanae, 2004), as well as a way to enhance the use of global water 

resources.  A country with low water resources could preserve its domestic water resources by 

importing water-intensive products instead of producing them itself (Velazquez, 2006).  (Chapagain 

and Hoekstra, 2008) investigated that water savings are produced from the physical point of view 

even though virtual water is not included as a criterion in import and export planning.  A country’s 

water endowment does not define its comparative advantage, because it does not represent all of the 

opportunity costs of production (Wichelns, 2004).   

Here, I use the concept of virtual water content as defined by Hoekstra (2003) with a slight 

modification.  According to Hoekstra (2003), the real water content of a product is the volume of 

water used to produce it at the place of production.   

In my study, I use the “Real Virtual Water” concept as the amount of water that a region will have to 

use in irrigation, instead of importing it.  Hoekstra and Hung (2003) used a procedure that takes into 

account the process of cultivating raw materials and the various industrial stages until the final 

product is obtained.  However, I only consider the water used to obtain raw materials (i.e. agricultural 

products), excluding the study of the rest of the industrial and commercial steps.  The virtual water 

content of an agricultural product (MCM/t) is estimated from the volume of water used during the 

crop’s growth period (MTM/ha), called the crop water requirement (CWR) (Hoekstra and Chapagain, 

2007).  The CWR is satisfied by both blue and green water received by plants.  It is important to 

differentiate between them because the use of green water in agriculture is related to more sustainable 

practices than the use of blue water (Aldaya et al., 2010).  In order to understand the irrigation water 

availability and the change in the water use for crop production, I compare the ‘Virtual Green Water 

content’ (VGW).   
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4 Experimental Setup 

The main research idea of the experiment is what amount of water can be made available by adapting 

water management for irrigation under changing precipitation.  In order to study the idea, I decide to 

compare different precipitation scenarios. Figure 60shows the percentage change in different SRESS 

scenarios compared to the current precipitation.  ‘High’ and ‘Low’ refer to the highest and lowest 

precipitation levels and ‘Avg’ refers to the average precipitation over the region and time for a 

specific scenario.  The abbreviation indicated the following definitions. 

A1b20: A1b scenario in 2020; A1b50: A1b scenario in 2050; A2a20: A2a scenario in 2020; A2b50: 

A2a scenario in 2050; 

 

Figure 60: Percentage change of Average, Highest and lowest precipitation in different SRESS 

scenarios compared to the Current precipitation 
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Although there are drastic differences in precipitation for climate projection scenarios, the average 

value is always lower compared to the current and ranges between 10-15 %.  In order to study the 

effect of reduced precipitation, I use 5%, 10%, and 15% reduced precipitation scenarios, compared to 

the current. Here, I use several simulation scenarios to quantify 1) the availability of water for 

irrigation, 2) resource use and 3) change on welfare measures.  In the scenarios, I try to portray 

individual and combine effects that could cause by bio fuel crop production, the foreign commodity 

demand and changed precipitation.  The simulation events are presented in the Table 15.  

Following are the scenario abbreviations: T denotes the trade activities.  Here, I consider four levels 

of trade activities that alter the demand function.  No change in the current trade level for crops as 0T 

and increment of 50%, 100%, 200% from the current as 50iT, 100iT, 200iT, and reduction of 50% 

from the current trade as 50rT.  Furthermore, I consider two levels of bio fuel demand that alter the 

demand function.  One event does not consider the bio fuel demand (0BF) and the other is 100 

(100BF), 300 (300BF) increment compared to the current level. 

 

Table 16: Simulation events 

Scenario Scenario conditions Description 

Trade change P levels : 0P ,10P, 15P 

BF levels : 0BF 

T levels : 50iT, 100iT, 200iT, 50rT 

Only foreign commodity 

demand  change together with 

precipitation 

Bio-Fuel change P levels : 0P, 10P, 15P  

BF levels : 0BF, 50BF, 150BF, 

200BF 

T levels : 0T  

Only bio fuel demand change 

together with precipitation 

Combination  P levels : 10P, 15P  

BF levels : 50BF, 150BF, 200BF 

T levels : : 50iT, 100iT, 200iT, 50rT 

Bio fuel and foreign commodity 

demand  change with 

precipitation 
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5 Simulation Results and discussion 

The main idea of the study is to investigate the effect of precipitation change on water availability for 

agriculture, industry and domestic purposes. Therefore, I have selected three extreme precipitation 

levels and four extreme biofuel production levels and defined scenarios for the experimental setup. 

The 15P, 10P scenario shows the reduced precipitation by 15%, 10% respectively compared to the 

current precipitation for the crop cultivation under no change in precipitation. Here, I consider that 

water management is implemented in all, since I conclude that the water management is more 

productive compared to a situation where water management is not implemented. 

 

Crop production 

The change in precipitation makes rather a significant impact on the irrigation water usage for crop 

production. Here, I compare the crop production when bio energy demand and foreign commodity 

demand are not changed, only foreign commodity demand is changed, and only the bio energy 

demand is changed. When there is no change in precipitation, the crop production slightly increased 

according to increased demand, which is 5% less than that of the total crop production. This can be 

reason out as; the major fraction of crop demand is occupied by the human food energy demand.  

The crop production under changing precipitation and foreign commodity demand shows significant 

change in the crop production (Figure 61and Figure 62). A reduced precipitation of 15% can achieve 

increased bio fuel demand until 200BF.  Reducing 15% of precipitation and increasing 200% of bio 

fuel crop demand reduce the crop production of about 2%. Therefore, if the precipitation is not 

changed, there is a large capacity to expand the trade and bio energy demand (Figure 62).  

 

Resource use 

I explain the resource use with the land use and water resource use. The results show that as the bio-

fuel crop production increases the water demand for irrigation also drastically increases. In addition, 

the decreased precipitation level aggravates the demand for the quantity of total irrigation water. 

Increased trade also contributes to elevate the total water demand significantly (Figure 61) 
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Figure 61: Water stored under reduced precipitation (15rdpt +200rT+200BF) 

 

 

Figure 62: Crop production under changing bio fuel scenarios (15rdpt + 2000T)  
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Figure 63: Change in cropping area in different irrigation systems under reduced precipitation (15rdpt 

+200rT+200BF)  

 

Figure 64: Change in cropping area in for crops under reduced precipitation (15rdpt +0T+200BF) 
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In addition, the water supply is mainly obtained from tanks than dams. There, I can notice that the 

majority of irrigation water is obtained from tanks when the precipitation is decreased. The quantity 

of water used over time against the bio fuel crop share to be fulfilled, slightly changes over time 

according to the demand. Here, I try to portray the demanded water quantity’s sensitive to the bio fuel 

crop water demand. A larger fraction of irrigation water requirement is always demanded by the bio 

fuel crop production compared to other crops. 

Figure 63 and Figure 64 compare the area under crop cultivation based on water management system 

and crop type. Accordingly, the automatic irrigation occupies about one fifths of less area compared 

to the artificial fertilization. Here also I can observe that there is no significant change in the area 

under cultivation. 

 

Welfare  

The comparison of marginal land price under changing bio fuel energy demand and foreign 

commodity demand levels, fluctuate between 28 USD – 30 USD per ha (  
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Figure 65). My model results show that when the precipitation is reduced, the marginal land price 

becomes lower on average compared to current precipitation levels. However, over the time, marginal 

price of land is decreased. When the demand for bio energy crop production is zero at the presence of 

reduced precipitation, the marginal cost of land is lower compared to the scenario with rather higher 

bio fuel demand under reduced rainfall. 

The comparison of marginal land price under changing bio fuel energy demand and foreign 

commodity demand levels reduces over time. Comparatively the marginal cost of water is about 250 

USD for dams while it is less than 50 USD for dam water (Figure 66.) 

When the water management is done, the benefit gradually increases and the cost gradually decreases 

for next 30 years. From the cost of installing water management structures, the dam cost is the most 

prominent expenditure and many dams in the model actively utilized for 30 years. When the water 

management is needed to be replaced after 30 years, the benefits decrease and the cost increases 

dramatically.  However, the benefits are comparatively low under reduced precipitation. However, 

under between 10-15 % reduction of precipitation enforces a dramatic reduction of welfare after about 

30 years.   
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Figure 65: Marginal land price for reducing precipitation levels (50BF+50IT) 

 

 

Figure 66: Marginal water price 3 (200BF+50IT+15P) 
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Figure 67: Benefit of crop production (200BF+100rT) 

 

 Figure 68: Welfare cost BioenScen_150 200idt 
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Water management infrastructure 

My model results show that when the bio fuel demand and foreign commodity demand  are 

increased, more construction of water management of structures is demanded (Figure 69).  

The results show that the number of dams is increased compared to the construction of tanks. 

One of the major causes for this is the cost of installation per unit of water is high in tanks 

compared to dams. Maximum of 20 dams have become operative at reduced precipitation of 

15 %.  The investment cost is comparatively low for water harvest structures, which is as low 

as 50-75 USD pre year, while for dams and tanks, it is high as 1million USD per year and for 

tanks 160000 USD. 

 

 

Figure 69: Cumulative number of water management structures (15P + 150BF + 50rT)  
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Figure 70: Installation and maintenance cost (15P+150BF+200iT), (Y axis on the left is for dams and 

right is for harvest structures) 

 

6 Virtual green water content 

In my model, I use ‘Virtual Green Water content’ (VGW) to represent the irrigation water availability 

and the change in the water use for crop production. This gives an idea of the use and the availability 

of VGW for crop production, industry and domestic water uses. I can summarize the results as 

follows.  

Table 17: Virtual green water content availability 

 
0P 10P 15P 0BF 100BF 200BF 

0T  
  

  
 

50iT + - - + + - 

100iT + - - +  - 

200iT + - - + - - 

50rT    + +  

 0BF 100BF 200BF  
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7 Conclusions 

My model simulation results show that the crop production is rather sensitive to the water availability, 

thus on the level of precipitation. The area of land, which is considered to be one of the resources used 

for the crop production is also dependent on the level of precipitation. Specially, the cost incurred for 

water management is sensitive to the water availability and increases significantly at the reduced 

water availability. In addition, the marginal cost of water is more sensitive to the change in 

precipitation, rather than the change in crop demand by bio fuel production and foreign commodity 

demand  
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CHAPTER VI 

Summary Conclusions  

The overall aim of this thesis was to investigate ways to facilitate and strengthen the application of an 

integrated water management concept within a watershed in the most beneficial way. The main 

factors considered throughout to maintain the sustainability of the water resource and manage the 

adverse effect due to global change.  

In most cases, the water management is demanded in a watershed to deal with competitive water use, 

which means that the consumptive demand for water is higher than the sustainable recharge. On the 

other hand, water management is needed to adapt the excess quantity of precipitation that falls in a 

higher rate than it drains off from the river network. 

With global change both of these adverse conditions are and will become more acute and widely 

speeded over many regions and are becoming a global issue in the future. The issue has come to a 

situation that it is becoming a major threat to the livelihood of people as well, sustainability of natural 

resources and sound maintenance of ecosystems. 

Probable rainfall pattern changes and occurrence of intense droughts are included in predicted climate 

change scenarios and these deviations demand for new approaches of water resource planning. 

Existing irrigation systems are not capable of handling the water demand in the future. In addition, the 

cost for rearranging the water management systems would incur large investments. Together with the 

technological improvements assumed in the future, crop yields would increase per additional unit of 

water in both irrigated and rainfed systems. In contrast, the arable land per capita is decreasing apart 

from the soil degradation problem.  

Crop production relies on two main types of water reserves. A secure supply of water and food, 

maintaining the sufficiency of water for food production, relies on the geographical and the climatic 

conditions as well as economic activities in a region. Traditional water management is often too slow 

to adapt to the required changes.   

Water resources, management and systematic approach have a direct relationship, because all of these 

are essential components in an integrated water management plan.  During the recent decades, the 

interest of integrating water-harvesting techniques in water management plans has increased.  Many 

countries have shown the successful implementation of water harvesting techniques to increase the 

water availability either by directly improving soil moisture content or storing water to use during 

future stress periods.   

These techniques include application of the traditional methods itself as well as enhancement by 

modern techniques.  There are many possible integrated water management practices proposed in 
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many studies.  However, there are diverse approaches available according to interests, perceptions, 

investments, priorities and locations of the communities involved.  Management of water resources in 

the optimal level is a function of the growth and development of every aspect in a watershed.  

Traditionally, storage has been achieved with dams and surface reservoirs.  However, appropriate dam 

sites with long term usages are getting scarce and dams have a number of disadvantages like 

interfering with stream ecology, adverse environmental effects, displacement of people for new dam 

reserves, loss of scenic aspects and recreational uses of the river, high costs and potential for 

structural failure and reduced sustainability due to sediment deposition.   

In integrated systematic approach, storage structure is not managed alone.  Storage structures need to 

be well connected to the water supplies and demand sectors as well.  The basic principle of a system’s 

approach is connectivity.  A system is a set of elements with connections between each other.  Any 

system is composed of subsystems, each being autonomous and open, directly interrelated and 

integrated with its environment.  The systematic approach is important to identify the correct 

components for an integrated system, to analyse and improve the system.  Each of the components 

requires as input resource endowments and produces outputs at optimal level to satisfy the demand 

attaining a certain level of welfare.   

Here, I proposed a systematic approach for integrated water management which starts from the runoff 

generation and extend until the demands for the crop production within a watershed are satisfied.  

I developed the ‘GWAMP’ and ‘ADAPT’ models to address the above mentioned shortcomings of 

the analysis and study the impact on the land and water resources and regional agricultural welfare.   

To sum up the insights gained from the studies in this thesis, I can recommend five main key elements 

to adapt water management to ensure sound supply of irrigational water.  

• The application of GWAMP in the six case studies demonstrates its suitability to identify 

potential sites for rain water harvesting and storage. The results confirm that GWAMP is 

applicable in varying climatic, geographic, and socioeconomic conditions, even in ungauged 

basins. Furthermore, GWAMP can easily update suitability levels and weighted scores of 

decision factors on which the potential sites for rain water harvesting and storage are based.  

• The analysis of the effect of precipitation on the average suitability score confirms that 

rainfall pattern change cannot have a major effect on the average suitability for either water 

harvest or storage structures. The analysis of the effect of land use change on average 

suitability confirms that land use change can have a major effect on the average suitability of 

land parcels for water harvest and storage. 

• The application of the ADAPT model on the scenario analysis shows that the water 

management can have a substantial impact on the extended resource as well as the 
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development of welfare levels in the region. Water management together with foreign 

commodity demand and bio fuel crop demand can have a combined effect compared to 

individual influence on the resource use and regional welfare. 

• The water management is moderately sensitive to the bio fuel crop production. The cost of 

crop production is also increasing due to the initial establishment of water management 

structures. The water management is not only sensitive to the change in the share of bio fuel 

crop demand but also sensitive to the overall crop production. 

• The simulation results show that the crop production is rather sensitive to the water 

availability, thus on the level of precipitation. The area of land, which is considered to be one 

of main the resources used for the crop production, is also dependent on the level of 

precipitation. Specially, the cost incurred with water management is sensitive to the water 

availability and increases significantly at the reduced water availability. In addition, the 

marginal cost of water is more sensitive to the change in precipitation rather than the change 

in crop production. 
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