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Abstract. Analytic approximations of the binary collision of the collision integrals. If the weighting functions are prop-
rates of hydrometeors are derived for use in bulk micro-erly chosen, this Wisner approximation can recover the con-
physical parameterizations. Special attention is given to nontinuous growth equations as asymptotic limits. The main dis-
spherical hydrometeors like raindrops and snowflakes. Thedvantage of this approach is that the bulk collision rate of
terminal fall velocity of these particles cannot be sufficiently the Wisner approximation becomes zero, if the difference of
well approximated by power-law relations which are used inthe weighted mean sedimentation velocities is zero, while for
most microphysical parameterizations, and therefore an imbroad size distributions as they occur in nature the bulk col-
proved formulation is needed. The analytic approximationslision rate is always non-zero.
of the bulk collision rates given in this paper are an alterna- Verlinde et al.(1990 studied analytic solution of the bulk
tive to look-up tables and can replace the Wisner approximaeollision integrals for generalized gamma distributions and
tion, which is used in many atmospheric models. terminal fall velocities which can be approximated by power-
law relations. They provide exact solutions for this prob-
lem, but those include the general hypergeometric function
and are therefore difficult and expensive to evalu@udet
1 Introduction and Schmid{2005 2007 derived a generalized form of the
Wisner approximation, which overcomes some of the defi-
The approximation of bulk collision rates is a classic prob- ciencies of the classic approximatioBtraka and Gilmore
lem in the formulation of cloud microphysical parameteriza- (200¢ discussed the effect of non-spherical raindrops on the
tions for atmospheric models. The most common formula-py|k collision rate and argued that the usual approximation
tion is the continuous growth equation which applies to par-qf spherical geometry in combination with a power-law fall
ticles of very different sizes and fall speeds; i.e., the size andspeed is sufficiently accurate, but that this is the result of the
the fall speed of the smaller and thus slower falling particle cancellation of two relatively large error€uric and Janc
is neglected Rogers and Yaul996 Pruppacher and Klett (2010 showed that the use of size distributions without an
1997 Straka 2009. In practice, collisions of different par-  ypper cutoff diameter can lead to significant errors, espe-
ticles of similar size and fall speed do occur, and one need@ia”y for raindrops and hail.
a formulation which is more general than the simple con-  An alternative to the Wisner approximation was suggested
tinuous growth equation. The standard approach for the colby Murakami(1990 andMizuno (1990 and later bySeifert
lision rate of two ensembles of precipitation-sized particlesgng Beheng2006 SB2006 hereafter). The latter used the
goes back taVisner et al(1972, who used the ansatz that yariance (or standard deviation) to approximate the bulk dif-

the velocity difference can be approximated by the differ-ference of the sedimentation velocities. Like most earlier
ence of weighted means which then simplifies the solution
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464 A. Seifert et al.: Approximation of bulk collision rates

parameterizations SB2006 limited their formulas to power-efficient depends very much on the application and the hard-
law relations for the terminal fall velocities. ware architecture of the supercomputer and the processor.

In this paper we revisit the variance approximation intro- The paper is organized as follows: in Sect. 2 we review
duced by SB2006. Especially for raindrops and snowflakesand discuss the geometry and terminal fall velocity of rain-
the power-law relations for the terminal fall velocity are not drops and snowflakes and their approximation in bulk mi-
valid for large particles. Therefore new equations are deriveccrophysical parameterizations. Sections 3 and 4 shortly in-
which yield a better approximation for the collision rates that troduce the Wisner and variance approximation of the bulk
involve these particles. Additionally, the SB2006 variance collision rates. In Sects. 5 and 6 we derive explicit parame-
ansatz is improved by introducing a more general weightingterizations of the bulk collision rates of the collision between
factor. For raindrops we include the non-spherical geometrygraupel and rain, and between snow and rain. Section 7 deals
of large raindrops for consistency with the more accurate terwith the self-collection of snow. In Sect. 8 the previously in-
minal fall velocity approximation. troduced as well as other binary collision interactions are dis-

An alternative to analytic approximations of the integrals cussed by use of quantitative error measures. Some conclu-
is look-up tables as they are used or recommended by mangions are given in Sect. 9. The Supplement contains auxiliary
previous studies in their attempt to improve the parameterizafigures and further technical details on the collision interac-
tion of the collision integrals (e.gWalko et al, 1995 Straka  tions which are not in discussed in the main text.
and Gilmore 2006 Saleeby and Cottqr2008 Thompson
et al, 2008. In our opinion, look-up tables have some dis-
advantages and their use should be limited to cases wheré Geometry and fall speeds of raindrops and snowflakes
analytic solutions or approximations are not available. The

reasons which made us discard the use of look-up tables afd@ny hydrometeors in the atmosphere can be approximated
as follows: as spheres, and this approximation is often made in bulk mi-

crophysical models. As is well known, the assumption of

1. Look-up tables increase the complexity of the mod- sphericity does not hold for raindrops larger than 1 mm di-

eling system because an automatic pre-processing beameter because the aerodynamic pressure forces lead to an

comes necessary which guarantees that the look-up teeblate shape and oscillations (e Beard and Chuand 987,

bles are consistent with the microphysical parametersSzakall et al.2010. The axis ratio of raindrops

chosen for the specific simulation. This can become es-

pecially cumbersome in operational numerical weathern — M (1)

prediction where reproducibility is of the essence. Dy max

2. Large multi-dimensional look-up tables can become WnereD:,min andD;,max are the minimum and maximum di-
inefficient because of the additional memory accessMensions of the raindrop, is shown in Fita based on the
especially when the tables are larger than the cachdheoretical model oBeard and Chuan@987), the polyno-
size. On today’'s supercomputers atmospheric mod_r_mal fit of _Chuang and Bear(l990, and the pa_rameterlza-
els are often memory bandwidth limited. Doing more tion following Khvorostyanov and Currf2002 given by

floating point operations without additional memory D max
access can thus be more efficient than using look-upi(Dr,max) = eXp(—b—) 2
tables. 1
. . . + [l— exp(— r’max>] [ ! ] )
3. Look-up tables are usually not included in the publi- D, 14 Dy max/ D,

cations, nor are the corresponding source codes. This . .
makes it difficult to reproduce the results from such The length scaleD, is a constant which we chose to
models and hinders scientific progress. be 5.2mm. Compared tighvorostyanov and Curry2002
this is a slightly higher value, but it fits the data of
4. While analytic approximations allow further theoret- Beard and Chuand1987 better than the 4.7 mm used
ical studies, e.g., to explore the sensitivity to certain by Khvorostyanov and Curr§2002. Assuming a perfect
parameters or assumptions, this becomes limited to nuoblate spheroid, the mass of the raindrop is givencpy-
merical studies once look-up tables have been intro-(/6) puwn D2 hax i-€., given the equivalent diameter of the
duced. raindrop Eqg. 2) constitutes an implicit equation for the max-
imum dimension.
Therefore analytic approximations are in our opinion an im-  For the parameterization of the bulk collision rate we need
portant part of microphysical parameterizations. Another al-a simpler explicit equation foD, max as a function of the
ternative to look-up tables are fits with, e.g., rational func- equivalent diameteb,.. In the following we use
tions as used, for example, Wyrick et al. (2013. In the
end the question of which implementation strategy is mostD; max(D;) = D, explw, D, ), (©)
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a) axis ratio of raindrops b) Maximum dimension of raindrops
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Fig. 1. Parameterization relations for non-spherical geometry of raindrops. The axis ratio as a function of equivalent diameter (left) following
from Eq. @) with D;; = 5.2 mm, the results of thBeard and Chuan@ 987 model and the polynomial fit dhuang and Bear1990. For

the maximum diameter as a function of the equivalent diameter (right) the explicit reBtigax= D, exp(wr D;), with w, = 33 m1, is

used as an approximation to the implicit relation given by Bj. (

with w, =331, and Fig.1b suggests that this is a suffi- (1970. LaterB6hm (1989 1992 showed that the boundary
ciently accurate approximation. layer theory not only provides a powerful approach to treat
The fact that raindrops deviate from a spherical shape rethe large range of Reynolds numbers but can also overcome
sults in an increased cross-sectional area and a higher drathe difficulties of arbitrarily shaped complicated particles.
thus it decreases the terminal fall velocity compared to aBoéhm’s approach was then further developedNbgchell
spherical particle of the same mass. Together with the hig{1996 as well akhvorostyanov and Currf2002 20095.
Reynolds number of a falling raindrop, i.e., the effects of tur-  Figure2 shows the terminal fall velocity of raindrops using
bulence, this explains the well-known empirical result thatthe empirical relation oBeard(1976. The theoretical model
the terminal fall velocity of raindrops becomes independentof Khvorostyanov and Currf2005 KCO05 hereafter) agrees
of drop size for large drops, i.e., that the terminal fall velocity reasonably well with the empirical data, but underestimates
approaches a constant value. Many parameterizations of thihe fall velocity of raindrops between 2 and 5 mm diameter.
terminal fall velocity of raindrops take this fact into account, The simple power-law formula is as quite crude approxima-
e.g., the formulas bBest(1950, Atlas et al.(1973, Rogers  tion and can only give a rough estimate over a limited size
et al. (1993 or Kogan and Shapir¢1996 give the correct range. Especially for large raindrops the power law overesti-
asymptotics, i.e., a constant value at large diameters. Most afates dramatically. In contrast, the Atlas-type fall speed re-
these relations are of the form lation provides a good approximation over a large size range.

Here and in the following we have used the parameters
vy (Dy) = ar — Br eXp(—yr Dr) (4)

o =9.292ms?t, B, =9.623ms?, y, =6.222x10P m2.
or some variant thereof. Hei®, is again the equivalent di-

ameter of raindrops, and., 8, andy, are constant coeffi- The only disadvantage is that they underestimate the terminal
cients. In the following we will call Eq.4) an Atlas-type fall velocity of small drops; i.e., they do not approach the

fall speed relation. In contrast to that, bulk microphysical pa- Stokes law and even become negative for very small drops.
rameterizations traditionally use the less accurate power-lavNevertheless, for water drops larger than 0.1 mm diameter,

approximation for the terminal fall velocity (e.g<essler i.e., for raindrops, it provides a very good parameterization.
1969 Liu and Orvilleg 1969 Lin et al, 1983, which in- Snowflakes show a similar behavior to raindrops in the
creases without bounds for large diameters. sense that for large snowflakes the terminal fall velocity be-

Over the last decades an aerodynamic theory has beetomes approximately independent of size. The reason for
developed which predicts the terminal fall velocity of ar- this is that the particle bulk density decreases with increas-
bitrarily shaped particles over the whole size range, i.e, ang size of the snowflake; i.e., snowflakes grow faster than
large range of Reynolds numbers. The basic idea to applgonstant density spheres. The geometry of snowflakes can be
boundary layer theory to the problem goes backlboaham  described by a quadratic mass—size relatioocételli and
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a) terminal fall velocity of raindrops b) terminal fall velocity of raindrops (log-log axis)
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Fig. 2. Terminal fall velocity of raindrops as a function of equivalent diameter using different approaches. The empirical relation of Beard
(black solid line) is regarded as the reference. The aerodynamic thed€invairostyanov and Currg2002 can explain the empirical
behavior, but significant differences exist (grey dashed line). The power-law approximation (blue dotted line) is in general inappropriate, but
the Atlas-type relation (red dash-dotted line) gives a good approximation for raindrops larger than 0.1 mm.

Hobbs 1974 Brandes et al2007), For the Atlas-type approximation of resulting terminal fall
velocity of snowflakes, we have the choice between a formu-
(5) lation using equivalent diameter

Vs (Deg) = a5 — Bs €XP(—¥s Deq), (6)
with the maximum dimensio®;, the mass of the snowflake _ _ o _
xs and a constant parameter. The quadratic mass—size re- WhereDeq is the diameter of a liquid sphere, i.e.,
I_ation is typical for growth regimes dominated by aggrega- 1
tion as shown byVestbrook et al(2004a b). Such relations ( Bx; )3

2
xs = as Dy,

are used in many bulk microphysical parameterizations; e.g., - T ow ™
typical values fora, are between 0.038 kgm (Doms and ) ) ) ) .

Schattler 2002 Baldauf et al, 2011 anda, = 0.069kgnr2 ~ and aformulation with maximum dimension

(Wilson and Ballargd 1999 Field et al, 2005. Heymsfield vs(Dy) = & — B exp(—75 Dy). 8)

(2003 his Egs. 4 and 5) suggests that the lower value might

be more appropriate for the tropics while the higher value isNote that we us®q for the equivalent diameter of snow and
consistent with data from mid-latitudes. D, for the equivalent diameter of raindrops. This is only an
Figure 3 shows the terminal fall velocity of low-density attempt to make some of the equations more readable, and
snowflakes witha, = 0.038kgnT2. To apply the KCO5  both equivalent diameters are of course identical.
aerodynamic model, an additional assumption about the To optimize the parameters in these fits, we apply the
cross-sectional area, has to be made. Based on the ob- Nelder—Mead downhill simplex metho@iess et a].1992,
servations ofField et al.(2008, namely the data presented and with the resulting parameter values
in their Fig. 3, we chose for simplicity a constant area ratio
a5 = Ay/[(/4)D?] = 0.45. This should provide a good es- s =1.271 ms?, g, =1252ms?, y, =3.697x 10°m™*
timate for the small and medium-sized snowflakes, but mighty _ 1 206 mst, g, = 0.949 ms?, j, = 1.654 x 10 m™1
overestimate the cross-sectional area for snowflakes larger
than 3 mm diameter and lead to an underestimation of theve find that the formulation using the equivalent diameter
terminal fall velocity. Using, on the other hand, the area—sizeDeq provides the more accurate fit to the KC05 terminal fall
relationA; = O.2285D§~88 of Mitchell (1996 for aggregates velocity. Especially from the log—log plot in Figb it be-
would result in about 20 % lower terminal fall velocities than comes obvious that any power-law approximation can only
applyinga; = 0.45. The uncertainty in the terminal fall ve- provide a good fit for a small size range of snowflakes, but
locity of large snowflakes is obviously large, even for a given not for the whole relevant sizes range from, at least, 0.1 mm
mass—size relationship. to 10 mm maximum dimension.
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For all hydrometeors used in this study, the geometries, The integral in Eq. 11) is in general very hard to solve
terminal fall velocities and some further assumptions areanalytically because of the absolute value of the fall speed
summarized in Tabld. Hail is assumed as spherical par- difference. As mentioned in the Introductioverlinde et al.
ticles with a (constant) particle density of 920 kgtn The (1990 derived a general analytic solution for particle distri-
cloud ice is hexagonal plates using the relations as given byutions in the form of gamma distributions combined with
Mitchell (1996, and for graupel we use a mass—size relationpower-law relations for the terminal fall velocities. However,
for lump graupel ofLocatelli and Hobbg1974). Note that  this analytic solution leads to the general hypergeometric
these are not necessarily the particle properties assumed fanction, which by itself is very difficult to evaluate. In prac-
the SB2006 two-moment scheme (or later publications usingice, the analytic solution is computationally as expensive
that scheme), but instead the particle properties here are chas the numerical calculation of the integral itself. Therefore
sen to span a wide, but typical, range of parameters. Someany schemes do still apply the approximation introduced
more details are discussed in Sects. 2 and 3 of the Suppldsy Wisner et al(1972, who replaced the actual terminal fall
ment. velocity by some bulk mean valuewhich does not depend

on D. Doing the same also for the collision efficiency yields
3 Wisner approximation oM.,
The classic gravitational collection kernel as it is found in ~ 9¢
most textbooks (e.gRogers and Yaul996 Pruppacher and
Klett, 1997 is given by

o0 o0
— %Eu‘ |ﬁi,n—ﬁj,n|//(Di+Dj)2 (13)
00

x f;(Di) f;(D;)x}dD;dD;,

coll,ij

T and with

K(D;,Dj) == (D; + D;)? (9)
4 o0 o0

x [vi(Di) = v;(D)| Eij(Di, D), Coij = f/ (Di + D)2 (D) f;(Dpx"dD, D, (14)
with particle diameter®;, D;; terminal fall velocities);, v;; 00
and the collision—coalescence or aggregation efficigngy
For oblate spheroids the relevant particle diameters are theée can write this as
maximum dimensions, while for more complicated geome-
tries one would have to use an area-equivalent spherical di-——/:"
ameter perpendicular to the fall direction. Assuming, without ot
loss of generality, thaitis the collecting species arjdhe one , i i ) .
which is collected, the spectral collection rate for the speciesWIth the usual _a;sumptlons_about the particle siz€ distribu-
j,i.e., theloss term in the budget equation of the particle sizé'ons' the remaining integral if}, ;; can be solved quite eas-
distribution f;(D;), is given by lly.

T i}
= ZEI;/ |Oin = Vjn|Cnij- (15)

coll,ij

Wisner et al.(1972 specified both bulk terminal fall ve-
locities as the mass-weighted fall speeds. A more detailed

o
afi(D;
% = _%f (Di +Dj)2f,-(Di)fj(Dj) (20) analysis of the asymptotic behavior, which should recover
! o the continuous growth equations, shows that the bulk termi-

nal fall velocity of the collecting particles should be weighted
with D2 while the bulk fall speed of the collected particles
As usual, the particle size distributigh D) is defined as the  has to be weighted witlh?x (Seifert 2002. When using a
number of particles per unit volume in the size rafBe D+ two-moment scheme the equation for the number densities
dD]. Multiplication with x” and integration over the internal - should applyD?-weighted fall speeds for both species. The
coordinateD; leads to the bulk collision rates for the integral bulk velocities in the Wisner approximation are therefore cal-

x |vi(D;) —v;(Dj)| Ei;(Di, D;)dD;.

moments of the collected species culated by
o0 o0 foe) 2
IM;, n/‘/ 2 _ Jo_vi(D;) D7 f;(D;)dD;
: =— D+ D;j)" fi(Di) fj(Dj) (11)  vip = (16)
ot co,ij 40 , ( 1) S DO L5D; Jo” D2fi(Dy)dD;
oo, D2 £, Nyt .
x [v(Dy) = v;(Dp)| Eyj(Dy, DpxdDydDy; 5, _ Jo viPDDGIi(D)xjaD; a7

J:n = 00 12 n
. . . : D5 fi(Dj)x"dD;
i.e., M; 1 is the mass densit; of the collected species and Jo™ D f(D)x;dD;

M o= Nj its number density. The corresponding tendencies,

i _ ndn = 0 applies to number density, and= 1 to the mass
of the collecting species are

density equation. Note that for the collecting species the bulk
aL; L, velocity does not depend an i.e., the same velocity is used

oN;
—L—0 and (12)  for all moments.

dr o ot

www.geosci-model-dev.net/7/463/2014/ Geosci. Model Dev., 7, 4688-2014



468

a) terminal fall velocity of snowflakes
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b) terminal fall velocity of snowflakes (lin-log axis)
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Fig. 3. Terminal fall velocity of snowflakes with the mass—size relatica 0.038D2 and a constant area ratio &f = 0.45. As a reference
we use the aerodynamic theory I§hvorostyanov and Currg2002 2009 (black solid line). The approximations are a power-law (blue
dashed) and an Atlas-type relation using either equivalent diameter (red dashed) or the maximum dimension (orange dashed).

Table 1. Coefficients for the mass—size relatior= a D”, the maximum dimension as a function of particle mAss ax?, the power-law
terminal fall velocityv(x) = ax® of particles with mass and the shape parameters of the gamma distributjgns = Ax" exp(— Bx%)

and f(Deg) = NoDé‘qexF(—kDeg). Note that for the raindrops only the spherical geometry is given here, but the non-spherical correction
is taken into account explicitly by, max= D, exp(w, D;). For the area—size relation we give the pre-fagtpin the formulad =y, D?,
whereA is the cross-sectional area abds the maximum dimension.

b

a a o B v § u YA
raindrops  mpy/6 30 - — 1590 02667 Q0 1/3 20 /4
snowflakes 38 20 513 05 8294 Q125 Q0 1/3 20 045(@r/4)
graupel 1%1 28 0346 Q357 175 017 10 1.0 - /4
hail 5001 318 0142 Q314 33 0187 10 1/3 50 /4
cloud ice 1588 2564 Q835 Q390 277 0216 Q0 1/3 20 3/8 V3

4 Variance approximation Murakami(1990 andMizuno (1990 suggested a new for-
mulation of the Wisner approximation in which they replaced
The Wisner approximation has one major disadvantage: théhe difference of the weighted means in Etp)(by an ad hoc
collision rate becomes zero when the two bulk velocities areparameterization of the velocity difference.

equal. For polydisperse particle size distributions this is, OfaM-

. . .. . . T -
course, not consistent with the original collection equatlon.a—”" = ZEU Cn.ij (18)
The true bulk collection rate will have a minimum some- t eoll.ij

where, but it never becomes zero. One could argue that the
small collision rates close to that minimum can be neglected
anyway, but this may be a false conclusion. For examplewith ap90=Buo0=1 and yu9=0.04 as given by
when graupel grows by collection of raindrops, then the Murakami (1990, while Mizuno (1990 uses different val-
small graupel particles have fall speeds which are smalleues. This parameterization is, for example, usedaynsell
than those of raindrops, while the large graupel may haveet al. (2010 as well asgMiilborandt and Yau20058. The dis-
higher fall speeds than rain; i.e., during this growth the grau-advantage of this ad hoc formulation is that the necessary
pel has to go through the minimum in the collision rate. If the coefficients cannot be derived, and it is questionable whether
bulk collision rate becomes zero due to the Wisner approxi-one set of coefficients is good for all possible particle types
mation, it might significantly slow down the growth of grau- and combinations.

pel because just by collecting rain it is impossible to over- Inspired by the parameterization of Murakami and
come this singularity. Mizuno, SB2006 introduced an approximation in which they

X \/(OlMﬂi,n - ,BMl_}j,n)2 + VMl_}i,nl_)j,n,

Geosci. Model Dev., 7, 463478 2014 www.geosci-model-dev.net/7/463/2014/



A. Seifert et al.: Approximation of bulk collision rates 469

parameterize the bulk velocity difference by the square rootWith the bulk quantities defined ag = L;/N; and [)j =

of the second moment of the velocity differences, a quantityDj (%)) = ajiff for any specieg € {r, g,i, s} we find

which can be calculated analytically.
For the SB2006 variance formulation we write the Wisner
approximation as

oM;

[ A
ar = —Eij Avyij Cn,ij

coll,ij

(19)

and the bulk velocity difference is parameterized as

1 o0 o0
- 2
Avy i = {N—//[vi(Di) —v;(D))] (20)
n,ij
00
2

><Dfof{"(Di)f]’-"(Dj)x;-’dDidDj} :
with the normalization factal,, ;; given by

o0 o0
Novij ://DiZDlz-fi”‘(D,-)f]’-"(Dj)x;-’dD,-dDj. (21)

00

Here we have introduced an additional exponeiidllowing

a suggestion oBlahak(2012. SB2006 originally proposed

m =1, but this choice is not the only possible one. For the

exponentn values between one and two seem reasonabl
This exponent modifies the weight of both size distributions,
and, e.g, by giving more weight to higher moments it essen
tially shifts the minimum of the collision rate along the inter-

nal coordinate (see Sect. 5 and Fig. 16 of the Supplement fO{O be calculat%

further details).

5 Graupel-rain collection rates

To specify the integrals of the previous section for the rim-
ing rate of graupel collecting rain, we make the following
assumptions

fr (Dr) = NO,r Dﬁr GXP(—M Dr) (22)
fo(xg) = Agx" exp(—Boxs¥) (23)
D, =a, xgg (24)
Xr = %,OwD? (25)
Vg =g xgﬂg (26)
vy =, — Brexp(—y, Dy) (27)
Dy max = Dy exp(wy Dy). (28)

First, we solve for the integral including the cross-sectional
area

[e.elee]
Cn,gr://[Dg+Dr,maX]2
0O

X fr(Dy) fg(Dg)x;l dDrdDg-

(29)
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C,gr = Ng Ny &7 [5;2133 +28% D, (30)
A3+l T(ir +3n+2)
(A — @) F3 42 D=0y + DI (1) + 4)
. A3+l T(ur +3n+3)
(A — zwr)ltr+3n+3 ri-n (r + DT (ur +4)
and
r (kbg+ug+1) r (vg+1) kbg
& 5
;’k = g g (32)

ve+1
&

ve+2
&

(5 Lr(e))

wheres? , is equal tos? of Eq. (90) of SB2006. Her& (£)
is the gamma function which we evaluate using the method
giveninPress et al1992. With Fortran 2008I" (§) becomes
part of the Fortran standard and optimized codes should be-
come readily available. Nevertheless, the evaluation of the
gamma function remains time consuming in these relations.
n most two-moment bulk schemes the shape parameters like
Wr, Vg, Or &, and the particle properties that determine, e.g.,
bg or B, are constant during a simulation, and therefore pa-
rameters like” , or ﬁ;’m’k, as given by Eq.33) below, have
d only once at the initialization of the micro-
physics scheme. However, the behavior of the particle sed-
imentation can be improved by using a diagnogtie. or
shape—slope relation, i.e., by relating the shape parameters of
the size distributions to the slope or mean size of the distri-
bution Milbrandt and Yay 2005a Seifert 2008 Milbrandt
and McTaggart-Cowar2010. Unfortunately, this makes it
then necessary to recalculate the coefficients which include
the gamma function during runtime. A compromise is to use
the shape—slope relation only for precipitation-sized particles
outside the cloud where the gravitational sorting is domi-
nant, but to revert to a constant shape parameter inside the
clouds where the size distribution is dominated by collision—
coalescence and other growth processes. By doing so, most
parameters become again constant coefficients, and only a
few change with time. Note that with the new parameteri-
zations suggested here, fewer gamma functions occur in the
relations compared to the SB2006 parameterization, which is
based purely on power laws.

For the bulk velocity difference the assumptions lead to

¢
Pem1 e [ar b (1+ %) } (32)
2 v \' 2 ¢
o= (10 22 ) (22’
mA,
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with ¢ =3n+mu, +1 andv; = v;(x;) and themselves, because the trivial dependencies on the number
or mass density and the cross-sectional area have been re-
r (kﬁp+2bp+mvp+k+1) r (vp+l) By moved. For the numerical solution we have appliedBbay
* 5 5 33 and Reinhard{1973 higher-order finite-difference method
p.m.k 2b,4+mv,+k+1 vy+2 G : : T . .
r (%) mID ( Pg ) on a logarithmic grid with 450 bins (mass doubling every 8th
P P

bin). For the particle size distribution of graupel a general-
which is a coefficient similar, but not equal, to Eq. (92) of ized gamma distribution is assumed with a graupel mass den-
SB2006. Using these approximations the rate equations fosity L, =19 m~3 and shape parameters =1 and§, = 1.
all moments can be parameterized. For number and madsor rain we assume a gamma distribution in equivalent diam-

densities of rain we find eter withu, =2 andL, =1 gm 3.
N, - ) The_ Figs.4a an(_j5a _show the well-known p_ro_blems of
o = _ZNgNrEgr (34) the Wisner approximation, namely that the collision rate be-
coll,gr comes zero where the correct solution has its local minimum.
" [5; 2D§ n 28;1Dg(u Y potl This is rectified by thg va'riance approximation, and visually
, : (Ay — @y )12 the SB2006 formulation is superior to the Wisner approxi-
pt+l mation using power-law fall speeds. Using the more accurate
+u+D(n+ Z)W] Atlas-type approximation of the terminal fall velocity of rain-
(A — 207) drops results in a much better agreement with the numerical
g [ﬂ* S (a p <1+ Vr )"”"H) solution, especially for large mean raindrop diameters. This
gm.2z7g  Tgm 178\ T mi, is the case for both the Murakami and Mizuno (Figs. 4c and

1 5¢) as well as the variance approximation (Figs. 4d and 5d).
v\, 14 2 mur 1] 2 Note that this improvement is only achieved by taking into
mA,) +h ( + mT\,) account both the Atlas-type fall speed and the non-spherical
geometry of the raindrops, while the approximation that ap-
and ply power-law fall speeds gives better results when combined

+a,2 — 20 By <1+

oL, T _ with a purely spherical geometry as already pointed out by
3 | coll gr - _ZNgLrEg’ (35) Straka and _G|I_more2006. This error compensanon is prob-
’ ta ably npt coincidence, but reflects the cons.|stency of the as-
% [8;255 +23;1Dg(ﬂ +4) r —= sgmptlons. TheT agreem_ent _of the new variance formulau_on
(A — )M with the numerical solution is very good for the mass colli-
l;+4 sion rate, but larger errors do occur for the number rate, as is
+(n+4H(n+ 5)m} also the case for the other approximations. For both collision

—— rates the optimal values for the tuning parametes- 1.6
=2 % = _ Yr ' for the mass rate angd = 2 for the number rate, have been
X ﬁngUg ﬂgmlvé’ ar IB” 1+ . . . .
o o my used for the new variance approximation (cf. Figs. 13 and 14
1 of the Supplement and corresponding text). The parameteri-
m,+4 2 mu,+4712 . . . .
2 Vr 2 <Y zation of Murakami and Mizuno gives a result for the mass
+a, — 20,6, | 1+ +5; 1+ : ; ; i
A mhy rate which is almost as good as for our new scheme, but is
slighly worse for the number rate. Note that we did not re-
The resulting approximations using these equations intune and optimize the parameters of the Murakami—Mizuno
comparison with the Wisner approximation and the equationsansatz, but simply applied the values of Murakami (1990). A
given by SB2006 are shown in Figé.and5, in which the  quantitative error analysis is discussed in Sect. 8.
normalized bulk collision rates

r

KN.gr = _;_2 aNr (36) 6 Snow-rain collection rates
' NrNg(Dr + Dg) ot coll,gr
1 aL, The collection rate of snow and rain is an example of the
Kpg=——i-—-———" (37)  case of both terminal fall velocities being approximated b
o LrNg(Dr + Dg)2 ot coll,gr g app Y

Atlas-type relations. For the raindrops we do again take into
are compared with the numerical solution. Note that the nor-2ccount the non-spherical correction, but for the snowflakes
malized bulk collision rates have units of mis i.e., they  this is already included in the, ~ DZ relationship. Com-
can also be interpreted as collection velocities. These norbined with two gamma distributions in equivalent diameter
malized rates or characteristic bulk collection velocities of the assumptions are

number and mass give a better visual impression of the agree-

ment with the numerical solution than the collision rates Jr(Pr) = No,» D;" exp(—4, Dy) (38)
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a) Wisner approx. using power-law fall speed

b) SB2006 using power-law fall speed

Wisner, power law SB2006, power law

‘_ 102 7 . . | r _ 102 7 | r
‘v | ——numeric L ‘n | ——numeric L
—— analytic —— analytic

E 1 ——Dg=10mm 78 E 1 ——Dg=10mm I
E Dy=5mm E Dy =5mm

(o) | ——Dg=1mm [ [0) | ——Dg=1mm |
..a Kj‘ ——D,=05mm

= =

c 10' c 10" o N
o ] R ] [
2 ] 2 ] i
°© ] ° ] i
(&) o

[%)] B [2] B L
(%] (2]

© 3]

€ 10° € 10° =
e o 7

(9} 1 b 4 e [
N N 7/

S D T 7

IS ;o £

= 47/ / F = 4 F
o / / | o)

< 1 _[\ // ! < 1

10" ‘ ‘ — ‘ 107 ‘ ‘ — ‘ ‘
10" 10° 10" 10°
D, in mm D, in mm

¢) Murakami-Mizuno approx. using Atlas-type fall speed

—
o
)

Murakami-Mizuno, Atlas-type

——numeric
—— analytic
——Dy=10mm
Dy =5mm
——D,=1mm
——D,=05mm

d) Variance approx. using Atlas-type fall speed

new, m=1.6

—_
o
)

| ——numeric L
—— analytic
1 ——Dg=10mm r
D, =5mm
——Dy=1mm
——D,=0.5mm

10" -

-
=
|
T

=
2
I
T
=
2
I
T

normalized mass collision rate in ms™
normalized mass collision rate in ms™

N
S

T 10 T
10" 10° 10 10°

D, in mm D, in mm
Fig. 4. Normalized mass collision rate for graupel and rain using different approximations (dashed) compared to a numerical solution of

the collision integral (solid) as a function of the raindrop mean volume diameter for different mean volume diameters of the graupel size
distribution.

f5(Deg) = Nos Dy €XP(—As Deg) (39) vy = o — Brexp(—yrDy) (43)
_ 2
X = s DS (40) Dr’maxz Dr eX[fXa)r Dr) (44)
e =T 3 (41) Note that bothDeq and D, are equivalent diameters, i.e., the
r 6pw r diameter of a liquid water sphere. HelRq is used for the

equivalent diameter of snowflakes abg for the equivalent
diameter of raindrops, whild®, and D, max are the corre-

vs = s — Bs XP(—Vs Deg) (42)  sponding maximum dimensions.
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a) Wisner approx. using power-law fall speed b) SB2006 using power-law fall speed
Wisner, power law SB2006, power law
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Fig. 5. As Fig. 4 but for the normalized number collision rate of graupel and rain.

For the collection kernel we use the approximation area-equivalent spherical diameter perpendicular to the fall
(Connolly et al, 2012 direction.
With these assumptions we find the bulk collision rates for

1 172 the number density
K (D, Deq) = I:Ar2 + AS‘Z] |vr — vs| Esr (45)
2 aN, T _
i A3 d = ——N,N, Es (46)
_ 2
=7 |:Dr,maX(Dr)+as Ds(Deq)] ot coll sr s
+1
x|vp(Dy) — vs(Deg)| Esr, - _ 1 AL
r r s eq) sr X|ag Ds + Z(SjDsa? (,ur + 1)m
which takes into account the area ratio of snow Al- ntl
1 r

ternatively, one could say that for snowflak&sD; is the i+ Dl +2)— zwr)wrs}
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a) Wisner approx. using power-law fall speeds b) SB2006 using power-law fall speeds
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Fig. 6. Normalized mass collision rate for snow and rain using different approximations (dashed) compared to a numerical solution of

the collision integral (solid) as a function of the raindrop mean volume diameter for different mean volume diameters of the snow size
distribution.
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a) Wisner approx. using power-law fall speeds
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b) SB2006 using power-law fall speeds

SB2006, power law
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Fig. 7. As Fig. 6 but for the normalized number collision rate of snow and rain.
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with

= F(,us+g)

- 1 1 °
F2(us +DI2(us +4)

(48)

Figures6 and7 compare the four different parameterizations
for the bulk collision rates. For both rain and snow, we as-
sume a gamma distribution in equivalent diameter with a
mass density of., = L, = 1gm 3, and the shape param-

eters areu, =2 andu,; = 2. For the collision rate of rain

and snow the standard Wisner approximation with power-law
fall gives reasonable results except for the minimum of the
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collision rate which occurs for drizzle drops. This is fixed by _ ‘ L ‘ L

the SB2006 approximation, which gives a good approxima- ® — numeric, Atlas-type

tion of the whole size range. The Murakami—Mizuno approx- —-—numeric, power law ]
imation with Atlas-type fall speeds can improve the collision ’
rates for the very large raindrops when compared to SB2006,
but suffers from the underestimation of the minimum. The <
new variance approximation is therefore the best parameter--=
ization as it combines both improvements over the classic =
Wisner approximation. To achieve the good agreement, the ©

---- SB2006 P

rate in m

ollisio

calibration exponeniz is necessary; here we find = 1.5 g
for mass and: = 2 for number. IS
2
O
7 Self-collection of snow Q
Self-collection rates, i.e., loss of particles due to collisions g
with particles of the same species, cannot be parameter- 2
ized by the Wisner approximation. Therefore most double- o o
moment schemes revert to look-up tables and some apply the 10 107 10°
analytic solution oPassarell{(1978 or the more general one D, in mm

of Verlinde et al(1990. The analytic solutions are restricted

to power-law fall speed relations and include the GaussiarFig. 8. Normalized bulk number collision rate in nv% for the
hypergeometric function, which makes them expensive in theself-collection of snow as a function of the mean maximum diam-
case of a time-dependent shape parameter eter of snowflakes. Shown are the results for three different values

With the assumptions of the gamma shape parameteg, = 2, us = 6 andu; = 10, for
the SB2006 approximation (dotted), the revised variance approxi-

fs(Deg) = Nos Dgg' exp(—As Deg) (49) mation using the Atlas-type terminal fall velocity (dashed) and the
1 numerical solution of the integral with Atlas-type (solid) and power-
_1 1 T 2 3 -
D, —a, 2y = ( Pw) Dezq (50) law (dash-dotted) fall speed.
6a;
Us = dtg — Py eXPp(—Vs Deg) (51) g Other collection rates

the variance approximation can easily be applied to the self-

collection rate of snowflakes, and the resulting parameterizal '€ Previous sections have shown three examples of hy-
drometeor collision rates which include non-spherical par-

t:)o]\r]\ - ) ticles, and applying an Atlas-type fall speed approximation
s - 3SN3D§&S <1+ 5;*2> (52) and the variance formulation of the differential fall velocity
I coll s 22 seems to be an appropriate parameterization. This basically
2vs —(mps+1) Vs —20mpus+1)73 applies to all collision rates that include either raindrops or
X |:<1+ m_)»s> - <1+ m_)w) ] snowflakes. Further examples are discussed in the Supple-

] ] . i o ment. Here we show some quantitative error measures which
is relatively simple and computationally efficient. A com- pejp to summarize the quality of the various approximations
parison with the numerical solution of the integral for= for such collision interactions. As error measures we have

1gm3 is given in Fig.8 for three values of the shape pa- chosen the root mean square error (RMSE)
rameteru,. This shows that the parameterization provides

a good but not perfect approximation and is able to capture 1
the dependency on the shape parameterorrectly. Forthe ~ RMSEp ;; = " Z(Kd),ij,num— Kg.ij.para? (53)
calibration exponent we have chosen= 1. Taking into ac- =1

count the Atlas-type fall speed relation is clearly superior to
the simple power-law fall speed of the SB2006 formulation
which is shown for comparison. The numerical solution us-
o e e ot ettt e “SMAPE, =13 e Kosomd
. n

provide also the reference for the SB2006 approximation.
This shows that the main advantage of the refined variancélere¢ can either b&v for the number rate ot for the mass

approximation comes from the use of the Atlas-type velocityrate, andi, j identify the chosen binary collision interac-
relations. tion. Using a simple relative error instead of SMAPE would

and the symmetric mean absolute percentage error (SMAPE)

=1 Ko.ijnum+ Ky ij para
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a) RMSE b) SMAPE
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Fig. 9. Root mean square error (RMSE, left) and symmetric mean absolute percentage error (SMAPE, right) of the normalized bulk number
and mass collection rates for seven different binary collision interactions.

give an advantage to the Wisner approximation, because icase the Wisner approximation would be, on the one hand,
the standard relative error overestimations are more stronglyhe method of choice if computational efficiency is impor-
penalized than underestimations. Note that the RMSE detant. On the other hand, the variance approximation may be
pends strongly on the normalization of the rates. Applyingmore flexible and robust, e.g., in the case of sensitivity stud-
the RMSE directly to the number and mass rates can givaes in which the fall speeds of hail and snow are changed.
very misleading results, because then only some asymptotic

regime may dominate the error. Using the normalization

Kn.ij = _;_2 aNi (55) 9 Conclusions
' NiN;j(D; +Dj)? 9t |eo)
o 1 aL; 56 We have presented an approach for the approximation of bulk
Lij = LiN;(D; + D;)? o collij (56) " collision rates of non-spherical hydrometeors undergoing bi-

nary collisions. Followingeifert and Behen(006 we use

is an attempt to give the errors of all particle sizes a morethe variance approximation of the differential fall speed to ar-
similar weight. rive at integrals that can be evaluated analytically. The result-

The quantitative results for seven different collisions in- ing parameterization equations are more complicated than
cluding either rain or snow and other species like graupelthe standard Wisner approximation, which so far has been
hail or cloud ice in the form of hexagonal plates are shownused in most atmospheric models, but given that those pa-
in Fig. 9. When using SMAPE as a metric, the most difficult rameterizations are only a very small part of a humerical
collision interaction is the one between cloud ice and snowweather prediction or cloud-resolving model the additional
because the fall speeds of both species are very similar. Theomputational expense might be acceptable. The error of the
simple Wisner approximation leads to errors in SMAPE of approximations as measured by the symmetric mean absolute
about 20-35 %, which can be reduced below 10 % by usingoercentage error (SMAPE) is in general below 10 %. Given
the variance parameterization as suggested here. The ansdte numerous uncertainties and assumptions in such schemes
of Murakami and Mizuno shows a significant improvement like particle geometries, terminal fall velocity, collision and
over the Wisner approximation (even for a Wisner approx-sticking efficiencies, particle size distributions, etc., this error
imation which makes use of the Atlas-type fall speed re-seems acceptable.
lations). That the variance approximation is slightly worse To achieve the best possible result for a specific collec-
than the Wisner approximation for the collection of snow by tion rate, a calibration of the ansatz using the expoment
hail is due to the fact that the variance approximation is not(cf., Eq.20) is necessary, but in most cases= 1.5 for mass
asymptotically consistent with the continuous growth solu-andm = 2 for number rates of the interaction of two differ-
tion, at least not perfectly, but for the hail-snow collection ent species, angh = 1 for self-collection provides a good
the errors of all parameterization are actually small. In thatapproximation.
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