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ABSTRACT

A numerical experiment is designed to study the interaction at the stratocumulus top between a mean

vertical shear and the buoyancy reversal due to evaporative cooling, without radiative cooling. Direct nu-

merical simulation is used to eliminate the uncertainty introduced by turbulence models. It is found that the

enhancement by shear-induced mixing of the turbulence caused by buoyancy reversal can render buoyancy

reversal comparable to other forcing mechanisms. However, it is also found that (i) the velocity jump across

the capping inversion Du needs to be relatively large and values of about 1m s21 that are typically associated

with the convective motions inside the boundary layer are generally too small and (ii) there is no indication of

cloud-top entrainment instability. To obtain these results, parameterizations of the mean entrainment ve-

locity and the relevant time scales are derived from the study of the cloud-top vertical structure. Two over-

lapping layers can be identified: a background shear layer with a thickness (1/3)(Du)2/Db, where Db is the

buoyancy increment across the capping inversion and a turbulence layer dominated by free convection inside

the cloud and by shear production inside the relatively thin overlap region. As turbulence intensifies, the turbu-

lence layer encroaches into the background shear layer and defines thereby the entrainment velocity. Particu-

larized to the first research flight of the SecondDynamics andChemistry of theMarine Stratocumulus (DYCOMS

II) field campaign, the analysis predicts an entrainment velocity of about 3mms21 after 5–10 min—a velocity

comparable to the measurements and thus indicative of the relevance of mean shear in that case.

1. Introduction

The deepening of the stratocumulus-topped boundary

layer (STBL) as nonturbulent fluid is imbued with the

properties of the turbulent layer, or entrained, plays

a key role in the temporal evolution of the boundary

layer as a whole. The relatively thin region where this

entrainment occurs, which we shall call the entrainment

interfacial layer (EIL), comprises the upper part of the

cloud layer, the cloud boundary itself, the turbulent–

nonturbulent interface, and the relatively smooth tran-

sition to the troposphere above it. The interaction

among the different local processes in this region and

the resulting entrainment rates still remain largely un-

clear (see, e.g., Stevens 2002; Wood 2012).

A longstanding question has been to what extent

buoyancy reversal occurring as a result of diabatic

mixing between saturated and unsaturated air within the

EIL might not only destabilize the layer locally, leading

to the onset of downward directed convection, but also

globally, as more convection is associated with more

mixing, which causes more convection and the eventual

desiccation of the STBL as a whole (Deardorff 1980;

Randall 1980). Mellado et al. (2009) andMellado (2010)

demonstrated that the presence of buoyancy reversal

alone leads to a metastable layer as the mixing rate,

or entrainment rate, is diffusively limited, so that the

eventual breakup of the cloud by buoyancy reversal

alone occurs on time scales that are much too long to be

relevant to the STBL. However, these earlier results left

open the possibility that buoyancy reversal, when aug-

mented by other sources of turbulence, might cease to

be diffusively limited and thus play a greater role than

one would be led to believe by the consideration of

buoyancy reversal alone.
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In addition to buoyancy reversal, both the vertical

shear of the horizontal wind across the EIL and further

convective driving through radiative cooling of the

cloud-top region act as local sources of turbulence. In

this paper, we extend the work of Mellado et al. (2009)

andMellado (2010) by exploring the role of shear and its

possible interaction with buoyancy reversal.

Expanding on earlier work through a study of the role

of shear is interesting for at least two reasons. First,

shear is ubiquitous, as local shear associated with large-

scale eddies will also be evident even in the absence of

a mean wind. Second, shear alone cannot sustain a con-

tinuous deepening of the layer, as shear generated tur-

bulence will locally thicken the EIL, but in the absence

of other sources, the turbulence will eventually decay

once a critical EIL thickness is reached. The latter

makes it interesting to combine shear with the convec-

tive destabilization of the cloud-top layer through

buoyancy reversal, as neither process acting alone is

efficient in supporting significant mixing at the cloud

top. In contrast, by generating convective eddies that

locally thin the EIL, buoyancy reversal might help en-

hance shear, which in turn locally enhances the mixing

that sustains the buoyancy reversal, raising the possi-

bility that the processes are self-reinforcing.

Despite a steady trickle of observational studies (e.g.,

Caughey et al. 1982; Faloona et al. 2005; de Roode and

Wang 2007; Katzwinkel et al. 2012; Malinowski et al.

2013) and some numerical investigations (e.g., Wang

et al. 2008; Kurowski et al. 2009), suggesting an impor-

tant role for shear within the EIL, theoretical and

modeling studies typically focus on shear-free cases and

neglect the effects of local shear within the EIL. The

reason for this may be that mean shear and convective

effects are hard to realize together in laboratory ex-

periments. Large-eddy simulation (LES) is also not well

suited to a consideration of the small-scale processes

occurring within the EIL—a layer that is often too thin

to be well resolved by an LES focused on the evolution

of the boundary layer as a whole. And measurements of

the EIL in natural flows are difficult and expensive to

make. Consequently, understanding of how shear and

convection interact within the EIL, and the importance

of such interaction for the dynamics of the STBL, re-

main limited. However, to the extent that direct nu-

merical simulation (DNS) is able to reach flow regimes

evincing some degree of Reynolds number similarity

(Tennekes and Lumley 1972; Dimotakis 2000; Monin

and Yaglom 2007), it might be possible to fill the gap in

the available empiricism and advance understanding

(Moin and Mahesh 1998). Advances in computing

power have begun to make such DNS-based ap-

proaches conceivable, and have motivated a number of

recent studies (Abma et al. 2013; de Lozar andMellado

2013), including the present one.

Specifically, in the present analysis we build on the

earlier study by Mellado et al. (2009) and Mellado

(2010) to ask the following: Can shear render buoyancy

reversal as important as radiative cooling in driving

convective motion? Can it lead to a desiccation of the

cloud? To answer these questions, we first derive a pa-

rameterization of the mean entrainment velocity and

relevant time scales using DNS of an appropriately de-

fined problem, and we then rescale the results to typical

atmospheric conditions based on the observed Reynolds

number similarity. We do it as follows. Section 2 de-

scribes the experimental setup, the so-called cloud-top

mixing layer, and the bulk formulation employed in the

analysis. Section 3 summarizes previous results on the

instabilities driving the system, which already provides

some of the length, time, and velocity scales character-

izing the cloud-top dynamics. Section 4 provides the

necessary characterization of the EIL vertical structure,

including the definition of the mean entrainment ve-

locity we used in the analysis. Section 5 obtains the rel-

evant velocity scales of the turbulence inside of the

cloud and inside of the EIL. The parameterization of we

in terms of the velocity and buoyancy increments across

the EIL and the buoyancy reversal parameters is pre-

sented and discussed in section 6. Implications of the

results for the STBL are analyzed in section 7, before the

summary and concluding remarks.

2. Formulation

The definition of the cloud-top mixing layer and the

two-fluid formulation used to study latent heat effects is

based on the early work by Bretherton (1987) and it has

been thoroughly described in Mellado et al. (2010). The

cloud-top mixing layer consists of a region of dry, warm

air, representing the free atmosphere, on top of a region of

moist, relatively cold air, representing the cloud layer.

Each of the two layers is assumed to have a well-defined

homogeneous thermodynamic state and horizontal ve-

locity, as sketched in Fig. 1. Themixture fraction x is equal

to the total enthalpy and total water contents conveniently

normalized with the state in each of the layers. In the two-

fluid formulation employed here, these two thermodynamic

variables obey an advection–diffusion equation and there-

fore x is equal to the fraction of mass proceeding from one

of the two layers. Without loss of generality, we choose the

value x 5 0 to represent the in-cloud fluid and x 5 1 to

represent the free-atmosphere fluid. The frame of reference

is chosen to move with the mean velocity between the two

layers and the streamwise direction Ox is aligned with the

velocity difference vector, whose magnitude is Du.
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The governing equations are

›v/›t1$ � (v5v)52$p1 n=2v1 bk

$ � v5 0

›x/›t1$ � (vx)5 k=2x

b5 be(x)

9>>>=
>>>;
. (1)

The velocity vector is v 5 (u, y, w), w being the vertical

component, the kinematic viscosity is n, k is the scalar

diffusivity, p is a kinematic pressure, and k is the unit

vector along the vertical direction Oz. The system is

statistically homogeneous inside the horizontal planes,

and the data inside these planes are used to construct the

different statistics, which depend then on the vertical

coordinate z and the time t. Averaged values are in-

dicated by angle brackets and the corresponding fluc-

tuations by the prime.

Thermodynamic equilibrium is assumed. The result-

ing buoyancy function be(x), a one-to-one mapping be-

tween mixing fraction and buoyancy, is valid as long as

the domain under study is small enough to neglect ver-

tical variation of the thermodynamic pressure. From

calculations of the exact thermodynamic equilibrium,

it is observed (Fig. 2) that be(x) is very well approxi-

mated by

be(x)

Db
52

D

xs
x1Qds ln

�
exp

�
x2 xs
ds

�
1 1

�
, (2)

a smoothed, piecewise linear functionwhereQ5 (xs1D)/

[xs(12 xs)] is a nondimensional vaporization enthalpy, ds
is a smoothing factor that regularizes the phase changes,

xs is the saturation mixture fraction, and

D52
bs
Db

(3)

is the buoyancy reversal parameter, where bs is the sat-

uration buoyancy as obtained from the equilibrium

calculation and Db is the buoyancy increment across the

cloud top. If bs , 0, then buoyancy reversal is said to

occur (Siems et al. 1990; Wunsch 2003). The cloud

(condensate) corresponds to mixtures x , xs. The

crossover mixture fraction

xc 5
xs 1D

11D
(4)

defines the upper limit to mixtures that are negatively

buoyant. The parameter d in Eq. (2) smooths $b at the

saturation surface x(x, t) 5 xs, which, under the as-

sumption of strict equilibrium (i.e., phase change being

instantaneous), would otherwise be a delta function

(Mellado et al. 2010).

Because we are interested in the fully developed tur-

bulent regime, which is established after the details of

the initial conditions have been sufficiently forgotten,

the flow we consider can be completely specified by the

parameters (Du, Db, k, n, bs, xs). These parameters

identify four nondimensional numbers (Pr, D, xs, Re0)

when Du and Db are used to normalize the other pa-

rameters. In this work, the Prandtl number Pr 5 n/k is

set to 1. The reference Reynolds number is

Re05 (1/3)
(Du)3

nDb
. (5)

The prefactor 1/3 is introduced based on existing knowl-

edge from cloud-free, stably stratified shear layers and is

discussed further in the following section.

The set of configurations analyzed is summarized in

Table 1 and it is exactly the same as that investigated in

the shear-free case by Mellado (2010). The thermody-

namic state of the reference cases H11 and M11 (which

FIG. 1. Defining sketch of the cloud-top mixing layer. The mix-

ture fraction x (normalized enthalpy and total water content)

varies between 0 inside the cloud layer (gray color) and 1 inside the

free atmosphere above. The corresponding variation of the buoy-

ancy is Db. The velocity difference across the cloud top is Du.
FIG. 2. Buoyancy function be(x) for thermodynamic conditions

measured during the first research flight of the DYCOMS II field

campaign (cases H11 and M11 in Table 1). Solid line represents

exact equilibrium and the dashed line [which lies almost on top of

the solid line except near the (xs,2D) point as better seen in the

inset] is an approximation according to Eq. (2).
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only differ in the Reynolds number, as indicated by

the leading character) corresponds to field measure-

ments of nocturnal marine stratocumulus obtained during

the first research flight (RF01) of the SecondDynamics and

Chemistry of the Marine Stratocumulus (DYCOMS II)

field campaign (Stevens et al. 2003a). Case M21 differs

from the reference case M11 through a doubling of D,

and case M12 differs through a doubling of xs.

The reference Reynolds number we can reach with

a grid 2048 3 2048 3 1664 is Re0 5 1.1 3 104, having

a resolution parameter Dx/h ’ 1.25 at the end of the

simulation, where Dx is the grid spacing and h the

Kolmogorov scale. Using n 5 1.5 3 1025 m2 s21 for

the kinematic viscosity of air in typical atmospheric

conditions, this Reynolds number corresponds to Du 5
0.5m s21 and a domain size of 6.6m for the reference

RF01/DYCOMS II case, where Db 5 0.25m s22. The

reference case M11 is repeated in simulation H11 at

a double Reynolds number Re0 5 2.23 104 to ascertain

possible Reynolds number effects. For this caseH11, the

domain size is about 12m. By comparing one to one the

results from cases M11 and H11, it will be demonstrated

that Reynolds number similarity already applies to some

of the relevant statistics and thus justifies the extrapo-

lation of the results to atmospheric values (Tennekes

and Lumley 1972; Monin and Yaglom 2007).

Finite differences are used to solve the previous set of

equations using Cartesian coordinates and a structured

grid. Sixth-order spectral-like compact schemes are em-

ployed to resolve with fidelity the molecular processes

(Lele 1992). The discrete solenoidal constraint is imposed

using Fourier decomposition along the periodic horizontal

planes x1Ox2 and a factorization of the resulting set of

equations along the vertical coordinate (Mellado and

Ansorge 2012). A low-storage fourth-order accurate

Runge–Kutta scheme is used to advance in time (Carpenter

and Kennedy 1994). At the top and bottom boundaries

of the computational domain, no-penetration free-slip

boundary conditions are used. Preliminary work was used

to place these boundaries far enough to assure a negligible

influence in the results, to ascertain the resolution re-

quirements, and to assess the influence of dswhose value is

set to 0.09/16. Further details of choices made in the setup

of the experiments are discussed in Mellado (2010).

3. Preliminaries

Wind shear alone cannot sustain turbulence inside the

capping inversion except for a relatively short period of

time. However, it can enhance the turbulence caused by

buoyancy reversal. The understanding and quantifica-

tion of this interaction between shear and buoyancy re-

versal is the aim of this paper and this section introduces

the main elements of this interaction: The concept of the

background shear layer provides the reference structure,

including the length scale hS, and it is presented first.

Then, the mechanisms destabilizing that shear layer are

briefly reviewed, introducing one of the velocity scales

characterizing the system wR and anticipating the de-

pendence of the resulting mean entrainment velocity we

on some details of these destabilizing mechanisms.

a. Formation of the background shear layer

In the absence of buoyancy reversal the problem we

consider reduces to that of shear driven mixing layers

in the presence of stratification (see, e.g., Sherman

et al. 1978; Thorpe 1987; Peltier and Caulfield 2003;

Mashayek and Peltier 2011). If the initial shear layer is

sufficiently thin, Kelvin–Helmholtz instabilities will

cause an overturning of the layer and a thickening of the

interface around its center at z 5 z0 until it reaches an

asymptotic thickness

hS5 (1/3)
(Du)2

Db
. (6)

(The subscript S indicates ‘‘shear.’’) The value of 1/3 is

well established (615%) by laboratory and numerical

studies (see, e.g., Smyth and Moum 2000; Brucker and

TABLE 1. Simulation series. Thermodynamic state for reference cases M11 and H11 taken from RF01/DYCOMS II (Stevens et al.

2003a): DTl is the jump across the cloud-top region in liquid-water static energy temperature (8C), Dqt is the jump in total water content,

and ql,c is the cloud liquid-water content (g kg21). Cases M21 and M12 derived to investigate the effects of the buoyancy reversal pa-

rameters D and xs independently, maintaining the same buoyancy increment Db 5 0.25m s22. Simulation L00 corresponds to a stably

stratified shear layer without buoyancy reversal (Brucker and Sarkar 2007). The velocity increment Du (m s21) is calculated according to

Eq. (5) and the thickness hS (m) is calculated according to Eq. (6). The turbulentReynolds numberRet5 e2/(«n), where e is the turbulence

kinetic energy and « its viscous dissipation rate, is the maximum in-cloud value.

D xs xc Re0 DTl Dqt ql,c Du hS Grid Ret c1 c2 c3

H11 0.031 0.09 0.117 2.2 3 104 9.7 27.5 0.5 0.63 0.53 30722 3 2216 3800 0.022 20.11 5.9

M11 0.031 0.09 0.117 1.1 3 104 9.7 27.5 0.5 0.50 0.33 20482 3 1664 1800 0.021 20.11 6.2

M21 0.062 0.09 0.143 1.1 3 104 8.5 28.4 0.5 0.50 0.33 20482 3 1664 3200 0.034 20.09 4.7

M12 0.031 0.18 0.205 1.1 3 104 13 28.2 1.2 0.50 0.33 20482 3 1664 2300 0.018 20.06 7.4

L00 0.0 0.0 0.0 3.7 3 103 9.7 27.5 0.0 0.35 0.16 10242 3 832 — — — —
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Sarkar 2007) and can be associated with a critical value

of the bulk Richardson number Rib 5 hvDb/(Du)
2,

which is defined in terms of the basic parameters of the

problem and the vorticity thickness

hv 5
Du

(›hui/›z)max

. (7)

[A similar behavior based on a critical bulk Richardson

number has also been observed in the entrainment zone

of cloud-free, sheared convective boundary layers

(Conzemius and Fedorovich 2007).] The reference

Reynolds number, Eq. (5), can then be written as Re0 5
hSDu/n. The asymptotic thickness of the shear layer also

introduces a time scale

tS 5
hS
Du

5 (1/3)
Du

Db
, (8)

which is comparable to the time scale
ffiffiffiffiffiffiffiffiffiffiffiffi
hS/Db

p
associated

with a restoring force that is proportional to Db. This
process is represented by case L00 in Fig. 3: After a lin-

ear growth during a time’10tS, the quantity hv(t) bends

toward hS; this transition requires’20tS. Wewill refer to

this asymptotic state as the background shear layer.

The formation of a background shear layer as de-

scribed in the previous paragraph is often faster than

other mixing processes affecting the cloud-top dynamics,

like large-scale convective motions induced by radiative or

evaporative cooling, and therefore hS is expected to char-

acterize, at least in part, the cloud-top region. For instance,

for typical atmospheric conditions Du’ 1210m s21 and

Db ’ 0.120.3m s22 (temperature difference across the

capping inversion of approximately 329K), the time

scales of the order of 10tS involved in the formation of

the background shear layer vary between a few tens of

seconds and a few minutes (longer times for a stronger

velocity difference or a weaker stratification), whereas

the time scales associated with the large-scale convec-

tive motions are’20min. Figure 3 supports the previous

argument: After ’5 2 10tS, buoyancy reversal starts to

modify the background shear layer but the vorticity

thickness hv in cases M11 andH11, though reduced with

respect to the case L00 without buoyancy reversal, re-

mains comparable to hS during the rest of the simula-

tion. (See also Fig. 4.) Section 4 will further confirm this

relevance of hS.

To conclude, we note that differences in the normal-

ized velocity and buoyancy profiles imposed by the ini-

tial conditions or, in our case, implied by the nonlinear

relation between b and x, Eq. (2) and Fig. 2, can lead to

a shear-layer formation that is more complex than what

has been here summarized (Smyth et al. 2007; Carpenter

et al. 2007). However, these effects are expected to be

small because atmospheric values of D and xs are typi-

cally small, and, moreover, we are mainly interested in

the turbulence regime that is established after the for-

mation of the background shear layer.

b. Destabilization of the background shear layer

On time scales that are long compared to the de-

velopment of the background shear layer, buoyancy

reversal destabilizes the system in two ways. First, the

lower part of the background shear layer, approxi-

mately xchS, becomes negatively buoyant and tends to

fall away from, or peel off, that layer (Fig. 4c). Pre-

vious analysis on the shear-free, buoyancy-reversal in-

stability (Mellado et al. 2009) suggests using

tR 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hS/jbsj

q
5 1/

ffiffiffiffiffiffiffi
3D

p Du

Db
, (9)

and

wR5
ffiffiffiffiffiffiffiffiffiffiffiffi
hSjbsj

q
5

ffiffiffiffiffiffiffiffi
D/3

p
Du (10)

as reference time and velocity scales for the effects of

buoyancy reversal (the subscript R stands for ‘‘re-

versal’’). The results discussed during the following

sections confirm that these scales help to characterize

the turbulence state also in the configuration with an

imposed wind shear as considered in this paper. Mech-

anistically, wR can be identified with the terminal ve-

locity resulting from the balance between the buoyancy

force acting on a parcel of fluid of volume } h3S and the

aerodynamic drag experienced by that parcel of fluid,

which is proportional to a cross-section h2S; that is,

r0jbsjh3S ’ r0w
2
Rh

2
S. These buoyancy-reversal scales can

also be understood in terms of the free-fall motion over

a length hS associated with a reduced gravity jbsj.

FIG. 3. Temporal evolution of the normalized vorticity thick-

ness hv/hS [or, equivalently, bulk Richardson number Rib 5
hvDb/(Du)

2 5 (1/3)hv/hS]: solid black line is case H11, dashed

line is case L00 without buoyancy reversal, and solid gray line is

case M11 with half the Reynolds number of H11.
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Evaporative cooling without buoyancy reversal,2xs,
D , 0, yields a stably stratified system that supports

gravity waves. The complex number obtained in Eq. (10)

when D , 0 indicates the associated oscillatory motion

as obtained by the linear stability analysis [see Mellado

et al. (2009) for more details]. However, this condition

does not destabilize the background shear layer into a

turbulent state. Therefore, only buoyancy reversal con-

ditions are of interest and we consider D . 0 hereafter.

The second destabilizing mechanism is the excitation

of the shear layer from below due to the in-cloud tur-

bulent fluctuations. This problem is still a matter of re-

search within the context of turbulent mixing across

a density interface (see, e.g., Fernando 1991; Strang and

Fernando 2001). The cloud top is, in principle, even

more challenging because the forcing occurs at the in-

terface itself instead of being imposed away from it.

However, there is one simplifying feature: Eq. (10) im-

plies that the intensity of the velocity fluctuations gen-

erated by buoyancy reversal, comparable to wR, is small

compared to the velocity difference across the inversion,

Du, since wR/Du5
ffiffiffiffiffiffiffiffi
D/3

p
and

ffiffiffiffiffiffiffiffi
D/3

p � 1 under typical

atmospheric conditions. This property can be used to

anticipate that, since buoyancy reversal is the ultimate

destabilizing mechanism and therefore source of tur-

bulence, there is an interval of time in which the in-cloud

velocity fluctuations remain small compared to Du and

therefore the vertical distortion of the background shear

layer is relatively small, independently of the size of the

in-cloud integral length scale.

As the in-cloud turbulence intensifies, turbulence pen-

etrates deeper into the background shear layer, defining

thereby a mean entrainment velocity we. The analysis of

the evolution equation for the turbulence kinetic energy

will show that turbulence entrainment is concentrated in

a thin region that behaves similarly to stably stratified

sheared turbulence and that we can estimate we from

weDb;P0 , (11)

where P0 is a characteristic scale of the turbulence

production rate by mean shear. The aim of the following

sections is to understand this relation, in particular,

the dominant balance in the evolution equation for the

turbulence kinetic energy where it comes from, and to

estimate P0 and thereby we.

FIG. 4. (top to bottom) Sequence of cross sections showing, in terms of the scalar dissipation rate kj$xj2, the relatively fast decay of the
turbulence inside the background shear layer compared to the relatively slow development of the buoyancy reversal instability at the base:

t 5 tS 3 (a) 1.5, (b) 2.9, and (c) 4.3. Illustrated in (c) are the mixtures at the bottom falling down and being rolled into billows, strongly

flattened because of the stable stratification. (This provides detail at early times of the information portrayed in Fig. 5d.)
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4. Entrainment interfacial layer

For the strong-shear regime Du/wR � 1 considered in

this paper and explained in the previous section, the

entrainment interfacial layer or EIL consists of a rela-

tively thin and flat region of thickness’hS encompassing

the remnant of the background shear layer, centered at

z 5 z0, and the roots of the convective motions that

FIG. 5. Vertical cross sections for case H11 at the final time t2/tR 5 27.1 (’4min). (a) Mixture fraction x (nor-

malized enthalpy and total water content) in binned, reddish colors (scale is 0 to 1); gray indicates negatively

buoyant regions, the buoyancy varying between bs , 0 (black) and 0 (white). (b) Liquid mass fraction normal-

ized with the in-cloud value ql /ql,c (scale is 0 to 1). (c) Normalized enstrophy log10(t
2
Sj$uj2) (scale is 23 to 2).

(d) Normalized scalar dissipation rate (scale is24 to 2). The vertical bars at the top-left corner of each panel indicate

the extent hS of the background shear layer, centered at z5 z0 [Eq. (6)]. The horizontal dotted–dashed lines in each

panel correspond to the reference height zi [Eq. (13)], and the black horizontal line at the top-right corner of each

panel is included to give a 1-m-length-scale reference. This figure shows only 1/2 3 1/5 of the domain.
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plummet downward into the cloud (Figs. 5 and 6). This

section emphasizes features of this vertical structure that

are useful for the understanding of the entrainment

process and the derivation of the corresponding mean

entrainment velocity.

The mean shear concentrates at the EIL and it does

not extend significantly into the cloud layer (Fig. 7a), the

maximum value being (›hui/›z)max5Du/hv ’ (3/2)Du/hS
(since hv /hS ’ 2/3, from Fig. 3). The same behavior is

observed in the mean gradient of the mixture fraction

(normalized enthalpy and total water content) and of

the buoyancy (Fig. 7b).

We can distinguish two regions within the EIL. The

lower half is characterized by strong turbulent mixing,

as indicated by the large values of enstrophy j$ 3 uj2
(Fig. 5c) and scalar dissipation rate kj$xj2 (Fig. 5d). The
buoyancy field attains its most negative values in this

lower half of the EIL, since the mean position of the

cloud boundary lies there (Fig. 7c) and evaporative

cooling concentrates near the cloud boundary (Figs. 5a,b).

In contrast, the upper part the EIL is relatively well

mixed and provides a smooth transition of the moisture

and temperature fields between the cloud and the free

troposphere. [This asymmetric vertical structure and the

coexistence of Kelvin–Helmholtz billows with Holmboe

wavelike disturbances is not only intrinsic to the EIL

here considered, but also commonly found in other

cloud-free, shear configurations with similar stratifica-

tion conditions (Strang and Fernando 2001).]

The distinction of two regions within the EIL is fur-

ther exposed by the profile of the gradient Richardson

number (Fig. 7d): The behavior in the upper half cor-

responds to that found in stably stratified shear layers

(see, e.g., Smyth and Moum 2000), as expected. How-

ever, it increases sharply up to 0.5 in the lower half of

the EIL before becoming negative inside the con-

vectively unstable region. This supercritical value is not

inconsistent with the presence of turbulence there, since

this turbulence is forced externally from below and not

only by the local mean shear. Moreover, the nonlinear

relation between b and x—see Eq. (2) and Fig. 2—also

favors these supercritical conditions.

The penetration, or encroachment, of the turbulent

region into the upper, nonturbulent part of the EIL is

inferred by comparing the profiles at the two different

times that are included in Fig. 7 (dashed and solid lines),

especially the bottom row Figs. 7e–h. Figure 7h is par-

ticularly useful for this purpose because the rapid fall to

zero of the viscous dissipation rate «5 hn(u0i,j 1 u0j,i)u
0
i,ji

around the center of the EIL quantifies the mean posi-

tion of the turbulent–nonturbulent interface, since the

average magnitude of the vorticity fluctuation (not

shown) is very similar to that of « and the turbulent re-

gion is defined by a nonzero vorticity fluctuation (Pope

2000). Note that, in contrast, the mean vorticity profile

›hui/›z extends deeper upward, as deduced from the

molecular flux profile in Fig. 7e; this distinction between

the mean and the fluctuating vorticity fields is also illus-

trated in Fig. 5c. The broader profile of scalar fluctuation

compared to that of « (Fig. 7g) suggests gravity wave ac-

tivity in the upper part of the EIL.

The entrainment process can be further analyzed with

the aid of the evolution equation for the turbulence ki-

netic energy

›e

›t
52

›T

›z
1P1B2 « , (12)

where T5 hw0u0iu
0
i/21 p0w0 2 u0it

0
izi is the turbulent flux

along the vertical direction, P 5 2hu0w0i›hui/›z is the

turbulence production rate by mean shear, B5 hw0b0i is

FIG. 6. Cross sections over the complete domain for case H11 at

the final time t2/tR 5 27.1 (’4min): (a) scalar dissipation rate as in

Fig. 5d, where the vertical bar at the top-left corner indicates the

extent hS of the background shear layer, centered at z5 z0 [Eq. (6)]

and (b) horizontal cross section at the inversion base z 5 2hS/2 of

the normalized liquid content ql /ql,c (color map is as in Fig. 5b).

The horizontal bars at each panel’s bottom-right corner provide

a 1-m-length-scale reference.
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the turbulent buoyancy flux, and t0ij 5 n(u0i,j 1 u0j,i) is the
fluctuating part of the viscous stress tensor. The profile

of the shear production term in Fig. 7h clearly exposes

a region of strong mechanical mixing: After a time in-

terval t2 ’ 27tR, shear production dominates approxi-

mately the lower half of the EIL and the profiles of

viscous dissipation rate and buoyancy flux simply follow

that of P. (See also Figs. 5c,d.) Henceforth, we will refer

to this region as the turbulent EIL sublayer.

In sum, we can split the EIL into an upper, non-

turbulent sublayer and a lower, turbulent sublayer. The

turbulent, shear-dominated EIL sublayer acts as a tran-

sition region between the upper, nonturbulent part,

a remnant of the initial and local dominant balance

between the shear and the stable stratification, and

the cloud layer, a free-convection zone where turbu-

lence is sustained by the buoyancy reversal instability

(Fig. 8).

The vertical position of the turbulent EIL sublayer

zi(t) can be defined by the maximum in the vertical

profile of the shear production term at any given

time:

P[zi(t), t]5 max
z

[P(z, t)] . (13)

An additional length scale

d5 zi 2 z01 hS/2 (14)

is introduced in Fig. 8. It is the distance between zi(t) and

the base of the background shear layer at z 5 z0 2 hS/2

and it measures the penetration depth associated with

the encroachment of the in-cloud turbulence into the

EIL. The corresponding mean entrainment velocity is

FIG. 7. Temporal evolution of the EIL vertical structure in case H11: (a) mean velocity (in a frame of reference moving with the cloud);

(b) mean mixture fraction and buoyancy; (c) cloud fraction; (d) gradient Richardson number Rig 5 (›hbi/›z)/(›hui/›z)2; (e) Reynolds

stress Fu 5 Ruw 5 hw0u0i and molecular flux Fu 5 2n›hui/›z; (f) mixture fraction turbulent flux Fx 5 hw0x0i and molecular flux Fx 5
2k›hxi/›z; (g)mixture fraction and buoyancy rootmean square (rms); and (h) budget of the turbulence kinetic energy, Eq. (12) with shear

production rateG5 P, buoyancy turbulent fluxG5 B, and viscous dissipation rateG52«. Dashed lines indicate the early time t1/tR 5
12.0 and solid line corresponds to the final time t2/tR 5 27.1.

FIG. 8. Sketch representing the EIL vertical structure. The po-

sition of maximum shear provides the reference height zi (dashed

line) and the penetration depth d [Eq. (14)] defines the relative

position of the background shear layer (gray stripe, thickness hS).

The black jagged line is the cloud boundary. The blue stripe in-

dicates the lower, turbulent EIL sublayer, where shear dominates

the production of turbulence kinetic energy. Beneath the EIL, free

convection dominates. Wavy lines at the top-right corner represent

gravity waves.
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we 5
dzi
dt

5
dd

dt
. (15)

The two main attributes regarding the evolution of

this vertical structure are that (i) the EIL is character-

ized by a vorticity thickness hv(t) ’ hS, where hS is

a constant defined by Eq. (6), and (ii) the in-cloud tur-

bulence encroaches into the EIL slowly compared to the

development of the convection layer inside the cloud.

The first attribute was demonstrated with the help of

Fig. 3, and the second attribute is shown in Fig. 9: During

the time in which the turbulence has advanced only d ’
(1/5)hS into the EIL, the convection length scale

z*5 (1/Bmax)

ð‘
2‘

max(B, 0)dz (16)

characterizing the vertical size of the convection layer

(Deardorff 1980; Mellado 2012) has become’5hS, or 25

times larger. [The integrand max(B, 0) is used to retain

solely the interval of the buoyancy flux profile contrib-

uting to the turbulence production.]

5. Turbulence velocity scales

A last intermediate step toward a parameterization for

we consists in estimating the velocity scale u
*
character-

izing the mixing inside the turbulent EIL sublayer. As

explained in this section, this velocity scale u
*
can be

obtained from the velocity scalew
*
characterizing the in-

cloud turbulence, which in turn relates the dependence

of u
*
on the parameters of the problem to that of the

buoyancy reference scale wR, introduced in section 3.

The prevalence of free-convection conditions inside

the cloud suggests that the convection velocity

w*5 (Bmaxz*)
1/3 (17)

characterizes the in-cloud turbulence (Deardorff 1970).

This argument is confirmed by Figs. 10a and 11b. In

particular, the ratio between the maximum of the ver-

tical velocity root mean square (rms), wrms 5 hw0w0i1/2,
and w

*
is of O(1), approximately constant in time after

an initial transient, and approximately independent of

FIG. 9. Temporal evolution of the length scales (a) inside the EIL

and (b) inside the cloud layer: black is vorticity thickness hv, blue is

the penetration depth d, and red is the convection scale z
*
. Line

styles: reference case H11 (solid), case M21 with twice the reversal

strengthD (dashed), and case M12 with twice the reversal interval

xs (dotted–dashed). Light colors correspond to case M11 with half

the Reynolds number Re0 of case H11. Thin straight lines in (a)

correspond to the model of d (t) according to Eq. (15) and Eq. (21).

FIG. 10. Temporal evolution of the vertical (red) and horizontal

(blue) velocity root-mean-square (rms) maxima wrms 5 hw0w0i1/2
and urms 5 hu0u0i1/2, respectively. Values normalized (a) by the

corresponding instantaneous velocity scales w
*
and u

*
and (b) by

the reference scaleswR and uR. Lines indicate the following: solid is

the reference case H11, dashed is case M21 with twice the reversal

strength D, and dotted–dashed is case M12 with twice the reversal

interval xs. Light colors correspond to case M11 with half the Rey-

nolds number Re0 of case H11.
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the buoyancy reversal parameters, xs and D, and the

reference Reynolds number Re0 (approximately in the

sense that variations of 100% in these parameters lead

to variations in normalized velocity rms of 10% or less

beyond ’15tR).

In contrast, shear (instead of free convection) domi-

nates the turbulent EIL sublayer and the shear Reynolds

stress Ruw (instead of the buoyancy flux) becomes the

relevant term for turbulence production inside this

sublayer. Mechanistically, we can argue that the shear

Reynolds stress scales according toRuw;w
*
d (Du/hS), on

the basis that a vertical velocity fluctuation proportional

to w
*
is associated with a horizontal velocity fluctuation

d (Du/hS) caused by the displacement d over a background

shear Du/hS. [The factor ’3/2 discussed in section 4 is of

O(1) and therefore neglected for the estimate of the

parametric dependence pursued here.] Hence, from the

relationRuw; u2* expressing the Reynolds stress in terms

of a velocity scale u
*
, we can expect that

u*5 [w*d(Du/hS)]
1/2 (18)

characterizes the turbulence velocity fluctuations inside

the EIL. This is confirmed by the approximate steady

behavior of urms/u* and the collapse of the curves for the

different cases observed in Figs. 10a and 11a, at least

within the statistical convergence achieved with our

simulations.

We are interested in a parameterization for u
*
, either

directly or, according to Eq. (18), indirectly through

a parameterization of w
*
and d. Appendix A shows that

d can be related to w
*
so that, actually, we only need to

obtain the functional relation w
*
5 Duf(D, xs; t/tR). A

substantial part of the parametric dependence of w
*
on

the buoyancy reversal parameters D and xs is captured

by the buoyancy reversal scale wR 5Du
ffiffiffiffiffiffiffiffi
D/3

p
[Eq. (10)].

This is shownby the ratioswrms/wR of order one in Fig. 10b,

the different curves approximately collapsing on top of

each other, and it is consistent with the physical interpre-

tation of wR provided in section 3. The velocity scale wR

does not include the temporal dependence ofw
*
on t/tR but

it provides the correct order of magnitude of the in-cloud

FIG. 11. Vertical profiles at the final times t2/tR’ 27 of the rms of

the streamwise, spanwise, and vertical velocity components (a)

inside the EIL and normalized by u
*
[Eq. (18)] and (b) inside the

cloud layer and normalized by w
*
[Eq. (17)]. Solid line is the ref-

erence case H11, dashed line is case M21 with twice the reversal

strength D, and dotted–dashed line is case M12 with twice the re-

versal interval xs. Light colors correspond to caseM11 with half the

Reynolds number Re0 of case H11.

FIG. 12. Temporal evolution of the characteristic values of (top

to bottom) the terms in the evolution equation for the turbulence

kinetic energy [Eq. (12)] inside the EIL turbulent sublayer (Fig.

7h). Solid line is the reference case H11, dashed line is case M21

with twice the reversal strength D, and dotted–dashed line is case

M12 with twice the reversal interval xs. Gray color corresponds to

case M11 with half the Reynolds number Re0 of case H11.
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turbulence intensity,which is the purposeof introducingwR

within this context. Concomitantly, an estimate uR for the

velocity rms inside the turbulent EIL sublayer is

uR 5 (wRxcDu)
1/25 [xc(D/3)1/2]1/2Du . (19)

This scale is obtained from Eq. (18) by substituting w
*

bywR and d by xchS—the extent of the background shear

layer that is convectively unstable. Figure 10b supports

this definition, since it again yields ratios urms/uR of order

one that are approximately common to all the cases.

We note again that the reference scales wR and uR do

not retain the nearly linear growth in time of w
*
and u

*
deduced from Fig. 10b, but we introduce them here

because they provide readily the dependence of the

turbulence intensities on the parameters of the problem

both inside the cloud and inside the EIL, which proves

useful in the discussion that follows.

6. Mean entrainment velocity

A parameterization for the mean entrainment veloc-

ity, in our case we/Du 5 f(D, xs; t/tR), is often based on

the analysis of the evolution equation for the mean

buoyancy. Appendix B explains that the two dominant

terms in that equation are the contribution from the

distortion of the mean buoyancy profile and the contri-

bution from the turbulent flux. Statistical convergence is

insufficient to ascertain if these two terms scale with one

another and to obtain a possible dependence on time

of we. Therefore, we try to identify first the parametric

dependence we/Du 5 f(D, xs) based on the relation

weDb ; Bmin. This choice is also justified by the ob-

servation in Fig. 9 that d(t) can be reasonably well ap-

proximated by a linear growth in time.

First, we hypothesize

weDb;Pmax (20)

based on the following observations regarding the evo-

lution equation for the turbulence kinetic energy e,

Eq. (12): (i) Bmin/Pmax and «max/Pmax are approximately

constant and of order one (Figs. 12a,b), (ii) the turbulent

transport term (not shown) is ’10% of Pmax and

therefore negligible to leading order, and (iii) the time

rate of change of e is also negligibly small compared to

Pmax, as inferred from Fig. 12 by adding the buoyancy

flux and the viscous dissipation terms. [It is interesting to

note that the resulting dominant balance P ’ 2B 1 «

and flux Richardson number 2B/P ’ 0.2 coincide with

those found in cloud-free, sheared interfacial layers for

stratification conditions z
*
Db/(Du)2 ’ 122, comparable

to those explored here, despite the different turbulence

forcing mechanism (Strang and Fernando 2001).]

Second, the behavior inside the EIL just described is

also similar to that found in cloud-free, stably stratified

homogeneous turbulence (see, e.g., Chung andMatheou

2012 and references therein), with a turbulence ki-

netic energy proportional to u2* (Figs. 10a and 11a)

and with a background mean shear proportional to

(›hui/›z)max 5 Du/hv ’ Du/hS (Fig. 9). Accordingly,

u2*Du/hS captures a large part of the evolution and para-

metric dependence of Pmax, as seen in Fig. 12c.

As a consequence of the above it follows that a first

estimate for themean entrainment velocity iswe;P0/Db,
as anticipated by Eq. (11), where the reference shear

production rate P0 5 u2R(Du/hS)5 xc

ffiffiffiffiffiffiffi
3D

p
DbDu provides

an estimate of Pmax ; (u
*
/uR)

2P0, on the basis that uR
provides an estimate for u

*
(section 5). This last step

finally yields the parameterization

we ’ c1xc

ffiffiffiffiffiffiffi
3D

p
Du . (21)

Note that the direct dependence on Db drops out of this

relation because it affects the system in two different

ways that compensate each other: On the one hand, it

diminisheswe as the stratification increases; on the other

hand, for a given Du, it also diminishes the inversion

thickness hS such that the shear, and thus the shear

production rate P0 and ultimately the turbulent buoy-

ancy flux, augments in the same amount. However,

Db still influences we indirectly through D—the relative

strength of evaporative cooling defined by Eq. (3).

The coefficients c1 in Eq. (21) for the different cases

(Table 1) are obtained from the corresponding evolu-

tion of d(t)/hS, which is plotted in Fig. 9 (only data be-

yond t/tR ’ 10 has been used in the linear regression

analysis). The variation of ’ 50% in c1 for the case M21

when D is increased by a factor of 2 with respect to the

reference case indicates that the parameterization of the

dependence on D could be improved. Nonetheless, this

uncertainty affects the parametric dependence but not

the magnitude of we, and this level of accuracy and un-

derstanding of the problem is enough to address the

questions stated in the introduction.

The first question to be addressed is how much can the

wind shear enhance themean entrainment velocity caused

by buoyancy reversal. Data from the simulation H11 and

Eq. (21) lead to we ’ 0.82 3 1023Du. Because the de-

pendence on theReynolds numberRe0 has been observed

to be relatively small in all the figures (Reynolds number

similarity), we can apply this relation to the RF01/

DYCOMS II case, where Du 5 3.8m s21, and we obtain

we ’ 3mms21. This result has two important implications:

(i) This value is an order of magnitude larger than that

found in shear-free conditions, where buoyancy

reversal alone can only explain an entrainment
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velocity ’ 0.2mm s21 and an inversion thickness

’ 0.1m (Mellado et al. 2010).

(ii) This value is comparable with the measurements,

in particular, with the velocity 3.8 61mm s21

reported in the RF01/DYCOMS II case (Stevens

et al. 2003b), and, in general, with the interval

225mm s21 measured in that field campaign

(Faloona et al. 2005).

Hence, high enough wind shear can render buoyancy

reversal comparable to other forcing mechanisms op-

erative within the EIL. Additional processes in the real

case will likely modify the observed entrainment rates.

For instance, longwave radiative cooling can increasew
*

and thereby the penetration depth d and the entrain-

ment velocity we. Also, an initial offset between the

centers of the shear and the inversion layers might alter

the mixing process (Carpenter et al. 2007). Another

aspect to consider is the effect of detailed microphysics

on we, like the gravitational settling or the finite evap-

oration rate, although the strong mixing caused by the

wind shear is expected to limit the corresponding re-

duction in we observed in shear-free conditions (de Lozar

and Mellado 2014). Notwithstanding these and possibly

other open questions that still remain to be addressed, the

enhancement of entrainment rate found in this analysis

clearly demonstrates that mean shear can play a key role

in the cloud-top region of the STBL and deserves further

analysis than it has received so far.

7. Discussion

This section discusses further some aspects of the

problem within the context of the STBL and it is or-

ganized around two topics: (i) the relevance of the

strong-shear regime considered in this paper and the

anticipation of a second regime for ratios wrms/Du * 1,

and (ii) the implications of the results for the concept of

the cloud-top entrainment instability.

The extension of the results presented so far to ve-

locity differences larger than those specifically used in

the simulations (Du 5 0.520.6m s21; Table 1) relies on

the property of Reynolds number similarity anticipated

in the introduction and observed in several figures

throughout the paper, where the curves from cases H11

and M11 with a factor-of-2 different Reynolds numbers

collapse approximately on top of each other. This be-

havior is consistent with that documented in other tur-

bulent flows for outer-scale Reynolds numbers beyond

O(104) [e.g., see review by Dimotakis (2000)], since the

characteristic Reynolds numbers achieved in the refer-

ence simulation H11 are w
*
z
*
/n ’ 5.6 3 103 (in-cloud

turbulence) and u
*
hS/n ’ 1.7 3 103 (EIL turbulence).

a. Time scales and regimes

There are three time scales that are relevant for the

description of the evolution of the system: tS, given by

Eq. (8); tR, given by Eq. (9); and hS/we. The proportions

among these time scales are 1: 1/
ffiffiffiffiffiffiffiffi
D/3

p
:[1/(c3xc)]ð1/

ffiffiffiffiffiffiffiffi
D/3

p Þ.
Hence, the typical atmospheric conditions D � 1 and

xc � 1 imply a separation of scales tS � tR � hS/we that

allows us to distinguish different phases of development,

or regimes.

The first time scale provides an estimate, about 10 tS
according to Fig. 3, for how long themean shear requires

to create a background shear layer of thickness hS and

with decaying turbulence inside of it (Fig. 4).

The second time scale provides an estimate, about 10

tR according to Fig. 9 and Fig. 10, for how long buoyancy

reversal needs to establish the regime considered here—

namely, a turbulent convection layer with a turbulence

intensity of the order ofwR, which satisfieswR�Du, and
encroaching into a relatively flat EIL (Fig. 5).

The third time scale hS/we indicates how long that

regime can exist before the background shear layer is

consumed and we start to observe undulations of the

EIL. Such a transition of regimes is often discussed in

terms of an internal Richardson number Ri(I) that

compares the thickness of the background density in-

terfacial layer—the thickness hS of the background

shear layer in the current problem—with a vertical dis-

placement w2
*/Db associated to the turbulence kinetic

energy at one side of that density interfacial layer—here,

the turbulence kinetic energy inside the cloud layer (see

Fernando and Hunt 1997 and references therein). When

Ri(I)is large enough, the EIL remains flat and is suffi-

ciently thick to support gravity waves inside of it. When

Ri(I) is small enough, undulations with an amplitude

larger than hS form, and the EIL is no longer flat but

convoluted. In the cases analyzed here, Ri(I) is com-

mensurate with (w
*
/Du)22, according to its definition

Ri(I) 5 hSDb/w2
* and Eq. (6). Hence, Ri(I) is initially

large because w
*
/Du � 1 but it keeps decreasing as the

in-cloud turbulence intensity increases, and eventually

we will enter into the aforementioned second regime.

This second regime, as well as the transition into it when

w
*
becomes comparable toDu, is as interesting as the first

regime considered in this paper, but more difficult to

access numerically, and so it is deferred to future work.

Particularized to the reference case RF01/DYCOMS II,

the increments Du5 3.8ms21 and Db ’ 0.25ms22 imply

a background shear layer forming in about 1–2min

(10tS ’ 50 s). We have tR ’ 49 s, so that in 5–10min we

would obtain a turbulent layer advancing into that back-

ground shear layer and establishing the EIL structure

sketched in Fig. 8 and illustrated in Fig. 5. This
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encroachment process would last for about hS/we ’ 1–

2 h before all the remnant of the background shear layer

inside the upper part of the EIL is consumed. Since these

three time scales are relatively well separated, it is rea-

sonable that mean-shear effects as discussed in this paper

reproduce or explain part of the observations.

For instance, regarding the vertical structure, the

predicted depth is hS’ 20m, which is comparable to the

interval 20–80m reported by Faloona et al. (2005). Also,

the relatively moist and cold smooth transition from the

cloud-top boundary to the free troposphere aloft seen in

Figs. 5 and 7, with a relatively sharp inversion base and

a less marked upper boundary, agrees well with STBL

data (Caughey et al. 1982; Moeng et al. 2005; Haman

et al. 2007; Kurowski et al. 2009; Wood 2012). Equally,

we can identify the turbulent EIL sublayer with the

turbulent inversion (sub)layer reported sometimes in

field measurements (Katzwinkel et al. 2012; Malinowski

et al. 2013). Regarding the turbulence intensities, our

analysis indicates that buoyancy reversal leads to wrms 5
0.2m s21 inside the cloud after ’20min. Although this

velocity rms starts to be comparable with the in-cloud

values ’0.6m s21 reported in Stevens et al. (2003b), it

is still smaller by a factor of 3, which indicates that

other turbulence sources not retained here, like radi-

ative cooling, are still dominant. This argument also

helps to explain that hS lies in the lower end of the

measurement interval of EIL thicknesses, since more

intense turbulence would promote additional mixing

and thus a thicker EIL. In contrast, the entrainment

velocity ’3mm s21 found in our analysis is already

comparable to those inferred from the measurements,

of the order of 2–5mm s21 (Stevens et al. 2003b;

Faloona et al. 2005). This contrast suggests that shear

effects can remain very localized at the EIL without

affecting the in-cloud turbulence as much as they af-

fect the EIL properties, at least when considered in its

interaction with buoyancy reversal.

Last, it is noted that buoyancy reversal conditions,

D. 0, and not only evaporative cooling conditions2xs,
D are necessary for turbulence generation and there-

fore a nonzero entrainment velocity, at least in the ab-

sence of radiative cooling. In other words, Eq. (21) has

to be substituted by we 5 0 forD, 0. The reason is that

the conditionD# 0 leads merely to a self-limiting stably

stratified EIL where turbulence is not maintained (sec-

tion 3). This limitation of evaporative cooling effects,

however, might be different when other mechanisms of

turbulence generation, like radiative cooling, are present.

b. Cloud-top entrainment instability

As briefly reviewed during the introduction, the buoy-

ancy reversal condition D . 0 (or a similar inequality

involving just thermodynamic properties) has been

found in recent work to be obviously necessary but not

sufficient for a cloud breakup to occur: Buoyancy

reversal alone is diffusion limited and too weak, and

the corresponding mixing rate is one order of magni-

tude smaller than what is observed in measurements

(Mellado 2010).

In combination with the local wind shear at the EIL,

we have demonstrated in this paper that evaporative

cooling might become as strong as other processes and

therefore might play a nonnegligible role in cloud des-

iccation and in the transition from the stratocumulus

regime to the shallow-cumulus regime. However,

(i) We still do not observe a runaway instability in the

sense of a divergence of some statistical measure in

a finite time. The entrainment velocity we is rela-

tively large but remains approximately constant in

the regime w
*
� Du studied in this paper.

(ii) The parameterization (21) shows that we depends

crucially on the velocity difference Du and not only

on the presence of buoyancy reversal conditions,

D. 0. Themeanwind shear always acts as a catalyst

of turbulence driven by buoyancy reversal, but

a relatively largeDu is necessary to generate thereby
turbulence intensities and entrainment velocities

comparable to those caused by radiative cooling.

In particular, the shear associated with the convec-

tive motions inside of the STBL, with typical values

Du ’ 1m s21, is insufficient to explain the observed

levels of in-cloud turbulence by means of buoyancy

reversal effects solely. For instance, for the RF01/

DYCOMS II case, such velocity differences would

imply we ’ 0.8mms21, which is more than a factor

of 4 smaller than the measurements.

(iii) The reduction of Db for stratocumulus in the

tropical regions as the cloud deck is advected into

a warmer ocean surface, assuming a constant Du,
tends to increase the thickness of the inversion as

hS } (Db)21 and hence to dilute the cloud top: This

dilution occurs even without buoyancy reversal.

(Although, at the same time, the corresponding

time scales increase proportionally and it might

then be that mean-shear effects become simply too

slow and other forcing mechanism dominate the

transition toward the shallow-cumulus regime.)

8. Conclusions

The interaction between buoyancy reversal and

a mean vertical shear localized at the entrainment in-

terfacial layer of the STBL has been investigated by

means of direct numerical simulations. The physical
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model, the cloud-top mixing layer, retains the effect of

the buoyancy and velocity increments across the in-

version, Db and Du, and the effect of the buoyancy re-

versal parameters, D and xs. Dimensional analysis

allows us to reduce the problem to just the last two pa-

rameters, once the Reynolds number drops out of the

analysis on the basis of the observed Reynolds number

similarity (the Prandtl number is set to one).

The EIL structure is determined first by the balance

between themean shear and themean stratification. The

resulting background shear layer with decaying turbu-

lence has been documented extensively in the past for

similar cloud-free configurations based on laboratory

work and numerical simulations, and provides the ref-

erence thickness hS 5 (1/3)(Du)2/Db. We have argued

that it forms relatively fast, in a time scale’10Du/Db, so
that hS consistently predicts the lower bound of the EIL

thickness measured in the STBL under shear conditions.

Other processes modify this background shear layer and

we have considered in this paper the effect of buoyancy

reversal.

In the regime of strong shear considered in this paper

(i.e., the case in whichDu is larger than the characteristic
velocity fluctuation of the in-cloud turbulence), the EIL

remains flat, with a thickness comparable to hS, and the

EIL can be split into two sublayers. The upper, quasi-

laminar EIL sublayer is a relatively moist and cold re-

gion that provides a smooth transition between the

cloud-top and the free troposphere, which is in agree-

ment with available STBL data. In contrast, the lower,

turbulent EIL sublayer is characterized by strong me-

chanical mixing. All of the shear production concen-

trates in this relatively thin turbulent EIL sublayer

and the mean shear inside the cloud core remains neg-

ligibly small.

We find that the combination of a relatively strong

shear with buoyancy reversal can lead to entrainment

rates comparable to those believed to be caused by

other sources of convective instability—for instance,

cloud-top radiative cooling. We have provided the

following parameterizations to assess the occurrence

of this situation: The velocity rms is well character-

ized by wR 5
ffiffiffiffiffiffiffiffi
D/3

p
Du inside the cloud layer and by

uR 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc(D/3)1/2

q
Du inside the turbulent EIL sublayer,

where xc 5 (xs 1 D)/(1 1 D) bounds the interval of

mixtures that are negatively buoyant. Both velocity

scales are related by the observed encroachment of

the turbulence into the upper EIL sublayer as the in-

cloud turbulence intensifies. The point of maximum

shear production is used to track this encroachment

and the associated mean entrainment velocity is well

parameterized by we ’ 0:02xc

ffiffiffiffiffiffiffi
3D

p
Du. The time scales

that define the establishment and duration of the

regime of strong shear considered in this paper are

10tR and hS/we ’ [1/(0.03xc)]tR, respectively, where

tR 5 ð1/ ffiffiffiffiffiffiffi
3D

p ÞDu/Db. For typical atmospheric condi-

tions, 10tR � hS/we—a scale separation that supports

the relevance of this regime and thus the appropri-

ateness of the current study.

The mixing rate, as measured by we, remains finite

(approximately constant in the regime considered in this

work) and there is no indication of a runaway instability

leading to a rapid desiccation of the cloud. Further work

on the second regime, in which the in-cloud velocity rms

becomes comparable to Du and the EIL develops un-

dulations instead of being relatively flat, could be helpful

to further assess the possible existence of a cloud-top

entrainment instability. Note, however, that this process

depends crucially on the interaction of evaporative cool-

ing with other mechanisms and not only on the necessary

condition D . 0 (or equivalent), as proved in this paper.

Based on these results and the corresponding analysis

presented throughout the paper, we believe that pro-

cesses controlling the mean shear at the inversion are

likely critical to the dynamics of the stratocumulus-

topped boundary layer, and merit more attention than

they have received in the literature to date.
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APPENDIX A

Penetration Depth

The length scale d defined by Eq. (14) constitutes a

penetration depth or buoyancy length scale as intro-

duced before in the literature for similar configurations.

Given a vertical velocity w0, the vertical displacement

associated with it inside a linearly stratified region is

proportional to w0/N, where N is the buoyancy fre-

quency of the stratified background (e.g., Smyth and

Moum 2000, Chung and Matheou 2012, and references

therein). Identifyingw0 andN2 in this model withw
*
and

Db/hS in our problem leads to

d/hS 5 xc1 c21 c3w*/Du , (A1)

where the convection velocity w
*
[Eq. (17)] provides

an estimate of the intensity of in-cloud turbulence

(section 5). This linear relation is strongly supported by

Fig. A1. The slopes for the different cases are summa-

rized in Table 1, the mean value being c3 ’ 6 (only data

beyond w
*
/Du ’ 0.02 has been used in the linear re-

gression). The observed dependence of c3 on D and xs,

which leads to a variation of about 25% with respect to

the reference case H11, is not clear, although we might

argue that it is small considering that those two control

parameters change by a factor of 2 in cases M21 and

M12, respectively, with respect to H11. [The first term in

the right-hand side of Eq. (A1) takes into account the

fact that the lower part of the background inversion, of

size commensurate with xchS, is convectively unstable

and falls down independently of having a mechanical

forcing (here represented by w
*
) or not.]

This result, though not needed for the derivation of an

estimate of the mean entrainment velocity, is important

for several reasons. First, the relation d } w
*
(hS/Du)

implied by Eq. (A1), along with Eq. (18), leads to u
*
}w

*
and thereby a series of consistency results: (i) Eq. (18) can

be written as u
*
} d (Du/hS)—a result typical of homo-

geneous shear turbulence if d is interpreted as the local

integral scale andDu/hS as themean shear. [However, the

scaling u
*
’ d (Du/hS) alone fails to capture the observed

dependence of wrms,max/urms,max on xs andD, which is the

motivation for the somewhat more elaborated definition

(18).] (ii) The penetration length d is proportional to the

corresponding Ozmidov scale [«/(Db/hS)
3/2]1/2, which in

general characterizes the maximum size of the turbulent

motions that are allowed by a strong enough stratification

(e.g., Smyth and Moum 2000, Chung and Matheou 2012,

and references therein).

Second, Eq. (A1) shows that themeasurement of the in-

cloud turbulence intensity or w
*
would be enough to infer

a large amount of information about the system (cf. Fig. 8),

even we 5 dd/dt if the time rate of change dw
*
/dt can be

measured. This relation implies that the entrainment ve-

locity is characterized by w
*
, to leading order, and the

buoyancy reversal enters only indirectly through w
*
or as

second-order deviations (the small dependence of c3 onD

and xs indicated before). It would be interesting to see in

futurework if, consistently, a relation similar toEq. (A1) is

found when longwave radiative cooling determines most

of the in-cloud turbulence intensity w
*
.

APPENDIX B

Mean Entrainment Velocity

The mean entrainment velocity we [ dzi/dt is often

written as the sum of a turbulent and nonturbulent

contribution (Stevens 2002; Wood 2012)

we 5we,t 1we,n . (B1)

Integrating vertically the transport equation for themean

buoyancy deviation Db2 hbi from zi upward provides an

expression for each of those contributions:

we,t [2
hb0w0i[zi(t), t]

Db2 hbi[zi(t), t]

we,n[
1

Db2 hbi[zi(t), t]

�
k
›hbi
›z

[zi(t), t]

2
d

dt

" ð‘
z
i
(t)
(Db2 hbi) dz

#
2

ð‘
z
i
(t)
hSi dz

)
. (B2)

A similar equation can be written based on the conserved

scalar x, in which case the contribution from the source

term S52kj$xj2d2be/d2x2 does not appear. The choice

of one scalar variable or the other, aswell as the point zi(t)

used as reference, is, to certain extent, arbitrary. For

instance, it might be chosen based on some feature of

a relevant physical property, like the mean position of the

cloud boundary (a sharp variation of the condensatemass

fraction) or the mean position of the turbulence interface

(a sharp variation of the enstrophy); it might also be

chosen so that the terms in the equation above are easiest

tomeasure, or it might be chosen such that as many terms

as possible in the equation above are negligible.However,

once we have agreed upon it, the relations above hold and
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the derivation that follows should reflect that choice

consistently.

The particular choice of zi used in this paper, Eq. (13),

is motivated, first, by the relevance of the shear pro-

duction term in the dynamics of the EIL (section 4), and,

second, by the clear signature of the shear production

term inside the EIL and the concurrence of the maxima

of the production rate, the viscous dissipation rate and

the horizontal velocity rms, and the minimum turbulent

buoyancy flux (Figs. 7h and 11).

Analysis of the data from case H11 shows that all of the

contributions towe in the equation above are positive and

their magnitudes, compared to that of the turbulent flux,

are as follows: (i) the relative contribution from the source

term is’0.3, slightly decreasing in time (only’10% of all

the evaporative cooling
Ð hSi dz occurs above zi); (ii) the

relative contribution from the molecular term is 0.35, also

decreasing in time; (iii) the relative contribution from the

distortion or shape term is’(1–1.5), which is the largest of

the three terms but comparable to the turbulent flux for

the turbulence regime considered in this work (cf. section

7). The buoyancy difference in the denominator is ’0.8,

slightly decreasing. Hence, we can estimate we } Bmin/

Db to leading order, as used in section 6.
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