
The Two-Layer Structure of the Entrainment Zone in the Convective Boundary Layer

JADE RACHELE GARCIA AND JUAN PEDRO MELLADO

Max Planck Institute for Meteorology, Hamburg, Germany

(Manuscript received 20 May 2013, in final form 10 February 2014)

ABSTRACT

The entrainment zone (EZ) of a dry, shear-free convective boundary layer growing into a linearly stratified

fluid is studied by means of direct numerical simulation. The scale separation between the boundary layer

thickness and the Kolmogorov length scale is shown to be sufficient to observe Reynolds number similarity in

the statistics of interest during the equilibrium entrainment regime. Contrary to previous considerations, the

vertical structure of the entrainment zone is found to be better described by the superposition of two sub-

layers: 1) an upper EZ sublayer that is dominated by overshooting thermals and is characterized by a pene-

tration depth that scales with the ratio of the convective velocity and the buoyancy frequency of the free

troposphere and 2) a lowerEZ sublayer that is dominated by troughs ofmixed fluid and is characterized by the

integral length scale of the mixed layer. Correspondingly, different buoyancy scales are identified. The

consequences of this multiplicity of scales on the entrainment rate parameters are evaluated directly, without

resorting to any bulk model, through an exact relation among the mean entrainment rate, the local buoyancy

increment, and both the turbulent and the finite-thickness contributions to the entrainment ratioAmeasured

at the height of minimum buoyancy flux. The smaller turbulent contribution toA that is usually observed for

relatively thick EZs is found to be compensated by the smaller local buoyancy increment instead of by the

finite-thickness contribution. The two-layer structure of the entrainment zone is found to affect the exponent

of the power-law relation between the normalized mean entrainment rate and the convective Richardson

number such that the exponent deviates from 21 for typical atmospheric conditions, although it asymptot-

ically approaches 21 for higher Richardson numbers.

1. Introduction

The zero-order bulk model (ZOM) (Zilitinkevich

1991) predicts well enough themean entrainment rate of

a dry, shear-free convective boundary layer (CBL) with

constant surface buoyancy flux growing into a linearly

stratified fluid. However, the ZOM cannot predict ac-

curately the parameters that affect the mean entrain-

ment rate (which we call entrainment rate parameters),

such as the entrainment ratio and the buoyancy in-

crement of CBLs with relatively thick entrainment zone

(EZ) (Sullivan et al. 1998; Fedorovich et al. 2004a). Such

limitation stems from the ZOM’s representation of the

EZ as an infinitesimally thin layer. Extensions of the

basic zero-order bulk model have been developed, such

as first-order models (Betts 1974; vanZanten et al. 1999)

and general structure models (Fedorovich and Mironov

1995; Fedorovich et al. 2004a). However, incomplete

understanding of the entrainment zone has led to diffi-

culty in modeling the evolution of entrainment rate

parameters, as reflected by the disagreement among the

different parameterizations proposed in the literature

(Deardorff et al. 1980; Sorbjan 1999; Fedorovich et al.

2004a; Tr€aumner et al. 2011).

In this study, we consider a CBL growing into a line-

arly stratified free troposphere [see Fedorovich et al.

(2004a) for a review] to investigate the possible self-

similar behavior of the buoyancy profiles inside the en-

trainment zone (Fedorovich and Mironov 1995; Sorbjan

1999; Fedorovich et al. 2004a) and the characteristic

scales associated with such behavior. We also assess the

effect of this vertical structure on the entrainment rate

parameters (Betts 1974; Sullivan et al. 1998) and the

relation between the entrainment rate and Richardson

number (Deardorff et al. 1980; Fedorovich et al. 2004a;

Tr€aumner et al. 2011).

The definition of the entrainment rate parameters and

the relation among them remain problematic for com-

plex bulk models that try to incorporate the effect of the
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EZ vertical structure (see, e.g., Betts 1974; Fedorovich

and Mironov 1995; Sullivan et al. 1998). As a case in

point, the arbitrary definition of the upper limit of the

entrainment zone affects both the finite-thickness con-

tribution to the entrainment ratio, and the relation be-

tween the normalized mean entrainment rate and the

convective Richardson number, as defined in Sullivan

et al. (1998) and Fedorovich et al. (2004a). We therefore

perform the analysis directly on the mean entrainment

rate equation that is derived from the mean buoyancy

transport equation, without imposing any bulk model

assumption on the vertical profiles of mean buoyancy

andmean buoyancy flux.An analysis based on the actual

profiles can help to eliminate part of the uncertainty and

arbitrariness in those definitions. In particular, we show

in this paper that the two-layer structure that we observe

in the entrainment zone explains part of the disagree-

ment among previous works.

Most of the studies that addressed these issues were

based on data from large-eddy simulations (LES), which,

as explained by Sullivan et al. (1998) andFedorovich et al.

(2004a), were at that time not highly resolved and are

unavoidably tainted by uncertainty due to subgrid-scale

models. In this respect, resolving more of the small-scale

turbulence should help address the limitations of LES

(Stevens and Lenschow 2001). However, Sullivan and

Patton (2011) show that, even when the resolution has

been increased significantly, there is still significant un-

certainty at the entrainment zone due to subgrid-scale

models, in particular for the potential temperature vari-

ance. These observations motivate the use of direct nu-

merical simulation (DNS) in our analysis. Despite the

fact that DNS can only achieve Reynolds numbers sig-

nificantly lower than typical atmospheric values,DNS has

become a very valuable tool in turbulence research dur-

ing the last decades because it eliminates the uncertainty

introduced by a turbulence model (Moin and Mahesh

1998; Jimenez 2013). The use ofDNS is furthermotivated

and justified by Reynolds number similarity: the princi-

ple, based on observation, that some statistics become

independent of the Reynolds number once this is large

enough (Tennekes and Lumley 1972; Dimotakis 2000;

Monin and Yaglom 2007). From this proposition, the

questions that naturally arise are ‘‘What is large enough

for a particular configuration?’’ and ‘‘How do different

statistics evolve toward such an asymptotic behavior?’’.

The results presented here show that the Reynolds num-

bers we achieve are sufficiently high to gain new insight

into the entrainment zone of an atmospheric CBLgrowing

into a linearly stratified free troposphere.

We structure the paper as follows. After describing

the formulation in section 2, we present the dimensional

analysis in section 3. In section 4, we summarize the

different definitions of the height of the CBL top, which

are used for the discussion in the following sections, and

show that the analysis presented in this paper corre-

sponds to the equilibrium (quasi-steady) entrainment

regime (Fedorovich et al. 2004a). We then focus on the

structural analysis of the entrainment zone in sections 5

and 6, where we consider first its vertical structure, and

then evaluate the effect of this vertical structure on the

entrainment rate parameters.

2. Formulation

We use the Navier–Stokes equations in the Boussi-

nesq approximation

$ � v5 0,

›v

›t
1$ � (v5v)52$p1 n=2v1 bk,

›b

›t
1$ � (vb)5 k=2b , (1)

where v(x, t) is the velocity vector with components

(y1, y2, w) along the directions Ox1, Ox2, and Oz, re-

spectively; p is a modified pressure divided by the con-

stant reference density; and b(x, t) is the buoyancy [which

can be related to, e.g., the virtual potential temperature uy
by a linear relation, b5 g(uy 2 uy,0)/uy,0, where uy,0 is the

reference value]. The parameter n is the kinematic vis-

cosity, k is the molecular diffusivity, and k is the unit

vector alongOz. The system is statistically homogeneous

over the horizontal planes and the statistics depend only

on the vertical distance from the surface z and time t.

A no-penetration, no-slip boundary condition is used

at the bottom plate and a no-penetration, free-slip

boundary condition at the top. Neumann boundary con-

ditions are used for the buoyancy at the top and the

bottom to maintain fixed constant fluxes. In addition, the

velocity and buoyancy fields are relaxed toward zero and

the background buoyancy profile,

b0(z)5N2z , (2)

respectively, inside a sponge layer occupying the upper

region of the computational domain. Preliminary sim-

ulations (not shown) have been used to adjust the height

of the top boundary so that it is far enough from the

turbulent region to avoid any significant interaction.

Periodicity is used at the sides.

Parameters of the two simulations considered in the

study are summarized in Table 1. The size of the com-

putational grid is 5120 3 5120 3 840 for the reference

case, which is denoted as Re100. Stretching is used in

the vertical direction to increase the resolution near the
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surface and to move the top boundary farther up, so

that the domain size is 215L0 3 215L0 3 56.6L0, where

L0 is a reference length scale that is defined in the fol-

lowing section. The simulation is terminated when the

boundary layer thickness is about 18L0. At the final time,

the aspect ratio of the horizontal domain size and the

CBL thickness is around 12:1. The second simulation,

Re040, in Table 1 with a reference Reynolds number Re0
(to be defined later) roughly a third of that in Re100 has

beenused to study the effect ofRe0 and to achieve a deeper

CBL, with thickness up to 26L0. The horizontal size of the

computational domain in Re040 is the same as in Re100.

Discretization of Eq. (1) in space is performed using

sixth-order spectral-like compact finite differences on

a structured Cartesian grid. A low-storage fourth-order

accurate Runge–Kutta scheme is used for time stepping.

The discrete solenoidal constraint is satisfied to machine

accuracy using a Fourier decomposition along the peri-

odic horizontal planes x1Ox2 and a factorization of the

resulting set of equations along the vertical coordinate

(Mellado andAnsorge 2012). The local ratio between the

vertical grid spacing, Dz, and the Kolmogorov scale, h 5
(n3/«)1/4 (where « is the viscous dissipation rate), is Dz/h’
1.2 or less. Appendix C demonstrates that this grid res-

olution is already enough for the results discussed in this

paper to become independent of the grid resolution.

3. Dimensional analysis

We focus in this paper on the fully developed turbu-

lent regime that is established after the initial transient,

when the initial conditions have been sufficiently for-

gotten (Tennekes and Lumley 1972; Monin and Yaglom

2007), so that the parameter space fn, k, B0, Ng defines

the system completely. Following Zilitinkevich (1991)

and Fedorovich et al. (2004a), we choose N and B0 to

nondimensionalize the problem, which yields a reference

time scale N21 and a reference length scale

L05 (B0/N
3)1/2 . (3)

The length scale L0 can be interpreted as an Ozmidov

scale («/N3)1/2, which is a measure of the smallest eddy

size affected by a background stratification N2 in a tur-

bulent field characterized by a viscous dissipation rate «

(see e.g., Ozmidov 1965; Smyth and Moum 2000). In the

CBL, the viscous dissipation rate is, approximately, an

order-of-one fraction of the surface buoyancy flux B0; as

we will show later, the direct influence of N2 is concen-

trated in the entrainment zone. Therefore, this reference

Ozmidov scaleL0 can be interpreted as an estimate for an

integral length scale of turbulence inside the entrainment

zone, or a region therein; the results discussed in section 5

support this argument. (An additional interpretation

of L0 as the minimum CBL thickness is presented in

appendix A.)

The system depends only on two nondimensional

parameters: a reference buoyancy Reynolds number

Re05
B0

nN2
(4)

and a Prandtl number Pr 5 n/k. This work investigates

the role of Re0 only, so we fix Pr 5 1. The reference

buoyancy Reynolds number, Re0, is often used in the

study of the interaction between turbulence and stable

stratification (see, e.g., Hebert and de Bruyn Kops 2006;

Chung and Matheou 2012). It is constructed using L0 as

a length scale and (L0B0)
1/3 as a velocity scale, where the

latter follows from inertial-range Kolmogorov scaling

and the viscous dissipation rate being proportional toB0.

Hence, according to the interpretation of L0 as the local

integral scale of turbulence inside the entrainment zone,

Re0 represents a Reynolds number of the turbulence

inside the entrainment zone.

Statistical properties depend on the set of variables

fz, tg, which can be nondimensionalized as fz/L0, tNg.
However, without loss of generality, we substitute them

by the equivalent set of independent variables fz/zenc,
zenc/L0g, where

zenc(t)5

�
2B0

N2
(11Re21

0 )(t2 t0)

�1/2
(5)

is the encroachment height (Lilly 1968; Carson and Smith

1975). The virtual time origin t0 quantifies the dependence

on the initial condition hbi(z, 0) and is defined such that

TABLE 1. Simulation properties. Columns 4–8 provide data at the final time of the simulations. The convective Reynolds number Re
*
is

defined by Eq. (8) and the turbulent Reynolds number Ret 5 e2/(«n), where e is the turbulence kinetic energy and « its viscous dissipation

rate, is themaximumvaluewithin theCBL. TheKolmogorov scale h5 (n3/«)1/4 is theminimumvaluewithin theCBL. The length scale d is

defined by Eq. (21). The last three columns give the time-averaged values (beyond zenc/L0
0 ’ 10) of the root-mean-square (rms) of the

turbulent fluctuations taken at the height of maximum wrms.

Simulation Grid Re0 Ret Re
*

zenc/L0 zenc/h d/L0 wrms/w*
y1,rms/w*

brms/b*

Re100 5120 3 5120 3 840 117 2860 5480 18 490 1.3 0.71 0.42 1.25

Re040 2560 3 2560 3 704 42 1600 3160 26 320 1.6 0.69 0.41 1.26
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(11Re21
0 )B0(t2 t0)5

ðz
‘

0
[hbi(z, t)2 b0(z)]dz (6)

for any given time t, where b0(z) is the reference back-

ground buoyancy profile, Eq. (2), and z‘ is located far

enough into the nonturbulent stably stratified region.

Angle brackets denote averaging along horizontal planes

hereinafter.

Since zenc is commensurate with the CBL thickness for

the case of a CBL growing into a linearly stratified at-

mosphere, the independent variable z/zenc (or equivalent

normalized height) is often used to study the self-similar

behavior of the CBL as it grows in time. In contrast, the

use of

zenc/L05 [2(11Re21
0 )(t2 t0)N]1/2 (7)

instead of tN to measure the state of development of the

CBL is less common. The reason to use it in this work

is twofold. First, according to the interpretation of L0 in-

troduced before and further discussed in section 5, zenc/L0

is a measure of the ratio between the integral length scale

of turbulence within the mixed layer and the integral

length scale within the entrainment zone and is therefore

a relevantmeasure of scale separation in theCBL. Second,

zenc/L0 retains the effect of bothN andB0 simultaneously,

meaning that both the weak stratification regime (rela-

tively thick EZ) and the strong stratification regime (rel-

atively thin EZ) can be covered by a single simulation as

zenc/L0 grows in time.According to the results presented in

the following section, the distinction between the weak

and strong stratification regimes occurs at zenc/L0 ’ 10.

For comparison with the atmospheric CBL, we use the

estimates L0 ’ 20–200m [derived from typical values

N ’ 0.6–1.8 3 1022 s21 and B0 ’ 0.3–1.0 3 1022m2 s23

(Fedorovich et al. 2004a; Tr€aumner et al. 2011)], zenc ’
1000m, and n5 1.53 1025m2 s21 to obtain zenc/L0’ 5–

50 and Re0 ’ 6 3 105 to 2 3 107. Our simulations reach

up to zenc/L0 ’ 26 (see Table 1) and therefore the range

of values achieved is representative of atmospheric

conditions and encompasses the different stratification

regimes considered in Fedorovich et al. (2004a), whose

weakest and strongest stratification cases correspond to

values zenc/L0 ’ 7.3 and zenc/L0 ’ 23.5, respectively. On

the other hand, the Reynolds numbers Re0 5 42 and

Re05 117 in our simulations are still orders ofmagnitude

smaller than atmospheric values. However, by com-

paring both cases, we show throughout the paper (see

also appendix B) that Reynolds number effects on the

results that we discuss are negligibly small.

Notice that the reference Reynolds number Re0
characterizing the turbulence inside the EZ is different

from, but related to, the convective Reynolds number

Re*5
zencw*

n
5

�
zenc
L0

�4/3

Re0 (8)

that is associated with the large-scale convective mo-

tions and that characterizes the turbulence inside the

mixed layer, where

w*5 (B0zenc)
1/3 (9)

is the convective velocity (Deardorff 1970). As shown

later on, some of the large-scale statistics in the CBL

begin to show a relatively small dependence on the

Reynolds number as the simulations approach values

Re
*
’ 0.5 3 104 (Table 1), which is in agreement with

the behavior found in other turbulent flows for outer-

scale Reynolds numbers beyondO(104), as discussed by

Dimotakis (2000).

For reference, the range of Re
*
values achieved in

simulation Re040 covers the values achieved in the ex-

periments of Deardorff et al. (1980) in a 1.11m3 1.24m

wide water tank. However, those tank experiments have

quite a low Re0, about 10; they achieve a comparable

Re
*
because zenc/L0 is larger, about 60. (To reach anRe

*
similar to that of simulation Re100, the CBL of the tank

experiment would have to grow from 0.27 to 0.50m, and

to obtain a similar aspect ratio of the horizontal di-

mension to the CBL thickness as in the simulations, the

tank would need to be 6m 3 6m wide.)

4. Preliminaries

We briefly discuss in this section two topics that are

relevant for the following sections. First, we evaluate

different definitions of the height of the CBL top because

they provide reference positions needed for the detailed

analysis of the entrainment zone presented in section 5.

Second, we show that beyond zenc/L0 ’ 10, the CBL is

already within the equilibrium entrainment regime.

a. Definitions of the height of the convective
boundary layer top

We consider the following definitions of the height of

the CBL top, zi,j, as introduced before in the literature

(see, e.g., Garratt 1992; Sullivan et al. 1998):

(i) The zero-crossing height zi,0, where the total buoy-

ancy flux

B5 hb0w0i2 k
›hbi
›z

(10)

becomes negative. A prime indicates turbulent

fluctuation (deviation from the horizontal plane

average).
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(ii) The integral-based height

zi,i(t)5 2:5
1

B0

ðz
‘

0
hb0w0i dz , (11)

where the integral extends far enough into the

nonturbulent stably stratified region. The factor

2.5 comes from assuming a linearly decreasing

buoyancy flux profile that has aminimum buoyancy

flux value of 20.2B0 (see Deardorff 1970).

(iii) The flux-based height zi,f, where the total buoyancy

flux B is minimum.

(iv) The variance-based height zi,y, where the buoyancy

variance hb0b0i is maximum away from the near-

wall region.

(v) The gradient-based height zi,g, where the mean

buoyancy gradient is maximum away from the

near-wall region.

We compare these heights, normalized with the en-

croachment height zenc [Eq. (5)], in Fig. 1. When the

thickness of the CBL becomes an order of magnitude

larger than L0, all of the normalized heights become

statistically steady in time, within the statistical con-

vergence that we can achieve. Table 2 summarizes the

values of the corresponding constant

Cenc,j 5 zi,j/zenc . (12)

This steadiness implies that zenc already gives the correct

evolution in time of the growth of the dry CBL into

a linearly stratified fluid (Driedonks 1982). The mean

entrainment rate

we,j 5dzi,j/dt (13)

can then be approximated as

we,j ’ Cenc,j

dzenc
dt

5Cenc,jNL0(zenc/L0)
21 (14)

for zenc/L0 $ 10. Hence, the range of values of Cenc,j

gives a variability of ’25% in we depending on the

height zi,j that is used to define the CBL top. In partic-

ular, the mean entrainment rate differs by roughly 10%

between the commonCBL-top height definitions zi,f and

zi,g. We will denote dzenc/dt as we.

We emphasize that, according to Fig. 1 and Table 2,

the Reynolds number dependence of the entrainment

rate we after the initial transient, beyond zenc/L0 ’ 5 2
10, is already negligibly small for the Reynolds numbers

achieved in these simulations, only about 2% and com-

parable to the statistical convergence.

The different CBL-top heights are ordered accord-

ing to

zi,0# zenc , zi,i # zi,f , zi,y # zi,g , (15)

in agreement with previous results (Sullivan et al. 1998;

Fedorovich et al. 2004a). Approximately, there are only

three distinct heights since we observe that zi,0 ’ zenc,

zi,i ’ zi,f, and zi,y ’ zi,g. These three heights are depicted

as three white bars in Fig. 2, which visualizes a vertical

cross section of the CBL using the magnitude of the

buoyancy gradient. The entrainment zone, whose loca-

tion is roughly indicated by these three heights, is

dominated by both sharp gradients at the crests of the

undulations, or domes, and the entrained fluid regions

between those domes, or troughs. The smallest of the

three heights, the zero-crossing height of the buoyancy

flux, was used in the original study of Deardorff et al.

(1980), and is said to characterize the top of the well-

mixed layer, which is supported by the visualization in

Fig. 2 (see also Fig. 6d). The largest of those heights, zi,g,

seems to mark the mean vertical extent reached by the

penetrating thermals. We will discuss in section 5 and

section 6 the details of this entrainment region that de-

velops between zi,0 and zi,g.

FIG. 1. Temporal evolution of the normalized CBL-top heights,

defined in section 4a: zero crossing of buoyancy flux zi,0 (black),

integral-based zi,i (red), flux-based zi,f (magenta), variance-based

zi,y (green), and gradient-based zi,g (blue). The corresponding

mean values beyond zenc/L0’ 10 are summarized in Table 2. Light

colors correspond to Re040, dark colors correspond to Re100.

TABLE 2. Normalized CBL-top height constants Cenc,j, Eq. (12),

calculated for all the different height definitions fzi,j: j5 0, i, f, y, gg
introduced in section 4a and shown in Fig. 1, using the data for zenc/

L0 $ 10.

Heights zi,0 zi,i zi,f zi,y zi,g

Re040 Mean 0.97 1.11 1.15 1.21 1.23

s(%) 1.0 2.1 1.1 0.36 0.83

Re100 Mean 0.98 1.13 1.15 1.23 1.24

s(%) 1.0 1.6 0.9 0.29 0.54
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b. The equilibrium entrainment regime

To show that we are analyzing statistics within the

equilibrium entrainment regime, we follow Fedorovich

et al. (2004a) and perform an integral analysis of the

evolution equation for the turbulence kinetic energy

›e

›t
1

›T

›z
5 hb0w0i2 « , (16)

whereT5 hw0y0iy
0
i/21 p0w0 2 u0it

0
izi is the turbulent flux of

kinetic energy in the vertical direction, and «5 hu0i,jt0i,ji is
the mean viscous dissipation rate, with the viscous stress

tensor being tij 5 n(ui,j 1 uj,i) (the symbol ui,j denotes

partial derivative in the direction j for the velocity com-

ponent ui). Integrating this transport equation from the

surface up to a height z‘ located far enough into the

nonturbulent stably stratified region yields

Ct 1CT 5Cbw 2C« , (17)

where Ct 5w23

*,i
Ð z‘
0 (›e/›t) dz, CT 5w23

*,i
T(z‘), and the

terms at the right-hand side are

Cbw5w23

*,i

ðz
‘

0
hb0w0i dz, C«5w23

*,i

ðz
‘

0
«dz . (18)

The convective velocity in the expressions above isw
*,i

5
(B0zi,i)

1/3 (Deardorff 1970). By construction, Cbw 5 0.4.

The evolution in time of the terms in Eq. (17), shown

in Fig. 3a, has three main features. First, the collapse of

the curves from simulations Re040 and Re100, particu-

larly that ofC«, indicates the tendency of the production

and destruction rates of turbulence kinetic energy to-

ward an inviscid scaling that depends solely on the inte-

gral scales zi,i and w
*,i

(i.e., independent of the viscosity).

This behavior is another manifestation of Reynolds

number similarity (Tennekes and Lumley 1972; Pope

2000; Monin and Yaglom 2007). Second, the negligibly

small transport term, CT, implies a negligible energy

drain due to the upward radiation of inertial gravity

waves, in accord with previous findings in similar CBL

configurations (Deardorff et al. 1980; Carruthers and

Hunt 1986; Fedorovich et al. 2004a). Finally, the de-

creasing tendency term Ct implies that beyond zenc/

L0 ’ 10, the dominant balance in Eq. (17) is between

the terms Cbw and C«, meaning that

Cbw ’ C« . (19)

This balance corresponds to the equilibrium entrain-

ment regime (Fedorovich et al. 2004a). Within this re-

gime, the CBL is in a quasi-steady state in the sense that

the time zenc/we 5 N21(zenc/L0)
2 required for a signifi-

cant change of the CBL thickness is much longer than

the turnover time zenc/w*
5 N21(zenc/L0)

2/3 associated

with the large-scale convective motions inside the CBL.

FIG. 2. Vertical cross section of the CBL showing the logarithms of the magnitude of the buoyancy gradientN22j$bj for case Re100 at

the final time zenc/L05 18. Colors black, blue, yellow, and red correspond, respectively, to values varying between 1021 and 102 in powers

of 10. Color scale is as Fig. 6. The tops of the threewhite vertical bars indicate the location of the different CBL height definitions, from left

to right: the encroachment height zenc, the flux-based height zi,f, and the gradient-based height zi,g.

FIG. 3. (a) Temporal evolution of normalized terms of the integral

budget equation of turbulence kinetic energy, Eq. (17), showing the

dominant balanceCbw’C«:C« (red),Ct (magenta), andCT (green);

Cbw 5 0.4 (black), by definition. (b) Temporal evolution of the

normalized terms of the local budget equation of turbulence kinetic

energy, Eq. (16), «/(2›T/›z) (red) and 2hb0w0i/(2›T/›z) (blue),

evaluated at the height of minimum buoyancy flux zi,f . Light colors

correspond to Re040, dark colors correspond to Re100.
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Indeed, the ratio of these two time scales, w
*
/we 5

(zenc/L0)
4/3, is larger than an order of magnitude for the

interval of the normalized CBL thickness zenc/L0 $ 10

considered in this work.

5. Vertical structure of the entrainment zone

In previous studies of the CBL vertical structure, the

entrainment zone was often considered as a single layer at

the top of the well-mixed region (see, e.g., Deardorff et al.

1980; Sullivan et al. 1998; Fedorovich et al. 2004a, and ref-

erences therein). In contrast, we find that the entrainment

zone is better described as a composition of twooverlapping

layers, based on the observation that local properties, like

length andbuoyancy scales, evolvedifferently in timewithin

each of those two layers. We clarify this as follows.

On the one hand, the proportionality among the dif-

ferent definitions of the CBL-top height discussed in the

previous section (Fig. 1) indicates that we can define

a first sublayer in the entrainment zone with a thickness

zi,g 2 zi,0 that is proportional to the CBL thickness.

Using the coefficients from Table 2, we can write zi,g 2
zi,0 5 (Cenc,g 2 Cenc,0)zenc ’ 0.25zenc.

On the other hand, as we approach the height of maxi-

mum mean buoyancy gradient zi,g, the vertical profiles of

the mean buoyancy gradient and of the root-mean-square

(rms) of the buoyancy fluctuations, brms5 hb0b0i1/2, do not

scalewith either the encroachment scales or the convective

scales; as shown in Fig. 4a, around the height zi,g, the

magnitudes of these normalized quantities keep in-

creasing in time. This behavior suggests that we consider

an upper EZ sublayer centered at zi,g whose thickness is

not a constant fraction of the CBL thickness, but instead is

proportional to a local length scale.One possible definition

of this characteristic length scale is based on the relation

hbi(zi,g)1
›hbi
›z

(zi,g)d5 b0(zi,g)1N2d , (20)

sketched in Fig. 5. This expression can be written as

d52
hbi(zi,g)2 b0(zi,g)

›hbi
›z

(zi,g)2N2
. (21)

This is a gradient thickness definition that is often

employed in the characterization of turbulent mixing

layers that separate two regions where the flow is statis-

tically homogeneous in the two directions perpendicular

to the mean gradient (see, e.g., Pope 2000). Hence, the

definition (21) supports the interpretation of the upper

EZ sublayer as a transition region, based on the buoyancy

field, between the nonturbulent, stably stratified fluid

above and the turbulent layer below. The corresponding

buoyancy scale within the upper EZ sublayer is

bd5
›hbi
›z

(zi,g)d , (22)

FIG. 4. (a) Vertical profiles inside the entrainment zone nor-

malized by zenc: (›hbi/›z)/N2 (solid), brms/b*
(dash dotted), and B/

B0 multiplied by a factor of 5 for emphasis (dashed). (b) Vertical

profiles inside the entrainment zone centered at zi,g and normalized

by d: (›hbi/›z2N2)/(bd/d2N2) (solid), brms/bd (dash-dotted), and

B/[bdwrms(zi,g)] multiplied by a factor of 5 for emphasis (dashed).

Light gray, gray, and black indicate snapshots from simulation

Re100 at zenc/L0 ’ f10, 14, 18g, respectively.

FIG. 5. Sketch illustrating the definition of the local thickness d,

Eq. (21), characterizing the upper EZ sublayer. The mean buoy-

ancy profile (solid black) corresponds to the final time of simulation

Re040 (zenc/L0 ’ 26); tangent line at the point of maximum

buoyancy gradient (marked with a plus sign) is shown in red; the

background buoyancy profile is shown in magenta.
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which is similar to the scaling proposed by Sorbjan

(1999).

When normalized with d and bd, the profiles of mean

buoyancy gradient and buoyancy rms at different times

approximately collapse on top of each other (Fig. 4b).

This self-similar behavior of the buoyancy profiles re-

sembles the self-similarity hypothesis that underlies the

general structure models of the EZ (Fedorovich and

Mironov 1995; Fedorovich et al. 2004a), although we find

that it applies only within the upper EZ sublayer, namely,

in a region zi,g6 d, and not across the entire entrainment

zone, as originally postulated in those models.

For the rest of this section, we discuss the physical

mechanism that causes this mixing region zi,g 6 d and

the interpretation of the characteristic scales d and bd. In

addition, we also provide explicit parameterizations for

these scales as a function of the independent variable

zenc/L0, so that the buoyancy profiles inside the EZ can

be reconstructed at any time, if desired.

a. The length scale

1) MEAN PENETRATION DEPTH OF THERMALS

Figure 2 and, with more detail, Figs. 6a and 6b illus-

trate that the upper EZ sublayer is a region character-

ized by turbulent thermals penetrating into a smoothly

varying environment. Qualitatively, we can interpret the

height zi,g and the thickness d, respectively, as a rough

estimate of the mean and standard deviation of the

vertical location of the top of the interface undulations,

or domes, that are created by the overshooting thermals

(Fig. 7). On the other hand, the lower EZ sublayer is

characterized by the updrafts, acting as pillars that sup-

port the domes in the upper EZ sublayer, and by the

turbulent troughs in between the domes (Figs. 6c,d).

Within this lower EZ sublayer, we find strong fluctuations

in the buoyancy field all across the horizontal extent.

The interpretation of d as the mean penetration depth

above zi,g that the thermals reach is supported by parcel

theory. This theory states that given a parcel of fluid with

a vertical velocity w0 at its neutral buoyancy level, the

vertical displacement reached by this parcel of fluid in-

side a linearly stratified region with buoyancy frequency

N is proportional to w0/N (Zeman and Tennekes 1977;

Xuequan and Hopfinger 1986; Hopfinger 1987; Smyth

and Moum 2000).

For the fluid parcels at zi,g, we can propose that w0 ;
wrms(zi,g). At the same time, we observe in our simula-

tion that the integral velocity scale of the turbulence

inside the upper EZ sublayer is a constant fraction of the

convective velocity,

wrms(zi,g) ’ cw2w* (23)

(Fig. 8a), beyond zenc/L0’ 10, where cw2’ 0.2 (Table 3).

Therefore, we can write

d ’ cd(w*/N) . (24)

Indeed, Fig. 8b demonstrates that d follows this scaling

within the equilibrium entrainment regime, beyond

zenc/L0 ’ 10, and that cd ’ 0.55. The Reynolds number

dependence of this constant is already negligibly small

for the Reynolds numbers Re0 ’ 100 achieved in our

simulations (about 2%, less than the uncertainty ’ 5%

associated with the statistical convergence; see Table 3).

FromEq. (24) and the definition ofw
*
, we see that d is

actually increasing in time according to

d/L0 5 cd(zenc/L0)
1/3 , (25)

but, with respect to zenc, it continuously decreases as

d/zenc 5 cd(zenc/L0)
22/3 . (26)

This scaling of d highlights the effect of the stratification

on the geometry of the turbulent structures inside the

entrainment zone. If therewere no stratification (N25 0),

the size of the undulations due to the thermals would

scale with the boundary layer thickness and entrainment

would be dominated by large-scale engulfment (Mellado

2012). With stratification, an interval zi,g 2 zi,0 of the

entrainment zone retains the scaling proportional to the

CBL thickness zenc, but a second sublayer develops

within the region of the EZ that is closer to the stably

stratified layer. This upper EZ sublayer can be inter-

preted as a transition region between the convectively

mixed layer, characterized to leading order by zenc and

w
*
, and the stably stratified layer above, characterized

by w
*
and N. The properties of this upper EZ sublayer

depend directly onN, in contrast to those inside the lower

EZ sublayer, where N enters only indirectly through the

dependence of the CBL thickness zenc on the buoyancy

frequency N as in Eq. (5).

Finally, the scaling above also means that, as the CBL

grows, the upper EZ sublayer, with extent zi,g 6 d, be-

comes a smaller fraction of the lower EZ sublayer, with

an extent (zi,g2 zi,0)’ 0.25zenc. Notice, however, that for

a significant range of typical atmospheric conditions

(zenc/L0 ’ 10–50; see section 3), the upper EZ sublayer

still occupies a significant fraction of the entrainment

zone, since 2d/(zi,g 2 zi,0) varies between 0.95 and 0.46

within this range.

2) INTEGRAL LENGTH SCALE OF TURBULENCE

The existence of a turbulence integral length inside

the EZ that is different from the CBL thickness zenc
(or a constant fraction thereof) has previously been
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considered due to increasing evidence that the viscous

dissipation rate « inside the EZ is not a fixed fraction of

the rate of energy input into the system (Linden 1975;

Tennekes 1975; Guillemet et al. 1983). The reason for

this behavior was attributed to the influence of stratifi-

cation on the turbulence near the stratified interface

(Zeman and Tennekes 1977; Mahrt 1979). The scaling

«(zi,g, t) ’ c«[wrms(zi,g)]
3/d (27)

observed in Fig. 8c for roughly zenc/L0 $ 10–15, where

c« ’ 0.5, supports those hypotheses. In particular, this

inviscid scaling of the viscous dissipation rate implies

that d is not only the mean penetration depth of ther-

mals, but it also represents the integral length scale of

the turbulence inside the crests or domes of the over-

shooting thermals (Pope 2000).
Consistent with the scalings Eqs. (24) and (27), the

Ozmidov scale within these turbulence regions or

FIG. 6. Horizontal cross sections showing the logarithmof themagnitude of the buoyancy gradientN22j$bj inside
the entrainment zone for the case Re100 at the final time zenc/L0 5 18 (only 1/9 of the domain is shown). Colors

black, blue, yellow, and red correspond, respectively, to values varying between 1021 and 102 in powers of 10. The

heights are (a) z5 zi,1, (b) z5 zi,g, (c) z5 zi,f, and (d) z5 zi,0. The long horizontal white bar at the top left corner of

each panel indicates a length equal to zenc, Eq. (5); the short white bar indicates a length equal to d, Eq. (21).
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turbulence pockets inside the upper EZ sublayer (Figs.

6a,b) is proportional to d according to

2
4«(zi,g, t)

N3

3
5
1/2

5 (c«c
3
w2/c

3
d)

1/2d , (28)

with (c«c
3
w2/c

3
d)

1/2 ’ 0:2 (Table 3). The Ozmidov scale

characterizes the size of the largest eddies in fully de-

veloped turbulence under a homogeneous stratification

(Ozmidov 1965; Smyth and Moum 2000) and thus the

local integral scale, d in our case. Interestingly, the ref-

erence Ozmidov scale L0 is actually comparable in

magnitude to d within the interval zenc/L0 ’ 10–26 (see

Table 1). Therefore, L0 provides a first estimate of the

characteristic length d for this range of typical atmo-

spheric conditions. This also implies that the reference

Reynolds number Re0 is not only a control parameter of

the problem, but also approximates well the Reynolds

number Red that characterizes the turbulence inside

part of the entrainment zone, since

Red5
dwrms(zi,g)

n
5 (cw2/cd)Re0(d/L0)

2 , (29)

where cw2/cd’ 0.44 (Table 3) and d/L0 varies between 1.1

and 1.9 [Eq. (25)] for zenc/L0 varying between 10 and 50.

In sum, our results confirm the previous hypothesis

(Zeman and Tennekes 1977; Mahrt 1979) that the in-

tegral length scale of the turbulence locally within the

entrainment zone is modified by the stable stratification,

more specifically, within the upper EZ sublayer. In ad-

dition, we have provided an explicit parameterization of

this integral length scale in terms of the independent

variable zenc/L0 in Eq. (25).

b. The buoyancy scale

From Eqs. (21) and (22), the buoyancy scale bd can be

equivalently defined as

bd5N2d1 [b0(zi,g)2 hbi(zi,g)] . (30)

This expression allows us to interpret bd, and therefore

the maximum buoyancy rms (Fig. 4b), as a combination

of two buoyancy increments.

The first contribution in Eq. (30), N2d, can be inter-

preted, according to parcel theory, as the buoyancy force

experienced by a parcel of fluid after a displacement d

from its neutral level across a region with buoyancy

stratification N2. Our numerical results show that the

corresponding Richardson number

Rid5
d(N2d)

w2
*

5 c2d (31)

FIG. 7. Extracted region from Fig. 2 (see dashed white box)

emphasizing the entrainment zone. The upper EZ sublayer, zi,g6 d

(enclosed by two horizontal lines, where zi,15 zi,g1 d), features the

overshooting thermals, and corresponds to the region directly af-

fected by the stably stratified overlying fluid. The lower EZ sub-

layer, zi,g 2 zi,0, features the troughs of the undulations there. The

layer below zi,0 (masked region) is the well-mixed layer.

FIG. 8. Temporal evolution of the characteristic scales inside the up-

perEZ sublayer: (a) velocity,wrms(zi,g)/w*
; (b) length, d/(w

*
/N); (c) local

inviscid scaling of the viscous dissipation rate, d«(zi,g)/[wrms(zi,g)]
3; and

(d) buoyancy,brms(zi,g)/bd (blue) andbd/[N
2d1N2(zi,g2 zenc)] (red). (e)

Buoyancy scale inside the lower EZ sublayer, [hbi(zi,f) 2 benc]/[hbi
(zi,g)2 benc]. (f) Evolution of (z10%mbf2 zi,g)/d (blue) and (z5%mbf2
zi,g)/d (magenta), comparing the upper EZ limit definitions z10%mbf,

the height where the buoyancy flux is 10% of the minimum, and z5%

mbf, corresponding to 5%, to the definition zi,1 5 zi,g 1 d. Quasi-

steady behavior beginning at zenc/L0 ’ 10 is observed for all quan-

tities and the correspondingmean values are summarized in Table 3.

Light colors correspond to Re040, dark colors correspond to Re100.
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is constant (c2d ’ 0:3) . This constant behavior represents

a continuous balance of potential and kinetic energy in

the entrainment zone: on the one hand, if the buoyancy

difference between the thermals and the environment is

much stronger than N2d such that the thermals cannot

penetrate into the stably stratified region anymore, then

continuous buoyancy input frombelowwill decrease this

buoyancy difference until the thermals can overshoot

again; on the other hand, if the buoyancy difference is

much weaker than N2d, the unhindered thermals will

overshoot to a level of higher buoyancy, consequently

steepening the mean buoyancy gradient across the upper

portion of the EZ.

The second contribution in Eq. (30), the buoyancy

difference b0(zi,g) 2 hbi(zi,g), can be interpreted as the

effective buoyancy increment with respect to hbi(zi,g)
that is felt by the nonthermal regions, whose buoyancy is

better characterized by the original buoyancy profile b0.

The existence of two contributions to bd is consistent

with the visualization (Figs. 6a,b and 7), because only a

fraction of the upper EZ sublayer is occupied by pene-

trating thermals.

To predict bd, Eq. (30), and thereby themean buoyancy

gradient and the rms of the buoyancy fluctuations inside

the EZ, we still need an explicit parameterization of hbi
(zi,g). From the previous observation that the mean state

of the upper EZ sublayer seems to represent an average of

thermal and nonthermal regions, we propose the relation

bd 5 cb1[N
2d1N2(zi,g2 zenc)] . (32)

This parameterization is validated in Fig. 8d. The con-

stant is cb1 ’ 0.4 (see Table 3).

With this last step, we have obtained a complete pa-

rameterization of the buoyancy-related quantities within

the upper EZ sublayer, given the controlling parameters

B0 and N2. The buoyancy scale is parameterized as

bd5 cb1benc[Cenc,g2 11 (d/zenc)] , (33)

where d/zenc is given by Eq. (26) and benc 5 N2zenc (see

appendix B). The mean buoyancy at zi,g, using Eq. (30),

is parameterized as

hbi(zi,g)5 benc 1 [(12 cb1)/cb1]bd , (34)

the mean buoyancy gradient at zi,g, from Eq. (22), is

parameterized as

bd/d5 cb1N
2[11 (Cenc,g2 1)(d/zenc)

21] , (35)

and the maximum rms of the buoyancy fluctuations is

parameterized as

brms(zi,g)5 cb2bd , (36)

where cb2 ’ 0.55 (Fig. 8d and Table 3).

We note that despite the relatively low Reynolds

numbers Red 5O(102) inside the EZ that we achieve in

the simulations [Eq. (29)], the coefficients that are rel-

evant for the discussion that follows, namely, fcd, cb1,
cb2g and cb3 in section 6, already show a relatively low

Reynolds number dependence (Table 3). The largest

variation between the two cases Re040 and Re100 oc-

curs in cb2 and it is less than 15%; for the other co-

efficients it is about 2%. More importantly, we can

differentiate between the variation of the mean and

variance profiles of the buoyancy field that is caused by

the temporal evolution of the EZ, and the variation due

to Reynolds number effects. In particular, the rms of

buoyancy fluctuation varies by a factor of 3 between

zenc/L0 5 10 and zenc/L0 5 26, whereas the change due

to an increase by almost a factor of 3 in the Reynolds

number between case Re040 and case Re100 is less

than 15% (coefficient cb2).

c. Discussion on the multiplicity of scales

Although the length scale d characterizes the thick-

ness of the upper EZ sublayer and the integral length

scale inside the turbulence pockets that exist in this

sublayer, d is not the only characteristic length scale

within the entrainment zone. For example, the wave-

length of the undulations along the horizontal directions

are characterized by the CBL thickness, as observed

from spectral and correlation analysis (not shown) and

documented previously (see, e.g., de Roode et al. 2004).

However, in this work we focus solely on d because of its

relevance for the buoyancy profiles, for the two-layer

structure of the entrainment zone, and for the entrain-

ment rate parameters (section 6).

We also point out that Eq. (32) can be written as

bd5 cb1dbi , (37)

where

TABLE 3. Constants defining the vertical structure of the en-

trainment zone, calculated within the entrainment equilibrium

regime (zenc/L0 $ 10).

cd c« cw2 cb1 cb2 cb3

Re040 Mean 0.53 0.68 0.19 0.39 0.47 0.43

s (%) 5.0 7.5 5.1 4.2 4.8 16

Re100 Mean 0.52 0.51 0.23 0.39 0.55 0.44

s (%) 6.5 6.3 3.8 5.3 5.2 11
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dbi 5 b0(zi,1)2 benc5N2dzi,

dzi 5 zi,g1 d2 zenc 5 zenc[Cenc,g2 11 (d/zenc)] , (38)

and that we can interpret dbi and dzi as the buoyancy

difference and EZ thickness definitions proposed and

used in Fedorovich et al. (2004a) to parameterize the

vertical profiles inside the entrainment zone according

to the general structure model. However, there are no-

table differences. First, because of the clear definition of

d, the definition of the EZ upper extent as zi,1 5 zi,g 1 d

is equivalent to but more robust than the definition used

by Fedorovich et al. (2004a) based on the zero-crossing

(not shown because of large scatter in data), or based on

a given fraction of the turbulent buoyancy flux (see Fig.

8f for a comparison). Second, we have shown that each

of these two parameters dbi and dzi is composed of two

characteristic scales that evolve differently in time as the

CBL grows. Third, the self-similar behavior of the ver-

tical profiles normalized using d and bd is restricted to

the upper EZ sublayer, and not the entire region of

negative mean buoyancy flux.

This multilayer structure and the multiplicity of scales

inside the EZ help to explain why difficulties were en-

countered in finding the appropriate scaling of the

thickness for general structure models (Fedorovich and

Mironov 1995; Fedorovich et al. 2004a), since these

models rely on a single scale. This explanation seems to

be more satisfactory than one based on gravity wave

radiation, whose effect in the analysis of the EZ vertical

structure has often been reported to be small (Deardorff

et al. 1980; Zilitinkevich 1991; Fedorovich et al. 2004a).

It is worth emphasizing that bd, or dbi as defined

above, quantifies the variation of the mean buoyancy

and buoyancy rms that results from an average between

the crest regions with relatively large mean buoyancy

gradient and the regions in between with relatively small

buoyancy gradient (Figs. 6a,b). The buoyancy scales

bd and dbi should not be interpreted as the buoyancy

increment that the thermals feel or work against, which

is better represented by N2d only. In other words, the

CBL grows continuously against a constant stratification

N2, and not against an increasing buoyancy increment

dbi. (The decrease in time of the growth rate is due to the

increasing CBL thickness over which the constant sur-

face energy flux needs to be distributed, as quantified by

the encroachment height, and not due to the increasing

stratification dbi.)

Last, the ratio between the EZ thickness, defined as

dzi, and the CBL thickness, zenc, evolves according to

dzi
zenc

5Cenc,g2 11 (d/zenc) . (39)

The corresponding decrease in time toward the asymp-

totic value Cenc,g 2 1 ’ 0.24 as d/zenc decreases was al-

ready found by Deardorff et al. (1980). However, as

explained by those authors, the corresponding scaling

was not well understood because neither the penetration

depth d nor the CBL thickness zenc, separately, could

explain the evolution of the ratio dzi/zenc. Here we show

that the combination of both length scales, d and zenc,

a consequence of the two-layer structure of the EZ,

explains the observed behavior.

6. The entrainment rate parameters

The relation between the mean entrainment rate we,

Eq. (13), and other entrainment rate parameters, like

the minimum turbulent buoyancy flux and the buoyancy

increment across the entrainment zone, has often been

analyzed in the past within the framework of bulkmodels,

like zero- or first-order models (see, e.g., Betts 1974;

Sullivan et al. 1998; Fedorovich et al. 2004a, and refer-

ences therein), and general structure models (Fedorovich

and Mironov 1995; Fedorovich et al. 2004a). In contrast,

the analysis presented in this section is based directly on

the evolution equation for the mean buoyancy, without

resorting to any particular model. The purpose is to un-

derstand better the behavior in time of those entrainment

rate parameters, in particular, to understand how the two-

layer structure discussed in the previous section affects

this behavior, and thereby to provide reference data for

model development.

Integrating in space the transport equation of the

mean buoyancy deviation hbi 2 b0,

›(hbi2b0)

›t
52

›

›z

�
hb0w0i2 k

›hbi
›z

�
, (40)

from a given height zi(t) upward and applying the

Leibniz rule yields

ðz‘
z
i

›(hbi2 b0)

›t
dz

5
d

dt

ðz
‘

z
i

(hbi2 b0) dz1 [hbi(zi, t)2 b0(zi)]
dzi
dt

5

ðz
‘

z
i

›

›z

�
k
›hbi
›z

2 hb0w0i
�
dz . (41)

The analysis of the mean buoyancy as a deviation from

the reference background profile b0, instead of just hbi,
has the advantage that the result is independent of the

upper limit of integration z‘ when it is located far

enough into the nonturbulent stably stratified region.

Dividing byB0, we obtain the entrainment rate equation
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1

B0

Dbi
dzi
dt

5A , (42)

where

Dbi(t)5 b0(zi)2 hbi(zi, t) (43)

and

A(t)5At(t)1Am(t)1Ad(t) . (44)

The term Dbi is the buoyancy deviation of the current

mean buoyancy from the background reference b0(z) at

the height zi(t). The normalized entrainment flux, A,

also known as entrainment ratio, is composed of three

terms,

At(t)52
hb0w0i(zi)

B0

,

Ad(t)52
1

B0

d

dt

ðz
‘

z
i

(b02 hbi) dz,

Am(t)5
k

B0

›hbi
›z

(zi)2Re21
0 , (45)

corresponding, respectively, to the turbulent contribu-

tion, the distortion or shape contribution due to the EZ’s

finite thickness, and the molecular contribution (which

includes the molecular contribution of the background

stratification as Re21
0 ).

The previous equation and definitions can be applied

at any CBL-top height zi. For the rest of this section, we

particularize them at zi 5 Cenc,f zenc, the height of min-

imum buoyancy flux, to be consistent with the usual

definition of the entrainment ratioA.We use the smooth

approximation Cenc,f zenc to the instantaneous value zi,f,

valid for zenc/L0* 10 (see section 4a), in order to reduce

the variability in the calculation of the time derivative in

the distortion or shape contribution Ad; the corre-

sponding effect on the calculated values ofA and Dbi,f is
less than 5%.

a. Contributions to the entrainment ratio

The largest contribution to the entrainment ratio A is

the turbulent term At (Fig. 9). On the one hand, the

growth of At by about a factor of 2 as the CBL develops

in time between zenc/L0 , 10 and zenc/L0 . 20 is con-

sistent with the factor of 2 variation observed by

Fedorovich et al. (2004a) in their LES data when the

strength of the stratification is increased from the weak

stratification, corresponding to the CBL state zenc/L0 ’
7, to the strong stratification, corresponding to the CBL

state zenc/L0 ’ 23 (see section 3). However, the DNS

valuesAt& 0.1 at zenc/L0’ 20 are systematically smaller

than the interval 0.1–0.15 reported by those authors.

Since the Reynolds number effect onAt is less than 15%

(Fig. 9) and both cases consider a CBL growing into

a linearly stratified atmosphere, this difference is likely

due to subgrid-scale model effects inside the entrainment

zone. On the other hand, values of At smaller than DNS

values were observed in the convective tank experiments

by Deardorff et al. (1980), despite the larger zenc/L0,

about 50. This apparent discrepancy is possibly due to the

relatively small reference Reynolds number in those tank

experiments, Re0 ’ 10 instead of Re0 ’ 100 here, which

in turn implies a relatively small Reynolds number inside

the entrainment zone in the tank experiments and a ten-

dency to have a thicker EZ and a less pronounced mini-

mum in the profile of the turbulent buoyancy flux.

The second contribution to the entrainment ratio is

the distortion or shape term Ad. Its value is relatively

small compared to the contribution of the turbulent

buoyancy flux At. On average, we observe

Ad ’ 20:02, (46)

whereas At ’ 0.1. This result is in contrast with the con-

clusion of Sullivan et al. (1998), which states that both

terms are comparable to each other for CBLs with rela-

tively thick EZ. We take note, however, that the buoy-

ancy term Dbi,f in Eq. (42), and thereby Ad, are defined

here differently, namely as a local deviation with respect

to the background profile b0(z), and not as a global

buoyancy increment across the whole entrainment zone

(Fig. 10).

In contrast to At, the distortion or shape term Ad is

approximately constant in time (Fig. 9). This steady

behavior can be understood from the two-layer vertical

FIG. 9. Temporal evolution of the contributions to the entrain-

ment ratioAmeasured at zi,f, Eq. (45):At (blue),Am (magenta), and

Ad (green). The gray line is the parameterization of At in Eq. (50).

Light colors correspond to Re040, dark colors correspond to Re100.
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structure of the EZ that is described in the previous

section. The integral in Eq. (45) can be split into two

integrals: one integral from zi,f to zi,g and another in-

tegral from zi,g to z‘. It is then easy to show from the

scalings derived in the previous section that this second

contribution from the upper EZ sublayer continuously

decreases, whereas the first contribution from the lower

EZ sublayer is indeed constant in time. This latter con-

tribution, according to Fig. 9, seems to dominate the

evolution of Ad.

Last, the molecular contribution to the entrainment

ratio, Am, is already negligibly small for the Reynolds

numbers achieved in this work (Fig. 9).

b. The local buoyancy increment

We have learned before that the contribution to the

entrainment ratio A from the finite EZ thickness through

the distortion term Ad is relatively small, about 20% or

less. However, the finite EZ thickness still remains im-

portant because the smooth variation of the mean buoy-

ancy inside the entrainment zone over a finite EZ

thickness determines a local buoyancy increment Dbi,f in
Eq. (42) that is significantly smaller than the global buoy-

ancy increment dbi across thewhole entrainment zone (see

Fig. 10). We can quantify this difference as follows.

As a first approximation, we can assume that themean

buoyancy inside the lower EZ sublayer, in particular

hbi(z) 2 benc, tends toward a steady profile when nor-

malizedwith hbi(zi,g)2 benc. The reason is that the lower

EZ sublayer is relatively well mixed and approximately

quasi-steady in the entrainment equilibrium regime

(see section 4b): the top and bottom values hbi(zi,g) and
hbi(zi,0) ’ benc (see appendix B) vary in time, but tur-

bulence mixes the buoyancy across that region relatively

fast. Hence, we can hypothesize that

hbi(zi,f )2 benc5 cb3[hbi(zi,g)2 benc] , (47)

since the height of minimum buoyancy flux zi,f is ap-

proximately in the middle of the lower EZ sublayer (see

Figs. 4b and 7). Figure 8e supports this relation for zenc/

L0 . 10–15, the constant of proportionality being cb3 ’
0.45 (see Table 3).

Combining this result with Eqs. (33) and (34) yields

Dbi,f /benc5b02b1(d/zenc) , (48)

where

b05Cenc,f 2 12 cb3(12 cb
1
)(Cenc,g 2 1),

b15 cb3(12 cb
1
) , (49)

and d/zenc is given by Eq. (26). Based on the constants

in Tables 2 and 3, b0 ’ 0.086 and b1 ’ 0.27. Comparing

with dbi, Eq. (38), we observe that Dbi,f tends asymp-

totically toward a constant fraction ’ 0.26 of dbi.

However, the ratio Dbi,f /dbi increases in time by a fac-

tor of 2 during the intermediate states zenc/L0 ’ 10–26,

when the contribution of d to the EZ structure is not

negligible.

c. Asymptotic behavior of A

Substituting Eq. (48) in Eq. (42) and using Eq. (14), we

obtain an explicit expression for the entrainment ratio in

the form

At 5 g02 g1(d/zenc) , (50)

where

g0 5Cenc,fb02Ad,

g1 5Cenc,fb1 . (51)

From the previous section, we obtain the estimates g0 ’
0.12 and g1 ’ 0.31. The good agreement of this param-

eterization with the DNS data (Fig. 9) is mainly a con-

sequence of the good prediction of the local buoyancy

increment by Eq. (48), since Eq. (50) follows from the

exact relation, Eq. (42). Hence, the evolution of A in

time is a consequence of the evolution of the two-layer

structure of the EZ. We can also infer that, for a CBL

penetrating into a linearly stratified atmosphere, At

tends toward an asymptotic value ’0.12, within an ac-

curacy of ’ 15% (Table 3). This value is significantly

below the entrainment ratio value ’0.2 that works

well for predicting the mean entrainment rate using

the zero-order bulk model. However, as stated in the

FIG. 10. Sketch illustrating the difference between the local

buoyancy increment Dbi, f, Eq. (43), evaluated at zi 5 zi,f, and the

global buoyancy difference dbi across the whole entrainment zone,

Eq. (38).
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introduction and emphasized by Fedorovich et al.

(2004a), there is no inconsistency between both results

because the zero-order model is not designed to capture

the effects of the EZ’s finite thickness.

The evolution of At according to Eq. (50) can be in-

terpreted in terms of the dominant balance in the tur-

bulence kinetic energy equation Eq. (16), particularized

at zi,f, between the turbulent transport, and the turbu-

lent buoyancy flux and the viscous dissipation (Fig. 3b).

The three terms are expected to follow an inviscid

scaling in terms of the local integral length and velocity

scales of the turbulence. Since zi,f is still relatively close

to the upper EZ sublayer for the interval zenc/L0’ 10–26

(see Fig. 4b), we can also anticipate that the integral

length and velocity scales that are observed at zi,f are a

combination of the corresponding scales within each of

the two EZ sublayers within that interval of time. Al-

though the velocity scales in both EZ sublayers are pro-

portional to the convective velocity, the length scales are

different: a constant fraction of zenc in the lower EZ

sublayer and d in the upper EZ sublayer. If we propose

2hb0w0i(zi,f )5 g0

w3
*

zenc 1 (g1/g0)d
(52)

and expand the fraction in terms of the small number

(g1/g0)(d/zenc), we recover Eq. (50) as a first approxi-

mation. Hence, the combined effect of the two-layer

structure on the local energetics inside the entrainment

zone, Eq. (16), including the turbulent buoyancy flux,

can be interpreted in terms of an average length scale

proportional to zenc 1 (g1/g0)d, where g1/g0 ’ 1.3. As

the CBL develops in time and the ratio d/zenc decreases,

the upper EZ sublayer recedes toward zi,g and the length

scale that remains effective at zi,f is that of the lower EZ

sublayer, namely zenc.

d. The entrainment rate–Richardson number
power law

The entrainment rate equation, Eq. (42), is sometimes

expressed as a relation between a nondimensional or

normalized mean entrainment rate E 5 we/w*
and

aRichardson number Ri. Different power lawsE}Ri2n

have been proposed in the literature, although scatter in

the data and uncertainty in the exponent n still prevent

us from reaching a definite conclusion, in particular for

intermediate values of Ri (see, e.g., Zilitinkevich 1991;

Fedorovich et al. 2004a; Jonker et al. 2012, and references

therein). For the case of a CBL growing into a linearly

stratified fluid, the different choices for the CBL-top

height zi,j that is used in the definition of we and w
*
can

only explain a relatively small variation in the pro-

portionality coefficient of this relation, since all of these

heights become commensurate with each other beyond

zenc/L0 ’ 5–10 (section 4a). In contrast, the particular

buoyancy scale that is used to define the Richardson

number can affect the functional relation between E and

Rimore significantly. This section is devoted to this issue.

Conventionally, a convective Richardson number is

defined as

Ri*5
zencdbi
w2
*

, (53)

where dbi [Eq. (38)] is a measure of the buoyancy vari-

ation across the whole entrainment zone (Deardorff

et al. 1980; Sullivan et al. 1998; Fedorovich et al. 2004a).

Combining this definition with Eq. (14), we obtain the

relation

E5aRi21
* , (54)

where

a5Cenc,f [Cenc,g2 11 (d/zenc)] . (55)

[The prefactor Cenc,f in the expression above results from

calculating the entrainment velocity at zi,f and computing

w
*
according to Eq. (9)—as already mentioned, other

choices vary this prefactor merely by a constant of order

one and its particular value is irrelevant for the dis-

cussion that follows.] This analytic result has two im-

portant implications.

First, asymptotically, the proportionality coefficient

a(t) approaches a0 5 Cenc,f(Cenc,g 2 1) and hence

E}Ri21
* . This is one of the power laws proposed in the

literature based on the estimate hb0w0i(zi)}w3
*/zi ’ B0

for the turbulent flux within the entrainment zone and

the approximation wedb’2hb0w0i(zi) [for more details,

see, e.g., Fernando (1991)]. However, for the interval

Ri
*
’ 8–23 (zenc/L0 ’ 10–26) considered in this study,

which is representative of atmospheric conditions (see

section 3), the evolution of the normalized mean en-

trainment rate E deviates from that asymptotic limit:

a steeper curve is observed in Fig. 11, in agreement with

previous results that suggested exponents n different

from 1 (Turner 1973; Deardorff et al. 1980; Fedorovich

et al. 2004a). Our results indicate that these deviations

stem from the effect that the upper EZ sublayer has on

the entrainment rate parameters, specifically, the term

d/zenc in Eq. (55). When we express d/zenc as a function

of Ri
*
using Eq. (38),

d/zenc5
c2d

2Ri*
f11 [4c22

d (Cenc,g 2 1)Ri*1 1]1/2g , (56)

we obtain the approximation
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E ’ (a01a1Ri21/2
* 1a2Ri21

* )Ri21
* , (57)

valid for Ri* � c2d/[4(Cenc,g 2 1)] ’ 0:28, where

a05Cenc,f (Cenc,g2 1),

a15Cenc,f (Cenc,g2 1)1/2cd,

a25Cenc,f c
2
d/2 . (58)

From the constants in Tables 2 and 3, we obtain a0 ’
0.28, a1 ’ 0.29, and a2 ’ 0.16. Equation (57) helps to

explain the different scalings E}Ri2n
* , 1# n, 2, found

in the literature for intermediate values of the convec-

tive Richardson number Ri
*
. Equation (57) also allows

us to estimate the error in predicting E according to

E ’ a0Ri21
* : even at the strong stratification limit zenc/

L0’ 50 (Ri
*
’ 50), this error is still larger than 10%. The

question still remains, though, whether we could in-

terpret Eq. (57) and the effect of the upper EZ sublayer

on a in terms of some of the mixing mechanisms that

have been proposed to play a role at the entrainment

zone, in particular those associated with the interaction

of turbulence and gravity waves (Carruthers and Hunt

1986; Fernando 1991).

It is worth noting that an alternative definition of a

Richardson number as RiN,j 5N2z2i,j/w
2
*,j, where w*,j

5
(B0zi,j)

1/3, leads to the exact relation we,j/w*,j 5
C2

enc,jRi21
N,j once zi,j becomes proportional to zenc, which

occurs at about zenc/L0 ’ 10 (see section 4a). The range

zenc/L0 ’ 10–26 considered in our study corresponds

to N2z2enc/w
2
* ’ 212 77. Hence, a very clear relation

E } Ri21 appears much earlier than when using the

convectionRichardson numberRi
*
. However, RiN,j does

not reflect the evolution of the local dynamics inside the

EZ during the intermediate range of atmospheric Ri-

chardson numbers considered in this study.

Last, by comparing cases Re040 and Re100 we also

observe in Fig. 11 that Reynolds number effects in the

functional relation E 5 f(Ri
*
) are negligibly small be-

yond Re
*
’ 103, which is the value attained in simu-

lation Re040 at zenc/L0 ’ 10. This result agrees with

previous data (see, e.g., Fernando and Little 1990;

Jonker and Jimenez 2014). [Prandtl numbers greater than

1, not considered in this study, might affect this mixing

transition into an inviscid behavior (see, e.g., Jonker et al.

2012)].

The second implication of Eq. (55) is that the pro-

portionality coefficient a is different from the entrain-

ment ratioA. It is not only different by a proportionality

constant of order one, but it also evolves differently in

time, since A(t) increases (Fig. 9) and a(t) decreases

(since d/zenc decreases). If desired, a functional relation in

which the proportionality coefficient is the entrainment

ratio A(t) can be obtained by rewriting Eq. (42) as

E5ARi21
i,f . (59)

Similar to the previous observation, a strong deviation

during the interval zenc/L0 ’ 10–26 from the asymptotic

behavior E}Ri21
i,f is exhibited in Fig. 11. This deviation

is again due to the upper EZ sublayer, in this case, due to

its effect on the evolution of A toward its asymptotic

value, Eq. (50). However, the Richardson number

Rii,f 5
zencDbi,f

w2
*

(60)

is now based on the local buoyancy increment Dbi,f
characterizing the entrainment rate equation at zi,f, and

not on the buoyancy increment dbi as used in the defi-

nition of the convective Richardson number Ri
*
. Hence,

Eq. (42), which is derived from first principles, reduces

the degree of freedom to choose the proportionality

coefficient and the Richardson number in the entrain-

ment rate equation E } Ri2n: if we choose the pro-

portionality coefficient to be the usual entrainment ratio

A defined as Eq. (44), then the exact equation imposes

a corresponding Richardson number defined with a lo-

cal buoyancy increment Dbi,f. On the other hand, if we

simply relate the normalized mean entrainment rate

E to the convective Richardson number Ri
*
, then the

exact equation imposes a corresponding proportion-

ality coefficient a that is different from the entrainment

ratio A.

FIG. 11. Scatterplot of the normalized entrainment rate E 5
we/w*

against the Richardson numbers Ri*5 zencdbi/w
2
* and

Rii,f 5 zencDbi,f /w2
*. Gray denotes data from earlier time zenc/L0 ,

10. For zenc/L0 $ 10, blue corresponds to Ri
*
and red to Rii,f. The

solid black line is 0:28Ri21
* , based on the asymptotic behavior of

a(t) toward 0.28. The dashed black line is 0:10Ri21
i,f , based on the

asymptotic behavior of A(t) toward 0.10. Light colors correspond

to Re040, dark colors correspond to Re100.
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7. Conclusions

In this paper, we analyzed the vertical structure of the

entrainment zone (EZ) and its effect on the entrainment

rate parameters using data from direct numerical sim-

ulations of a convective boundary layer (CBL) growing

into a linearly stratified environment.

Regarding the vertical structure of the entrainment

zone, we found that it is better described by two over-

lapping sublayers: an upper EZ sublayer dominated by

the penetrating thermals that are directly affected by the

stratificationN2, and a lower EZ sublayer dominated by

the troughs of mixed fluid that are only indirectly af-

fected by the stratification N2 through its effect on the

evolution in time of the CBL thickness. Consequently,

the two regions are characterized by different length

scales. For the upper EZ sublayer, we argued that d,

defined as the gradient thickness based on the maximum

buoyancy gradient, is the characteristic vertical length,

since scaling with it leads to a self-similar behavior of the

mean and rms buoyancy profiles within that part of the

entrainment zone, whereas scaling with the CBL thick-

ness zi does not. Physically, we interpret d as the mean

penetration depth of an overshooting thermal, and such

interpretation is supported by the agreement of d’s

evolution in time with the prediction from parcel theory,

namely, d } (w
*
/N), where w

*
is the convective velocity.

We also found that d is at the same time the integral

length scale of the turbulence inside those crest regions,

since the viscous dissipation rate « at the height of

maximum gradient zi,g scales as «(zi,g) } [wrms(zi,g)]
3/d.

Within the lower EZ sublayer, the characteristic length

scale is transitioning from d to zi as one approaches the

mixed layer. Correspondingly, different buoyancy scales

are found, which reflects on the buoyancy fluctuations

being a combination of the buoyancy increment associ-

ated with the penetrating thermal, and the buoyancy in-

crement associated with the nonthermal regions that

mainly retain the original stratification N2. Parameteri-

zations for the characteristic scales are provided, which

allows for the reconstruction of the vertical profiles of the

mean and variance of the buoyancy field within the EZ at

any time within the equilibrium entrainment regime.

These findings justify the consideration for a second

turbulence length scale for turbulencemodels at the EZ,

one that is different from zi and behaves according to the

parcel theory prediction. This multiplicity of scales in-

side the EZ also explains difficulties found in previous

analyses that considered the entrainment zone as a sin-

gle layer with vertical profiles characterized by a single

set of characteristic scales.

To analyze the effect of the vertical structure of the

EZ on the entrainment rate parameters, we derived an

exact equation for the mean entrainment rate at the

height of minimum buoyancy flux, zi,f, whose terms de-

pend neither on the definition of the upper extent of the

entrainment zone nor on any bulk model formulation.

We obtained this equation from an integral analysis of

the evolution equation for the mean buoyancy. We

found that the direct contribution to the entrainment

ratio A from the EZ finite thickness through the dis-

tortion term is small, but the EZ finite thickness also

decreases the local buoyancy increment associated with

the exact equation, which then compensates for the

small A. For the case of a CBL growing into a linearly

stratified atmosphere, we provided parameterizations

for the local buoyancy increment, and both turbulent

and distortion contributions to A. Based on the param-

eterization of the turbulent contribution 2hb0w0i(zi,f)/
B0, we found that this ratio asymptotes in time to’0.12.

Regarding the relation between the normalized mean

entrainment rate E and the convective Richardson num-

ber Ri
*
, we show that the deviation from the power-law

with exponent21 under typical atmospheric conditions is

explained by the effect of the upper EZ sublayer on the

buoyancy increment across the whole EZ and on the

corresponding proportionality coefficient a. As the upper

EZ sublayer becomes thinner relative to the CBL, a as-

ymptotes to a constant ’0.28 and the functional relation

between the normalizedmean entrainment rateE and the

convective Richardson number Ri
*
approaches a power-

law behavior with exponent 21. This finding shows that

the deviation is apparently not due to the radiation of

gravity waves, confirming previous indications. We noted

also that the proportionality coefficient a evolves in time

differently from the entrainment ratioA, implying that an

inappropriate fA, Rig pair could partially explain the

failure of previous attempts to relate E to a certain Ri-

chardson number, Ri, through a power law.
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APPENDIX A

Minimum CBL Thickness

The length scale L0 5 (B0/N
3)1/2 can also be related

to the minimum boundary layer thickness at which
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stratification affects the evolution and the morphology of

the boundary layer, and the system changes regimes. We

can identify three different regimes. First, there is an

early regime in which the turbulent boundary layer is

shallow enough to behave essentially as if it were de-

veloping in neutral conditions: the boundary layer height

varies proportionally to (B0t
3)1/2 and the kinetic energy

profiles behave self-similarly when normalized by the

convection scales (Mellado 2012). Second, when the

boundary layer thickness becomes comparable to L0,

there appears an intermediate regime in which N2 be-

comes relevant, turbulence kinetic energy is increasingly

transferred from the vertical to the horizontal direction,

and the growth rate diminishes with respect to that of the

early regime. Eventually, the equilibrium (quasi-steady)

entrainment regime is achieved, in which the CBL thick-

ness varies proportionally to (B0t/N
2)1/2 and the kinetic

energy profiles become again self-similar, at least ap-

proximately, when normalized with the convection scales

(see section 4b and also appendix B). The physical in-

terpretation of L0 within this context of regime transition

is explained as follows.

For the neutral caseN25 0, the mean buoyancy profile

tends toward a1bs as the distance to the surface increases

(Fig. A1). This buoyancy level a1bs is a constant fraction

of the surface mean buoyancy bs 5a2(B
2
0/z0)

1/3, where

z0 indicates either the roughness length or the diffusive

length, depending on the surface properties (Garratt

1992). The height at which this buoyancy level a1bs
becomes comparable with that of the background

reference profile b0 5 N2z yields the crossover height

a1bs/N
2 5 a1a2N

22(B2
0/z0)

1/3. When the depth of the

turbulent boundary layer is much smaller than this

crossover height, the turbulent boundary layer is not af-

fected by the stratification aloft. Hence, this crossover

height can be considered as the minimum CBL thickness

at which the transition of regimes (described in the pre-

vious paragraph) occurs, and it can be expressed explic-

itly in terms of L0 as [a1a2(L0/z0)
1/3]L0.

For a smooth surface and in the case of Pr 5 n/k 5 1,

as considered in this work, the diffusive length is z0 5
(k3/B0)

1/4 and thusL0/z0 5Re3/40 , where Re05B0/(nN
2).

Moreover,a1’ 0.1 and a2’ 4 (Mellado 2012). Hence, in

terms of the controlling parameters of the problem, the

minimumCBL thickness is’0:4L0Re1/40 , that is, basically

proportional to L0 because of the weak dependence on

the Reynolds number as Re1/40 .

APPENDIX B

The Encroachment and Convective Scales

For the well-mixed layer statistics, the encroachment

buoyancy (Carson and Smith 1975)

benc5N2zenc (B1)

and the convective scales (Deardorff 1970)

b*,j 5 (zi,j/B
2
0)

21/3,w*,j 5 (B0zi,j)
1/3 (B2)

are well-known characteristic scales of the mean buoy-

ancy, and the variances of the turbulent fluctuations of

buoyancy, hb0b0i, and velocity components hw0w0i and

hy01y01i, respectively. For the convective scales, we will use
zi,j 5 zenc, (denoting the corresponding convective scales

as b
*
5 B0/w* and w

*
) since the variation in the mag-

nitude of the convective scales when other definitions

of the CBL-top height zi,j are used is only at most 7%

(Table 2).

Figure B1 shows that the normalized vertical profiles

of the mean buoyancy, the mean buoyancy gradient,

the buoyancy flux, and the variances of buoyancy and the

vertical and horizontal velocity components exhibit the

expected shapes of these profiles (Stull 1973; Deardorff

et al. 1980) and that within themixed layer, the profiles at

different times tend to collapse on top of each other

within the achieved statistical convergence.

Figure B2 shows in more detail the tendency of the

mixed layer statistics toward proportionality with the

corresponding encroachment and convective scales,

which also facilitates the quantification of possible low

Reynolds number effects. The following three features

FIG. A1. Sketch illustrating the crossover height [0.4(L0/z0)
1/3]

L05 [0.4(L0/z0)
4/3]z0 at which the background buoyancy profile b05

N2z (dashed line) is felt by the growing boundary layer (solid lines).

The solid black line is hbi/bs’ 0.101 0.17(z/z0)
21/3, as obtained from

DNS of a neutral CBL (Mellado 2012, gray profiles); bs is the surface

mean buoyancy. The background stratification shown in this figure

corresponds to the case of a smooth wall, n/k 5 1 and Re0 5 105, z0
being then equal to the diffusive length (k3/B0)

1/4.
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are worth noting. First, the deviation of the mean

buoyancy from the encroachment buoyancy, measured

as hbimin/benc, is very small, already less than 2% for zenc/

L0 ’ 10. Indeed, profiles of buoyancy-related quantities

in Fig. B1 show self-similarity from zenc/L0 ’ 10 onward.

Second, the deviation of the vertical velocity fluctuation

from scaling with the convective velocity is more signifi-

cant at early times, but for the case Re100, the scaling

with w
*
is already observed at zenc/L0 ’ 12. Last, the

deviation of the horizontal velocity fluctuation is most

visible, since the scaling with w
*
is observed relatively

later, roughly at zenc/L0 . 16 for Re040 and zenc/L0 . 14

for Re100. This slower development toward being pro-

portional to w
*
is not a domain size effect, as shown in

Fig. B2b by the collapse of the curves from the Re040

case and the Re040.R1 case with the same Re0 but with

a horizontal domain that is half as large in each horizontal

direction (see Table B1).

The spread of values for the turbulent fluctuations

from the LES intercomparison of Fedorovich et al.

(2004b), taken at approximately zenc/L0 5 12, is included

in Fig. B1. This spread is comparable to the growth from

zenc/L0 5 10 to zenc/L0 5 26 of the DNS data, and the

variation of DNS data between the Re040 and Re100

cases at zenc/L0 ’ 10. DNS data at the end of the simu-

lation, when the Reynolds number is highest, is at the

upper limit of the spread of LES values.

Whereas the encroachment and convective scales are

appropriate characteristic scales within the mixed layer,

they are clearly inappropriate scales within the entrain-

ment zone for both the mean and the variance of buoy-

ancy, respectively, since the normalized mean buoyancy

gradient and the normalized buoyancy variance are in-

creasing in time (Fig. B1). This behavior occurs for both

Re040 andRe100 and has also been observed inLESdata

(Sorbjan 2007), which indicates a temporal evolution of

the entrainment zone different from that of the mixed

layer, rather than a lowReynolds number effect.We have

provided in section 5 more appropriate scalings for these

statistics inside the EZ.

FIG. B1. (top, left to right) Normalized vertical profiles of the

mean buoyancy hbi, the mean buoyancy gradient ›hbi/›z, and the

total mean buoyancy flux B 5 hb0w0i 2 k›hbi/›z. (bottom, left to

right) Normalized vertical profiles of the variance of the buoyancy

and the vertical and horizontal velocities. Blue bars indicate the

spread of LES data values at approximately zenc/L0 5 12 from

Fedorovich et al. (2004b). Blue indicates Re100 and brown in-

dicates Re040. Light to dark colors indicate snapshots at zenc/L0 ’
f10, 18g, respectively, for Re100. For Re040 case, snapshots at zenc/

L0 ’ f10, 26g are included.

FIG. B2. (a) Temporal evolution of hbimin/benc. (b) Temporal

evolution of the normalized rms of vertical (blue) and horizontal

(green) velocity fluctuations taken at the height of maximum

wrms. Average values calculated beyond zenc/L0 ’ 10 are sum-

marized in Table 1. Light colors correspond to Re040, dark colors

correspond to Re100. Dashed lines correspond to Re040.R1,

a simulation with a domain size that is half as large in each hori-

zontal direction (Table B1).

TABLE B1. Simulations used in the study of the sensitivity of the

results to the finite domain size and the grid resolution. Case

Re040.R1 is equal to Case Re040 in Table 1, but with half the

horizontal extension, i.e., 107L03 107L03 56.6L0. Case Re040.R2

is equal to Case040.R1, but with twice the grid resolution (half the

grid spacing in each of the three directions). The last column pro-

vides the resolution (in Kolmogorov units) at zenc/L0 ’ 13.

Simulation Re0 Grid (Dz/h)max

Re040.R1 42 1280 3 1280 3 576 0.82

Re040.R2 42 2560 3 2560 3 1152 0.41
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APPENDIX C

Grid Resolution Study

We have quantified the dependence of the statistics on

the grid resolution by comparing simulations Re040.R1

and Re040.R2 (see Table B1). The grid spacing in case

Re040.R2 is half the size of the grid spacing in case Re040.

R1, and the corresponding initial conditions have been ob-

tained by interpolating the initial fields from case Re040.R1

into the grid fromcaseRe040.R2.The rest of the parameters

in both simulations are exactly the same.Wehavemeasured

the resolution in Kolmogorov units, Dz/h, as it is customary

in DNS (Moin and Mahesh 1998; Pope 2000).

For the resolution (Dz/h)max ’ 1 considered in this

work, the average difference in the relevant statistics

between cases Re040.R1 and Re040.R2, both in the

near-wall region and in the entrainment zone, remains

less than 3% (Fig. C1), which is comparable to the sta-

tistical convergence that we achieve with the domain

size considered in this work. This result, along with the

scalings of the diffusive layer next to the wall and the

Kolmogorov scale in terms of the kinematic viscosity n

and surface buoyancy flux B0, allows us to estimate, for

a given grid size, the maximum reference Reynolds

number Re0 that still guarantees a good enough reso-

lution of the small scales, when using the numerical

scheme described in section 2. Further discussion can be

found in Mellado (2012).
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