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[1] Regimes of tropical low-level clouds are commonly
identified according to large-scale subsidence and lower tro-
pospheric stability (LTS). This definition alone is insufficient
for the distinction between regimes and limits the compar-
ison of low-level clouds from CloudSat radar observations
and the ECHAM5 GCM run with the COSP radar simulator.
Comparisons of CloudSat radar cloud altitude-reflectivity
histograms for stratocumulus and shallow cumulus regimes,
as defined above, show nearly identical reflectivity profiles,
because the distinction between the two regimes is depen-
dent upon atmospheric stability below 700 hPa and obser-
vations above 1.5 km. Regional subsets, near California
and Hawaii, for example, have large differences in reflec-
tivity profiles than the dynamically defined domain; indi-
cating different reflectivity profiles exist under a given
large-scale environment. Regional subsets are better for the
evaluation of low-level clouds in CloudSat and ECHAM5
as there is less contamination between 2.5 km and 7.5
km from precipitating hydrometeors which obscured cloud
reflectivities. Citation: Nam, C. C.W., and J. Quaas (2013),
Geographically versus dynamically defined boundary layer cloud
regimes and their use to evaluate general circulation model
cloud parameterizations, Geophys. Res. Lett., 40, 4951–4956,
doi:10.1002/grl.50945.

1. Introduction
[2] Intercomparisons of General Circulation Models

(GCM) have shown that intermodel spread in climate sen-
sitivity is dominated by cloud feedbacks [Soden and Held,
2006; Bony and Dufresne, 2005]. The uncertainty in cloud
feedbacks in turn is believed to be primarily due to low-level
clouds [Vial et al., 2013; Webb et al., 2006; Medeiros et al.,
2008].

[3] Low-level clouds are oftentimes identified according
to the large-scale dynamics [Klein and Hartmann, 1993;
Bony et al., 2004; Wood and Bretherton, 2006; Medeiros
and Stevens, 2011]. Other times, geographical regions are
used as a proxy for studying the representations of a
cloud regime [Webb et al., 2001; Chepfer et al., 2010].
This study aims to evaluate the representation of low-level
clouds in the ECHAM5 GCM using CloudSat radar obser-
vations using dynamically and geographically defined cloud
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regimes. Using ERA-Interim reanalysis [Dee et al., 2011]
alongside CloudSat observations [Stephens et al., 2002]
and the ECHAM5 GCM [Roeckner et al., 2003] paired
with the Cloud Feedback Model Intercomparison Project
Observational Simulator Package ([Bodas-Salcedo et al.,
2011], COSP) radar simulator, the radar joint cloud altitude-
reflectivity histograms of stratocumulus and shallow cumu-
lus cloud regimes were compared. This was done for both
the dynamically defined stratocumulus and shallow cumu-
lus regimes and regional subsets off the coasts of California,
Hawaii, Peru, Namibia, Barbados, and Madagascar. This led
to some surprising results, more specifically, we found that
the identification of low-level cloud regimes by large-scale
dynamics alone is insufficient for spaceborne radar observa-
tions and radar satellite simulators. How we came to such a
conclusion is presented below, beginning with a description
of clouds in the ECHAM5 model, the COSP radar satellite
simulator, as well as the CloudSat data in section 2. Our
experiment description is presented in section 3; followed by
the results and conclusions in sections 4 and 5, respectively.

2. Model and Data
2.1. Clouds in ECHAM5

[4] Clouds in the ECHAM5 atmospheric GCM are repre-
sented by a convective cloud scheme and stratiform cloud
scheme. Convective clouds are represented by the Tiedtke
[1989] mass-flux concept and bulk cloud model. Convection
is separated into shallow, mid-level, and penetrative convec-
tion. Shallow convection develops when surface evaporation
in a column is greater than the large-scale convergence of
moisture. Penetrative convection occurs when the converse
is true. Mid-level convection occurs when convection initi-
ates above the boundary layer and a temperature inversion
inhibits large-scale convergence at low levels. This work
mainly focuses on low clouds, thus, the shallow and mid-
level convection are of main interest. The cloud fraction
attributed to convective clouds is assumed negligible in the
radiation scheme, however, such clouds contribute to the
stratiform cloud fraction via the detrainment of cloud water
from convective updrafts [Lohmann and Roeckner, 1996].

[5] Stratiform clouds are represented by three compo-
nents: prognostic equations for water vapor, cloud liquid,
and ice water; a microphysical scheme; followed by a cloud
cover scheme. The mass mixing ratios of water vapor,
cloud liquid water, and cloud ice are prognostically calcu-
lated using the bulk cloud microphysics scheme presented
in Lohmann and Roeckner [1996]. They are transported
using a flux form semi-Lagrangian transport scheme [Lin
and Rood, 1996]. The mixing ratios are used to calculate
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the total water mixing ratio. Integrating over the saturated
part of the subgrid-scale total water mixing ratio probability
density function (PDF), whose shape is related to subgrid-
scale processes such as turbulence and convection, the cloud
fraction of a the model grid box is determined using the sta-
tistical cloud scheme of Tompkins [2002]. The cloud fraction
of each grid box is then used in conjunction with the maxi-
mum random overlap assumption to derive a projected 2-D
total cloud cover.

2.2. CloudSat Radar Simulator
[6] In this study, ECHAM5 is run with the COSP ver-

sion 1.2.1 CloudSat radar simulator (QuickBeam, [Haynes
et al., 2007; Bodas-Salcedo et al., 2011]). The satellite simu-
lator takes the grid-column profile of pressure, temperature,
cloud water content, cloud fraction, and precipitation flux
from ECHAM5 and divides it into 50 subcolumns. The
average hydrometeor fraction, which includes cloud and pre-
cipitation [Marchand et al., 2009], over all the subcolumns
equals the modeled grid averaged as hydrometeor fraction of
each subcolumn equals zero or one [Klein and Jakob, 1999;
Chepfer et al., 2008]. Within the cloudy subcolumns, the in-
cloud liquid water and ice content is assumed equal [Klein
and Jakob, 1999]. Above each subcolumn, the satellite sim-
ulator mimics CloudSat radar signal. After accounting for
both the model’s maximum-random cloud-overlap assump-
tion and the instrument sensitivity [Chepfer et al., 2010], a
histogram of equivalent reflectivity and altitude, based on a
common definition as the CloudSat retrievals, is produced.

2.3. CloudSat Observations
[7] CloudSat is a polar orbiting satellite hosting a 94 GHz,

near-nadir cloud radar. With a pulse of � 3.3 �s, it pro-
vides a global view of the vertical profile of clouds and
precipitation in the atmosphere, including the evolution and
distribution of cloud liquid and ice contents with altitude
[Stephens et al., 2002]. Using the hydrometeors’ reflectiv-
ities from the CloudSat Geometric Profile (2B-GeoProf)
data set, CloudSat Reflectivity Data, available from the
Institut Pierre Simon Laplace (IPSL) CLIMSERV group,
are placed on a 2ı by 2ı latitude-longitude grid, with a
vertical resolution of 480 m, consistent with the COSP
simulator outputs.

3. Experiment Description
[8] In this paper, the stratocumulus and shallow cumu-

lus cloud regimes in ECHAM5 are compared with CloudSat
observations for the year 2007. The model is run in a T63L31
resolution (approx. 1.8ı � 1.8ı with 31 vertical levels), with
prescribed monthly-mean sea surface temperature distribu-
tion and sea-ice cover distribution from the Atmospheric
Model Intercomparison Project (AMIP2) as observed for
the year 2007. After a 3 month spin-up period, a simula-
tion with output data at a temporal resolution of 3 h for the
full year 2007 was completed. The data were used to com-
pute monthly means, for which the June-July-August (JJA)
2007 time period is presented here. This time period has
been shown to be sufficient to evaluate model performance
and identify model deficiencies [Nam and Quaas, 2012].
For an extended analysis of the entire 2007 period, as well
as the regional comparisons of Peru, Namibia, Barbados,
and Madagascar, please refer to the supporting information.

Both these analyses demonstrate the spatial and temporal
robustness of our analysis and corroborate our conclusions.

[9] The stratocumulus and shallow cumulus cloud
regimes are classified according to the large-scale vertical
velocity (!), at 500 hPa and 700 hPa, and the lower tropo-
spheric stability (LTS� �700hPa - �sfc) [Klein and Hartmann,
1993; Bony et al., 2004; Medeiros and Stevens, 2011]. The
vertical velocities are first used to identify regions of large-
scale subsiding motion, which are indicative of low-cloud
regimes. These regions are then separated into stratocumulus
and shallow cumulus cloud regimes using the LTS. Regions
of strong subsidence are defined as areas where !500hPa �
10 hPa d–1 and !700 hPa � 10 hPa d–1 and LTS � 18.55 K
indicates stratocumulus while LTS < 18.55 K defines shal-
low cumulus [Medeiros and Stevens, 2011]. Within these
two regimes we look at the regional subsets of the California
Stratocumulus (15ı–35ıN; 110ıW–140ıW) and the Hawai-
ian Trade Cumulus (15ı–35ıN; 160ıE–140ıW following
Webb et al. [2001].

[10] The observations combine CloudSat retrievals and
European Centre for Medium-Range Weather Forecasts
reanalysis data (ERA-Interim) from the JJA 2007 period.
The monthly means of vertical velocity and potential tem-
perature (�) from ERA-interim were used to determine the
large-scale dynamics of the atmosphere. For the analysis of
the ECHAM model, both cloud and dynamics diagnostics
are from the simulation itself.

4. Results
[11] The dynamical masks of ERA-Interim and

ECHAM5, presented in Figure 1, show the areas where the
conditions for stratocumulus and shallow cumulus regimes
were satisfied within JJA 2007. The radar reflectivities from
within the regions identified each month were used to create
the joint cloud altitude-reflectivity histograms, commonly
known as contoured frequency by altitude diagrams (CFAD)
(Figure 2). The radar reflectivity histograms present the fre-
quency of occurrence of clouds and precipitation in intervals
of 480 m from 0 to 19.2 km for radar reflectivities from –30
dBZe to 20 dBZe. Radar reflectivities < –27.5 dBZe, have
greater likelihood of false detection, therefore, hydromete-
ors are identified as particles with radar reflectivities > –27.5
dBZe following Bodas-Salcedo et al. [2008] and Marchand
et al. [2009]. In addition, radar reflectivities below 1 km
should be discarded due to ground clutter [Tanelli et al.,
2008; Marchand et al., 2008]. The frequency of occurrence
is normalized such that each altitude sums to one.

[12] Roughly speaking, the radar reflectivity histograms
can be divided into four regions according to radar reflectiv-
ity and altitude of the hydrometeor. According to Marchand
et al. [2009], hydrometeors above 5 km are predominantly
composed of ice, and below 5 km, they are predomi-
nantly liquid. In Nam and Quaas [2012] radar reflectivities
< –10 dBZe in ECHAM5 generally indicated nonprecipitat-
ing hydrometeors, whereas hydrometeors with � –10 dBZe
were generally precipitating. Note that radar reflectivities are
dominated by larger particles, and in the presence of both
precipitating and nonprecipitating hydrometeors, the radar
reflectivity returned will be in the precipitating region of the
histogram although nonprecipitating hydrometeors exist.

[13] The dynamical masks of both stratocumulus and
shallow cumulus for ERA Interim and ECHAM5 are rather
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Figure 1. Dynamical masks show the areas where the conditions for stratocumulus and shallow cumulus regimes were
satisfied within JJA 2007. (top row) ERA interim (a) stratocumulus; (b) shallow cumulus. (bottom row) ECHAM5 (c)
stratocumulus; (d) shallow cumulus. Values indicate the averaged monthly mean area covered by each regime between
81ıS–81ıN.

similar in their geographical distributions and their averaged
monthly means. Despite the similar dynamical masks, the
resulting reflectivity histograms are very different (Figure 2b
versus Figure 2c and Figure 2f versus Figure 2g). Not
only are the dynamical radar histograms for CloudSat and
ECHAM5 different from one another, they are vastly dif-
ferent to their regional counterparts (Figures 2a, 2d, 2e,

2h), which are oftentimes used to evaluate low-level cloud
regimes in models Webb et al. [2001].

[14] Focusing on the reflectivity histograms of the stra-
tocumulus and shallow cumulus regimes, in both obser-
vations and models, one can frequently see reflectivities
associated with high-level and mid-level clouds as well as
precipitating hydrometeors (Figures 2b, 2c, 2f, 2g). Despite

Figure 2. Radar cloud altitude-reflectivity histogram from dynamical regimes for JJA 2007. (top row) Stratocumulus: (a)
Californian subset of CloudSat dynamical stratocumulus, (b) CloudSat dynamical stratocumulus, (c) ECHAM5 dynamical
stratocumulus, (d) Californian subset of ECHAM5 dynamical stratocumulus. (bottom) Shallow Cumulus: (e) Hawaiian
subset of CloudSat dynamical shallow cumulus, (f) CloudSat dynamical shallow cumulus, (g) ECHAM5 dynamical shallow
cumulus, (h) Hawaiian subset of ECHAM5 dynamical shallow cumulus.
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Figure 3. Radar cloud altitude-reflectivity histogram over the California and Hawaii regions when precipitation is withheld
from simulator for July 2007.

having used subsiding motion to identify these two regimes,
hydrometeors frequently occur in the upper troposphere. In
both CloudSat retrievals and the ECHAM5 model, the stra-
tocumulus and shallow cumulus reflectivity histograms look
remarkably similar, with minor differences in the frequency
of high-level cirrus clouds as well as mid-level clouds. The
shallow cumulus regime shows a greater frequency of cirrus
clouds and more mid-level hydrometeors compared to the
stratocumulus regime. The overall similarity between reflec-
tivity histograms of the two regimes can be traced back to
the definition of the regimes themselves. It is only the LTS
which distinguishes one low-cloud regime from the other.
Unfortunately, the reflectivities below 700 hPa and above
1.5 km within the observations and models are remark-
ably similar, and in ECHAM5 the reflectivities are domi-
nated by precipitating hydrometeors. It can be concluded
that sampling solely according to these dynamical condi-
tions is insufficient for distinguishing between stratocumulus
and shallow cumulus clouds with satellite radar retrievals.
The dynamically defined regimes are frequently influenced
by precipitating hydrometeors, which obscures low-level
cloud reflectivities.

[15] A comparison of reflectivity histograms of ECHAM5
(Figures 2c, 2g) to CloudSat (Figures 2b, 2f) show that
within ECHAM5 the highest altitude of hydrometeors
detected by the radar simulator is much lower than that
found in CloudSat observations. This is because ECHAM5
underestimates the effective radius of ice particles, rendering
high-level clouds undetected by the radar, while simultane-
ously overestimating the lidar scattering ratios when being
evaluated with a lidar simulator [Nam and Quaas, 2012].
In the boundary layer, the greatest frequency of hydromete-
ors fall within the precipitating quadrant of the histogram.
The mid-levels of ECHAM5 show a lower frequency of
hydrometeors compared to CloudSat.

[16] The geographical subset off the Californian coast
yields vastly different reflectivity histograms compared to
the dynamically defined stratocumulus regime for both
CloudSat and ECHAM5 (Figures 2a–2d). This holds true
for the Peruvian and Namibian stratocumulus regions pre-
sented in the supporting information. The geographical sub-
set off the Hawaiian coast also yields different reflectivity
histograms compared to the dynamically defined shallow
cumulus regime (Figures 2e–2h), although to a lesser extent.
The differences between the regional subsets and the dynam-
ical regimes mainly arise from precipitating hydrometeors as

well as mid-level clouds. The Californian and Hawaiian sub-
sets of CloudSat and ECHAM5 show a distinction between
high-level cirrus and boundary layer clouds, which is not
evident in the dynamically defined histograms.

[17] It can be concluded from the series of plots that
not all stratocumulus and shallow cumulus regions, when
defined dynamically according to Medeiros and Stevens
[2011], have the same reflectivities signature despite having
the same large-scale environmental properties. The observed
regional subsets show very similar radar profiles as pre-
sented in Marchand et al. [2009], with a few high-level
cirrus clouds overlying a relatively clear mid-level and an
abundance of boundary layer hydrometeors. The greatest
frequency of boundary layer hydrometeors occur in the non-
precipitating quadrant of the histogram with clouds in the
shallow cumulus regime more frequently reaching higher in
the atmosphere compared to the stratocumulus regime.

[18] The reflectivity histograms of ECHAM5’s Califor-
nian and Hawaiian subsets clearly show high-level hydrom-
eteor reflectivities spanning into the precipitating quadrant
of the histogram at a greater frequency than observed. Mid-
level and low-level hydrometeors over the Californian and
Hawaiian regions are frequently in the precipitating part
of the histogram. In the lowest layers, the precipitating
hydrometeors can obscure the few existing low-level clouds;
motivating the sensitivity experiment in which precipitation

Figure 4. ECHAM5 cloud fraction profile over the Cali-
fornian (blue) and Hawaiian (red) regions for JJA 2007.
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is withheld from the radar simulator. The sensitivity exper-
iment is designed to isolate the reflectivities of low-level
clouds in ECHAM5 in the Californian and Hawaiian regions
described above. We found that although low-level clouds in
ECHAM5 are detected more frequently than in the control
experiment, the frequency of occurrence remains signifi-
cantly underestimated compared to CloudSat observations
(Figure 3). In addition, the low-level clouds in ECHAM5 do
not extend as high into the atmosphere as those in CloudSat.
A look at the cloud fractions purely modeled by ECHAM5 in
these two regions in Figure 4 shows that there are relatively
few boundary layer clouds in these regions; motivating the
need for a different boundary layer scheme in ECHAM5.

5. Conclusion
[19] This study found that the identification of tropical

low-level cloud regimes according to the large-scale subsi-
dence and lower tropospheric stability (LTS) is insufficient
and limits the comparison of low-level clouds between
CloudSat radar retrievals and the ECHAM5 GCM run with
the COSP radar simulator. The radar reflectivity histograms
of stratocumulus and shallow cumulus cloud regimes were
found to be very similar as the distinction between the two
regimes is solely dependent upon reflectivities below 700
hPa and above 1.5 km. This holds true for both Cloud-
Sat retrievals and the ECHAM5 GCM with the COSP
radar simulator.

[20] The ECHAM5 radar reflectivity histograms showed
a frequent presence of precipitating hydrometeors, as well
as high-level clouds, throughout the atmosphere despite
having used large-scale subsidence as a criteria for identi-
fying the low-cloud regimes. Oftentimes, these higher-lying
clouds and precipitating hydrometeors produced reflectivi-
ties that obscured those from the low-clouds and thus ren-
dered the identification of boundary layer clouds according
to the large-scale subsidence and lower tropospheric stability
insufficient for comparison with satellite radar retrievals.

[21] Regional subsets near Hawaii and California, as well
as those presented in the supporting information, were found
to be better for the identification of low-level clouds using
CloudSat retrievals as there was less contamination between
2.5 km and 7.5 km from precipitating hydrometeors; and
similarly so for ECHAM5. Interestingly, the regional sub-
sets have quite different reflectivity histograms compared to
the dynamically defined domains. This implies that within
a given large-scale environment, very different reflectivity
profiles can exist. This is because the dynamical definitions
capture more than the stratocumulus or shallow cumulus
clouds themselves but other cloud types as well.

[22] The results drive home the need for improving the
boundary layer scheme as well as the coupling of precipita-
tion and clouds in the ECHAM5 parameterizations. There is
also a need to develop creative methodologies for identifying
low-level clouds from radar observations and synthesis of
multisensor instrument observations for model evaluation.
One such promising approach, shown by Evans et al. [2012],
identifies unique hydrometeor occurrence profiles, from a
ground-based millimeter vertically pointing radar, based on
composites by atmospheric state. Application of such a
technique to CloudSat retrievals and model data would be
very interesting.
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