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Abstract

The North Atlantic meridional overturning circulation (AMOC) and the associated

meridional heat transport (MHT) play a fundamental role in the North Atlantic

climate variability on multi-decadal time scales and are therefore of high interest

for potential climate predictions. While several potential predictability studies exist

for the AMOC at individual latitudes, the potential predictability remains mostly

unstudied for the MHT. In this thesis, I analyze both the potential predictability of

the AMOC and of the MHT, with a dedicated focus on their latitude-dependence

and their interrelation.

To analyze the potential predictability on inter-annual to decadal times scales,

I generate retrospective model simulations (hindcast ensembles) based on an oceanic

state estimate (GECCO). I use two potential predictability measures (prognostic po-

tential predictability and anomaly correlation) to assess the potential predictability

structures for the North Atlantic. I initially analyze the potential predictability

structures of the MHT and the AMOC separately, and then jointly.

For the MHT, I find a latitude-dependent potential predictability structure that

indicates a clear separation between the subpolar and the subtropical regime. De-

composing the MHT shows that the gyre component controls the subpolar potential

predictability structure of the MHT, while the overturning component controls the

subtropical potential predictability structure of the MHT.

For the AMOC, I find a latitude-dependent potential predictability structure that

is dynamically based on the potential predictability structure of the AMOC’s geo-

strophic part. The geostrophic part is estimated by removing the wind-driven Ek-

man transport and by using the thermal wind relation based on the zonal density

gradients. A detailed analysis of the density gradient variability indicates the dom-

inant role of the western boundary for the potential predictability of the AMOC.

The joint analysis of the AMOC and the MHT shows that only the potential pre-

dictability of their geostrophic parts are related. The separate analyses of the MHT

and the AMOC already suggest that the potential predictability structures of the

MHT’s overturning component and the AMOC are comparable at subtropical lati-

tudes. But the missing link can only be found if one relates the potential predictabil-

ity structure of the thermal wind transport to the MHT’s overturning component

from which the Ekman heat transport has been removed.

The results from this study emphasize that the potential predictability of the MHT

and the AMOC can neither be interchanged with each other nor be generalized from

one latitude to the entire North Atlantic.





Zusammenfassung

Die nordatlantische meridionale Umwälzzirkulation (AMOC) und der assoziierte

meridionale Wärmetransport (MHT) spielen eine fundamentale Rolle in der multi-

dekadischen Klimavariabilität des Nordatlantiks und sind deshalb von großem Inte-

resse für potentielle Klimavorhersagen. Die potentielle Vorhersagbarkeit der AMOC

wurde bereits in mehreren Studien untersucht, während die potentielle Vorhersag-

barkeit des MHT weitestgehend unbeachtet blieb. In dieser Doktorarbeit unter-

suche ich hingegen die potentielle Vorhersagbarkeit beider Größen, wobei ich mich

besonders auf die Breitenabhängigkeit und das Verhältnis beider Größen zueinander

konzentriere.

Um die potentielle Vorhersagbarkeit auf einer Zeitskala von mehreren Jahren bis

Dekaden zu untersuchen, generiere ich retrospektive Modellsimulationen (Ensem-

bles), die auf einer Zustandsschätzung des Ozeans (GECCO) basieren. Für die

Berechnung der potentiellen Vorhersagbarkeitsmuster für den Nordatlantik verwende

ich zwei Metriken, die “anomaly correlation” und die “prognostic potential pre-

dictability”. Die potentiellen Vorhersagbarkeitsmuster des MHT und der AMOC

werden zunächst einzeln und danach in Verbindung analysiert.

Das Muster der potentiellen Vorhersagbarkeit des MHT weist auf eine klare Tren-

nung zwischen dem subpolaren und dem subtropischen Regime hin. Die Dekompo-

sition des MHT zeigt, dass die Wirbelkomponente des MHT das Vorhersagbarkeits-

muster des MHT in subpolaren Breiten maßgeblich beeinflusst, während die Umwälz-

komponente des MHT das Vorhersagbarkeitsmuster des MHT in subtropischen Brei-

ten maßgeblich beeinflusst.

Die dynamische Grundlage des potentiellen Vorhersagbarkeitsmusters der AMOC

bildet das Vorhersagbarkeitsmuster des geostrophischen Anteils der AMOC. Hier-

für bestimme ich den geostrophischen Anteil der AMOC durch die Subtraktion

des windgetriebenen Ekman Transports von der AMOC und durch die Berechnung

des Transports aus der thermischen Windgleichung und den zonalen Dichtegradien-

ten. Eine genauere Analyse der Variabilität der Dichtegradienten verdeutlicht die

wichtige Rolle der westlichen Randdichten für die potentielle Vorhersagbarkeit der

AMOC.

Die gemeinsame Analyse des MHT und der AMOC zeigt, dass nur die potentielle

Vorhersagbarkeit der geostrophischen Anteile des MHT und der AMOC in direk-

ter Verbindung zueinander stehen. Die Einzelanalysen legen bereits nahe, dass die

potentiellen Vorhersagbarkeitsmuster der Umwälzkomponente des MHT und der

AMOC in den subtropischen Breiten vergleichbare Strukturen aufweisen. Das noch



fehlende Verbindungsstück zwischen der potentiellen Vorhersagbarkeit des MHT

und der AMOC wird jedoch erst deutlich, wenn man den Transport aus der ther-

mischen Windgleichung der Umwälzkomponente des MHT abzüglich des Ekman

Wärmetransports gegenüberstellt.

Die Ergebnisse dieser Doktorarbeit zeigen, dass die potentielle Vorhersagbarkeit des

MHT und der AMOC weder untereinander austauschbar sind, noch von deren Ana-

lyse an einem einzelnen Breitengrad auf die Vorhersagbarkeit der gesamten Nord-

atlantikregion geschlossen werden kann.
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1. INTRODUCTION

1.1 Motivation

The oceans play an important role in predicting the climate on inter-annual to

multi-decadal time scales, because of their large thermal and mechanical inertia re-

sulting from the relatively high heat capacity and from the long time constants of the

sub-surface and deep circulation (GARP, 1975). Variations in the Atlantic merid-

ional overturning circulation (AMOC) and the associated meridional heat transport

(MHT) are influenced by a combination of anthropogenic, natural, and internal forc-

ings (Meehl et al., 2009). Multi-decadal variations of both quantities were shown to

affect the North American and European climate (e.g., Sutton and Hudson, 2005;

Pohlmann et al., 2006). The potential ability to predict the AMOC and the MHT

on inter-annual to decadal time scales could therefore be of considerable benefit to

policymakers and society. Additionally, understanding the oceanic predictability as-

sociated with physical processes that have long time scales or a periodic behavior

could lead to an improved understanding of the entire climate system (Collins et al.,

2006).

Several studies provide estimations of the AMOC’s predictability at a single, mostly

subtropical latitude in the North Atlantic (Keenlyside et al., 2008). For the MHT, to

my knowledge, no published estimate of predictability exists, although or (probably)

rather because the variability of the AMOC and the MHT are thought to be closely

linked. While the AMOC is dominantly driven by wind stress and density gradi-

ents, the MHT is additionally driven by the air-sea fluxes that set the temperature

distribution. Thus changes in MHT across different climates and different latitudes

cannot exclusively be explained in terms of changes in the AMOC (cp. Ferrari and

Ferreira, 2011). In my thesis, I therefore analyze the inter-annual to decadal pre-

dictability of the MHT and the AMOC and their relation with a particular focus on

their latitude-dependence.
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1.2 Predictability analyses

Actual predictions (forecasts) of climate relevant quantities on inter-annual to multi-

decadal time scales are subjected to high uncertainty, due to the lack of observational

data to fully initialize the forecasts and also due to the imperfectness of models. Be-

fore predictions on these times scales become useful to society at some time in the

future, they will be highly experimental in the near future (Mehta et al., 2011).

Retrospective predictability experiments are designed to improve the understanding

of the behavior of individual climate relevant quantities or the interrelation between

them under different experimental influences (e.g., changing initial or boundary con-

ditions (future climate scenarios), or changing model formulations). Since these are

experiments that can at best provide a certain kind of degree to which an actual

prediction can be made, the term predictability needs to be clearly distinguished

from the term prediction. To design a predictability experiment that resembles a

realistic forecast scenario, considers the importance of the initial climate state, and

provides adequate reference data, is a challenging task.

Predictability in the climate system is thought to arise in two distinct ways (Lorenz,

1975; Fig. 1.1): On the one hand, predictability can be determined by the errors de-

riving from poorly known initial conditions which amplify and spoil the simulations

at some lead time (initial value problem). On the other hand, predictability can be

determined by assessing a change in climate due to predictable changes in the ex-

ternal forcing (boundary value problem). Therefore, depending on the investigated

time scales, the choice of initial and boundary conditions play a fundamental role in

climate predictability studies.

Concerning the initial value problem, Latif et al. (2004) concluded, that the pre-

dictability, however, depends on the availability of the initial state. Collins et al.

(2006) stated, that in any “real” world prediction system an estimate of the three-

dimensional ocean state would have to be made using data assimilation. Nowadays,

data assimilation products provide the most reliable estimates of the oceanic state by

combining all available ocean data in a dynamical consistent way with a numerical

model. Regardless of the initialization technique, several studies indicate that the

predictive skill of an initialized system improves over predictions without knowledge

of the ocean state (e.g., Troccoli and Palmer, 2007; Smith et al., 2007; Keenlyside

et al., 2008; Pohlmann et al., 2009; Zhang, 2011; Matei et al., 2012b; Robson et al.,

2012).
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Centennial 
predictability

Boundary value problem

Methods to estimate predictability:

● Diagnostic approach: decomposing the variance into a long time scale potentially 
predictable component and an unpredictable noise component

● Prognostic approach: performing ensemble experiments and pertubing the initial 
conditions (and/or boundary conditions)

● Ocean dynamics approach: in- and excluding active ocean dynamics to detect its 

importance in generating variability 

Seasonal to inter-annual 
predictability

Initial value problem

Boundary + initial value problem

Decadal 
predictability

Fig. 1.1: Overview of the initial and boundary value problem in seasonal to

multi-decadal predictability studies (adapted from T. Palmer (see for example

http://www.wcc3.org/wcc3docs/pdf/PS3 palmer.pdf)), and methods used to study the problem.

Orange color indicates where the present study can be located.

Generally, the approaches to estimate the predictability of a quantity on time scales

ranging from a few seasons to a few centuries can be classified into three cate-

gories (Latif et al., 2006b; Fig. 1.1): The diagnostic approach, the ocean dynamics

approach, and the prognostic approach. (i) In the diagnostic approach, the pre-

dictability is analyzed by decomposing the variance of a climate variable into a long

time scale potentially predictable component and an unpredictable noise component

(e.g., Pohlmann et al., 2004). (ii) In the ocean dynamics approach, the variability

simulated with and without the inclusion of active ocean dynamics is analyzed to

detect the regions where ocean dynamics are important in generating the variability

(e.g., Park and Latif, 2004). (iii) The prognostic approach, consists of perform-

ing ensemble experiments and perturbing the initial or boundary conditions (e.g.,

Griffies and Bryan, 1997).

The prognostic predictability approach is also known as potential predictability ap-

proach, and it usually refers to ensemble experiments with perturbed initial condi-

tions only. Thus, in a strict sense, potential predictability is defined as predictability

assuming that the model being used is perfect and that the only source of error arises

from uncertainties in the initial conditions (perfect model approach). In the present

study, the term potential predictability is defined in a broader sense and refers to
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all kinds of predictability experiments that are verified against model simulations

instead of observational data. Since oceanic observations are sparse in time and

space, the validation against model simulations plays a special role when analyzing

integrated quantities, such as the AMOC or the MHT, or quantities across several

latitudes.

For the AMOC, several idealized predictability studies (e.g., Griffies and Bryan,

1997; Collins and Sinha, 2003; Pohlmann et al., 2004; Collins et al., 2006; Herman-

son and Sutton, 2009; Msadek et al., 2010) and initialized predictability studies (e.g.,

Keenlyside et al., 2008; Pohlmann et al., 2009; Matei et al., 2012a; Kröger et al.,

2012; Pohlmann et al., 2013) exist. The research interests range from the analysis of

the interrelation of the AMOC with future climate scenarios (e.g., Keenlyside et al.,

2008) to the assessment of actual predictive skill (Matei et al., 2012a), but no study

with a dedicated focus on understanding the latitude-dependence of the AMOC’s

predictability exists. Except for the recent study of Kröger et al. (2012), who fo-

cused on the latitude-dependent impact of different data assimilation products on

the decadal predictability, all studies investigated the predictability of the AMOC

at a single latitude.

In addition to the variety of predictability approaches (e.g., diagnostic, prognostic,

dynamic), the choice between an initialized or idealized experimental setup, and the

considerable diversity of models (coupled or ocean-only), there is a variety of metrics

to quantify predictability. Depending on the research question and the experimental

setup, the quantification of the time period over which a certain quantity is poten-

tially predictable (predictable lead time) is usually based on one or more of the

following measures: The prognostic potential predictability (PPP; e.g., Collins and

Allen, 2002; Msadek et al., 2010) indicating predictability by the relation of the en-

semble spread and the variance of the reference simulation, the anomaly correlation

(AC; e.g., Collins, 2002; Pohlmann et al., 2009) indicating predictability by the cor-

relation of the ensemble mean to the reference simulation, or the root mean squared

error (RMSE; e.g., Collins, 2002; Collins and Sinha, 2003) indicating predictability

by the deviations of the hindcast simulation from the reference simulation. In most

predictability studies one predictability metric is used, but also the usage of three

metrics in one study can be found (e.g., Collins, 2002).
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Fig. 1.2: Predictable lead times of the upper ocean heat content (0-∼700m). The color scale ranges

from dark blue, indicating a predictable lead time of 1 year, to red, indicating a minimum predictable

lead time of 10 years. The predictable lead times are calculated based on the PPP metric and are

significant at the 90% level.

1.3 Objectives of the Thesis

To analyze the latitude-dependent relation between the MHT’s and AMOC’s poten-

tial predictability on a multi-year time scale, I use a prognostic predictability ap-

proach. Retrospective ensembles (hindcasts) are generated in an ocean-only model

by varying the initial and boundary conditions. The initial and boundary conditions

are taken from a data assimilation product (GECCO1) which also serves as the ref-

erence run. Additionally, all simulations (reference run and hindcasts) and all data

used to initialize and force these simulations were generated within the same data

assimilation framework. While this limits the analysis to the “GECCO world”, it

also provides a self-consistent framework for the analysis. The predictable lead times

are primarily quantified with the variance based PPP metric and later compared to

the correlation based results of the AC metric.

As a first step, I present a global map indicating the predictable lead times of the

upper ocean heat content (OHC) within my experimental setup (Fig. 1.2). Large

regions in the North Atlantic Ocean and the Southern Ocean exceed predictable

1 German partner of the consortium for Estimating the Circulation and Climate of the Ocean;

Köhl and Stammer, 2008
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lead times of 5 years, whereas other parts of the oceans show largely 1-2 years of

predictable lead times or no significant potential predictability. These results are

similar to previous studies of the OHC and the SST, particularly indicating the

North Atlantic as a region where predictability may exist at inter-annual to multi-

decadal time scales (e.g., Pohlmann et al., 2004; Matei et al., 2012b). For now,

the main purpose of presenting a map of OHC predictability here, is to illustrate

the global differences of the predictable lead times and in particular the differences

between the subtropical and subpolar latitudes in the North Atlantic. These spatial

differences in the OHC potential predictability give rise to the question of the dy-

namical origins and calls for a latitude-dependent potential predictability analyses

of the meridional transports of mass and heat.

More specifically, I investigate three questions:

• Is the MHT potentially predictable? And if so, is the potential predictability

of the MHT latitude-dependent?

• Can the current understanding of the latitude-dependent potential predictabil-

ity of the AMOC be improved by removing the wind-driven variability and

focusing on the latitude-dependence of the geostrophic part?

• And, as a consecutive question to the preceding ones: How is the potential pre-

dictability of the MHT related to the potential predictability of the AMOC?

1.4 Outline of the Thesis

This thesis is in its core a composite of one journal publication (chapter 2) and two

chapters in preparation for submission to a journal (chapters 3 and 5). Two further

chapters contain additional methodological background (chapter 4) and preliminary

results as a starting point for future work (chapter 6). Particularly for chapters 2, 3

and 5, this structure implies some recurrences as each chapter has its own abstract,

introduction and conclusion. The thesis is structured as follows:

Chapter 2 focuses on the latitude-dependent potential predictability of the MHT

quantified with the PPP metric. The analysis of the potential predictability of the

MHT’s overturning and gyre component as well as the influence of the temperature
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and velocity field allows us to draw fundamental conclusions on the differences be-

tween the subpolar and subtropical latitudes in regard to potential predictability.

This chapter has been published in Journal of Climate2.

Chapter 3 focuses on the latitude-dependent potential predictability of the AMOC

quantified with the PPP metric. The role of the geostrophic transport variability in

the potential predictability of the AMOC is analyzed by comparing the PPP of the

thermal wind transport calculated from boundary densities to the AMOC minus the

Ekman transport. In order to identify the origins of the latitude-dependent potential

predictability structure of the thermal wind transport, experiments are conducted

to restrict the density variability to the eastern or western boundary. This chapter

is in preparation for submission to Climate Dynamics3.

Chapter 4 introduces the anomaly correlation as a second potential predictability

measure. The potential predictability quantified with AC is tested for all quantities

investigated in chapter 2, forming the starting point for the subsequent joint analysis

of the AC and PPP in chapter 5.

Chapter 5 is a synthesis and extension of the results from the previous chapters

with a dedicated focus on the relation between the AMOC and the MHT, using

both the PPP and the AC as measures of potential predictability. This chapter is

in preparation for submission to Geophysical Research Letters4.

In chapter 6, I present preliminary results on the influence of the North Atlantic Os-

cillation (NAO) on the potential predictability of the MHT and the AMOC. Since

the present ensemble setup is not ideally suited to analyze the influence of the NAO

reasonably, I also suggest alternative setups for future work.

In chapter 7 overall conclusions are presented.

2 Tiedje, B., Köhl, A., Baehr, J. (2012). Potential predictability of the North Atlantic heat

transport based on an oceanic state estimate. Journal of Climate, 25(24): 8475-8486.
3 Tiedje, B., Köhl, A., Baehr, J. (2012). North Atlantic thermal wind variability and its effects

on potential predictability, in preparation.
4 Tiedje, B., Köhl, A., Baehr, J. (2012). On the relation of the potential predictability of the

AMOC and the MHT, in preparation.





2. POTENTIAL PREDICTABILITY OF THE

NORTH ATLANTIC HEAT TRANSPORT

BASED ON AN OCEANIC STATE

ESTIMATE1

Abstract

This paper investigates the potential predictability of the meridional heat transport

(MHT) in the North Atlantic on interannual time scales using hindcast ensembles

based on an oceanic data assimilation product. The work analyzes the prognostic

potential predictability (PPP), using the ocean synthesis of the German partner of

the consortium for Estimating the Circulation and Climate of the Ocean (GECCO)

as initial conditions and as boundary conditions. The PPP of the MHT varies with

latitude: local maxima are apparent within the subpolar and the subtropical gyres,

and a minimum is apparent at the boundary between the gyres. This PPP mini-

mum can also be seen in the PPP structure of the Atlantic meridional overturning

circulation (AMOC), although it is considerably less pronounced. The decomposi-

tion of the MHT shows that within the subpolar gyre, the gyre component of the

MHT influences the PPP structure of the MHT. Within the subtropical gyre, the

overturning component of the MHT characterizes the PPP structure of the MHT.

At the boundary between the subpolar and the subtropical gyre, the dynamics of

the Ekman heat transport limit the predictable lead times of the MHT. At most

latitudes, variations in the velocity field control the PPP structure of the MHT.

The PPP structure of the AMOC can also be classified into gyre and gyre boundary

regimes, but the predictable lead times within the gyres are only similar to those of

the overturning component of the MHT. Overall, the analysis provides a reference

point for the latitude dependence of the MHT’s PPP structure, and relates it to the

latitude dependence of the AMOC’s PPP structure.

1 Tiedje, B., Köhl, A., Baehr, J. (2012). Potential predictability of the North Atlantic heat

transport based on an oceanic state estimate. Journal of Climate, 25(24): 8475-8486.
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2.1 Introduction

The transport of heat through the oceanic circulation has a profound influence on

latitudinal variations in climate, since the ocean contributes to the time-mean merid-

ional heat transport at approximately the same order of magnitude as the atmo-

sphere (von der Haar and Oort, 1973). Fluctuations of the oceanic component of

the meridional heat transport (MHT) originate from processes that are internal to

the ocean, or in response to atmospheric fluctuations (Dong and Sutton, 2002). On

short time scales, the variability of the MHT is dominated by Ekman processes. On

interannual time scales, variability of the MHT arises primarily from the variability

in the ocean circulation over most latitudes (Jayne and Marotzke, 2001; Dong and

Sutton, 2002). More specifically, the variability of the velocity field acting on the

time-mean temperature field is predominantly responsible for the MHT variability.

The variability of the temperature field, i.e. temperature fluctuations advected by

the time-mean velocity field, play a lesser role in the MHT variability. Jayne and

Marotzke (2001) and Dong and Sutton (2002) both find that the influence of tem-

perature variations increases at higher latitudes (i.e. the subpolar gyre), whereas

Dong and Sutton (2002) also specify that the temperature variations particularly

affect the decadal variability of the MHT at these latitudes.

At mid-latitudes, most of the MHT in the Atlantic is conducted through the Atlantic

meridional overturning circulation (AMOC; Hall and Bryden, 1982), and repeated

studies have shown that the fluctuations within both quantities are coherent (e.g.,

Pohlmann et al., 2006). Bingham et al. (2007) and Lozier et al. (2010) suggest that

changes in the AMOC variability are latitude specific. At subpolar latitudes (north

of 40◦N), the AMOC variability has a strong decadal component, whereas at sub-

tropical latitudes (south of 40◦N), it is dominated by higher frequencies (Bingham

et al., 2007). AMOC fluctuations on longer time scales than a decade are thought

to be influenced by the North Atlantic Oscillation (NAO; e.g., Dong and Sutton,

2002; Eden and Willebrand, 2001).

The AMOC’s latitude dependent variability is also thought to have an impact on its

predictability at a specific latitude. AMOC predictability has mostly been studied

in a perfect model framework (without direct comparison to observations) resulting

in an estimate of potential predictability. The potential predictability of the AMOC

has been analyzed at several individual latitudes (e.g., Collins and Sinha, 2003;

Collins et al., 2006; Hermanson and Sutton, 2009; Pohlmann et al., 2009; Msadek

et al., 2010), and recently also over a range of latitudes (Kröger et al., 2012). Al-

though the variability of the AMOC and the MHT appear to be closely linked, the
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underlying mechanisms are not yet fully understood (e.g., Msadek et al., 2013). Fur-

ther, different model formulations result in different AMOC states (Hurrell et al.,

2010), and a long-term decrease in the AMOC’s strength does not necessarily have

to be followed by a decrease in MHT (Drijfhout and Hazeleger, 2006). Therefore,

we focus here on the potential predictability of the MHT itself, rather than infer-

ring the potential predictability of the MHT from the potential predictability of the

AMOC. In the present study, we analyze the latitude dependencies of the potential

predictability of the MHT, its components, and its relationship to the potential pre-

dictability of the AMOC on interannual time scales.

In order to analyze potential predictability on interannual time scales, both the

initial and boundary conditions are important (Collins, 2002; Collins et al., 2006).

Several studies indicate that on such time scales the predictive skill of an initial-

ized system improves over predictions without knowledge of the ocean state (e.g.,

Troccoli and Palmer, 2007; Smith et al., 2007; Keenlyside et al., 2008; Pohlmann

et al., 2009; Zhang, 2011). Further improvements are expected by using the same

model environment to derive the initial conditions and the forecast simulations (e.g.,

Pohlmann et al., 2009). Here, we use the initial conditions from an oceanic state

estimate and conduct hindcast simulations in the same model environment as that

used to generate the state estimate.

We use the oceanic state estimate GECCO (German partner of the consortium for

Estimating the Circulation and Climate of the Ocean; Köhl and Stammer, 2008).

Since the GECCO state estimate is an ocean-only product, we use GECCO’s past

atmospheric forcing to force the hindcast simulations. The feedback from the atmo-

sphere in such an ocean-only setup is missing, and thus we expect reduced predictive

skill in comparison with a coupled climate model. However, since the forcing sce-

narios are prescribed and because they result from only a few decades, the full range

of possible evolutions may not be explored. Nonetheless, the present study does

benefit from the improved representation of oceanic variability in an oceanic state

estimate. This is important, because such a dynamically consistent framework is

crucial when studying an integrated quantity such as the MHT.

Ideally, hindcast predictions would be compared to the observational record over the

hindcast period. In the ocean, however, and particularly for integrated quantities

like the MHT and the AMOC, observations are limited both in time and space. At

a specific latitude, the MHT and AMOC can be estimated from a zonal transect at

the particular time of observation (e.g., Lumpkin and Speer, 2007). Recently, also

time series of the MHT and the AMOC have become available at individual latitudes
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(Cunningham et al., 2007; Willis, 2010; Johns et al., 2011; Hobbs and Willis, 2012).

As the observations are too few to study the latitude dependent predictability of the

MHT in the Atlantic, we investigate its potential predictability here by comparing

hindcast ensembles initialized from an oceanic state estimate to the same oceanic

state estimate.

2.2 Model and method

2.2.1 Model setup and reference run

We base our potential predictability analysis of the MHT on the currently available

German-ECCO ocean synthesis. The ECCO framework aims to bring the global

1◦ MIT GCM (Massachusetts Institute of Technology general circulation model;

Marshall et al., 1997) into agreement with as many observations as possible. Several

ECCO products exist (http://www.ecco-group.org/products.htm) covering different

periods from 1992 onwards, where GECCO provides an estimate of the oceanic state

back to 1952. The currently available GECCO synthesis uses in situ and satellite

observations that were collected over the period from 1952 through 2001 (Köhl and

Stammer, 2008). During the optimization process, initial temperature and salinity

conditions as well as time-dependent surface fluxes of momentum, heat and fresh-

water were adjusted by the adjoint method (Talagrand and Courtier, 1987).

Since the exact GECCO model setup used in Köhl and Stammer (2008) is no longer

available due to technical problems, we have modified the optimized forcing of

GECCO so that a very similar model setup produces similar results as the origi-

nal GECCO output. The original GECCO forcing is corrected with the effect of

SSS and SST relaxation to compensate for changes in the code. With this corrected

optimized forcing, a 50-year integration is generated from 1952 to 2001 (covering the

same period as the original GECCO run). This integration represents our reference

run, though we focus on the period from 1959 to 2001 for our study.

2.2.2 Rationale of the experimental setup and ensemble

generation

The reference run provides the initial conditions for the hindcast ensembles, which

we construct to resemble a real forecast scenario such that no information is used in

them that would not theoretically be available from observations at the time of en-

semble generation. We initialize the ensembles from the second part of the reference
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Fig. 2.1: Overview of the experimental setup: Above the time axis with the 50-year GECCO period

(magenta), the forcing periods of the 10 hindcast ensembles are represented by the green lines, while

the periods of the ensembles are represented by the blue lines. In addition, the start dates (years

providing the initial conditions (ic)) and the number of ensemble members are shown.

run and force those ensembles with the optimized forcing from the first part of the

reference run. This allows us to leave the option open to apply different methods to

quantify predictability in the setup. We focus on the later part of the reference run

when initializing the hindcast ensembles, since considerably more observations were

available to constrain the GECCO state estimate during that period. By using the

forcing from the earlier part of the reference run, we make the assumption that the

forcing of the last decades is not significantly different from the future decades.

We initialize 10 ensembles from the reference run starting one year apart (1983, ...,

1992) to ensure continuous sampling of the initial conditions. In each ensemble, the

ensemble members are generated using different 10-year periods from the corrected

optimized atmospheric forcing. These 10-year forcing periods start one year apart

(1959, ..., 1983) and end on the date of the initial conditions (1983, ..., 1992). This

setup results in 15 to 24 members per ensemble with a simulation period of 10 years

each (Fig. 2.1). The monthly mean model output is averaged to annual means for

the potential predictability analysis.

The spreads of the ensembles and their latitudinal variations are similar amongst

different ensembles. The small differences present are mostly due to varying initial

conditions, though they are to some small extent also due to the number of forcing
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(a) (b)

(c) (d)

Fig. 2.2: MHT ensemble spread and MHT reference variance (Atlantic: 0◦ - 60◦N): (a) and (b)

Hovmöller diagrams of the ensemble spread for the ensembles initialized in 1986 and 1991. (c)

Variance of the detrended reference run from 1959 to 2001 (solid line) and mean variances over the

individual forcing periods of the detrended reference run (dashed line; gray shading indicates the

range of individual forcing variances). The individual forcing periods cover the periods from 1959

to the individual initial conditions of the ensembles (1959 to 1983,...,1992). (d) The ratio of the

dashed line and the solid line in (c) is subtracted from 1 to illustrate the potential predictability

that is inherent in the experimental setup or the system itself (gray shading indicates the range of

individual variances).

periods, or respectively to additional ensemble members. To illustrate the latitu-

dinal variations of the ensemble spreads, we arbitrarily select two MHT ensembles

(starting in 1986 and 1991; Fig. 2.2a and Fig. 2.2b). In both ensembles, we find

increased spread between ∼0◦ and ∼20◦N, and ∼50◦N and ∼60◦N, which is also

visible in the averaged variances for the forcing periods (1959 to 1983, ..., 1992) of

the reference run (Fig. 2.2c). The variances of the reference run are also similar over

the forcing periods and the (entire) reference period (1959 to 2001). We show the

variances and spreads for the MHT here as an example, but the above-mentioned

statements apply to all investigated quantities.
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2.2.3 Potential predictability method

We estimate potential predictability by calculating the prognostic potential pre-

dictability (PPP; Pohlmann et al., 2004). The PPP of a quantity is determined

using the ratio of the ensemble spread as a function of time to the variance of a

reference simulation:

PPP (t) = 1−

1
N

∑N
j=1

1
(M−1)

∑M
i=1(Xij(t)− X̄j(t))

2

σ2
(2.1)

where Xij is the ith member of the jth ensemble, X̄(t) is the ensemble mean, M

is the number of ensemble members (here, M ranges between 15 and 24), and N is

the number of ensembles (here, N=10). σ2 represents the variance of a reference

simulation, for which we use the reference run from 1959 to 2001. Note that the

subtraction of the ensemble mean (as a function of time) effectively detrends the

hindcasts in computing PPP (t). To avoid artificial predictability we detrend the

reference run by removing the best straight-line fit from the monthly mean model

output at every latitude before averaging to annual means. Turning to the results

for PPP (t), a value of 1 indicates perfect potential predictability, whereas a value

below 0 indicates no potential predictability.

In order to test whether there is any predictability inherent to the experimental

setup, we first conducted a short predictability analysis similar in procedure to that

described above, but which uses only the reference run. As the spread of the en-

sembles generally represent the variances of the forcing periods (Fig. 2.2a-c), we

calculate 1 minus the ratio between the variances of the forcing periods and the

reference period (Fig. 2.2d). The resulting values are quite small (<0.4), and are

concentrated around 0, indicating that there is little to no predictability resulting

from the experimental setup itself.

The significance of PPP is estimated using an F-test. Following Pohlmann et al.

(2004), we denote a quantity as being potentially predictable as long as its PPP is

greater than the critical significance limit:

PPP > 1− 1/F∑
(M−1),dof . (2.2)

Since the forcing periods overlap, the ensemble members are not strictly indepen-

dent. For the sake of simplicity, we assume the ensembles’ degrees of freedom (dof)
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are the total sum of the varying number of ensemble members minus 1 (
∑

(M − 1)).

Varying the degrees of freedom of the ensemble does not significantly change the re-

sulting critical significance limit. The degrees of freedom for the reference run are

calculated from the decorrelation time of the first-order autoregressive process (e.g.,

von Storch and Zwiers, 1999):

dof = (n/
1 + α

1− α
)− 1, (2.3)

where n denotes the sample size of the reference period and α denotes its lag-1

autocorrelation coefficient. For all investigated quantities the critical significance

limit varies with latitude. Since the variations are small, however, we take the

average of the critical significance limit over the latitudes, preserving the latitude

dependence of the the respective quantity’s PPP. In the following, PPP structure

stands for the spatial and temporal extent of the significant PPP values across the

North Atlantic, and predictable lead time stands for the time period over which the

PPP values are significant.

2.3 Results

2.3.1 Potential predictability of the total MHT

We find that the MHT is potentially predictable within the subtropical gyre (∼15◦N

to ∼35◦N) and within the subpolar gyre (∼45◦N to ∼60◦N) with a gap around 40◦N

at the boundary between the gyres (Fig. 2.3). At subtropical latitudes, we find

predictable lead times of 3 to 4 years. At subpolar latitudes, we find slightly higher

PPP values than at subtropical latitudes and predictable lead times of 3 to 5 years.

To facilitate a better understanding of the predictable lead times of the MHT, we

decompose the heat transport into three dynamic components (following Bryden

and Imawaki, 2001): the barotropic component, the overturning component, and

the gyre component. The three components are calculated as follows:

H(y) = ρcp

∫ D

0

∫ L

0
〈v〉 (y) 〈θ〉 (y)dxdz +

ρcp

∫ D

0

∫ L

0
[v] (y, z) [θ] (y, z)dxdz +

ρcp

∫ D

0

∫ L

0
v′(x, y, z)θ′(x, y, z)dxdz, (2.4)
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Fig. 2.3: Hovmöller diagram of the prognostic potential predictability (PPP) of the MHT as a

function of lead time (Atlantic: 0◦ - 60◦N). The white dashed line indicates values significant at

the 90% level.

where v and θ denote the meridional velocity and the potential temperature. ρ is

defined as the reference density and cp the heat capacity per unit mass of water

at constant pressure. D and L represent the depth and the width of the zonal

transoceanic section. The angle brackets (〈〉) denote the section average, the square

brackets ([]) denote the zonal average minus the section average, and the primes (′)

denote the deviations from the respective zonal average. Hence, the first term is the

net transport across the section at the section-averaged temperature. The second

term represents the contribution of the zonally-averaged meridional circulation, and

the third term is the contribution of the large-scale gyre circulation. The decomposi-

tion of the MHT is calculated for monthly mean model data, while for the following

analysis annually averaged values are used (cp. chapter 2.2).

Consistent with other modelling studies (e.g., Dong and Sutton, 2002), the barotropic

component appears to be negligible, and the total MHT is dominated by the over-

turning component, apart from the subpolar latitudes (Fig. 2.4a). At the latter

latitudes, the influence of the gyre component on the total MHT exceeds the influ-

ence of the overturning component, since the zonal temperature difference is as large

as the vertical temperature difference. The spatial divide between the influence of

the gyre and the overturning component on the total MHT becomes more clear in

the variances (Fig. 2.4b). South of ∼45◦N most of the total variance of the MHT can

be explained by the high variance of the overturning component. Yet, the increased

variance at subpolar latitudes is only evident in the gyre component.
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(a) (b)

Fig. 2.4: Total MHT and its components of the detrended reference run from 1959 to 2001: (a)

Time mean values, and (b) variances of the total MHT (black), the overturning component (red),

and the gyre component (blue) (Atlantic: 0◦ - 60◦N).

2.3.2 Potential predictability of the MHT components

At subtropical latitudes, the predictable lead times of the overturning component

indicate about 6 years of potential predictability (Fig. 2.5a). At subpolar latitudes,

the predictable lead times indicate about 2 years of potential predictability. Around

40◦N, we find a gap between the subpolar and subtropical gyre, just as exists in

the total MHT’s PPP structure (Fig. 2.3). Compared to the PPP structure of the

total MHT, the overturning component shows longer predictable lead times at the

subtropical latitudes, which also extend over a larger range of latitudes, and at sub-

polar latitudes slightly shorter predictable lead times and lower PPP values.

To analyze the overturning component’s influence on the predictable lead times of

the total MHT, we replace σ2 in equation (2.1). That is, we divide the spread of the

overturning component by the variance of the total MHT, instead of the variance

of the overturning component. For latitudes south of ∼40◦N, the resulting PPP

structure is similar to the PPP structure of the overturning component (Fig. 2.5a

compared to Fig. 2.5b). For latitudes north of ∼40◦N, the resulting predictable lead

times are considerably longer than the predictable lead times using the variance of

the overturning component. These high values imply that predictable lead times

of the total MHT are not limited by the influence of the overturning component at

latitudes north of ∼40◦N.
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(a) (b)

(c) (d)

Fig. 2.5: Hovmöller diagrams of the PPP as a function of lead time (Atlantic: 0◦ - 60◦N) for (a)

the overturning component of the MHT, and (b) the overturning component of the MHT, where

the ensemble spread is divided by the reference variance of the total MHT (instead of the reference

variance of the overturning component). In (c) and (d) the same measures are presented as in (a)

respectively (b), but for the gyre component of the MHT. The white dashed lines indicate values

significant at the 90% level.

The predictable lead times of the gyre component indicate potential predictability of

5 to 10 years at subpolar latitudes (Fig. 2.5c). Between ∼30◦N and ∼40◦N, we find

predictable lead times of about 2 years. South of ∼30◦N, essentially no potential

predictability is evident. Apart from the decrease of potential predictability at the

gyre boundary and the higher PPP values at subpolar than at subtropical latitudes,

the PPP structure of the gyre component shows no similarities to the PPP structure

of the total MHT (Fig. 2.3).

As in the analysis of the overturning component, we divide the spread of the gyre

component by the variance of the total MHT, instead of the variance of the gyre
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component in the PPP calculation. This analysis shows that the spread of the gyre

component is large enough to influence the predictable lead times at the subpolar

latitudes and between ∼30◦N and ∼40◦N (Fig. 2.5d). At the subpolar latitudes,

this indicates that the predictable lead times of the total MHT are more heavily

influenced by the spread of the gyre component than by the spread of the overturn-

ing component (Fig. 2.5b). Although we find longer predictable lead times for the

gyre component (Fig. 2.5c) than for the total MHT (Fig. 2.3) at these latitudes, the

influence of the gyre component can be seen in the enhanced potential predictabil-

ity of the total MHT compared to the potential predictability of the overturning

component. Between ∼30◦N and ∼40◦N the influence of the gyre component can be

seen in shorter (and spatially less extended) predictable lead times of the total MHT

compared to predictable lead times of the overturning component. Overall, the PPP

structure of the total MHT (Fig. 2.3) can be reconstructed from the analysis of the

overturning and gyre component’s PPP structures (Fig. 2.5a and c) together with

the relative influence of the component spreads on the total MHT (Fig. 2.5b and d).

2.3.3 Influence of velocity and temperature field variations

Jayne and Marotzke (2001) and Dong and Sutton (2002) have shown that the in-

fluence of the variability of the velocity field on the variability of the MHT clearly

dominates over the variability of the temperature field, with the exception of the

higher latitudes where temperature variations gain influence. To estimate the in-

fluence of the velocity (temperature) variations on the variability of the MHT, we

calculate the MHT with a time mean temperature (velocity) field in the reference run

from 1959 to 2001. South of ∼30◦N the variance of the reference MHT is controlled

by the variations in the velocity field (Fig. 2.6a). North of ∼30◦N, the variance of

the total MHT and the variance of the MHT with a constant velocity field show sig-

nificantly smaller values than the variance of the MHT with a constant temperature

field. Hence, we suggest that north of ∼30◦N temperature field variations covary

with velocity field variations, such that the net MHT variability remains relatively

low.

We now turn to the assessment of whether this spatial separation, between the influ-

ence of the velocity field and the influence of the temperature field on the variability

of the MHT, is also visible in the potential predictability of the MHT. To estimate

the influence of the velocity (temperature) variations on the potential predictability

of the MHT, we calculate the MHT of each ensemble member with a constant tem-

perature (velocity) field (time mean of the respective ensemble member), but in the

reference run we keep the full signal of the temperature (velocity) field.
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(a) (b) (c)

Fig. 2.6: MHT calculated with a constant mean temperature or velocity field (Atlantic: 0◦ - 60◦N):

(a) Detrended reference run: Variances of the total MHT (black), the MHT calculated with a

constant mean temperature field (blue), and the MHT calculated with a constant mean velocity

field (red) from 1959 to 2001. (b) and (c): Hovmöller diagrams of the PPP as a function of lead

time for the MHT calculated with a constant mean temperature field for the ensembles (b), and

the MHT calculated with a constant mean velocity field for the ensembles (c). The white dashed

lines indicate values significant at the 90% level.

The PPP structure of the MHT using a constant temperature field and a varying

velocity field (Fig. 2.6b) is in general similar to the PPP structure of the total MHT

with both fields varying (Fig. 2.3). The PPP structure in both gyres is narrower for

the MHT using a constant temperature field and a varying velocity field than for

the total MHT with both fields varying, resulting in a wider band in which potential

predictability is non-existent (∼35◦N to ∼45◦N).

At every latitude, the predictable lead times of the MHT using a constant velocity

field and a varying temperature field are longer than the predictable lead times of

the total MHT with both fields varying (Fig. 2.6c). This shows that the spread cre-

ated by the temperature field variations alone is too small to restrict the potential

predictability to resemble the PPP structure of the MHT with both fields varying

(Fig. 2.3).

At most latitudes, the variations of the velocity field are more important than the

variations of the temperature field for the PPP structure of the total MHT, except

for the latitudes in the vicinity of the gyre boundary (∼30◦N - 35◦N and ∼40◦N

- 45◦N). At these latitudes the velocity field variations alone are too large to rep-

resent the PPP structure of the total MHT. North of ∼30◦N the influence of the

temperature field variations on the total MHT variance increases (Fig. 2.6a). In the

PPP structure, this increased influence becomes obvious in the vicinity of the gyre

boundary, where temperature field variations reduce the total ensemble spread and

lengthen the predictable time scales of the total MHT to narrow the boundary gap.
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Fig. 2.7: Hovmöller diagram of the PPP of the MHT minus the Ekman heat transport, with the

ensemble spread divided by the reference variance of the total MHT, as a function of lead time

(Atlantic: 0◦ - 60◦N). The white dashed line indicates values significant at the 90% level.

2.3.4 Influence of the Ekman heat transport

Ekman dynamics contribute significantly to the MHT variability on interannual time

scales (Jayne and Marotzke, 2001; Dong and Sutton, 2002). To analyze the influence

of the atmospheric wind field on the predictable lead times of the MHT, we now

subtract the Ekman heat transport from the total MHT prior to the PPP analysis.

Across a zonal section, the Ekman heat transport is defined as the integral of the

meridional Ekman-layer mass flux, multiplied by the difference between the Ekman

layer temperature TEk and the section-averaged potential temperature 〈[θ]〉 (Jayne

and Marotzke, 2001). This assumes that, for any given section, the mass transport

in the Ekman layer is compensated by a section and depth uniform return flow, and

thus the Ekman heat transport can be calculated as follows:

HEk = −

∫

ρcp
τx
fρ

(TEk − 〈[θ]〉)dx, (2.5)

where f is the Coriolis parameter, ρ is the reference density, and τx is the zonal wind

stress. Here, we define TEk as the sea surface temperature since the actual depth of

TEk appears to be insignificant.

To test the influence of the Ekman heat transport on the potential predictability of

the MHT, we calculate the MHT minus the Ekman heat transport for the ensembles,

but we keep the full MHT signal in the reference run for the PPP analysis (Fig. 2.7).

The resulting predictable lead times are longer than the predictable lead times of the
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total MHT at all latitudes (Fig. 2.3). Within the gyres, the influence of the Ekman

heat transport on the predictable lead times is not as strong, though it appears

stronger at subtropical latitudes than at subpolar latitudes. Particularly at the gyre

boundary and at the southern boundary of the subtropical gyre (between ∼5◦N and

∼20◦N), the influence of the Ekman heat transport variability is so strong that it

prevents potential predictability of the total MHT at these latitudes entirely.

2.3.5 Potential predictability of the AMOC

Having analyzed the PPP structure of the total MHT, we now turn to the ques-

tion of whether the predictable lead times of the total MHT are directly related to

the predictable lead times of the AMOC. The predictable lead times of the AMOC

increase continuously from 2 years in the supolar gyre to about 6-7 years in the

subtropical gyre (Fig. 2.8). Especially for lead times of 1 year, the PPP values are

higher in the gyres than at the boundary. Although there is no gap of potential

predictability at the boundary between the subpolar and subtropical gyre, we can

still distinguish between the gyres and the gyre boundary.

The PPP structures of the AMOC and the total MHT (Fig. 2.3) are generally

different. The predictable lead times of the AMOC are longer at subtropical lati-

tudes than at subpolar latitudes, as seen in the overturning component of the MHT

(Fig. 2.5a), but not the MHT as a whole. The potential predictability of the AMOC

is slightly shorter than the MHT’s at subpolar latitudes. At these latitudes MHT’s

PPP structure is influenced by an increased contribution from the gyre component,

induced by changes in the temperature field distribution (cp. chapters 2.3.1 and

2.3.2).

At the gyre boundary, the influence of the Ekman variability on MHT’s PPP is so

strong that it prevents any potential predictability, while the influence of the Ekman

variability on the AMOC PPP merely decreases the PPP values, but the predictabil-

ity lead times are nearly as long as in the subtropical gyre. Thus, Ekman variability

appears to play a more important role in determining the potential predictability

of the MHT than it does in determining that of the AMOC, since most of the heat

transport occurs in the upper layers of the ocean.
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Fig. 2.8: Hovmöller diagram of the PPP of the MOC (at ∼1000m) as a function of lead time

(Atlantic: 0◦ - 60◦N). The white dashed line indicates values significant at the 90% level.

2.4 Discussion

The PPP of the total MHT is different in the subtropical gyre, the subpolar gyre,

and the area forming the boundary between the gyres. Though a gyre dependence

of the potential predictability can also be seen for the AMOC, its PPP structure is

only similar to the overturning component of the MHT.

For the AMOC, our predictable lead times fall within the wide range of previous

findings. This wide range is due to a considerable diversity in the models employed,

their setups and the variety of initial conditions, as well as the applied methods

used to quantify predictability: The AMOC’s (potential) predictability lead times

range from 3-6 years (Hermanson and Sutton, 2009; Pohlmann et al., 2009; Matei

et al., 2012a; Kröger et al., 2012; Pohlmann et al., 2013) to a decade or even longer

(Griffies and Bryan, 1997; Collins and Sinha, 2003; Pohlmann et al., 2004; Collins

et al., 2006; Keenlyside et al., 2008; Msadek et al., 2010). With the exception of

Kröger et al. (2012), these AMOC (potential) predictability studies were conducted

at a single (mostly subtropical) latitude or a basin-wide maximum AMOC index,

and not over a range of latitudes across the North Atlantic.

In contrast to the diverse findings for the AMOC’s potential predictability time

scales, there are to the authors’ best knowledge no published studies on the poten-

tial predictability of the MHT. Particularly the minimum in the MHT’s potential

predictability at the gyre boundary is a surprising result. However, an indication of

latitudinal variations in the potential predictability, and an area of decreased poten-
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tial predictability at mid-latitudes in the North Atlantic can also be seen in previous

predictability studies on the SST (Pohlmann et al., 2004; Boer, 2009; Matei et al.,

2012b), the upper ocean heat content (Matei et al., 2012b), and the AMOC (Kröger

et al., 2012). Since no estimate thus far exist for the MHT’s predictable lead time,

our results serve as a reference point for the discussion of meridional variability in

MHT PPP structures, and their relation to AMOC PPP structures.

Our PPP structures of the AMOC and the overturning component of the MHT

contradict the widely accepted view that the AMOC’s potential predictability is

higher at subpolar latitudes than at subtropical latitudes. This view is based on the

close relationship between the potential predictability of the thermohaline circula-

tion and the North Atlantic SST (e.g., Pohlmann et al., 2004; Latif et al., 2004),

and the notion that SST anomalies are more predictable in the subpolar than in

the subtropical North Atlantic (e.g., Msadek et al., 2010). Pohlmann et al. (2009)

anticipated that the AMOC’s predictive skill might be limited to high latitudes due

to the close connection between the NAO and the AMOC strength. On the other

hand, propagating AMOC signals (e.g., Köhl and Stammer, 2008; Getzlaff et al.,

2005) could also provide longer predictable time scales in the subtropics. While

we maintain that the gyre dependence of the PPP is a robust result, our analysis

cannot fully explain why the predictable lead times are shorter or longer at specific

latitudes within our analysis. Thus, the actual distribution of the predictable lead

time lengths remains a matter of discussion and should be subjected to further in-

vestigation.

Limitations of our analysis primarily arise from the setup employed. For example,

hindcast ensembles are not generated in a coupled model but rather by using prede-

fined atmospheric forcing (historical forcings from 1959 to 1992). Assuming that the

forcing in the next decade is not unlike the forcing in previous decades, the present

results cover a range of expected forcings. The forcing comes from both NAO+ and

NAO- periods, but the initial conditions are restricted to mostly NAO+ states. This

is a consequence of limiting the initialization of the ocean to the last two decades of

the GECCO state estimate, which is done to ensure the use of independent forcing

data from the previous decades. Unfortunately, the present setup does not allow us

to clearly distinguish between different NAO states in order to analyze the sensitiv-

ity of potential predictability within the context of the NAO’s state of the initial

and boundary conditions. Since changes in the NAO are thought to influence the

time scales of AMOC variability at subpolar latitudes (Eden and Willebrand, 2001;

Lozier et al., 2010), and GECCO furthermore shows an AMOC that is sensitive to

the state of the NAO (Köhl and Stammer, 2008), an influence by these conditions
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on our results cannot be excluded.

The actual lengths of the calculated predictable time scales depend on a number

of parameters selected in the analysis to derive the predictable lead times (chap-

ter 2.2.3). For example, using a different reference period (e.g., the forcing or the

hindcast period), or not detrending the reference run could increase or decrease the

predictable lead times by a couple of years. Another example is the parameters

entering the calculation of the significance level, and the actual method chosen to

calculate the significance level. None of the choices change the general latitudinal

PPP structure for the analyzed quantities. We therefore refrain from insisting on a

specific number of predictable years at a certain latitude, but emphasize the relation

of potential predictability between different latitudes.

While we cannot initialize the atmosphere, our setup represents a self-consistent

framework with respect to both initialization and consistency with observations.

Previous studies have shown that the initialization procedure can impact resulting

predictions, as is visible in the comparison between the SST predictions of Keenly-

side et al. (2008) and Pohlmann et al. (2009), who use the same model but a different

initialization method. The model formulation also has a considerable impact on the

model state (see, e.g., the AMOC in Hurrell et al. (2010)). Here, we use the same

model framework for the synthesis with the observations, the hindcast simulations,

and the verification of the ensemble spread. Further studies using initialized hind-

cast ensembles from coupled models, and potentially also verifying the ensemble

spread against observations are therefore essential in establishing the robustness of

the conclusions.

We have restricted the current analysis to potential predictability as it is currently

not possible to analyze the latitude dependence of the MHT and the AMOC against

real observations. But the present experimental setup allows us to evaluate possi-

ble oceanic states (ensemble hindcasts) against an oceanic state estimate instead.

In the present study we evaluate the theoretical limit of the predictable lead times

by means of the PPP method, but the yearly start dates of the initial conditions

(to continuously sample variability) together with the independent hindcast refer-

ence periods also allow us to quantify the potential predictability by means of the

anomaly correlation (following Pohlmann et al., 2009). Given the different infor-

mative value of both methods, it is not a trivial result that the general conclusions

of the PPP analysis can be confirmed with the anomaly correlation. In the chosen

model environment, regardless of the chosen method, our conclusions represent an

indication of latitude-dependent potential predictability of both the MHT and the
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AMOC, which are in agreement with previous studies of both the variances of the

MHT and the AMOC (Jayne and Marotzke, 2001; Lozier et al., 2010).

2.5 Conclusions

Based on our analysis of the prognostic potential predictability (PPP) of the MHT

in the North Atlantic in hindcast ensembles initialized from the GECCO oceanic

state estimate, we conclude that:

• The PPP of the MHT varies with latitude, changing between the subtropical

and subpolar gyre, and at the gyre boundary.

• Within the subtropical gyre, the PPP structure of the MHT is characterized

by the overturning component. Within the subpolar gyre, the PPP structure

of the MHT is characterized by the gyre component.

• At most latitudes, variations in the velocity field play a determining role on

the PPP structure of the MHT. The influence of temperature field variations

on the PPP structure of the MHT can so far only be confirmed in the vicinity

of the gyre boundary.

• On the investigated interannual time scales, Ekman dynamics influence the

PPP structure of the MHT at all latitudes, and limit the predictable lead

times of the MHT particularly at the gyre boundary and at the southern

extent of the subtropical gyre.

• We confirm earlier results that the PPP of the AMOC varies with latitude.

Here, we find that Ekman dynamics decrease the PPP of the AMOC at the

gyre boundary, though in contrast to the MHT, no distinctive minimum is

apparent at the gyre boundary.

• The PPP structure of the AMOC cannot be directly related to the PPP struc-

ture of the MHT. But the predictable lead times of the AMOC are similar to

the predictable lead times of the MHT’s overturning component.

• The suggested gyre-dependent predictable lead times of both MHT and AMOC

indicate that caution should be exercised when interpreting the potential pre-

dictability of the MHT or AMOC at a single latitude.
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3. NORTH ATLANTIC THERMAL WIND

VARIABILITY AND ITS EFFECTS ON

POTENTIAL PREDICTABILITY1

Abstract

We investigate the influence of boundary density variability on the potential pre-

dictability of the North Atlantic meridional overturning circulation (AMOC) by

analyzing the potential predictability of the thermal wind transport. The potential

predictability on inter-annual time scales is assessed by using hindcast ensembles

based on an oceanic data assimilation product. The potential predictability of the

thermal wind transport is latitude-dependent and shows a maximum of predictabil-

ity lead times around 40◦N and decreasing potential predictability to the north and

south. To understand the roles of the eastern and western density boundary vari-

ability we conduct experiments by holding the density boundary values temporally

constant at one side of the basin, while keeping the full signal at the other side

prior to the potential predictability analysis. These experiments suggest that the

variability of the upper western boundary densities is sufficient to reconstruct most

of the latitudinal variations of the potential predictability of the total thermal wind

transport. In contrast, the influence of the lower western boundary densities and

the eastern boundary densities on the potential predictability of the total thermal

wind transport is small. Although we find similarities, the potential predictability

of the AMOC cannot be directly concluded from the potential predictability of the

thermal wind transport without considering the regional influence of the Ekman

transport. However, the findings open the prospect to use density boundary values

in combination with wind field data for estimating the potential predictability of the

AMOC, and underline the importance to maintain and extend the current observing

system in the North Atlantic.

1 Chapter 3 is in preparation for submission to Climate Dynamics.
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3.1 Introduction

The AMOC is composed of a dominant buoyancy-driven part and a wind-driven

part. More specifically, it can (theoretically) be reconstructed from the contribu-

tions related to the barotropic (depth-averaged) velocities, to the geostrophic shear

and to the Ekman transports (Lee and Marotzke, 1998). In order to design a mon-

itoring system for the AMOC, numerical models were used to test whether the

AMOC can be reconstructed from boundary densities and the zonal wind stress

alone (e.g., Hirschi et al., 2003; Baehr et al., 2004). These studies laid the ground

for the implementation of the RAPID/MOCHA array at 26.5◦N (Kanzow et al.,

2007; Cunningham et al., 2007).

Since AMOC estimates at a single latitude do not allow for immediate conclusions

about adjacent latitudes (Baehr, 2010), model studies are still needed to facilitate

a better understanding of the contributions of the boundary densities and the wind

stress to the basin-scale variability of the AMOC. For example, Hirschi and Marotzke

(2007) showed in a model study that the leading modes of the temporal and spatial

AMOC variability can be reproduced with the boundary densities and the zonal

wind stress. Primarily, the inter-annual AMOC variability can largely be captured

from changes in the boundary densities, and plans are underway to extent the con-

tinuous AMOC monitoring to other latitudes in the North Atlantic (Cunningham

et al., 2010).

Despite of the variety of studies decomposing the AMOC at one or more latitudes,

no previous study has concentrated on the the possibility to use density boundary

values, respectively the variability of the thermal wind transport, for a potential

predictability analysis of the AMOC. More specifically, we analyze whether the lat-

itudinal varying potential predictability of the AMOC (Kröger et al., 2012; Tiedje

et al., 2012) can be reconstructed from the latitudinal varying zonal density gra-

dients. Furthermore, we test whether we can separate the eastern and western

boundary influence on the total thermal wind transport’s potential predictability.

This part of the study is motivated by previous observation-based and model-based

studies that indicate that the longterm variability of the AMOC primarily arises

from the western boundary, while the contribution to the seasonal variability is

slightly higher from the eastern than from the western boundary (e.g., Chidichimo

et al., 2010; Fischer et al., 2013).

Actual predictive skill in the density gradient can be found at 26◦N (Matei et al.,

2012a) but for other latitudes only potential predictability is possible, and thus
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our analysis will be based on a numerical model. We use the same variance based

prognostic potential predictability approach (PPP) as in Tiedje et al. (2012) and

generate a hindcast ensemble based on an oceanic state estimate. Since the oceanic

state estimate is dynamically consistent with observations over a 50 year period,

it provides an observation-based reference simulation, as well as good initial condi-

tions for the ensemble generation. These are important for potential predictability

analysis on inter-annual time scales (Collins, 2002; Collins et al., 2006) and improve

over predictions without the knowledge of the ocean state (e.g., Troccoli and Palmer,

2007; Smith et al., 2007; Keenlyside et al., 2008; Pohlmann et al., 2009; Zhang, 2011).

In short, we test in the present study whether the basin-wide AMOC can be po-

tentially predicted pre-dominantly relying on capturing the thermal wind variability

from observations. Specifically, we firstly analyze the variability and potential pre-

dictability of the thermal wind transport in comparison to the AMOC minus the

Ekman contribution, before we discuss the relation between the potential predictabil-

ity of the thermal wind transport and the total AMOC.

3.2 Model and methods

3.2.1 Reference run and hindcast ensembles

We base our analysis of the thermal wind variability and the subsequent ensemble

predictability analysis on the oceanic data assimilation product GECCO (German

partner of the consortium for Estimating the Circulation and Climate of the Ocean;

Köhl and Stammer, 2008). We use a slightly corrected version of the GECCO syn-

thesis’ optimized forcing to generate a 50-year integration, covering the same period

as the original GECCO run (1952-2001). This integration represents the reference

run for the predictability analysis and provides the initial conditions for the ensem-

ble generation. For all following analyses, we focus on the period from 1959 to 2001

of this integration.

As in Tiedje et al. (2012), we initialize 10 ensembles from the reference run starting

one year apart (1983, ..., 1992). In each ensemble, the ensemble members are gen-

erated using different 10-year periods of GECCO’s corrected optimized atmospheric

forcing. Within each ensemble, the forcing periods (from 1959 to initial condition’s

date) and the hindcast period (from initial condition’s date onward) do not overlap.

This setup results in ten 10-year ensembles at 15 to 24 members. Further details

on the reference run and the rationale of the ensemble generation can be found in
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Tiedje et al. (2012).

3.2.2 AMOC decomposition

Based on the AMOC decomposition of Lee and Marotzke (1998) and Marotzke et al.

(1997), several studies continued the approach of reconstructing the AMOC from the

zonal wind stress and the zonal density differences (e.g., Hirschi et al., 2003; Baehr

et al., 2004; Hirschi and Marotzke, 2007; Fischer et al., 2013). In the following, we

will describe the theoretical calculation and the implementation of the thermal wind

transport (Hirschi and Marotzke, 2007) and the depth-dependent Ekman transport

(Baehr et al., 2004). Subsequently, we will test the agreement between the thermal

wind and the AMOC minus the Ekman variability, by analyzing the mean and the

variance of the depth- and latitude-dependent zonally averaged velocity fields and

integrated transports. Note that we analyze in chapter 3.2.2.3 only the reference

run (1959 to 2001), and that the variance calculations are based on annual means

(as the subsequent inter-annual potential predictability analysis is on annual means,

too).

3.2.2.1 Theory

Based on the thermal wind balance, we obtain a depth dependent meridional velocity

component for every investigated latitude (0◦ to 60◦N):

ṽ(x, z) = −
g

ρ∗f

∫ z

−H

1

L(z′)
(ρe(x, z

′)− ρw(x, z
′)) dz′, (3.1)

where g is the earth’s gravity, ρ∗ is the reference density, f is the Coriolis parameter,

H is the ocean depth (−H ≤ z′ ≤ 0), L(z′) is the basin width, and ρe and ρw are

the densities at the eastern and western boundary. ṽ is then used to obtain a stream

function:

ψ̃(z) =

∫ xe

xw

∫ z

−H

ṽ(x, z′) dxdz′, (3.2)

where xe and xw are the western and eastern limits of the basin. In order to ensure

mass balance across a zonal section, we introduce a correction for ṽ:

v̂(x, z) = Ψ(0)/A. (3.3)
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We divide the transport imbalance Ψ(0) across a longitude-depth section by the

section area A. The stream function for the thermal wind transport can now be

written as:

ΨTW (z) =

∫ xe

xw

∫ z

−H

(ṽ(x, z′)− v̂(x, z′)) dxdz′. (3.4)

For details and limitations of this method see e.g. Hirschi and Marotzke (2007). In

the following, we will abbreviate the thermal wind velocity field with TWv and the

thermal wind transport with TW.

The depth-dependent transport related to the wind stress is calculated following

Baehr et al. (2004). Based on the Ekman velocity (vek; eq. 3.5), a corrected Ek-

man velocity field is introduced (vekcorr ; eq. 3.6) to ensure no net meridional mass

transport related to the zonal wind stress:

vek(x, y, z) = −
1

ρ∗fAd

∫ L(y,0)

0
τ(x, y) dx, (3.5)

vekcorr(x, y, z) =







vek −
vekAd

A
for − d ≥ z

−vekAd

A
for − d < z

, (3.6)

where τ(x, y) is the zonal wind stress, Ad is the section area to the Ekman depth

d, and L(y, 0) is the zonal extent of the basin. Integrating vekcorr results in an

Ekman transport that is zero at the surface and at the bottom of the ocean. In the

following, we will abbreviate the model velocity field minus the Ekman velocity field

with v-Ekv and the AMOC minus the Ekman transport with AMOC-Ek.

3.2.2.2 Implementation

Kanzow et al. (2009) and Chidichimo et al. (2010) find that the density (ρe and

ρw) needs to be taken directly at the continental slope to compute the full-basin

density gradient and to capture the variability of the AMOC reliably. Figure 3.1

illustrates the positions of the density values used for the TW calculations. Note

that the Mid Atlantic Ridge has to be cut out to capture the zonally integrated

(geostrophic) shear between the eastern and western boundary. At some latitudes,

the irregular topography complicates the decision for the best boundary value posi-

tion. We therefore define to select the density values right at the boundary only as
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Fig. 3.1: North Atlantic surface layer mask for selecting density boundary values (left panel). The

right panels show the selected density boundary values for two sections (41◦N and 16◦N).

long as there are at least 10◦ between the continental slope and the closest subma-

rine topographic elevation. If the distance is smaller than 10◦, the density values are

selected at the open-ocean-side of the topographic elevation. Based on this defini-

tion, the Gulf of Mexico and the Caribbean Sea are topographically separated from

the basin. Therefore, we consider only the mid-ocean transport between ∼10◦N and

∼30◦N (see lower right panel in Figure 3.1). Note that the problematic manual

selection of the density boundary values could lead to irregularities or outliers in the

resulting TW.

For the calculation of the depth-dependent Ekman velocity field, we define the Ek-

man depth as the upper 10m of the ocean (surface model layer). The subsequent

potential predictability analysis of AMOC-Ek is conducted with the subtraction of

the transports at ∼1000m depth.

3.2.2.3 Representativeness of the thermal wind transport

Without correcting the TWv, we would assume vanishing velocity at the bottom,

which could lead to an inaccurate representation of the velocity (Baehr et al., 2004).

To test whether the correction significantly changes structural features of the zonally

averaged velocity field in the reference run, we compare the mean and the variance
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(a)

(b)

(c)

(d)

Fig. 3.2: Mean zonally averaged velocity fields of the reference run: (a) uncorrected thermal wind

velocity field (TWv), (b) corrected TWv, (c) meridional velocity field minus the Ekman velocity

field (v-Ekv). (d) Mean density gradient. The contour intervals are 0.001 m/s and 0.04 kg/m3. Note

that the topographic elevation is not the same for the v-Ekv section and the TWv section because

the density boundary values could not always be selected at the deepest point of the section.

of the corrected and the uncorrected TWv in latitude-depth sections (Fig. 3.2a and

b and Fig. 3.3a and b).

North of ∼30◦N, both the uncorrected and corrected TWv show an upper posi-

tive (above ∼2000m) and a lower negative region with maximum and minimum

values about 0.02 m/s and -0.008 m/s (Fig. 3.2a and b). Towards the bottom (be-

low ∼3000m) mean velocities are northwards again. For the uncorrected TWv the

minimum of the negative region is slightly stronger and shifted northward. South

of ∼30◦N, these regions of northward and southward velocities seem to continue

southward, but the gradient decreases and irregular local maximum velocities oc-

cur. Despite small differences, the main features of the TWv are not altered by the

mass balance correction.

Particularly with regard to the subsequent potential predictability analysis, we need
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(a)

(b)

(c)

(d)

Fig. 3.3: Variance of annual mean values of the zonally averaged velocity fields of the reference run:

(a) uncorrected thermal wind velocity field (TWv), (b) corrected TWv, (c) meridional velocity field

minus the Ekman velocity field (v-Ekv). (d) Mean density gradient. The contour intervals are

0.07 (m/s)2 and 0.07 (kg/m3)2. Note that the topographic elevation is not the same for the v-Ekv

section and the TWv section because the density boundary values could not always be selected at

the deepest point of the section.

to test whether the variance of the TWv is altered by the mass balance correction

(Fig. 3.3a and b). As for the mean, we find that the overall representation is not

significantly different between the uncorrected and the corrected TWv (Fig. 3.3a

and b). Between ∼10◦N to ∼40◦N, we find small variance values that increase to

the north and south. The highest variances occur north of ∼45◦N, where we find an

upper (∼1000m) and an lower maximum (∼4000m). In between, at ∼2000m, small

variance values occur, right where we find the the boundary between the northward

and southward flowing water (Fig. 3.2a and b). We also find a second variance mini-

mum region near the bottom, implying another direction change in the velocity field.

Additionally, figure 3.2d and figure 3.3d show the mean and the variance of the den-

sity gradient to illustrate the relation given in equation 3.1. North of ∼30◦N, we find

for the mean values a strong negative gradient above ∼2000m and a weak positive
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(a)

(b)

(c)

Fig. 3.4: (a) Mean AMOC minus the Ekman transport (AMOC-Ek) based on the meridional

velocity field. (b) Reconstruction based on the mean thermal wind contribution (TW). (c) Difference

between the mean AMOC-Ek and the reconstruction. The contour interval is 2 Sv.

gradient below. In the mid-ocean transport region, the density gradient becomes

positive in the upper 500m. For the variance, we find high values everywhere in the

upper ocean and north of ∼40◦N also in the deeper ocean.

So far, we have ensured that the mass balance correction does not alter the TWv.

With this result we can now turn to our physical analysis and estimate the agreement

between the TWv and the v-Ekv (Fig. 3.2c and Fig. 3.3c). North of ∼30◦N, the

structural features of the mean zonally averaged v-Ekv (Fig. 3.2c) are very similar

to those of the TWv (Fig. 3.2b). In contrast to the TWv, the gradient in the v-Ekv

decreases very smoothly south of ∼30◦N. The biggest differences can be found be-

tween ∼10◦N and ∼30◦N, since we only assess the mid-ocean transport for the TWv

at these latitudes. At these latitudes, we also notice unfitting southward velocities in

the upper 500m. For the variance, only small differences in structure and magnitude

can be seen between the v-Ekv (Fig. 3.3c) and the TWv (Fig. 3.3b). It seems that

even between ∼10◦N and ∼30◦N, the variances of the TWv and the v-Ekv show a

reasonable agreement.
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In a next step, we calculate the stream functions from the zonally- and depth-

integrated velocity fields to show if the overturning cells of the AMOC-Ek and the

TW exhibit similar features. We first consider the mean of both quantities and their

difference (Fig. 3.4), before we turn to the variances that will play a more important

role in the subsequent potential predictability analysis (Fig. 3.5).

The main AMOC-Ek overturning cell extents from ∼60◦N to ∼30◦N (Fig. 3.4a).

Maximum values are reached around 45-50◦N and at ∼1000m depth with values

of 22 Sv. Between ∼30◦N and ∼10◦N AMOC-Ek values decrease to around 0 Sv,

before they increase again up to 5 Sv around ∼5◦N. North of ∼30◦N, the meridional

extent and strength of the TW overturning cell (Fig. 3.4b) are similar to what is

seen for the AMOC-Ek, except for some irregularities (which are probably due to the

problematic selection of density boundary values). Between ∼15◦N and ∼25◦N, we

find strong negative TW values as a consequence of the omitted positive velocities

in the Gulf of Mexico and the Caribbean Sea. Here, the shortcomings between the

AMOC-Ek and the TW are most pronounced in the upper 3000m (Fig. 3.4c). To-

wards the equator, the TW values increase again, but exceed the AMOC-Ek values

by 5 to 10 Sv. North of ∼30◦N, the difference seldom exceeds 2 Sv.

Turning to the variance of the annual mean AMOC-Ek and TW, we find high vari-

ance at about the same depth and latitude where we find high mean values for both

quantities (Fig. 3.5a,b). As the mean values, the variance decreases north of ∼55◦N

and between ∼15◦N and ∼25◦N until it increases again towards the equator. The

extremely high values at the equator reflect the division by the Coriolis parameter

in the TW and Ekman transport calculation, and should therefore be ignored. The

differences between the variance of the AMOC-Ek and the TW are largely zero be-

low ∼3000m (Fig. 3.5c). With the equatorial region excluded, we find the largest

differences between 45◦N and 55◦N where the variance of the TW exceeds that of

the AMOC-Ek by more than 2.5 Sv. Southward, the difference alternates until the

variance of the AMOC-Ek exceeds that of the TW from ∼30◦N to ∼15◦N. Further

south, the difference changes sign again.

Overall, we find similar spatial structures for both the mean and the variance for

the zonally averaged velocity fields and the transports, although the absolute values

show some differences. One has to be careful about the region between ∼15◦N and

∼25◦N because of the reversed mean TW, yet this region does not significantly stand

out for the variance. The agreement between the spatial structure of the variances
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(a)

(b)

(c)

Fig. 3.5: (a) Variance of annual mean values of the AMOC minus the Ekman transport (AMOC-Ek)

based on the meridional velocity field. (b) Variance of annual mean values of the reconstruction

based on the mean thermal wind contribution (TW). (c) Difference between the variance of AMOC-

Ek and the variance of the reconstruction. The contour interval is 0.5 Sv2.

is eventually the more important part when turning to the potential predictability

analysis, since only the ratio of the spread and the variance will play a role.

3.2.3 Quantifying the potential predictability

As in Pohlmann et al. (2004) and Tiedje et al. (2012), the prognostic potential pre-

dictability (PPP) of a quantity is determined using the ratio of the ensemble spread

as a function of time to the variance of the detrended reference run from 1959 to

2001. Since this ratio is subtracted from 1, a PPP value of 1 indicates perfect

potential predictability, whereas a PPP value below 0 indicates no potential pre-

dictability. Following Pohlmann et al. (2004), we estimate the significance of PPP

using an F-test.

Detrending the reference run is necessary to avoid artificial predictability. The refer-

ence run is detrended by removing the best straight-line fit from the monthly mean
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model data. The potential predictability is estimated for every latitude from 0◦ to

60◦N in the North Atlantic. In the following, PPP structure stands for the spa-

tial and temporal extent of the significant PPP values across the North Atlantic,

and predictable lead time stands for the time period over which the PPP values are

significant. Further details on the potential predictability measure, the significance

calculation, and the limitations of the used ensemble can be found in Tiedje et al.

(2012).

3.3 Results

This section is divided into three parts: First, the potential predictability of the

TW as introduced in the methods section (in the following: total TW ) is analyzed.

Second, boundary experiments are conducted to analyze the influence of the eastern

and western boundary on the total TW’s potential predictability. Third, we investi-

gate the relation between the potential predictability of the total TW and the total

AMOC. In all parts, the results are always considered in regard to the AMOC-Ek.

Since the reference run and the ensembles are conducted with the same model setup,

we assume similar dynamical evolutions of the integrations. Tiedje et al. (2012) has

already shown that the spread of the ensemble mirrors the variance of the detrended

reference run to a certain degree. Thus, prior to every potential predictability anal-

ysis, we specifically consider the latitudinal variation of the respective quantities’

variability in the detrended reference run.

3.3.1 The total thermal wind transport

3.3.1.1 Variability of the thermal wind transport

The variance of the detrended and annually averaged AMOC-Ek and TW show sim-

ilar latitudinal variations, with increased variance at the high latitudes (45◦N-60◦N)

and towards the equator (0◦-20◦N), and a minimum in between (∼30◦N; Fig. 3.6).

The region of the reversed mean TW (15◦N-30◦N, Fig. 3.4b) does not significantly

stand out in the variance of the detrended TW. Of particular note, however, are the

large fluctuations of the TW’s variance at the northern latitudes. But since in the

TW calculations for the ensembles the same boundary density positions are used,

we assume that the outliers are reduced in the ratio between the spread and the

reference variance in the subsequent potential predictability calculation.
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Fig. 3.6: Variance of AMOC-Ek (grey) and TW (black) in the reference run. The monthly mean

model output is detrended prior to the annual averaging and variance calculation.

3.3.1.2 Potential predictability of the thermal wind transport

We now turn to the analysis of the PPP structures of the AMOC-Ek, the TW and the

depth-integrated density gradient from 360m to the bottom (Fig. 3.7). The AMOC-

Ek’s PPP structure shows a maximum between 35◦N and 45◦N with predictable

lead times of about 4 years. To the north and south, the predictable lead times

decrease quickly to about 1-2 years (Fig. 3.7a). Except for some irregularities, we

find the same PPP structure for the TW (Fig. 3.7b). Even a small increase in PPP

around 10◦N is comparable in both PPP structures. We find this concentration of

high predictable lead times between 35◦N and 45◦N as well for the depth-integrated

density gradient, indicating that the presented TW’s PPP structure results from

the variability of the density gradient (Fig. 3.7c). It should be noted, that a similar

structure is evident for depth-integrations of the density gradient from 0m-1000m to

the bottom. These PPP structures of the depth-integrations of the density gradient

become more similar to the PPP structure of the TW, the more surface signals are

excluded (not shown).

We cannot fully explain the characteristic PPP structure of the AMOC-Ek, the TW

and the depth-integrated density gradient, but we give some elements of explanation

below. We assume that the variance increase of the reference run at lower and higher
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(a) (b) (c)

Fig. 3.7: Hovmöller diagrams of the PPP as a function of lead time (Atlantic: 0◦ - 60◦N) for (a)

AMOC-Ek, (b) TW, and (c) density gradient (depth-integrated from 360m to bottom). The white

dashed lines indicate values significant at the 90% level.

latitudes (Fig. 3.6) originates from spatially restricted complex dynamics that result

in temporally irregular occurring variations. Further, we assume that the ensemble

members show a similar dynamical behavior as the reference run, which results for

the temporal evolution in a faster growing spread between the members. In other

words, highly variable regions leave more room for the ensemble members to evolve

differently, respectively, to run into different directions.

I assume that at the northern latitudes, the AMOC predictability is influenced by

Kelvin waves that communicate density anomalies, originating from the NAO, from

the subpolar region toward the subtropical region (e.g., Köhl, 2005; Köhl and Stam-

mer, 2008). These southward traveling density anomalies at the western boundary

could be a reason for the shorter predictable lead times at the northern latitudes

and longer predictable lead times when the signal travels further south. Rossby

waves that affect the AMOC variability by modifying the east-west density gradi-

ent become more important farther south and travel at the southern edge of the

subtropical gyre (e.g. Köhl, 2005; Getzlaff et al., 2005; Hirschi et al., 2007). These

westward propagating density anomalies could be responsible for the limitation of

the potential predictability of the density-driven AMOC at the subtropical latitudes.

Focusing now on the full potential predictability field (i.e. all PPP values above

0), we find from 15◦N northward decreasing predictable lead times with increasing

latitudes. We assume that this can be explained by the relation between the mean

absolute density gradient and the strength of the variability: The stronger the den-

sity gradient, the more difficult it is for the members to vary in their paths (indicated

by a small growing spread), and the predictable lead times become longer. If we

calculate the simple ratio between the mean absolute density gradient and the vari-
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Fig. 3.8: Overview of the conducted experiments to calculate the TW from density boundary

values: The upper left panel shows the total TW, with temporally varying density values at both

boundaries. For all cases the dashed lines represent temporally varying density values and the solid

lines represent temporally constant density values. In the following analysis, each experiment is

indicated by the color presented here. The total TW is always represented in black.

ance of the reference run, we find a decrease towards the high latitudes, indicating

a decreasing PPP structure (not shown).

3.3.2 Boundary experiments: spatially separating the total

thermal wind transport’s contributions

To investigate the relative contribution of the eastern and western boundary density

to the variability of the total TW, we design 5 experiments, which are summarized in

figure 3.8. To calculate the depth-dependent meridional velocity ṽ (equation 3.1), we

hold the density boundary values temporally constant at one side of the basin, while

keeping the full signal at the other side in experiment 1 and 2. For the experiments

3 and 4, we hold the density values at the eastern boundary and the western upper

or lower temporally constant (above or below ∼1700m). For the 5th experiment we

keep only the density variability of the upper 1700m. We refer to these experiments

by TWeb (1), TWwb (2), TWwub (3), TWwdb (4), TWweub (5), indicating with the

subscript the region where the density variability is maintained.
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Fig. 3.9: Time series of monthly mean values of the reference run at different latitudes in the North

Atlantic: AMOC-Ek (gray), total TW (black), TWeb (blue), and TWwb (red).

3.3.2.1 Boundary experiments: Variability of the thermal wind

transport

The monthly mean time series of the total TW, TWeb, TWwb and AMOC-Ek show

not only a temporal variability (seasonal and inter-annual) but also a latitudinal

variability in the reference run (Fig. 3.9). Whereas the seasonal variability becomes

smaller with increasing latitude, the maximum inter-annual variability is found be-

tween 40◦N and 50◦N. Particular at these latitudes it becomes obvious that TWeb

shows essentially no inter-annual variability, while TWwb continues along the inter-

annual variations of the total TW and the AMOC-Ek.

In order to clarify the spatial separation of variability contributions, we initially

consider all boundary experiments at a single latitude (Fig. 3.10). We find that not

only the seasonal variability but also the nearly decadal variations of the AMOC-

Ek can be represented by the total TW, although its mean is about 1-2 Sv higher.

According to Köhl and Stammer (2008), changes of the NAO state are responsi-

ble for the long-term variations in the AMOC. The temporal evolution of TWwb,
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Fig. 3.10: Time series of monthly mean values of the reference run at 45◦N: AMOC-Ek (gray), TW

(black), TWeb (blue), TWwb (red), TWwub (orange), TWwdb (pink), and TWweub (violet).

TWwub and TWweub are very close to the total TW, with TWwb and TWwub show-

ing smaller seasonal variability than TWweub, since TWweub also includes variability

from the upper eastern boundary. In contrast, TWeb shows essentially no inter-

annual variability, but a distinctive annual cycle. TWwdb shows neither significant

seasonal nor inter-annual variability. In conclusion, the seasonal variability origi-

nates to larger parts from the eastern boundary densities than from the western,

while the inter-annual variability mainly originates from the upper ∼1700m of the

western boundary. Note that this depth-dependent separation can also be seen in

the variances figure 3.5b.

In order to quantify these findings not only at a single latitude but at every latitude,

we calculated the correlation between the AMOC-Ek and the TW as well as all TW

experiments, on a monthly mean and annual mean basis (Fig. 3.11). To exclude

artificially increased correlation coefficients, we detrend the reference run.

On a monthly basis, the correlation coefficient of the AMOC-Ek and the total TW

largely varies around 0.5 (Fig. 3.11a). Minimum correlation around 0.4 can be seen

between 15◦N and 25◦N and maximum correlation up to 0.7 is evident around 10◦N

and between 25◦N and 55◦N. TWweub shows a very similar correlation with AMOC.

TWeb, TWwb, TWwub, and TWwdb show at most latitudes a weaker correlation to
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(a)

(b)

Fig. 3.11: Correlation on a (a) monthly and (b) annual basis between AMOC-Ek and: total TW

(solid black), TWeb (solid blue), TWwb (solid red), TWwub (dashed orange), TWwdb (dashed pink),

TWweub (dashed violet) . Prior to the calculations, the monthly mean values are detrended.

AMOC-Ek, with correlation coefficients ranging mainly between 0 and 0.5. Between

5◦N and ∼40◦N, TWeb shows a higher correlation with AMOC-Ek than the very

similar running TWwb and TWwub, while north of ∼40◦N, TWwb and TWwub show

a higher correlation.

On an annual basis, the correlation of TWeb with AMOC-Ek decreases, while the

correlation of the total TW and TWwb, TWwub, TWwdb, and TWweubgenerally in-

crease (Fig. 3.11b). Small correlation coefficients of TWeb (ranging around zero and

never exceeding 0.5) indicate that the variability originating from eastern bound-

ary densities contributes only little to the total inter-annual total TW variability.

Most of the total TW variability can be represented by the variability of the west-

ern boundary densities. North of 35◦N, particularly the upper ∼1700m seems to be

responsible for the good correlation to the AMOC-Ek.

Although correlating two time series does not express anything about the magnitude

of variability, figure 3.11 confirms the conclusions for figure 3.10 at all latitudes, and
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Fig. 3.12: Variance of detrended and annually averaged reference run: total TW (solid black), TWeb

(solid blue), TWwb (solid red), TWwub (dashed orange), TWwdb (dashed pink), TWweub (dashed

violet).

reveals quite clearly the eastern and western boundary contribution to the total TW

variability.

So far, we have considered monthly and annual TW averages of the reference run

to facilitate a better understanding of the variability contributions from the eastern

and western boundary densities. On the way towards inter-annual potential pre-

dictability, we are only interested in the inter-annual variability for the following

analysis. As before in chapter 3.3.1, we initially present the detrended and annually

averaged variance of all boundary experiment’s TW for the reference run (Fig. 3.12).

We find that the variability of the eastern boundary (TWeb) and the western deeper

boundary (TWwdb) alone contribute only little to the total variance of TW. In

contrast, the variability of the western boundary (TWwb) alone generally continues

along the total variance, but overestimates the total variance of TW south of ∼30◦N.

This implies that another signal is included in the western boundary variability that

does not play a role for the total variability, or that the signal is superimposed by

signals from the eastern boundary. The variances of the upper ocean (TWwub and

TWweub) are at all latitudes smaller than that of the total TW, but show similar

latitudinal variations with the smallest spread between ∼30◦N and ∼50◦N. Note
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(a) (b) (c)

(d) (e) (f)

Fig. 3.13: Hovmöller diagrams of the PPP as a function of lead time (Atlantic: 0◦ - 60◦N) for (a)

total TW (same as in figure 3.7b) and (b-f) TW for all boundary experiments (arranged in the

same order as in figure 3.8). The white dashed lines indicate values significant at the 90% level.

that north of 55◦N a significant contribution to the total variance seems to originate

from the upper eastern boundary.

Overall, we find that only the density variability of the upper ∼1700m, and mainly

that of the western boundary, contribute significantly to the full inter-annual TW

signal, respectively, would be necessary to reconstruct most of the total inter-annual

TW variance. For the subsequent PPP analysis, we expect a similarly dominant

influence of the western boundary on the total TW’s PPP structure.

3.3.2.2 Boundary experiments: Potential predictability of the thermal

wind transport

We now turn to the potential predictability analysis for the boundary experiments.

As for the reference run, the boundary densities are held temporally constant at one

side of the basin and/or below or above ∼1700m for every ensemble member. Not

surprisingly, the temporal evolution of the western boundary densities is sufficient

to reconstruct most of the total TW’s PPP structure although particular south of

30◦N, TWwb shows higher PPP values and longer predictable lead times (Fig. 3.13c).
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By additionally omitting the influence of the deeper western boundary densities, the

PPP structure becomes more similar to the total TW’s PPP structure south of 30◦N

(TWwub; Fig. 3.13d). If we add the influence of the upper eastern boundary densities

to the upper western boundary densities, we find that the potential predictability is

underestimated south of 30◦N, but the PPP structure north of 50◦N shows a closer

resemblance to the total TW’s PPP structure (TWweub; Fig. 3.13f).

The influence of the lower western boundary densities and the eastern boundary

densities on the inter-annual potential predictability is small (TWwdb and TWeb;

Fig. 3.13e and b). Both TW experiments show significant potential predictability

only at a few latitudes. But since these few occasions are not total outliers, a

small regional influence cannot be excluded. For example, the increased potential

predictability of TWeb around 55◦N, could indicate an influence of the upper eastern

boundary densities at these latitudes.

3.3.3 Relating the potential predictability of the thermal wind

transport to the AMOC

So far, only the relation between the TW and AMOC without the Ekman transport

was considered. This leaves us with the question of how much would we know about

the potential predictability of the total AMOC by only observing the boundary den-

sities.

As before, we start with analyzing the variance of the reference run (Fig. 3.14a).

The inter-annual variance of the AMOC shows a slight decrease from the higher

latitudes (∼1.5Sv2) to about 30◦N (∼1Sv2), followed by a slight increase towards

the equator (∼1.1Sv2). North of 30◦N, the variability of the variance values is much

higher. From 60◦N to 20◦N, the variance of the Ekman transport remains constant

about 0.1Sv2 until it abruptly increases at 20◦N and exceeds the AMOC’s variance

at 10◦N. Between 60◦N and 20◦N, the subtraction of the Ekman transport from

the AMOC seems to play a minor role on inter-annual time scales. The expected

reduction of the variance is only evident between 30◦N and 55◦N. South of 20◦N,

the variance of the AMOC-Ek increases disproportionately towards the equator,

indicating that with the subtraction of the Ekman transport a signal is removed

that does (originally) not contribute to the total AMOC’s variance. If we calculate

the variances with monthly means, we find, as expected, smaller variances for the

AMOC-Ek than for the total AMOC everywhere north of 7◦N (not shown). The

correlation between the AMOC and the Ekman transport is significantly lower on

an inter-annual time scale than on a seasonal time scale.
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(a) (b) (c)

Fig. 3.14: Relation between AMOC and Ekman transport (Atlantic: 0◦ - 60◦N): (a) Detrended

and annually averaged reference run: variance of the Ekman transport (green), AMOC (gray), and

AMOC-Ek (gray dashed). (b) and (c): Hovmöller diagrams of the PPP as a function of lead time

for the AMOC (b; cp. Fig. 8 from Tiedje et al. (2012); cp. Fig. 2.8) and the AMOC-Ek with the

ensemble spread divided by the reference variance of the total AMOC (c). The white dashed lines

indicate values significant at the 90% level.

The PPP structure of the AMOC was already shown in Tiedje et al. (2012), how-

ever, its origins were not discussed in detail (Fig. 3.14b). The predictable lead times

increase continuously from 2 years between 45◦N and 60◦N to about 6-7 years be-

tween 15◦N and 25◦N. At a first glance, the AMOC’s PPP structure does not seem

similar to the AMOC-Ek’s PPP structure (Fig. 3.7a), implying that the influence

of the Ekman transport on the inter-annual PPP cannot be ignored. To analyze

the Ekman transport’s influence on the predictable lead times of the AMOC, we

divide the ensemble spread of the AMOC-Ek by the variance of the total AMOC,

instead of the variance of the AMOC-Ek in the PPP calculation (Fig. 3.14c). The

resulting PPP structure is already quite similar to the original PPP structure of the

AMOC-Ek (Fig. 3.7a), but the changes in the ensemble spread due to subtraction

of the Ekman transport are easier to understand, since the denominator and the

significance limit are the same for both PPP calculations. Between 60◦N and 40◦N,

the predictability lead times are generally the same as for the AMOC, but south

of 35◦N, the potential predictability decreases faster. In contrast to the AMOC,

we find continuously high PPP values around 40◦N, where we find the maximum

predictable lead times.

To understand the structural changes in the PPP, we need to distinguish between

the ensemble spread behavior of the first 1-2 years, that influences the initial mag-

nitude of the PPP values, and the temporal evolution of the ensemble spread. We

assume that the dynamical behavior of the reference run and the individual en-
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semble members is similar, and that an increase of the reference run’s variance is

equivalent to a faster growing ensemble spread. As indicated by the behavior of

the reference run’s variance between 30◦N and 55◦N, the subtraction of the Ek-

man transport decreases the initial ensemble spread, resulting in significantly higher

PPP values around 40◦N. To the south (particular south of 20◦N), the increase of

the reference run’s variance after the Ekman transport subtraction implies for the

ensemble a faster growing spread, and thus shorter predictable lead times. The

remaining differences between the figure 3.14c and the original AMOC-Ek’s PPP

structure (Fig. 3.7a) can be explained by the changes in the reference run’s variance

due to the Ekman transport (Fig. 3.14a) and a higher significance limit. With this

consideration, we can at least understand the technical origin of the transition from

the AMOC’s to the AMOC-Ek’s PPP structure.

We assume that the dynamical origin of the initially low PPP values around 40◦N

are due to irregular wind fields at the gyre boundary that are able to offset the

initial conditions for the ensemble members (resulting in a large initial spread), but

have no significant influence on the temporal evolution of the AMOC on longer

timescales. Indeed, the Ekman transport does not seem to influence the predictable

lead times significantly north of 35◦N-40◦N. South of 20◦N, where the reference run’s

variance indicates that the Ekman signal does not contribute to the AMOC vari-

ability (cp. Fig. 3.14a), the predictable lead times could be artificially lengthened

and the presented PPP structure could be misleading at these latitudes. Possible

dynamical reasons for the general PPP structure, with one maximum around 40◦N

and decreasing potential predictability to the north and south, are assumed to lie in

temporally irregular occurring density anomalies at the northwestern boundary and

at the subtropical latitudes (cp. chapter 3.3.1.2).

3.4 Discussion

The PPP structure of the total TW can largely be reconstructed from the temporal

variability of the upper western density boundary values. Although we find simi-

larities between the PPP structure of the TW and the AMOC, the influence of the

Ekman transport cannot be neglected.

The similarities between the PPP structures of the TW and the AMOC without the

Ekman contribution, give confidence to the robustness of the presented structure.

However, especially the mean TW shows limitations for the region between 15◦N and
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25◦N, where a large part of the western boundary current was totally excluded due

to the topographic separation of the marginal seas. Yet, the inter-annual correlation

between the AMOC and the TW exceeds 0.5 at these latitudes (Fig. 3.11b), and a

misleading effect of the omitted regions on the TW’s PPP structure cannot be seen.

Nevertheless, a revision of the definition to find the significant boundary density

positions, that includes the Caribbean Sea and the Gulf of Mexico and results in

a smoother latitudinal distribution of the TW, would improve the study and is a

matter for future work.

Prior to the PPP analysis, the analysis of the variance and correlation have already

shown that on inter-annual time scales the eastern boundary densities would only

have little influence on the total TW’s PPP structure. This raises the question

whether the influence of the eastern boundary densities would be more prominent

in the TW’s PPP structure on a monthly time scale. We find that changing the

temporal averaging of the input data does not significantly change the general PPP

structures of the TW boundary experiments (except for the visibility of an dis-

tinctive annual cycle). Since the variability of the western boundary densities also

includes seasonal variability, although it is not as strong as in the eastern boundary

densities, the signal of the western side of the basin still dominates the total TW’s

PPP structure.

However, the PPP measure is rather unsuited for the analysis of seasonal potential

predictability, since the seasonal variations can easily be strong enough to deter-

mine the potential predictability directly after the first annual cycle and all signif-

icant inter-annual information are lost or superimposed by the seasonal variations.

Nevertheless, the consideration of the monthly PPP shows again, how important

it is not to rely completely on the significance limit. Tiedje et al. (2012) already

discussed that the predictable lead times are subjected to variations, depending on

the parameters used to calculate the significance limit. Thus, it is additionally use-

ful and appropriate to consider the PPP values as long as the ensemble spread lies

within the variance of the reference run. For example, we consider the full potential

predictability field to facilitate a better understanding of the TW’s PPP structure

and its relation to the AMOC. Anyway, it would be useful to test the robustness of

the presented PPP structures with an additional potential predictability measure.

Using for example the anomaly correlation (Pohlmann et al., 2009) could also clar-

ify to what extent the PPP measure indicates the temporal correlation between the

ensembles and the reference run.

However, neither the agreement between the PPP structures of the AMOC-Ek and
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the TW, nor the agreement between different potential predictability measures could

ultimately prove if the presented structure is robust (in the sense of model indepen-

dent) or an artificial product of the generated ensemble. The present ensemble is

subjected to the limitation of the used ocean-only model. Nonetheless, the present

study benefits from the initialization from an oceanic state estimate, and the im-

proved representation of its oceanic variability. A detailed discussion on the lim-

itations of the ensemble setup can be found in Tiedje et al. (2012), however the

Ekman transport was only briefly discussed. Since we don’t use a coupled model,

we can only use the meridional wind stress from GECCO’s optimized forcing to cal-

culate the Ekman transport. To calculate AMOC-Ek for the ensemble simulations,

every ensemble member is reduced by the Ekman transport of its respective 10-year

forcing period. In a coupled model, the atmospheric feedback from the ensemble

simulations would influence the Ekman transport, and this might lead to a different

PPP structure than we find for the ocean-only model.

Based on the present analysis in an oceanic state estimate, the basin-wide AMOC can

be potentially predicted pre-dominantly relying on capturing the thermal wind vari-

ability from observations. However, since we assess the presented results only with

the assumption of (nearly) perfectly measured boundary densities in time (monthly

means) and space (depth and latitude), the implementation of the required obser-

vational system would be challenging. Following previous observing system design

studies, it would be useful to test, how many densities measurements in space and

time are at least required to asses the presented PPP structure of the TW.

3.5 Conclusions

Based on the analysis of the North Atlantic thermal wind transport’s variability

(TW) in the GECCO oceanic state estimate, and the prognostic potential pre-

dictability (PPP) of the TW and the AMOC in hindcast ensembles generated using

GECCO, we conclude that:

• We confirm earlier results that, across the whole North Atlantic, the density

gradient and thus the TW controls the main features of the AMOC minus the

Ekman transport variability (AMOC-Ek).

• The PPP structure of the total AMOC cannot be directly concluded from the

PPP structure of the TW without considering the regional influence of the

Ekman transport on the AMOC variability.
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• The TW and the AMOC-Ek show similar PPP structures as the depth-integrated

density gradient, with a maximum of predictability lead times around 40◦N

and decreasing potential predictability to the north and south.

• The contributions to the TW’s variability are spatially and temporally sep-

arated: the seasonal variability originates to larger parts from the eastern

boundary densities than from the western, while the inter-annual variability

mainly originates from the upper ∼1700m of the western boundary.

• The variability of the upper western boundary densities is sufficient to re-

construct most of the total TW’s PPP structure, while the influence of the

lower western boundary densities and the eastern boundary densities on the

inter-annual potential predictability is small.
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4. POTENTIAL PREDICTABILITY

QUANTIFIED WITH ANOMALY

CORRELATION

4.1 Introduction

To test whether our conclusions on the potential predictability depend on the PPP

measure used in the previous chapters, I introduce here the anomaly correlation

as a second potential predictability measure. In chapter 2.4 I briefly mention that

the results calculated with the anomaly correlation generally confirms our results

calculated with the PPP measure. The investigations that led to this statement

were, however, in an early state and needed more work that is now presented in this

chapter. Note that only the quantities investigated in Tiedje et al. (2012; chapter 2)

are tested with the anomaly correlation.

Several different approaches to quantify potential predictability of ensemble exper-

iments can be found in the literature (cp. chapter 1.2). Collins (2002) used and

compared three different potential predictability measures: the anomaly correla-

tion (which differs from the anomaly correlation I will use here), the PPP measure

and the root mean square error (RMSE). Collins concluded that ”... there is no

universally defined [prediction] skill standard. Hence the reader is free to inter-

pret these measures of potential predictability as they wish.”. In contrast, Murphy

(1988) concluded in his study on the mean square error and their relationships to

the correlation coefficient that a correlation coefficient as the only forecast measure

ignores important types of biases in the forecast. Thus, it is always desirable to

test two forecast measures instead of one. However, in more recent ensemble exper-

iment studies, authors usually settle for one potential predictability measure, which

is selected according to the respective research questions. But since the different

measures require very different sets of model simulations, one is left with the im-

pression that the experimental setup is designed to suit the chosen measure.
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Here, I use the PPP measure following Pohlmann et al. (2004), which goes originally

back to Collins and Allen (2002), and the anomaly correlation following Pohlmann

et al. (2009). Other ensemble predictability studies that used the PPP or a PPP-like

approach (based on variance ratios, originally going back to ANOVA) use long-time-

scale reference simulations (50 to >100 years) and often multi-decadal ensemble ex-

periments (e.g., Rowell, 1998; Collins and Allen, 2002; Collins, 2002; Boer, 2004,

2009; Msadek et al., 2010). The research questions in these studies focus in general

on the respective model’s (upper) limit of potential predictability in long-time-scale

experiments, including the analysis of climate predictability and climate change

predictability. It is also of interest which regions show the best potential for pre-

dictability in regard to (future) observation systems. Further, the PPP measure is

also used for systematic studies on the dependence of potential predictability on the

model formulation, the initial conditions or the boundary conditions of the experi-

ment.

In contrast, the anomaly correlation is used for ensemble predictability experiments

around 10 years of simulation time (e.g., Chen et al., 2010; Matei et al., 2012a).

These studies often focus on the predictive skill on short time scales and how to im-

prove it by testing initialization techniques and boundary conditions. (If the actual

predictive skill is tested, the ensemble experiment periods are limited due to short

observational records.) But the studies aim also to provide insight in causes leading

to predictability.

Both, the PPP measure and the anomaly correlation formally quantify potential

predictability. But the resulting calculated potential predictability needs to be in-

terpreted differently. The PPP measure tests if the spread of the ensemble members

(possible oceanic states) lies within the variance of the reference run. The PPP

measure does not provide any information about the agreement between the tempo-

ral evolution of the ensemble members and the temporal evolution of the reference

run. In contrast, the anomaly correlation tests whether the temporal evolution of

the reference run can be reproduced with the ensemble means. The temporal be-

havior of the ensemble members as a whole, the spread within the ensemble, is not

considered by the anomaly correlation measure. In general, the PPP measure offers

more independence in terms of the starting dates for the ensemble setup, while the

anomaly correlation needs successive starting dates. Given these differences between

both measures, it is not trivial that the analysis of the present ensembles with the

anomaly correlation achieves similar results as the analysis with the PPP measure.

In this chapter, I first describe how the anomaly correlation and the significance limit
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(the critical correlation coefficient) is calculated by means of the total MHT. Second,

as noted above, the potential predictability is equally calculated for all quantities

investigated in Tiedje et al. (2012; chapter 2). Third, I give a short conclusion on

the potential predictability results generated with the anomaly correlation measure

and the PPP measure and on the question if it makes sense to combine the two

measures in the following chapter.

4.2 Method

The potential predictability of the ensemble experiments (described in chapter 2.2.2)

is measured in terms of the the anomaly correlation as a function of lead time t,

ac(t) (Pohlmann et al., 2009):

ac(t) =

∑N
i=1 [x̃i(t)− x̄i] [ri(t)− r̄i]

√

∑N
i=1 [x̃i(t)− x̄i]

2∑N
i=1 [ri(t)− r̄i]

2
, (4.1)

with

x̄i =
1

T

T
∑

t=1

x̃i(t) and r̄i =
1

T

T
∑

t=1

ri(t),

where N is the number of ensembles (here, N = 10), T is the number of lead times

(here, T = 10), x̃i is the mean of the ith ensemble, and ri is the reference run starting

in the same year as the ith ensemble. This calculation is carried out for each latitude

from 0◦ to 60◦N. To avoid artificial predictability the reference run and the ensemble

means are detrended and averaged to annual means prior to the anomaly correla-

tion analysis. An overview of the anomaly correlation measure is given in Figure 4.1.

An anomaly correlation value of 1 indicates perfect potential predictability, whereas

a value below (or equal to) 0 indicates no potential predictability. In order to derive

a statistical significance and therewith an interpretable spatial structure of anomaly

correlation values, a critical correlation value is calculated for every latitude in two

steps:

1. An effective number of observations neff (degrees of freedom) is calculated by

using the lagged autocorrelations of the respective time series of the ensemble

means and the reference run for every lead time (e.g., Jungclaus and Koenigk,

2010; von Storch and Zwiers, 1999):
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Fig. 4.1: Overview of the anomaly correlation method. The upper panel shows how the anomaly

correlation value for the first lead time is calculated from the correlation between the ensemble

means (first years) and the reference run. The lower panel shows the same for the 10th lead time.

(The coloring of the individual ensembles and the reference run is based on Figure 2.1.)

neff = n/ [1 + 2(ρx1ρ
r
1 + ρx2ρ

r
2 + . . .+ ρxnρ

r
n)] , (4.2)

where n denotes the sample size (length of the correlation time series) and

ρx1 and ρr1 are the lag-1 autocorrelations of the two time series, ρx2 and ρr2
are the corresponding lag-2 autocorrelations and so on. The denominator of

equation 4.2 gives the decorrelation time.

2. Since only positive correlations indicate predictive skill, respectively potential

predictability, the critical correlation coefficient ccc at the significance level

α is estimated using a one-sided t-test (for every lead time; following Sachs,

1997):

ccc =

√

t2neff ,α
/
[

neff + t2neff ,α

]

, (4.3)

where tneff ,α is the Student’s t inverse cumulative distribution function using

the degrees of freedom neff for the corresponding probabilities in α. The
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Fig. 4.2: Critical correlation coefficient (ccc) for the anomaly correlation of the MHT at various

significance level and autocorrelation lags. The ccc is calculated at the 90% significance level with

a lag-8 autocorrelation (red stars), at the 85% or 95% significance level with a lag-8 autocorrelation

(red dashed lines), at the 90% significance level with a lag-5 to lag-9 autocorrelation (gray shading),

and at the 95% (85%) significance level with a lag-5 (lag-9) autocorrelation (gray dashed lines).

anomaly correlation value is statistical significant if ac is greater than or equal

to the critical correlation coefficient.

The overall aim with these calculations is to find a balance between a statistically

sound solution and the preservation of the spatial structure that can already be seen

without cutting insignificant values. The short time series together with the inter-

dependence of the ensemble members make it actually impossible to find a totally

sound statistical solution. But by reasonably choosing of parameters, the obvious

anomaly correlation results can be statistically supported.

In principle, a critical correlation coefficient could be calculated at every latitude

and for every lead time. Here, I assume that for a specific latitude the degrees of

freedom stay more or less constant over the lead times and I take the median of the

the degrees of freedom to calculate a critical correlation coefficient for every latitude.

Figure 4.2 shows the median of the critical correlation coefficient of the MHT for

different numbers of lags in the decorrelation time calculations (lag-5 to lag-9) and

at different significance levels (85%, 90% and 95%). The critical correlation coeffi-

cient is higher at the subpolar latitudes (∼0.5-∼0.6) than at the subtropical latitudes

(∼0.3-∼0.4). This structure is similar for all investigated lags and significance levels.

For the MHT as well as for all forthcoming quantities I use a significance level of

90% and limit the decorrelation time calculations at an autocorrelation lag of 8 lead

times (red stars and red dashed curves in figure 4.2). To remain consistent with
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the significance calculations for the PPP measure, I average the critical correlation

coefficients over the latitudes. For comparison, the significance limit calculations for

the anomaly correlation result in 0.4 for the MHT and 0.55 for the AMOC, whereas

the significance limit calculations for the PPP result in 0.4 for the MHT and 0.45

for the AMOC.

To test if the assumptions and simplifications cut the “right” insignificant correlation

values, I now compare the Hovmöller plots of the MHT’s potential predictability with

and without cutting the anomaly correlation values at the critical correlation coef-

ficients (Fig. 4.3a and b). Generally, both figures show a similar spatial structure,

except that the long predictable lead times are interrupted between the subpolar

and subtropical gyres (∼40◦N-∼45◦N). In the following, AC structure stands for the

spatial and temporal extent of the significant anomaly correlation values across the

North Atlantic, and AC predictable lead time stands for the time period over which

the anomaly correlation values are significant.

4.3 Results from chapter 2 tested with anomaly

correlation

4.3.1 Potential predictability of the MHT

The AC predictable lead times of the total MHT indicate up to 9 years of potential

predictability around 50◦N. These long AC time scales decrease with decreasing

latitudes to 3-4 years between 20◦N and 30◦N. In comparison to the PPP structure

of the MHT (Fig. 2.3 or gray dashed lines in Fig. 4.3b), I find good agreement in the

subtropical gyre and between 50◦N and 60◦N. The location of maximum potential

predictability (around 50◦N) is similar as well. But at most latitudes between 35◦N

and 50◦N the AC predictable lead times are much longer than the predictable lead

times calculated with the PPP measure. Additionally, the gap between the subpolar

and subtropical latitudes is much less apparent and shifted about 5◦ to the north.

4.3.2 Influence of the MHT components, velocity and

temperature field variations

As in chapter 2.3.2, I continue the potential predictability analysis by decomposing

the MHT into the overturning and the gyre component (Fig. 4.4a and d). As the

PPP structure of the MHT, the AC structure of the MHT can be reconstructed from
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(a) (b)

Fig. 4.3: (a) Hovmöller diagram of the potential predictability of the MHT as a function of lead

time quantified with anomaly correlation (Atlantic 0◦ - 60◦N). (b) Same as (a) but at the 90%

significance level. The gray dashed line in (b) indicates the PPP significance limit.

both components. At the subtropical latitudes, the AC structure can be explained

with the contributions from the overturning component, whereas at the subpolar

latitudes the AC structure can be explained with the contributions from the gyre

component. In their respective areas of influence both components show slightly

longer AC predictable lead times than the total MHT (Fig. 4.3b). Additionally,

the anomaly correlation values of the components are higher. In comparison to the

PPP, the predictable lead times of the gyre component agree quite well, whereas the

predictable lead times of the overturning component are longer north of 35◦N for

the anomaly correlation, and the gap between the gyres seems to be shifted to the

north as for the total MHT.

The spatial separation of the contributions becomes even more obvious when we al-

low the total MHT signal for the reference run instead of the respective component’s

signal (Fig. 4.4b and e). It is, however, noticeable that this method of opposing the

MHT components of the ensemble to the total MHT of the reference run has to

be interpreted differently for the anomaly correlation and for the PPP measure.

Where no limitation of potential predictability with the PPP measure can be found

(because the ensemble spread stays smaller than the variance of the reference run),

I conclude that the respective component has no significant influence on the total

MHT’s potential predictability. In contrast, the way of interpreting the results of the

anomaly correlation measure stays the same as for opposing the MHT components

of the ensemble to the MHT components the reference run. Nevertheless, it can

be concluded from both measures and approaches that the overturning component

has more influences on the potential predictability of the total MHT at subtropical
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(a) (b) (c)

(d) (e) (f)

Fig. 4.4: Hovmöller diagram of the potential predictability as a function of lead time quantified with

anomaly correlation at the 90% significance level of the following quantities (Atlantic: 0◦ - 60◦N):

(a) the overturning component of the MHT, (b) the overturning component of the MHT tested

against the full reference MHT signal, (c) the MHT calculated with a constant mean temperature

field tested against the full reference MHT signal, (d) the gyre component of the MHT, (e) the gyre

component of the MHT tested against the full reference MHT signal, and (f) the MHT calculated

with a constant mean velocity field tested against the full reference MHT signal. The gray dashed

lines indicate the PPP significance limits.

latitudes and the gyre component has more influence at the subpolar latitudes.

Following chapter 2.3.3, I now estimate the influence of the velocity (temperature)

field on the potential predictability of the MHT by holding the velocity (tempera-

ture) field temporally constant for the ensembles but keeping the full MHT signal

for the reference run (Fig. 4.4c and f). Especially at the subtropical but also at

the southern subpolar latitudes, the variations of the velocity field alone (Fig. 4.4c)

seem to be sufficient to reproduce the AC structure of the total MHT. As for the

total MHT, the AC structure and the PPP structures agree particularly well in the

subtropical gyre.

In contrast, the calculations for the MHT using a temporally constant velocity

field and a varying temperature field show no significant potential predictability

(Fig. 4.4f). In chapter 2.3.3, I concluded for the PPP measure that the influence of
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Fig. 4.5: Hovmöller diagram of the potential predictability as a function of lead time quantified

with anomaly correlation at the 90% significance level of the MHT minus the Ekman heat transport

tested against the full reference MHT signal (Atlantic: 0◦ - 60◦N). The gray dashed line indicates

the PPP significance limit.

the temperature variations is mostly restricted to the vicinity of the gyre boundary,

where the temperature field variations reduce the ensemble spread and lengthen the

PPP time scales of the total MHT. From the result of the anomaly correlation, I can

only draw the rather general conclusion that the temperature variations alone do

not correlate with the total MHT variations. I assume that temperature variations

might also have a limiting effect on the AC predictable lead times at the south-

ern subpolar latitudes, since the AC predictable lead times of the velocity variation

analysis are longer at these latitudes than those of the total MHT.

4.3.3 Influence of the Ekman heat transport

The influence of the wind field is estimated by subtracting the Ekman heat transport

from the MHT prior to the anomaly correlation analysis. As for the PPP, the MHT

minus the Ekman heat transport is tested against the total MHT signal for the

reference run (Fig. 4.5). In contrast to the PPP structure, the AC structure does

not change significantly between the MHT structure and the MHT minus the Ekman

heat transport structure.

4.3.4 Potential predictability of the AMOC

The anomaly correlation of the AMOC shows isolated short AC predictable lead

times of about 2 years at the subpolar latitudes and longer AC predictable lead times

of 8 years around 40◦N and of 3 to 4 years at the subtropical latitudes (Fig. 4.6).
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Fig. 4.6: Hovmöller diagram of the potential predictability of the AMOC as a function of lead time

quantified with anomaly correlation at the 90% significance level (Atlantic: 0◦ - 60◦N). The gray

dashed line indicates the PPP significance limit.

Especially in the subtropics, the AC predictable lead times are significantly shorter

than the PPP predictable lead times. The PPP structure shows decreased PPP

values around 40◦N (Fig. 2.8) while the anomaly correlation structure shows a gap

of potential predictability further north (45◦N-50◦N).

Despite these differences, I come to the same conclusion for both measures: The

spatial structure of shorter AMOC predictable lead times at subpolar latitudes than

at subtropical latitudes is more comparable to the overturning component of the

MHT than to the total MHT. Therefore, the predictable lead times of the AMOC

are only similar to the predictable lead times of the MHT where the overturning

component controls the predictable lead times of the MHT (subtropical latitudes).

4.4 Concluding remarks

The aim of this chapter was to test the robustness of the results from Tiedje et al.

(2012) (chapter 2) with a second potential predictability measure. The anomaly

correlation was introduced and applied to all quantities investigated in chapter 2.

Although the AC and PPP structures do not always agree in all details, most of

the dynamic conclusions appear robust with respect to both the ensemble spread

(PPP) and the degree of linear association between the hindcast ensembles and the
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reference run (anomaly correlation). Both measures show that the MHT’s poten-

tial predictability structure can be reconstructed from the potential predictability

structure of its dynamical components. Further, a transition from the overturning

component dominated region (subtropical latitudes) to the gyre component dom-

inated region (subpolar latitudes) can be seen with both measure, although the

region of transition is not spatially consistent. Around 40◦N, maximum AC pre-

dictable lead times occur, where a gap of potential predictability is present in the

PPP structure. The AC structure also shows a gap of potential predictability, but

it is significantly smaller and shifted to the north by about ∼5◦.

It seems that the transition from the subtropical to the subpolar gyre is detected

differently by the anomaly correlation and the PPP measure. While with the PPP

measure the spread grows bigger than the variance of the reference run (∼40◦), the

anomaly correlation method does still detect good correlation between the ensem-

ble means and the reference run. But only ∼5◦ further north, the gyre transition

also affects the agreement of the temporal evolution, resulting in small correla-

tion coefficients. The gyre boundary is a region of high variability and it spatially

shifts during the investigated period. I assume that although the input data for the

anomaly correlation analysis are detrended, the ignorance of biases could lead to an

overestimation of the potential predictability at the gyre boundary. Overall, due to

the high variability and dynamical complexity in the region around the gyre bound-

ary (∼40◦ and ∼50◦), one should be cautious to draw conclusions on the potential

predictability here.

The PPP analysis of the MHT minus the Ekman heat transport seems intuitive at

first sight, since we find longer predictable lead times at all latitudes if we subtract

the Ekman variability from the ensemble simulations (chapter 2.3.4). On the other

hand, the nearly unchanged AC structure of the MHT minus the Ekman heat trans-

port is a surprising result. So, we do find a limiting effect of the Ekman dynamics

on the potential predictability with the PPP measure, but not with the anomaly

correlation. Possibly, the Ekman transport influences the total amount of variability

(ensemble spread; PPP) more severe than the linear association (temporal evolution;

anomaly correlation) on inter-annual time-scales.

Another point that can be discussed is the influence of the temperature variations on

the potential predictability of the MHT and its different representation in the PPP

and AC structure (chapter 4.4). For the PPP measure, we argue that the potential

predictability time scales are longer at subpolar latiudes because the increased in-

fluence of the temperature field reduces the spread of the ensembles (chapter 2.3.3).
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For the anomaly correlation, the approach of holding the velocity field constant for

calculating the MHT and test the resulting signal against the full MHT signal can-

not be interpreted as straightforward as for the PPP measure. I assume that there

is simply too little variability left that can correlate well with the full signal of the

MHT, and thus the variation of the temperature field leaves no trace in the anomaly

correlation plot (Fig. 4.4f).

The predictable lead times of both the anomaly correlation and the PPP analysis

can be influenced by a different choice of the parameters that set the statistical

significance limit (chapter 4.2). Despite the efforts to make the anomaly correla-

tion and PPP measure comparable in terms of the statistical interpretation, the

predictable lead times vary between the two measures, and insisting on a specific

number of predictable years would not be helpful. After all, the PPP measure and

the anomaly correlation are two independent measures of potential predictability.

In chapter 2.2.3 we have shown that there is essentially no predictability inher-

ent in the experimental setup for the PPP measure, although the reference period

(1959-2001) was forced with the same optimized forcing as the ensemble members.

The reference period of the anomaly correlation is naturally the hindcast period

(1983-2001), whose optimized forcing was not used to generate the ensemble mem-

bers. Thus, from this point of view, the anomaly correlation would be the prefer-

able potential predictability measure. However, the use of a variance-based and

a correlation-based potential predictability measure provides also new insights and

may modify the conclusions. Further, the use of both measures in combination could

prevent us from too optimistic predictable lead times that could result from a high

correlation concealing an offset (bias) or a small spread concealing no linear associ-

ation between the ensembles and the reference run.

In the following, I briefly summarize the conclusions from the analysis of the poten-

tial predictability quantified with the anomaly correlation and the PPP measure:

• The PPP measure is useful to estimate whether the hindcast variability (en-

semble spread) lies within the variance of the reference run which comprises

several different oceanic states.

• The anomaly correlation is useful to estimate whether the temporal evolution

of the reference run’s hindcast period can be reproduced by the ensemble

means.

• Either measure can be used to estimate a dynamical component’s influence on
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the potential predictability of the total quantity (by dynamical decomposition).

The PPP measure is preferential to estimate the limiting effect of an individual

component’s variability on the potential predictability of the total quantity (by

holding one individual component constant and opposing it to the full signal).

• Although the anomaly correlation and the PPP measure do not show the same

potential predictability lead times, the agreement of both measures in terms

of the dynamic conclusions strengthens the robustness of these conclusions.

The prospect to benefit from a joint analysis of both measures’ predictability criteria

(significant correlation and ensemble spread) motivates the combination of both

measures in the next chapter.





5. ON THE RELATION OF THE

POTENTIAL PREDICTABILITY OF THE

AMOC AND THE MHT1

Abstract

The latitude-dependent potential predictability of the North Atlantic meridional

overturning circulation (AMOC) cannot be directly transfered to that of the merid-

ional heat transport (MHT; Tiedje et al., 2012). To further understand the dynam-

ical relation between both quantities we analyze hindcast ensembles based on an

oceanic state estimate using two potential predictability measures. The latitude-

dependent structures show that only the geostrophic parts of the AMOC’s and the

MHT’s potential predictability are related. For the geostrophic part of both quanti-

ties and for both measures, a robust potential predictability structure of maximum

predictable lead times around the gyre boundary can be found.

1 Chapter 5 is in preparation for submission to Geophysical Research Letters. The chapter is

therefore written as a stand-alone journal publication. In contrast, chapter 4 is not intended for

independent publication. Hence, chapter 5 draws from chapter 4, but only makes references to

published literature.
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5.1 Introduction

The North Atlantic meridional overturning circulation (AMOC) and the meridional

heat transport (MHT) are thought to be closely linked (e.g., Pohlmann et al., 2006),

but their connection is not straight forward. In addition to wind stress and the den-

sity gradients that dominantly drive the AMOC, the MHT is driven by the air-sea

fluxes that set the temperature distribution. Thus changes in MHT across different

climates cannot be explained exclusively in terms of changes in the AMOC (Ferrari

and Ferreira, 2011). Also, a long-term decrease in the AMOC does not necessarily

have to be followed by a decrease in MHT (Drijfhout and Hazeleger, 2006).

Both the AMOC and the MHT have been studied in separate predictability stud-

ies. For the AMOC, several idealized potential predictability studies (e.g., Griffies

and Bryan, 1997; Collins and Sinha, 2003; Pohlmann et al., 2004; Collins et al.,

2006; Hermanson and Sutton, 2009; Msadek et al., 2010) and initialized (potential)

predictability studies (e.g., Keenlyside et al., 2008; Pohlmann et al., 2009; Matei

et al., 2012a; Kröger et al., 2012; Pohlmann et al., 2013) have focused on the anal-

ysis of individual latitudes (except for Kröger et al. (2012)). None of these studies

focused on understanding the latitude-dependence of the AMOC’s potential pre-

dictability. For the MHT, we analyzed the latitude-dependence in an earlier paper

(Tiedje et al., 2012), but did not focus on the relation of the MHT’s and AMOC’s

latitude-dependent potential predictability.

To analyze the latitude-dependence of the AMOC’s and MHT’s predictability, we

have to turn to model simulations not only for the hindcast simulations, but also for

the verification of the hindcasts as present observations of the AMOC and MHT are

limited to 26.5◦N and at 41◦N (Cunningham et al., 2007; Willis, 2010; Johns et al.,

2011; Hobbs and Willis, 2012).

Here, we analyze the potential predictability in a set of hindcast ensembles which

benefit from the initialization from an oceanic state estimate (as suggested by e.g.,

Collins, 2002). The quantification of potential predictability also benefits from this

oceanic state estimate due to its dynamical consistence with observations and thus

its improved representation of oceanic variability. To quantify the potential pre-

dictability of the AMOC and the MHT, we use two common potential predictability

measures, of which one is correlation based (anomaly correlation; Pohlmann et al.,

2009) and one is variance based (prognostic potential predictability; Pohlmann et al.,

2004). The combined use of these two measures of potential predictability tests for

both correct phasing and magnitude of variability in the hindcast simulations.



5.2. Model and methods 79

5.2 Model and methods

We base our analysis on the oceanic data assimilation product GECCO (German

partner of the consortium for Estimating the Circulation and Climate of the Ocean;

Köhl and Stammer, 2008). We use a slightly corrected version of the GECCO syn-

thesis’ optimized forcing to generate a 50-year integration, covering the same period

as the original GECCO run (1952-2001). This integration represents the reference

run for both potential predictability methods and provides the initial conditions for

the ensemble generation. We initialize 10 ensembles from the reference run starting

one year apart (1983, ..., 1992). The ensemble members are generated using differ-

ent 10-year periods of GECCO’s corrected optimized atmospheric forcing between

1959 and the respective initial condition start date. The setup results in ten 10-year

ensembles at 15 to 24 members. Prior to the potential predictability analysis, the

data are detrended and annually averaged. Further details of the experimental setup

can be found in Tiedje et al. (2012).

To analyze the AMOC and MHT, we remove the wind-driven variability from both

quantities. For the AMOC, we remove the depth-dependent Ekman transport that

is corrected to ensure no net meridional mass transport related to the zonal wind

stress (following e.g., Baehr et al. (2004)). For the MHT, we remove the Ekman

heat transport following Jayne and Marotzke (2001). We calculate the geostrophic

part of the AMOC from the thermal wind balance (Hirschi and Marotzke, 2007).

The thermal wind transport is calculated from the eastern and western boundary

densities and corrected to hold mass balance. At every latitude between 0◦ and

60◦N, the boundary densities are taken directly at the continental slope (e.g., Kan-

zow et al., 2009), except for the Gulf of Mexico and the Caribbean Sea, which

are topographically separated from the basin (∼10◦N and ∼30◦N), where we only

consider the mid-ocean transport. We calculate the geostrophic part of the MHT

from decomposing the the MHT into an overturning and a gyre component (Bryden

and Imawaki, 2001). The overturning component is based on the zonally averaged

meridional flow, from which we remove the Ekman heat transport to derive the

geostrophic part of the MHT.

Two measures are used to quantify the potential predictability of the AMOC and

MHT: anomaly correlation (AC; Pohlmann et al., 2009) and prognostic potential

predictability (PPP; Pohlmann et al., 2004). AC tests whether the temporal evolu-

tion of the reference run can be reproduced with the ensemble means. For the AC,

we estimate the significance limit using a t-test (e.g., von Storch and Zwiers, 1999;

Jungclaus and Koenigk, 2010; Sachs, 1997). In contrast, PPP tests if the spread of
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the ensemble members (possible oceanic states) lies within the variance of the refer-

ence period. PPP does not provide any information about the agreement between

the temporal evolution of the ensemble members and the temporal evolution of the

reference run. We define the reference period for the PPP calculation from 1959

to 2001 (cp. Tiedje et al., 2012) and estimate the significance limit using an F-test

(Pohlmann et al., 2004).

For both metrics a value of 1 indicates perfect potential predictability and a value

below 0 indicates no potential predictability. In the following, AC or PPP structure

stands for the spatial and temporal extent of the significant values across the North

Atlantic, and AC or PP predictable lead time stands for the time period over which

the values are significant.

Given the different characteristics, we do not expect that both measures necessar-

ily show the same potential predictability results. Here, we assume that potential

predictability in the given model environment is more robustly estimated, if both

measures indicate significant potential predictability. Thus, we particularly focus

on the potential predictability structure that forms from the overlap of AC’s and

PPP’s predictable lead times and satisfies both the ensemble spread criterion as well

as the correlation criterion (LAP structure).

5.3 Potential predictability of AMOC and MHT

For the AMOC, both AC and PP predictable lead times are longer at the subtropical

latitudes and the gyre boundary (∼40◦N) than at the subpolar latitudes (Fig. 5.1a

and b). In contrast, for the MHT, the AC predictable lead times are longer and

the PPP values are higher at subpolar latitudes than at the subtropical latitudes,

indicating the influence of the gyre component (Fig. 5.1d and e). The spatial sepa-

ration between the dominant influence of the gyre component (mostly at subpolar

latitudes) and overturning component (mostly at subtropical latitudes) was already

shown for the PPP by Tiedje et al. (2012). Tiedje et al. (2012) also pointed out that

the PPP structure of the AMOC and that of the MHT’s overturning component are

comparable. Both findings can be similarly transfered to the AC (not shown).

Comparing the AMOC’s and the MHT’s potential predictability, we find smaller

differences between the two measures of potential predictability than between the
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(a) AC (b) PPP (c) LAP

(d) AC (e) PPP (f) LAP

Fig. 5.1: Hovmöller diagrams of the potential predictability as a function of lead time in the North

Atlantic (0◦-60◦N): (a) AMOC quantified with AC (cp. Fig. 4.6), (b) AMOC quantified with PPP

(cp. Fig. 8 from Tiedje et al. (2012); cp. Fig. 2.8), (c) combination of the predictable lead times of

(a) and (b), (d) MHT quantified with AC (cp. Fig. 4.3), (e) MHT quantified with PPP (cp. Fig. 3

from Tiedje et al. (2012); cp. Fig. 2.3), (f) combination of the predictable lead times of (d) and

(e). The colored values in (a,b,d,e) are significant at the 90% level. The pink areas in (c,f) indicate

the overlap of AC’s and PPP’s predictable lead times.

AMOC and the MHT. Hence, the LAP structures for the AMOC and the MHT are

different. While the LAP structure for the AMOC indicates maximum predictable

lead times of 5-6 years around the gyre boundary (Fig. 5.1c), the LAP structure for

the MHT indicates no potential predictability at the gyre boundary and maximum

predictable lead times of 4-5 years at subpolar and subtropical latitudes (Fig. 5.1f).

The subtraction of the Ekman transport from the AMOC (AMOC-Ek) shortens the

AC and in particular the PP predictable lead times at several latitudes and leads to

an intensification of AC and PPP values around the gyre boundary (Fig. 5.2a and

b). The subtraction of the Ekman heat transport from the MHT (MHT-Ek) also

results in an increase in AC and PPP values around the gyre boundary (Fig. 5.2d

and e). For the AC, however, only the long predictable lead times at the subtropi-

cal latitudes (that are dominated by the gyre component) are preserved, while the

predictable lead times are shorter than for the total MHT almost anywhere else

(Fig. 5.2d). For the PPP, only the predictable lead times at the gyre boundary



82 5. Potential predictability of the AMOC and the MHT

(a) (b) (c)

(d) (e) (f)

Fig. 5.2: Hovmöller diagrams of the potential predictability as a function of lead time in the North

Atlantic (0◦-60◦N): (a) AMOC-Ek quantified with AC, (b) AMOC-Ek quantified with PPP, (c)

combination of the predictable lead times of (a) and (b), (d) MHT-Ek quantified with AC, (e)

MHT-Ek quantified with PPP, (f) combination of the predictable lead times of (d) and (e). The

colored values in (a,b,d,e) are significant at the 90% level. The pink areas in (c,f) indicate the

overlap of AC’s and PPP’s predictable lead times.

increase, while the predictable lead times at the subtropical and subpolar latitudes

remain mostly unchanged (Fig. 5.2e).

Removing the wind-driven variability from the AMOC and the MHT leads to a

seemingly similar potential predictability structure for the PPP (Fig. 5.2b and e),

while the AC structures are considerably different (Fig. 5.2a and d), which is also

mirrored in the differences of the resulting LAP structures (Fig. 5.2c and f). We

can at this point not explain why the Ekman transport influences the predictable

lead times of the AMOC and the MHT differently, and setup dependent influences

cannot be excluded. We now turn to the analysis of the relation of the potential

predictability structures of the AMOC and the MHT after removing the Ekman

transport.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.3: Hovmöller diagrams of the potential predictability as a function of lead time in the North

Atlantic (0◦-60◦N): (a) TW quantified with AC, (b) TW quantified with PPP (cp. Fig. 3.7b), (c)

combination of the predictable lead times of (a) and (b), (d) MHToc-Ek quantified with AC, (e)

MHToc-Ek quantified with PPP, (f) combination of the predictable lead times of (d) and (e). The

colored values in (a,b,d,e) are significant at the 90% level. The pink areas in (c,f) indicate the

overlap of AC’s and PPP’s predictable lead times.

5.4 Relating the potential predictability of AMOC and

MHT

To investigate the relation of the potential predictability structures of the AMOC

and the MHT, we focus on the geostrophic parts of the AMOC and the MHT respec-

tively. For the AMOC, the geostrophic part is estimated from boundary densities

through the thermal wind relation (AMOCTWv; cp. chapter 5.2). The AC and PPP

structures of AMOCTWv show maximum potential predictability at the gyre bound-

ary and decreasing predictable lead times to the north and south (Fig. 5.3a and b).

For the MHT, the geostrophic part is estimated from the overturning component

with the Ekman heat transport removed (MHToc-Ek; cp. chapter 5.2). Although

the MHToc-Ek’s AC and PPP predictable lead times do not agree, we find for both

measures maximum predictable lead times at the gyre boundary and decreasing pre-

dictable lead times to the north and south (Fig. 5.3d and e).
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For both the AMOCTWv and the MHToc-Ek, the LAP structures indicate maximum

predictable lead times of about 4 years that are concentrated around the gyre bound-

ary (Fig. 5.3c,f). The similar LAP structures suggests that AMOC’s and MHT’s

potential predictability are only similar for their geostrophic parts.

While the AMOCTWv’s AC and PPP structure seems generally similar to the AMOC-

Ek’s AC and PPP structure (Fig. 5.3a and b and Fig. 5.2a and b), the similarities

between the MHToc-Ek’s and MHT-Ek’s AC and PPP structures are altered by the

respective metric’s structure of the gyre component (Fig. 5.3d and e and Fig. 5.2d

and e). While the influence of the gyre component is obvious for the MHT-Ek’s

AC structure, it cannot be seen for the MHT-Ek’s PPP structure. These differences

show that it can be misleading to derive the potential predictability of a quantity

from only one measure (cf. Murphy, 1988; Collins, 2002). Although or rather be-

cause AC and PPP satisfy different predictability criteria, the combination of the

correlation based and variance based measure adds value (robustness) to the found

potential predictability structure in the present experimental setup.

Though we can relate the meridional LAP structures of the geostrophic component

of the AMOC and the MHT, we cannot explain its origin. Specifically, it remains

open to explain the dynamical origins of the presented geostrophic AC and PPP

structures of AMOC and MHT with its maximum around 40◦N and decreasing pre-

dictable lead times to the north and south. Potentially, southward traveling Kelvin

waves modifying the variability of western boundary densities (e.g. Köhl, 2005; Köhl

and Stammer, 2008), and westward propagating Rossby waves modifying the east-

west density gradient (e.g. Köhl, 2005; Getzlaff et al., 2005; Hirschi et al., 2007),

might be involved. But even the dynamical origin of the latitude dependence of the

density gradient is not fully understood yet (Hirschi and Marotzke, 2007). In turn it

is not straightforward to relate the AMOC’s and the MHT’s potential predictability

even at a latitude where the MHT is dominated by the overturning component.

It is of course important to note that the present results are likely to be model-

dependent. Similar to our findings, a coupled model hindcast experiment also shows

AC structures of the AMOC and the MHT with maximum AC predictable lead times

between ∼40◦N and ∼50◦N (D. Matei, personal communication). Both observations

at additional latitudes and additional model studies will be needed to investigate

the latitude-dependence of the AMOC’s and MHT’s predictive skill.
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5.5 Conclusions

We investigate the latitude-dependent relation between the potential predictabil-

ity of the AMOC and the MHT. The analysis is conducted with two potential

predictability measures (anomaly correlation (AC) and prognostic potential pre-

dictability (PPP)). Based on the potential predictability structures that combine

the significant predictable lead times of AC and PPP (LAP structures), we con-

clude that:

• The AMOC and the MHT show different LAP structures and cannot be di-

rectly compared. We hereby confirm earlier results that were found for the

PPP structures only (Tiedje et al., 2012).

• The subtraction of the Ekman (heat) transport indicates some similarities

between the AMOC’s and the MHT’s LAP structures, although they are still

altered by the influence of the MHT’s gyre component.

• Only the geostrophic parts of the AMOC and MHT are related in terms of po-

tential predictability, which is shown by the similarities of the LAP structures

of the thermal wind part of the AMOC and the overturning component of the

MHT with the Ekman heat transport removed.

Given the limitations of the present observing system, it is an important caveat en

route to predictions of the North Atlantic climate that the potential predictability

of the MHT and the AMOC are neither interchangeable with each other nor to be

generalized across the North Atlantic.
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6. NAO INFLUENCE ON THE POTENTIAL

PREDICTABILITY OF MHT AND AMOC

6.1 Introduction

In this chapter I present preliminary results of the influence of the NAO state on

the potential predictability of the AMOC and the MHT. The results are only pre-

liminary because the present setup does not allow to clearly distinguish between

the different NAO states. Nevertheless, I present the preliminary results here, as

they point to interesting scientific questions which could be addressed in my future

research.

The NAO refers to oscillations in the atmospheric sea level pressure difference be-

tween the Arctic and the subtropical Atlantic and primarily affects the mean wind

speed and direction (e.g., Hurrell et al., 2003). These basin scale changes in the

atmospheric forcing considerably influence the ocean’s properties and circulation

(e.g., Visbeck et al., 2003). The time scales of the ocean circulation’s response range

from weeks, during which an influence on SST, mixed layer depth, upper ocean heat

content and Ekman transport can be found, to several years. While the heat trans-

port is altered by the Ekman driven component within weeks, the geostrophically

balanced large scale horizontal and overturning circulation response is assumed to

take several consecutive years of the same NAO phase to adjust to changes in the

forcing (Visbeck et al., 2003).

Several studies indicate a close connection between the NAO variability and lagged

AMOC variations (e.g., Eden and Willebrand, 2001), and the general upward trend

of NAO since the 1960s is associated with an increasing rather than a decreasing

AMOC (Latif et al., 2006a). For the GECCO state estimate, Köhl and Stammer

(2008) found that the variability of the AMOC at 48◦N leads the variability at 25◦N

by 2 to 3 years indicating a lagged response to the high-latitude forcing variations

characterized by the NAO. The adjustment of these forcing variations towards a

new balanced state is established by coastally trapped (boundary) waves, equatorial
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Kelvin waves and long Rossby waves (Visbeck et al., 2003; Köhl and Stammer, 2008).

Though it might be possible to predict a change in the AMOC strength based on

the past NAO state, it remains the problem that the predictability of the NAO it-

self (particularly on time scales longer than a season) is small (e.g., Rodwell, 2003;

Johansson, 2007). However, the NAO influence on a potential predictability study

of the AMOC and MHT under realistic atmospheric forcing conditions seems to be

inevitable. Since the NAO cannot be excluded from my present experimental setup

(cp. chapter 2.4), I ask: Does the potential predictability differ between the different

NAO states?

6.2 Present experimental setup

Usually, sea level pressure data is used to construct a time series of the normalized

indices of the mean winter (December-March) NAO (Hurrell et al., 2003). With a

correlation of ∼0.99 (during 1948-2003) this NAO time series can also be constructed

from the National Center for Environmental Protection - National Center for Atmo-

spheric Research (NCEP-NCAR) reanalysis data1. Since the GECCO simulation is

based on the forcing provided by the NCEP-NCAR reanalysis data, we assume that

it is adequate to rely on this NAO state classification for our GECCO-like reference

run. The NAO index changes sign a few times during the reference period, but in

general the period from 1959 to 1972 is dominated by negative NAO years (NAO-)

and the period from 1973 to 1992 is dominated by positive NAO years (NAO+,

Fig. 6.1).

Since the initial conditions for the ensembles lie mainly within NAO+ years, I am

constrained to focus on the separation of the forcing periods into NAO+ and NAO-

periods for the potential predictability analysis. I will use the first five forcing peri-

ods (starting in 1959, ..., 1963; light blue in Fig. 6.1) for every ensemble to calculate

the potential predictability of the AMOC and MHT during NAO- conditions. To

analyze the effect of a mainly NAO+ dominated period, I will use all forcing periods

starting from 1972 (light red in Fig. 6.1). The setup for the NAO- conditions results

in 50 members, while it results in 55 members for the NAO+ conditions.

1 Hurrell, James & National Center for Atmospheric Research Staff (Eds). Last modified 22 Jun

2012. ”The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based).”

Retrieved from https://climatedataguide.ucar.edu/guidance/hurrell-north-atlantic-oscillation-nao-

index-station-based.
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Fig. 6.1: Overview of the experimental setup (cp. Fig. 2.1) with NAO+ and NAO- periods according

to Hurrell et al. (2003) indicated by light red and light blue respectively.

As before, the PPP metric is used to quantify the potential predictability (chap-

ter 2.2.3). The reference run (1959 to 2001) comprises both NAO states. The choice

of the reference period as well as the bias in the number of ensemble members do

not significantly change the resulting PPP structures (not shown).

6.3 Analysis of present setup

Starting with an analysis of the reference run, I find in the Hovmöller diagrams

of the inter-annual AMOC and the MHT anomalies increasing positive anomalies

during the second half of the reference run for both quantities, that can be related

to the changing NAO state to a positive index (Fig. 6.2a and b). A detailed expla-

nation of the AMOC structure for the original GECCO run can be found in Köhl

and Stammer (2008).

To quantify the differences of the transports’ strengths in the respective NAO phase,

I present the composite mean of all NAO+ and NAO- years (Fig. 6.2b and e). For

both the AMOC and the MHT, I confirm earlier findings that the transports are

stronger under NAO+ conditions than under NAO- conditions. The difference be-

tween both states is larger for the AMOC than for the MHT, and reaches its maxi-

mum between 30◦N and 50◦N.

In anticipation of the following PPP analysis, I am particularly interested in the
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(a) AMOC (d) MHT

(b) (c) (e) (f)

Fig. 6.2: Upper row: Hovmöller diagrams of annual mean anomalies in the reference run: (a) AMOC

and (d) MHT. Lower row: Latitudinal variation of the composite means (b,e) and variances (c,f)

of NAO+ (red) and NAO- (blue) years in the reference run (1959-2001): (b,c) AMOC and (e,f)

MHT. Additionally, the means and variances of all years are shown in black (cp. Fig. 2.4a,b and

Fig. 3.14a). Prior to the variance calculations, the data is detrended and annually averaged.

latitudinal variations of the composite variances of the AMOC and MHT (Fig. 6.2c

and f). For the MHT, I find similar latitudinal variations for the NAO+ and NAO-

composites as for the total variance, with the NAO+ composite exceeding the total

variance and the NAO- composite showing a smaller variance. For the AMOC, the

NAO- composite exceeds the total variance significantly between 50◦N and 60◦N

and between 0◦ and 30◦N. Whereas the NAO+ composite follows closely the total

variance, but exceeds the total variance only between 40◦N and 50◦N. The maxi-

mum variance appears to shift from ∼45◦N to ∼55◦N during a change of the NAO

state. Overall, the mean and variance over both NAO states lie always between the

individual estimates for one state.

I now turn to the analysis of the PPP under the influence of the different NAO states.

The PPP analysis of the AMOC forced with mainly NAO- years shows shorter pre-
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(a) (b) (c)

Fig. 6.3: Hovmöller diagrams of the PPP of the AMOC as a function of lead time: (a) only ensemble

members with mostly NAO- forcing periods are used to calculate PPP, (b) only ensemble members

with mostly NAO+ forcing periods are used to calculate PPP, and (c) all ensemble members are

used (cp. Fig. 2.8). The colored values are significant at the 90% level. Darker gray shades indicate

higher PPP values than lighter gray shades.

dictable lead times at the subpolar latitudes than at the subtropical latitudes where

the predictable lead times seem to be not limited between 20◦N and 35◦N under

these NAO conditions (Fig. 6.3a). In general, this PPP structure can also be seen

for the AMOC forced with mainly NAO+ years, although the predictable lead times

are much shorter particularly at the subtropical latitudes (Fig. 6.3b). The PPP

structure of the AMOC influenced by both NAO states appears to be a mixture of

the separated NAO results (Fig. 6.3c).

A first test with two single ensembles starting from different NAO states and us-

ing the corresponding NAO forcing periods shows that the resulting PPP structures

seem to depend on the NAO state during the forcing period rather than on the NAO

state of the initial conditions (not shown).

For the MHT, both NAO PPP structures show increased PPP values in the subpolar

and the subtropical gyres, though the predictable lead times have different lengths:

While under NAO- conditions the predictable lead times are longer at subtropical

than at subpolar latitudes, they are shorter at subtropical than at subpolar latitudes

under NAO+ conditions (Fig. 6.4a and b). Surprisingly, the predictable lead times

of the MHT influenced by both NAO states (Fig. 6.4c) are generally shorter within

both gyres than for the NAO- and NAO+ experiments. Note that this finding of

shorter predictable lead times under the influence of both NAO states than under

the influence of an individual NAO state is also true for the AMOC at specific lati-

tudes.
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(a) (b) (c)

Fig. 6.4: Hovmöller diagrams of the PPP of the MHT as a function of lead time: (a) only ensemble

members with mostly NAO- forcing periods are used to calculate PPP, (b) only ensemble members

with mostly NAO+ forcing periods are used to calculate PPP, and (c) all ensemble members are

used (cp. Fig. 2.3). The colored values are significant at the 90% level. Darker gray shades indicate

higher PPP values than lighter gray shades.

As for the MHT influenced by both NAO states (cp. chapter 2.3.2), the MHT’s PPP

structures with separated NAO forcings can be reconstructed from considering the

PPP structures of the overturning and gyre component under the respective NAO

conditions (not shown).

6.4 Future research questions and experiments

The presented results indicate an influence of the NAO state on the potential pre-

dictability of both AMOC and MHT. The results also suggest that the AMOC’s

and MHT’s PPP structures shown in the previous chapters are not biased towards a

specific NAO state. The findings for the NAO experiments, for example the regional

separation of the MHT components’ dominance, match our previous findings, but

also raise new questions:

• Are the PPP structures the mean of both NAO conditions, or can particular

features in the PPP structure be related to a specific NAO state?

• Does the NAO have a weaker projection on the meridional overturning circu-

lation than on the gyre circulation (Bellucci et al., 2008), and thus a different

effect on the PPP of the AMOC and the MHT?

• Why are the predictable lead times of the MHT with the mixed NAO forcing

generally shorter than for the separate NAO forcings?
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Also, it would be interesting to repeat some of the previous analysis in regard to the

NAO influence, for example the influence on the Ekman variability or the density

gradient.

Unfortunately, the present setup does not allow us to adequately answer these ques-

tions. The present setup is based on hindcast ensembles that are constructed to

resemble a real forecast scenario such that no information is used in them that

would not theoretically be available from observations at the time of the ensemble

generation. To ensure an appropriate number of forcing years that do not fall in the

hindcast periods, we picked the initial conditions from the later and mostly NAO+

period of the reference run. Hence, it is unaccomplishable to robustly distinguish

between NAO+ and NAO- states when we continue to insist on the principles of a

real forecast scenario.

To analyze the effect of the NAO on the AMOC’s and MHT’s potential predictabil-

ity adequately, I would suggest to refrain from the idea of a kind of realistic forecast

scenario. Staying in the ocean-only setup, I suggest to compose pure NAO forcing

periods from all available NAO- or NAO+ years of the reference run and add them

randomly together. By picking e.g. five NAO- initial conditions and e.g. five NAO+

initial conditions from the reference run, pure NAO- and NAO+ ensembles could

be generated. Since the main interest focuses on the behavior of the ensembles, I

would continue to use the present reference run for the quantification with the PPP

method. Unfortunately, the potential predictability quantification with the anomaly

correlation would not be possible for the described setup, as we would need ten suc-

cessive years of initial conditions to analyze ten years of predictable lead time. Note

that it remains questionable, whether the available 50 years of the GECCO simula-

tion provide a sufficient range of possible evolutions to test the NAO dependence.

On the other hand, staying in an ocean-only model setup would exclude the ocean’s

feedback on the NAO. It is assumed that changes of the North Atlantic SST related

to variations in the deep ocean might have an effect on the atmospheric state and thus

might reinforce or control the NAO state (e.g., Visbeck et al., 2003). How strong this

feedback might be, is still a matter of discussion, but several model studies suggest

only a modest yet statistically significant feedback (e.g., Czaja et al., 2003; Mosedale

et al., 2005). However, since my initial focus would be on the question how does the

effect of the NAO on the forcing periods and initial conditions alter the potential

predictability, it would primarily not be advantageous to use a coupled model for

the investigations. Nonetheless, for the following work it would be interesting to

check the results of the elaborated ocean-only model NAO experimental setup to
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a similar experimental setup in a coupled model, and estimate the impact of the

ocean-atmosphere feedback on the potential predictability.



7. CONCLUSIONS

I conclude this thesis on the multi-year potential predictability of the MHT and the

AMOC by answering the three research questions posed in the introduction (chap-

ter 1.3). In the course of the study further questions arose, of which two I find useful

to add to the list of questions (chapters 7.4 and 7.5).

All answers are based on the same set of hindcast ensembles which are initialized

from the oceanic state estimate GECCO and forced with its past optimized atmo-

spheric conditions. The limitations concerning this experimental setup or concern-

ing the analysis itself have already been discussed in detail in the previous chapters

(chapters 2.4, 3.4, and 5.4). Specifically, I discussed the use of an ocean-only model,

the input of climatic information from only a few decades, the pre-defined forcings

and therefore the partly inter-dependent ensemble members, the verification of the

ensembles against model simulation instead of observations, the significance of the

predictable lead times, the Ekman influence, and the thermal wind calculation.

However, the advantage of the present experimental setup is that it is based on a

self-consistent framework with respect to both initialization and consistency with

observations. The following conclusions also benefit from the improved representa-

tion of oceanic variability in an oceanic state estimate.

7.1 Is the MHT potentially predictable? And if so, is

the potential predictability of the MHT latitude-

dependent?

I find that the MHT is potentially predictable on a multi-year time scale. I also

find that the MHT’s prognostic potential predictability (PPP) varies between the

latitudes and shows specific differences between the subpolar and the subtropical

gyre (chapter 2). A dynamical decomposition of the MHT in overturning and gyre

component improves the understanding of these PPP differences: The overturning
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component plays a dominant role in the subtropical gyre, whereas the gyre com-

ponent plays a dominant role in the subpolar gyre. Further, I find that also the

influence of the temperature and velocity field variations on the MHT’s PPP struc-

ture is latitude-dependent.

Hence, I conclude that an investigation of the MHT’s potential predictability at a

single latitude would not be able to provide the full picture of the potential pre-

dictability’s dynamical origins, and that caution should be exercised, when inter-

preting the MHT’s potential predictability at a single latitude.

7.2 Can the current understanding of the

latitude-dependent potential predictability of the

AMOC be improved by removing the wind-driven

variability and focusing on the

latitude-dependence of the geostrophic part?

To estimate the geostrophic part of the AMOC’s potential predictability, the PPP

of the AMOC minus the Ekman transport and the thermal wind transport based

on boundary density gradients was calculated (chapter 3). I find that the poten-

tial predictability of the thermal wind transport provides the basis for the AMOC’s

PPP structure. I also find that (even on the investigated multi-year time scales)

the influence of the Ekman transport variability is strong enough to conceal the

direct comparability of the thermal wind transport’s PPP structure to the AMOC’s

PPP structure. Further, excluding the variability of the eastern and lower west-

ern boundary density from the total density gradient’s variability (to calculate the

thermal wind transport) shows that the dynamical origins of the AMOC’s poten-

tial predictability lie in the potential predictability of the upper western boundary

densities. Ultimately, these findings open the prospect to use density boundary

observations in combination with wind field data for estimating the potential pre-

dictability of the AMOC.

However, my analysis cannot fully explain why the predictable lead times are shorter

or longer at a specific latitude. Thus, the dynamical reason for the geostrophic PPP

structure of the AMOC, with a maximum around the gyre boundary and decreasing

predictable lead times to the north and south, remains speculative and needs fur-

ther investigations. Possibly, the limited predictable lead times at subpolar latitudes
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(50◦N-60◦N) and subtropical latitudes (10◦N-30◦N) could result from propagating

density anomalies (e.g., Köhl, 2005; Getzlaff et al., 2005; Hirschi et al., 2007; Köhl

and Stammer, 2008; chapter 3.3.1.2).

7.3 How is the potential predictability of the MHT

related to the potential predictability the AMOC?

The potential predictability of the MHT cannot be directly transfered to the po-

tential predictability of the AMOC (chapter 2). Because of the obvious similarities

between the potential predictability of the AMOC and the potential predictabil-

ity of the MHT’s overturning component, I conclude that the differences between

the AMOC’s and MHT’s potential predictability can to some extent be explained by

the influence of the gyre component on the MHT (particularly at subpolar latitudes).

Further, I find that only the potential predictability of the AMOC’s and MHT’s

geostrophic parts are related (chapter 5). The geostrophic parts of the AMOC and

the MHT are estimated from the thermal wind transport and the MHT’s overturning

component minus the Ekman variability, and show a similar potential predictability

structure across the North Atlantic.

Subsequently, using density observations to estimate the potential predictability of

the MHT might only be possible at latitudes where the gyre component can be

neglected. Thus, an improved understanding of the relation between the AMOC’s

and the MHT’s potential predictability will be crucial for the correct interpretation

of actual inter-annual to decadal predictions based on density observations at an

individual latitude.

Based on the prospect to use density and wind observations to estimate AMOC’s po-

tential predictability (chapter 7.2), potential future work could address the question

of which observations would additionally be needed to estimate the MHT’s poten-

tial predictability at a given latitude. For example, could SST observations help to

improve the estimation of MHT’s potential predictability in terms of capturing the

differences to the AMOC’s potential predictability?
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7.4 How much information do we gain by considering

two potential predictability measures?

The answer to the preceding question was found by using two potential predictabil-

ity measures of which one is correlation-based (anomaly correlation) and one is

variance-based (PPP). Although the predictable lead times do not agree at most

latitudes, I come to the same dynamical conclusions as by analyzing the AC’s and

PPP’s results individually (chapter 4 and 5). However, using both measures also

provides the opportunity to gain new insights. For example, the influence of the

gyre component on the MHT after subtracting the Ekman variability is obvious in

the AC structure while its influence is hardly recognizable in the PPP structure

(chapter 5.4). The concurrent consideration of both predictability measures has the

advantage that an offset (bias) is not concealed by high correlation values, and that

a small ensemble spread but no significant correlation leads to too optimistic pre-

dictability results. Overall, I consider the potential predictability structure resulting

from the overlap of both measure’s significant predictable lead times as a good way

to meet two important predictability criteria.

7.5 Is the potential predictability altered by different

NAO states?

The way I designed the experimental setup to resemble a realistic forecast scenario

comes at the expense of mainly NAO+ initial conditions and a mixture of NAO+

and NAO- forcing conditions (chapter 2.4). As a first step for potential future work,

I tested the influence of the NAO state on the potential predictability of the MHT

and the AMOC by rearranging the present set of hindcast ensembles into mainly

NAO+ forced and mainly NAO- forced hindcasts (chapter 6). I find that the NAO

state affects the PPP structures of the MHT and the AMOC, but also that they are

not biased towards a specific NAO state. However, the structural PPP differences

encourage to design an improved experimental setup to adequately analyze the in-

fluence of the NAO (chapter 6.4).

7.6 Concluding remarks

The innovation of the present study lies in the interrelation of the predictable lead

times of the MHT and the AMOC throughout the Atlantic from 0◦ to 60◦N. The
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insight gained from this analysis provides another piece to the puzzle of understand-

ing the variability relation of the MHT and the AMOC and extends it to the subject

of potential predictability.

However, besides the limitations of the experimental setup, the results presented here

are of course model-dependent and serve therefore essentially as a reference point

for the discussion of meridionally variable predictability structures. Since latitude-

dependent potential predictability studies are rare, it is impossible to adequately

estimate the model-dependence of the presented structures. Yet, the presented

anomaly correlation structure of the AMOC is similar to the results of the cou-

pled model experiments of Kröger et al. (2012) which show a peak of predictability

around 50◦N for the forecast years 1 to 5. Additionally, previous studies on ini-

tialized AMOC predictability at individual latitudes found comparable predictable

lead times to the AMOC predictable lead times presented here (chapter 2.4). Never-

theless, further latitude-dependent studies using initialized hindcast ensembles from

coupled models would be helpful to increase the robustness of the conclusions.

At present, measured long-term time series of the AMOC or the MHT are currently

only available at 26.5◦N and at 41◦N (Cunningham et al., 2007; Willis, 2010; Johns

et al., 2011; Hobbs and Willis, 2012). Thus, for the near future, latitude-dependent

predictability studies cannot avoid verifying their hindcast ensembles against model

data and will therefore remain model-based. Nevertheless, observations at two lat-

itudes might not be sufficient to further a complete understanding of AMOC and

MHT predictability, and an open demand remains for deploying observation systems

at more latitudes.

As multi-decadal variations of the AMOC and the MHT were shown to affect the

North American and European climate (e.g., Sutton and Hudson, 2005; Pohlmann

et al., 2006), skillful predictions of both quantities could be of considerable ben-

efit to society. The link between the predictability of the AMOC or the MHT

and the predictability of the North Atlantic climate is not the focus of the present

study. However, en route to predictions of the North Atlantic climate, it needs to

be considered that the AMOC and the MHT and especially their predictability are

not interchangeable. Furthermore, the predictability of the AMOC or the MHT at

one particular latitude cannot be generalized to represent the predictability of the

AMOC or the MHT for the entire North Atlantic region.
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Köhl, A. (2005). Anomalies of meridional overturning: Mechanisms in the North

Atlantic. J. Phys. Oceanogr., 35:1455–1472.
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Kröger, J., Müller, W., and von Storch, J.-S. (2012). Impact of different ocean

reanalyses on decadal climate prediction. Clim. Dyn., 39:795–810.
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