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ABSTRACT

Earth system models are indispensable tools in climate studies. The Coupled Model Intercomparison

Project (CMIP) is a coordinated effort of the Earth system modeling community to intercompare existing

models. An accurate simulation of surface solar radiation fluxes is of major importance for the accuracy of

simulations of the near-surface climate in Earth system models. The present study provides a quantitative

assessment of the accuracy and multidecadal changes of surface solar radiation fluxes for model results from

two phases of CMIP. The entire archives of phase 5 of CMIP (CMIP5) and its predecessor phase 3 (CMIP3)

are analyzed for present-day climate conditions. A relative model ranking is provided, and its uncertainty is

quantified using different global observational records. It is shown that the choice of an observational dataset

can have a major influence on relative model ranking between CMIP models. However the multidecadal

variability of surface solar radiation fluxes, also known as global ‘‘dimming’’ or ‘‘brightening,’’ is largely

underestimated by the CMIP models.

1. Introduction

Earth system models (ESMs) are indispensable tools

for studying the climate of the past and present and for

providing projections of Earth’s potential future climate.

An assessment of the accuracy of ESMs to predict present-

day climate conditions and their variability is therefore

essential. The Coupled Model Intercomparison Project

(CMIP) coordinates multimodel climate experiments us-

ing state-of-the-art ESMs. Experiments are conducted by

contributing international climate modeling centers. The

CMIP experiments are essential for comparing the quality

of models from different research institutions and con-

tribute to international climate assessments like the In-

tergovernmental Panel onClimateChange (IPCC) reports

(Flato et al. 2013). The present study analyzes results of

two phases of CMIP [phases 3 and 5 of CMIP (CMIP3

and CMIP5, respectively)] (Meehl et al. 2007; Taylor

et al. 2012).

Model evaluation using quantitative model perfor-

mance metrics has become a widely used practice in dif-

ferent research communities (Abramowitz et al. 2008;

Gleckler et al. 2008; Reichler and Kim 2008; Blyth et al.

2011; Abramowitz 2012; Luo et al. 2012; Gettelman et al.

2012; Luo et al. 2012;Anav et al. 2013;Goddard et al. 2013;

Brovkin et al. 2013; Eyring et al. 2016).A standardized and

regular model evaluation procedure is supposed to be

implemented in future CMIPs as well (Meehl et al. 2014).

To evaluate either model processes or the general

capabilities of models to represent climate mean states

and their variability, the assessment of different geo-

physical variables is important. In particular, geo-

physical information derived from satellite observations

is used for that purpose, as it provides global data.

Considerable effort has been devoted to improve the

atmospheric radiative transfer codes and their parame-

terizations in CMIP models (e.g., Stevens et al. 2013).
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The surface solar radiation fluxes are the major energy

input for Earth’s surface. An assessment of their accu-

racy is therefore an indicator of the quality of the at-

mospheric radiative transfer codes used in ESMs. An

analysis of the accuracy of the surface solar radiation

fluxes is therefore of major importance. Li et al. (2013)

provided a first analysis of the accuracy of shortwave and

longwave radiation fluxes in CMIP5 simulations, focus-

ing on top-of-the-atmosphere fluxes. Individual assess-

ments of surface water and energy flux components of

single ESMs have been reported as well (Hagemann

et al. 2013; Brovkin et al. 2013).

Allen et al. (2013) used in situ observations of the

Global Energy Balance Archive to evaluate CMIP5

surface solar downwelling radiation fluxes for selected

regions. They investigated how CMIP5 models re-

produce regionally observed decrease (dimming) or in-

crease (brightening) of surface solar downwelling

radiation fluxes. It was found that ESM typically un-

derestimated the multidecadal trends observed at the

ground stations.

However, no thorough assessment of surface solar

radiation fluxes of CMIP3 and CMIP5 models using

state-of-the-art global observational datasets has been

conducted so far. The present study therefore provides a

complementary assessment of the surface solar radia-

tion fluxes, as it (i) provides a global analysis using

multiple observational data records and (ii) analyzes the

downwelling as well as upwelling radiation fluxes.

Global and long-term satellite products are used as

reference. In particular, the following research ques-

tions are addressed in the study:

d How well do CMIP models simulate the surface

radiation fluxes at climatological time scales? The

study is focused on providing skill scores for different

surface solar radiation fluxes, which provide informa-

tion on relative model performance compared to

chosen reference datasets. The utilized skill scores

provide a quantitative measure of how well a model

simulates the climatological mean seasonal cycle of

chosen geophysical variables.
d Do CMIP5 models provide improved surface solar

radiation fluxes compared to CMIP3? We compare

results from the large ensemble of CMIP5models with

their predecessors of CMIP3 to assess if the accuracy

in simulated surface solar radiation fluxes has changed

between the two phases of CMIP.
d How robust are model rankings, given uncertainties in

the observational products? Models can be ranked

according to their skill for representing the temporal

and spatial patterns of geophysical variables. Such a

ranking is, however, also dependent on the uncertainties

of the reference data. We therefore analyze how un-

certainties in observations affect CMIP model assess-

ments of surface solar radiation fluxes.
d How well do CMIP models reproduce the multi-

decadal trends in surface radiation fluxes? Systematic

changes in the surface solar radiation have been

reported in the literature, known as global dimming

and brightening (Wild 2009). We investigate how

these multidecadal changes are represented in CMIP

simulations as well as long-term satellite radiation

products.

We first briefly introduce the CMIP models and

datasets used in section 2. The data (pre) processing

steps and evaluation methods are introduced thereafter

(section 3). Results of the analysis are provided in

section 4.

2. Data

a. CMIP5 model data

Data from CMIP5 simulations were obtained through

the Earth System Grid Federation node of the German

Climate Computing Centre (http://esgf-data.dkrz.de).

The analysis in the present study focuses on two core

CMIP5 experiments (AMIP and historical), which are

supposed to represent present climate conditions and

are therefore expected to be best comparable with sat-

ellite observations (Taylor et al. 2012):

d Historical (twentieth century) experiments comprise

fully coupled (ocean–atmosphere–land) simulations

with prescribed greenhouse gas concentrations and

are supposed to represent present climate conditions.

The period 1979–2005 is analyzed in the present study.
d AMIP simulations correspond to an atmosphere–

land-only setup. The ocean state (sea surface tem-

perature and sea ice distribution) is prescribed from

observational data. The period 1979–2008 is used in

the present study.

For each model and experiment, several realizations

(ensemble members) are available. The spread among

the ensemble members accounts for the internal vari-

ability of each model. All CMIP5 models that fulfilled

the following criteria were selected: (i) surface down-

welling RY and upwelling R[ shortwave radiation fluxes

were available; (ii) more than one ensemble member

was available; and (iii) simulations for either the AMIP

or the historical experiments were provided. Based on

these requirements, a total of 54 different models were

selected for the present study, which corresponds to

90% of all models providing input to CMIP5. A sum-

mary of the used models is provided in Table A1.
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b. CMIP3 model data

The predecessor of CMIP5 was CMIP3 (Meehl et al.

2007). CMIP3 data are used in this study in particular to

assess if the representation of the surface solar radiation

fluxes in CMIP5 has been improved.

For CMIP3, we used all models that provided data for

the AMIP experiment and also provided the required

surface solar upward and downward radiation fluxes.

We focused onAMIP simulations, as these prescribe sea

surface temperature and sea ice distributions from ob-

servations, which should result in the most realistic

surface–atmosphere fluxes. A total of nine models is

used. A summary of the selected CMIP3 models is

provided in Table A1 as well.

c. Observations

Different observational datasets of surface down-

wellingRY and upwellingR[ all-sky and broadband (0.25,

. . . , 4mm) surface solar radiation fluxes are used for the

assessment. The surface solar net radiation flux (RN 5
RY 2 R[) is used as an additional metric, as it determines

the amount of available energy for surface processes. The

following observational datasets are used:

d The International Satellite Cloud Climatology Project

(ISCCP) provides information on surface solar radia-

tion fluxes at spatial scales of approximately 280 3
280km2 and at 3-hourly temporal resolution. Further

details on the estimation of surface fluxes for ISCCP

are provided by Zhang et al. (2004). Data from 1989 to

2009 were used for the present analysis.
d The NASA Global Energy and Water Cycle Experi-

ment (GEWEX) Surface Radiation Budget (SRB)

project aims at the production of long-term datasets

of shortwave and longwave surface and top-of-

atmosphere radiation fluxes. It provides 3-hourly to

monthly global products with a spatial resolution of

18 3 18. The fluxes are calculated using cloud param-

eters from ISCCP and meteorological fields from the

NASA GMAO reanalysis dataset. Monthly means of

the shortwave surface radiation flux products from

SRB, version 3.0 (SRB3.0 ;Stackhouse et al. 2011;

Zhang et al. 2013) are used in the present study.
d Clouds and the Earth’s Radiant Energy System

(CERES), version 2.7 (Ed2.7), surface solar radiation

fluxes are derived from measurements onboard the

EOS Terra andAqua satellites (Loeb et al. 2012). The

CERES surface fluxes are obtained from the CERES

Energy Balanced and Filled (EBAF) surface radiation

product (Kato et al. 2013).
d The Satellite Application Facility on Climate Moni-

toring (CM SAF) Cloud, Albedo and Radiation data-

set from AVHRR data (CLARA-A1) provides a

28-yr (1982–2009) record of cloud parameters and

radiation fluxes. Details on the product and algorithms

used are provided by Karlsson et al. (2013).

Major differences between the observations are due

to different retrieval algorithms and the origin of the

satellite input data (i.e., the type of sensor from which

the data products are derived). The GEWEX radiation

flux assessment provides a comprehensive review and

intercomparison of these flux products (Raschke et al.

2012). The dataset details and references are summa-

rized in Table 1.

d. Analysis regions

The comparison of models and observations is either

done for global or regional scales. For the latter, we used

26 regions as predefined in the IPCC Special Report on

Extreme Events (SREX). A map of the defined regions

is shown in Fig. B1 and the labels for the regions used

subsequently in the manuscript are given in appendix B.

3. Methods

a. Data preprocessing

The evaluation of the CMIP models with a set of ob-

servations requires careful data preprocessing and a

coherent framework for intercomparison. The following

processing steps are consistently applied to all model

simulations and observations:

TABLE 1. Datasets used for surface radiation assessment.

Variable Dataset (abbreviation) Period Horizontal resolution Reference

Surface downwelling solar

radiation flux RY

(Wm22)

CLARA-A1 (C-SIS) 1982–2009 0.258 3 0.258 Karlsson et al. (2013)

SRB3.0 1983–2007 18 3 18 Stackhouse et al. (2011);

Zhang et al. (2013)

ISCCP 1989–2009 18 3 18 Zhang et al. (2004)

CERES EBAF Ed2.7 (CERES2.7) 2000–13 18 3 18 Loeb et al. (2009, 2012)

Surface upward solar

radiation flux R[

(Wm22)

CERES EBAF Ed2.7 (CERES2.7) 2000–13 18 3 18 Loeb et al. (2009, 2012)

SRB3.0 1983–2007 18 3 18 Stackhouse et al. (2011)

ISCCP 1989–2009 18 3 18 Zhang et al. (2004)
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1) Ensemble mean calculation: CMIP model simula-

tions are provided as an ensemble of realizations for

each experiment. The ensemble mean is used for

further data analysis.

2) Monthly means: All model simulations and observa-

tions are aggregated to monthly means.

3) Spatial remapping: The observations and model data

are remapped to a common grid (horizontal T63

spectral truncation, ;1.88 3 1.88) using an energy

conservative approach with weights proportional to

the grid cell sizes.

4) Consistent data mask: The observational datasets

typically contain gaps in space and time. These gaps

were therefore also applied to the model fields to

avoid any sampling-related biases in the comparisons

between models and observations.

5) Climatological means: Climatological means are

calculated for each grid point from the entire time

period of each dataset and are used for further

analysis. The effect of different lengths of the indi-

vidual data records was tested with a sensitivity

analysis, which showed only a minor impact on the

biases between models and observations.

All data analysis and model–data intercomparisons

are performed using an open-source and flexible data

analysis framework for the analysis of geospatial data

and the benchmarking of models (Loew 2015a).

b. Evaluation skill scores

In the following, we define the skill score metrics that

are used to assess the CMIP models. We focus on global

skill scores, which provide a first insight into general

model performance. Details on spatial and temporal

model biases are not provided within this paper as a

result of the multitude of models analyzed but can be

found in separate reports (see appendix E for details).

1) GLOBAL SKILL SCORES

As a global metric, we use a temporally and area-

weighted root-mean-square difference E between ob-

servations y and model simulations x. It is derived from

climatological monthly means, as defined in Gleckler

et al. (2008):

E2 5 �
nlat

i
�
nlon

j
�
12

k

w
i,j,k

(y
i,j,k

2 x
i,j,k

)2, (1)

where w is weight, accounting for different area sizes of

model grid cells (nlat, nlon) and time in months. Sub-

scripts i, j, and k are for latitude, longitude, and time,

respectively. For each model, the weighted root-mean-

square difference (RMSD) is calculated using Eq. (1),

and a relative ranking of all models is then obtained by

calculating a normalized error metric for each model as

E0 5
E2E

E
, (2)

where E is the median value of E from all models

(CMIP3 1 CMIP5). This results in a relative skill mea-

sure to compare the different models against each other.

If E0 has a value of 0.3, the error of the respective model

is 30% higher than on average, whereas the absolute

error E provides a measure of the absolute deviation

between models and observations.

As E0 is calculated for each observational dataset in-

dependently, we define two additional skill scores to

characterize 1) the overall consistency between models

and observations and 2) the stability of E0 estimates for

different observations. Based on Reichler and Kim

(2008), the average skill score for each variable is de-

fined as

I2 5
1

m
�
m

i

E0
i , (3)

which provides the average error across different obser-

vations, where m corresponds to the number of observa-

tional datasets (Reichler and Kim 2008). Note that, while

Reichler and Kim (2008) used I2 as a metric to summarize

model skill across different geophysical variables, we use

the same approach here to quantify the skill for a single

variable, but across different observational datasets; I2 is

therefore a measure for the overall agreement of a model

with all used observational datasets. In addition, we define

also a coefficient of variation as

c
y
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(E0)

p
jI2j , (4)

which provides additional information of the spread of

I2 and is therefore an indicator for the consistency of

error estimates from different observational datasets.

The variance Var(E0) is estimated across the different

observational datasets for each variable.

2) CONSISTENCY OF MODEL RANKING

Models can be ranked according to the skill score

defined by Eq. (2) for each observation. If all observa-

tional datasets provide the same coherent picture of a

geophysical field, the resulting model ranking is ex-

pected to be independent of the observational reference.

However, as the reference datasets differ themselves,

the relative model ranking would also depend on the

choice of the reference itself. The Spearman rank
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correlation coefficient rs is used as a measure for the

similarity of model rankings obtained using different

observational datasets.

Given datasets A and B and the corresponding skill

scores for amodel xi fromEq. (2) [E0
A(xi) andE

0
B(xi)], the

ranks rg[E0
A(xi)] and rg[E0

B(xi)] are obtained. The

Spearman rank correlation coefficient rs is then defined as

r
s
5

�
M

i

frg[E0
A(xi)]2RG

A
gfrg[E0

B(xi)]2RG
B
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
M

i

frg[E0
A(xi)]2RG

A
g2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
M

i

frg[E0
B(xi)]2RG

B
g2

s ,

(5)

where RGA 5M21�M

i rg[EA(xi)] is the average model

rank using observational record A. Similarly RGB cor-

responds to the mean model rank, using B as observa-

tions andM as the number ofmodels. In the case that the

used observational datasets provide a robust represen-

tation of the investigated geophysical field, rs would

correspond to unity.

3) MULTIDECADAL VARIABILITY

A linear regression analysis is further used to assess

the similarity in multidecadal trends of surface solar

radiation fluxes. First, an anomaly time series x0 is con-
structed from the entire time series of a dataset by re-

moving the mean seasonal cycle for each grid cell.

Regional means are then calculated for each of the

IPCC SREX regions, and the long-term trend is esti-

mated by fitting a linear model in time t

x0(t)5mt1 c1 « , (6)

with random residuals «, using a least squares approach.

The Pearson product moment correlation coefficient

r and its significance (p value) are calculated. The period

1989–2007 is chosen for the analysis, which corresponds

to the same period as analyzed by Allen et al. (2013).

Trends are estimated for the SRB3.0, ISCCP, and

FIG. 1. Multivariate model skill score I2 for (top) RY, (middle)

R[, and (bottom) RN radiation fluxes for CMIP5 and CMIP3

models andAMIP and historical experiments. Boxes correspond to

the interquartile range (25%–75%), while whiskers correspond to

extreme data values within 1.5 times the IQR.

FIG. 2. As in Fig. 1, but for distribution of cy [Eq. (6)].

TABLE 2. Spearman rank correlation coefficients rs of model

ranks using different observational datasets for AMIP (historical in

parentheses) simulations.

ISCCP SRB3.0 CLARA-A1

RY CERES2.7 0.82 (0.93) 0.92 (0.94) 0.64 (0.78)

ISCCP — 0.84 (0.95) 0.55 (0.83)

CLARA-A1 — 0.77 (0.91) —

R[ CERES2.7 0.85 (0.87) 0.59 (0.6) —

ISCCP — 0.62 (0.68) —

RN CERES2.7 0.86 (0.87) 0.94 (0.91) —

ISCCP — 0.80 (0.80) —
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CLARA-A1 dataset. The CERES2.7 data are excluded

from the analysis as they do not cover the entire time

period. It is, however, emphasized that trend estimates

from multidecadal satellite data records need to be in-

terpreted very carefully. The generation of climate data

records from satellite data is a challenging task that

requires a careful intercalibration of observations from

different platforms and sensors. Otherwise, the datasets

might contain spurious trends (Loew 2013). Raschke

et al. (2012) provide a comprehensive intercomparison

of the different existing global satellite radiation prod-

ucts and their known issues.

4. Results and discussion

a. Overview: CMIP3 versus CMIP5

Results of the multimodel comparison are analyzed in

the following. Figure 1 shows the distribution of the

overall skill score metric I2 [see Eq. (3)] for the different

surface solar radiation fluxes and experiments. The

boxes correspond to the interquartile range (IQR; 25%–

75%) of the I2 values from all models, whereas the

whiskers correspond to 1.5 times the IQR.

In general, CMIP5 models have lower I2 values than

CMIP3 simulations, which indicates an overall better

FIG. 3. Multidecadal regional trends of RY (Wm22 a21) for different observational datasets: (left) ISSCP, (center) SRB3.0, and (right)

CLARA-A1. Trends are significant (p , 0.05) for jrj . 0.13.

FIG. 4. Multidecadal regional trends of RY: (top) The Pearson product moment correlation coefficient and

(bottom) multidecadal trend (Wm22 a21) for IPCC regions are shown. Shaded areas correspond to correlations

that are not significant (p . 0.05). Box plots represent model results from AMIP experiment, where the box

corresponds to the IQR. The following datasets are represented: ISCCP (red dots), SRB3.0 (blue diamonds), and

CLARA-A1 (green rectangle).
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performance of the new model generation. Best results

(lowest I2) are obtained for CMIP5 AMIP experiments

with median values for I2 below zero.

The distributions of I2 for the downwelling and net

solar radiation fluxes are symmetric, while the results for

the upwelling solar radiation flux are positively skewed,

which indicates a larger spread and uncertainty of the

upwelling flux estimates compared to the observations.

The different CMIP models are ranked in accordance

to their normalized RMSDE0 for each observation. This

ranking is summarized in Tables C1 and C2 for all var-

iables and experiments. In general, the multimodel

mean outperforms the individual models across the

different observations and variables for both the AMIP

and historical simulations. This indicates that the en-

semble of different models is generally in better agree-

ment with the observations than individual models,

which is consistent with previous findings (Flato

et al. 2013).

Details of the spatial and temporal deviations of each

model compared to the observational datasets are pro-

vided in additional reports (see appendix E for details).

The global mean absolute error is, on average, 7.5, 5.9,

and 6.5Wm22 for RY, R[, and RN, respectively, and

ranges between 4 and 10Wm22.

b. Consistency of model ranking

It is expected that the spread in E0, caused by the

different observations, will also affect the relative model

ranking. While I2 provides a general metric for the

overall performance of a model across different obser-

vational datasets, the cy [Eq. (6)] is an initial measure of

the variability of E0. The distributions of cy are provided
in Fig. 2 for the different experiments and CMIP phases.

The variability of E0 is typically on the order of 50% for

all fluxes and experiments. Largest uncertainties in E0

are observed for R[, where the distribution of cy is

largely skewed and the uncertainty of the upward solar

FIG. 5. As in Fig. 4, but for multidecadal regional trends of R[.

TABLE 3. Observed brightening trends (Wm22 decade21) reported by Allen et al. (2013) and estimated from satellite observations for

different regions. Results are provided for IPCC regions defined in Fig. B1.

Region Allen et al. (2013) IPCC region ISCCP SRB3.0 CLARA-A1

China 2.6 6 2.2 EAS 21.0 21.9 2.3

Japan 4.4 6 2.0

Europe 3.5 6 1.9 NEU 1.3 0.3 0.8

CEU 0.3 1.6 4.1

MED 1.4 2.1 3.0
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TABLE A1. CMIP3 and CMIP5 models for AMIP and historical experiments.

Modeling center Model

CMIP5 CMIP3

AMIP Historical AMIP

BCC BCC_CSM1.1 x x

BCC_CSM1.1(m) x x

CCCma CanAM4 x

CanCM4 x

CanESM2 x

CMCC CMCC-CESM x

CMCC-CM x x

CMCC-CMS x

Centre National de Recherches

Météorologiques–Centre
Européen de Recherche et de

Formation Avancée en Calcul

Scientific (CNRM–CERFACS)

CNRM-CM5 x x

CNRM-CM5.2 x

CSIRO–BoM ACCESS1.0 x x

ACCESS1.3 x x

CSIRO–Queensland Climate

Change Centre of Excellence

(QCCCE)

CSIRO Mk3.6.0 x x

EC-EARTH EC-EARTH x

First Institute of Oceanography (FIO) FIO-ESM x

College of Global Change and Earth

System Science (GCESS)

BNU-ESM x x

Institute of Numerical Mathematics

(INM)

INM-CM4.0 x x

INM-CM3.0 x

IPSL IPSL-CM5A-LR x x

IPSL-CM5A-MR x x

IPSL-CM5B-LR x x

IPSL-CM4 x

LASG–Center of Earth System

Science (CESS)

FGOALS-g2 x x

LASG–IAP FGOALS-s2 x

FGOALS-g1.0 x

Model for Interdisciplinary Research on

Climate (MIROC) consortium

MIROC4h x

MIROC5 x x

MIROC-ESM x

MIROC-ESM-CHEM x

MIROC3.2 (hires) x

MIROC3.2 (medres) x

Met Office Hadley Centre (MOHC) HadCM3 x

HadGEM2-A x

HadGEM2-CC x

HadGEM2-ES x

HadGEM1 x

MPI for Meteorology (MPI-M) MPI-ESM-LR x x

MPI-ESM-MR x x

MPI-ESM-P x

ECHAM5 x

Meteorological Research Institute

(MRI)

MRI-AGCM3.2H x

MRI-AGCM3.2S x

MRI-CGCM3 x x

MRI-ESM1 x

NASA GISS GISS-E2-H x

GISS-E2-H-CC x

GISS-E2-R x x

GISS-E2-R-CC x
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radiation flux can be more than twice I2. This variability

also affects the relative model ranking.

The Spearman rank correlation coefficient rs [Eq. (5)]

is a measure for the consistency of the model ranks ob-

tained using different observational datasets. Table 2

summarizes the rank correlations between all pairs of

observations. For none of the combinations, the same

relative model ranking is obtained (rs 5 1). A good

agreement is nevertheless found for many of them, for

both the AMIP and historical experiments. Best agree-

ment for the surface downweling solar radiation fluxes is

observed between the CERES2.7 dataset and the ISCCP

(SRB) dataset with rs 5 0.82 (0.92). The CLARA-A1

radiation dataset shows, in general, a smaller agreement

with the other radiation datasets with respect to the

model ranking. Uncertainties in model ranking are, in

general, larger for R[ with 0.59 # rs # 0.85.

c. Multidecadal variability

The multidecadal trend maps for RY are provided in

Fig. 3. Similar maps for R[ are given in Fig. D1. The

correlation coefficients r and temporal regression slopes

m are provided in Fig. 4 and Fig. 5 for each region. The

boxes indicate IQR, and the trend estimates from the

observations are provided as markers. Results are dis-

cussed for each variable in the following.

1) SURFACE SOLAR DOWNWARD RADIATION

FLUX

Significant temporal trends (p # 0.05) are obtained

only for regions with jrj $ 0.13, which is only the case

for a limited number of regions. The trends of the CMIP

models are typically smaller than those obtained from

the satellite datasets. This is consistent with results from

Allen et al. (2013), who also identified an underestima-

tion of dimming and brightening trends in CMIP

models. While the trends from CMIP are typically not

statistically significant, the satellite observations show

significant positive or negative trends for various regions

(see appendix B for region acronyms).

An increase (brightening) is observed for all datasets

over Europe and the Mediterranean (NEU, CEU, and

MED), northern Africa (SAH), the Arabian Peninsula

(WAS), and central and southern Asia (CAS, TIB, and

SAS), including parts of Central and North America

(CAM and ENA). A reduction of solar radiation (dim-

ming) is observed in all datasets for Siberia (NAS),

Southeast Asia (SEA), and western and southern Africa

(WAF and SAF). However, the temporal trends of the

satellite datasets have, in many cases, different magnitudes

and even opposite signs and are statistically not significant

(jrj , 0.13). These trends need to be interpreted very

carefully because of the risk of spurious trends caused by,

for example, changes in the observing system (cf. section 3).

Allen et al. (2013) provide an independent study of

long-term trends (1987–2009) in surface solar irradiance

for Europe, China, Japan, and India. We therefore

compare the satellite trend estimates with their results

for China, Japan, and Europe for the same time period

(Table 3). A comparison for India is not possible, as

Allen et al. (2013) only provide information on dimming

trends prior to 1989. For China and Japan, the increase

in surface solar radiation is 2.6 6 2.2 and 4.4 6
2.0Wm22 decade21 for the ground measurements.

TABLE A1. (Continued)

Modeling center Model

CMIP5 CMIP3

AMIP Historical AMIP

NCAR CCSM4 x x

CCSM3 x

PCM, version 1 (PCM1) x

Norwegian Climate Centre (NCC) NorESM1-M x x

NorESM1-ME x

National Institute of Meteorological

Research (NIMR)/Korea

Meteorological Administration (KMA)

HadGEM2-AO x

NOAA/GFDL GFDL CM3 x x

GFDL-ESM2G x

GFDL-ESM2M x

HiRAM-C180 x

HiRAM-C360 x

National Science Foundation (NSF),

DOE, and NCAR

CESM1with biogeochemistry

[CESM1(BGC)]

x

CESM1(CAM5) x x

CESM1(FASTCHEM) x

CESM1(WACCM) x
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While the ISCCP and SRB3.0 datasets show even a

decrease in RY for the same time period, the CLARA-

A1 dataset shows an increase of 2.3Wm22 decade21,

which is much closer to the reported in situ observations.

The European region is divided into three subregions

(NEU, CEU, and MED). Allen et al. (2013) reported a

positive trend of 3.5 6 1.95Wm22 decade21. The de-

rived trends from the satellite observations are, in gen-

eral, much lower, except for the CLARA-A1 dataset,

which shows positive trends for central and southern

Europe (CEU and MED) that are comparable to the

findings of Allen et al. (2013).

While the CMIP models in general underestimate

the long-term trend, they at least show positive trends

for the aforementioned European and Mediterranean

regions (NEU, CEU, and MED). This initial compar-

ison is still very limited, as the reliability of the trend

estimates from satellite datasets needs further in-

vestigation and cross-comparison with in situ data. The

trends for CMIP historical experiments are compara-

ble to those obtained for the AMIP experiments and

are provided in Fig. 5.

2) SURFACE UPWELLING SOLAR RADIATION FLUX

As the upward solar radiation flux is the product of the

downwelling solar radiation flux and the surface albedo

(R[ 5 aRY), it depends on the temporal variation of RY

and the albedo. The surface albedo is typically simulated

in different ways in ESMs. While it was common prac-

tice for CMIP3 to prescribe the surface conditions using

climatological mean values, most of the land surface

schemes in the current ESMs use an interactive albedo

scheme, which simulates the surface albedo as a function

of the model state. A comparison of current albedo

schemes used in ESMs and their accuracy was in-

vestigated by Loew et al. (2014).

ISCCP and SRB3.0 show, in general, a decrease in

R[ in North and South America with a maximum de-

crease of more than 5Wm22 decade21 over the Am-

azon (Fig. 5, bottom), while an increase is mainly

observed in eastern Asia. Large differences between

the simulated decadal changes of R[ and the satellite

records are observed. While the models show no sig-

nificant trend for most of the IPCC regions, the ISCCP

dataset and SRB3.0 show significant changes for many

areas. The observed change is often several times

larger than those of the models. The spread of trend

values among the models is small, and the magnitude

of trends is minor.

5. Conclusions

This study provides an initial assessment of the surface

solar radiation fluxes for the CMIP3 and CMIP5 en-

sembles. The accuracy of the CMIP model simulations

to describe the mean state and variability of the in-

vestigated variables (R[, RY, and RN) is evaluated. The

consistency of using different observational records for

the assessment has been investigated.

d Accuracy of CMIP models, when the multimodel

mean, in general, outperforms the individual models.

This is consistent with previous findings (e.g., Flato

et al. 2013). The accuracy of different models shows a

large spread on the order of 620%.

FIG. B1. Definition of regions used for the analysis. The regions are based on those of IPCC (2012), in which the

latitude–longitude coordinates of individual regions are also defined.
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d CMIP5 models have improved compared to CMIP3

models. For all investigated surface radiation fluxes,

the CMIP5 models show better skills in simulating

the spatiotemporal fields of surface solar radiation

fluxes.

d AMIP experiments are better than historical experi-

ments. The CMIP5 AMIP experiments show better

agreement with the observations than the historical

experiments. The latter have nevertheless smaller

errors than the CMIP3 AMIP simulations.

TABLE C1. Model ranks for CMIP historical experiments. The first three ranks are indicated in boldface.

Model

RY R[ RN

C-SIS CERES2.7 ISCCP SRB3.0 CERES2.7 SRB3.0 ISCCP CERES2.7 SRB3.0 ISCCP

BCC_CSM1.1 4 27 19 23 28 4 30 8 21 13

BCC_CSM1.1(m) 17 34 32 35 27 2 32 25 35 30

BNU-ESM 13 25 26 21 44 44 44 29 34 21

CanCM4 34 17 22 25 32 39 22 18 15 15

CanESM2 36 21 24 26 36 40 33 22 14 14

CMCC-CESM 42 48 47 45 41 24 35 47 47 47

CMCC-CM 6 19 12 7 37 25 28 16 20 24

CMCC-CMS 22 36 27 30 33 19 24 31 37 31

CNRM-CM5.2 35 33 34 31 39 37 34 32 27 34

CNRM-CM5 31 28 28 24 19 15 11 33 22 35

ACCESS1.0 20 5 5 6 2 5 4 4 6 2
ACCESS1.3 37 20 13 27 5 21 2 23 29 6

CSIRO Mk3.6.0 45 40 41 44 43 41 43 41 42 33

FIO-ESM 38 32 35 32 34 38 38 24 30 29

EC-EARTH 2 22 18 12 — — — — — —

INM-CM4.0 30 29 15 19 47 45 47 28 26 11

HadGEM2-ES 8 3 3 3 6 7 8 3 4 4

IPSL-CM5A-LR 47 49 46 47 40 20 37 44 44 36

IPSL-CM5A-MR 46 47 45 46 38 18 41 43 43 32

IPSL-CM5B-LR 43 44 38 43 42 32 42 37 40 23

FGOALS-g2 12 23 17 9 29 35 31 26 16 20

MIROC-ESM-CHEM 49 46 49 49 31 43 40 46 46 46

MIROC-ESM 48 45 48 48 30 42 39 45 45 45

MIROC4h 44 30 40 42 9 30 29 30 39 22

MIROC5 39 31 39 38 16 28 23 36 41 39

HadCM3 28 8 11 15 25 29 26 14 18 10

HadGEM2-CC 14 4 4 4 10 13 10 6 5 5

HadGEM2-ES 7 2 2 2 7 6 9 2 2 3

MPI-ESM-LR 18 11 14 20 11 16 15 19 19 25

MPI-ESM-MR 21 10 10 18 8 12 14 13 12 16

MPI-ESM-P 24 12 16 22 13 9 19 21 17 26

MRI-CGCM3 41 43 44 41 46 47 46 35 25 40

MRI-ESM1 40 42 43 40 45 46 45 34 23 37

GISS-E2-H-CC 27 39 36 36 18 17 3 39 36 41

GISS-E2-H 15 41 37 39 24 8 7 42 38 44

GISS-E2-R-CC 25 38 33 34 17 10 5 40 32 43

GISS-E2-R 23 37 31 33 20 11 6 38 31 42

CCSM4 9 14 20 10 22 36 21 9 8 17

NorESM1-M 19 26 30 28 3 14 13 15 24 27

NorESM1-ME 26 24 29 29 12 22 16 20 28 28

HadGEM2-AO 16 6 6 5 — — — — — —

GFDL CM3 29 9 9 17 23 23 27 7 11 7

GFDL-ESM2G 5 15 8 14 35 27 36 17 13 9

GFDL-ESM2M 3 13 7 8 26 3 25 10 9 8

CESM1(BGC) 11 18 25 13 15 31 17 12 10 19

CESM1(CAM5) 32 7 23 16 4 33 12 5 3 12

CESM1(FASTCHEM) 10 16 21 11 21 34 20 11 7 18

CESM1(WACCM) 33 35 42 37 14 26 18 27 33 38

Model mean 1 1 1 1 1 1 1 1 1 1
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d Choice of observational reference matters since the

relative model ranking depends on the choice of the

observational reference dataset. It is therefore recom-

mended that a multitude of observations is always

used when evaluating model simulations. This allows

one to account for the variability between the obser-

vational records.
d CMIP models underestimate multidecadal trends in

surface radiation fluxes. The CMIP model ensemble

underestimates observed multidecadal trends in sur-

face solar radiation fluxes. Significant changes ob-

served in in situ and satellite observations are not

reproduced by the CMIP models.

d Satellite trend estimates are uncertain because the

satellite data records differ in the magnitudes, and in

some regions even the sign of regional trends of

surface solar radiation fluxes. Hence, trend estimates

from the individual datasets should be interpreted

very carefully (cf. section 3). An initial comparison for

Europe and China with published trend estimates

from Allen et al. (2013) indicated that the used

CLARA-A1 surface radiation dataset showed multi-

decadal trends similar to the ground observations.

The main purpose of this study is to provide a general

overview about the accuracy of CMIP models to

TABLE C2. As in Table C1, but for CMIP3 and CMIP5 AMIP experiments.

Model

RY R[ RN

C-SIS CERES2.7 ISCCP SRB3.0 CERES2.7 SRB3.0 ISCCP CERES2.7 SRB3.0 ISCCP

CMIP3

IAP FGOALS-g1.0 28 29 25 26 19 16 21 29 29 31

INM-CM3.0 7 21 11 8 31 25 26 24 22 23

IPSL-CM4 34 36 35 35 35 34 32 35 35 26

MIROC3.2 (hires) 35 24 31 33 12 28 22 28 30 27

MIROC3.2 (medres) 36 35 36 36 26 33 30 36 36 36

MPI ECHAM5 10 28 21 22 24 6 14 25 26 32

CCSM3.0 12 26 27 27 18 3 16 23 27 30

PCM1 18 33 28 28 23 5 20 31 31 28

HadGEM1 27 17 32 18 25 27 27 11 12 4

CMIP5

BCC_CSM1.1 9 27 26 25 33 30 34 16 20 21

BCC_CSM1.1(m) 8 19 19 24 32 32 35 12 15 17

BNU-ESM 5 20 17 16 29 26 24 21 24 20

CanAM4 21 11 14 15 28 31 25 18 14 16

CMCC-CM 3 10 6 4 21 7 8 8 8 13

CNRM-CM5 30 32 34 30 16 9 5 33 32 35

ACCESS1.0 17 6 5 7 2 2 3 6 6 3
ACCESS1.3 24 12 9 17 6 8 2 19 21 8

CSIRO Mk3.6.0 26 13 13 19 30 29 29 17 17 10

INM-CM4.0 22 14 10 9 36 36 33 13 18 9

IPSL-CM5A-LR 37 37 37 37 37 37 37 37 37 37

IPSL-CM5A-MR 33 34 30 34 22 11 28 34 34 19

IPSL-CM5B-LR 32 30 23 31 27 21 23 26 28 14

FGOALS-g2 15 18 16 13 15 17 15 22 16 18

FGOALS-s2 29 31 29 29 17 15 11 32 25 33

MIROC5 31 25 33 32 7 24 10 30 33 34

HadGEM2-A 11 5 4 5 5 4 4 5 5 2

MPI-ESM-LR 19 9 12 12 10 19 12 10 13 12

MPI-ESM-MR 20 8 8 10 8 20 13 9 11 11

MRI-CGCM3 25 22 24 20 34 35 31 20 10 24

GISS-E2-R 23 23 20 23 9 14 1 27 19 29

CCSM4 6 15 18 14 3 18 6 14 9 22

NorESM1-M 16 16 22 21 4 13 9 15 23 25

GFDL CM3 13 4 7 6 14 22 17 4 7 7

HiRAM-C180 4 3 3 3 11 12 18 3 4 6

HiRAM-C360 2 2 2 2 13 10 19 2 2 5

CESM1(CAM5) 14 7 15 11 1 23 7 7 3 15

Model mean 1 1 1 1 20 1 36 1 1 1
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represent climate mean states of surface solar radiation

fluxes and their long-term variability. Providing more

detailed information on the spatial and temporal biases

of individual models is beyond the scope of this paper.

Detailed information of individual model deviations is

therefore not provided here but is available in separate

reports (see appendix E for details).

Amore detailed analysis of the long-term trends using

in situ, satellite, and model data of different regions of

the globe should be subject to further investigations.

The current comparison was limited to Europe and

China, while previous studies only focused on the com-

parison of selected satellite and in situ data (Hinkelman

et al. 2009; Riihelä et al. 2015; Müller et al. 2015) or

in situ data and models (Allen et al. 2013). As only a

single time period (1989–2007) was used in this study, to

be consistent with Allen et al. (2013), it is recommended

that future studies should analyze trends of subsequent

time periods, as dimming and brightening trends might

compensate each other (Hinkelman et al. 2009).

This study has also shown that the choice of the ob-

servational reference has an impact on the relative

model ranking. It is recommended that, whenever

available, different observational datasets are used for

model evaluation purposes to quantify this additional

variability. In addition, robust quantitative information

on observational uncertainties and guidance for users to

choose observations for particular applications is

needed. Both issues are subjects of ongoing research

(e.g., Hollmann et al. 2013; Gregow et al. 2015) and are

of high importance to minimize the impact of observa-

tion uncertainties in future ESM evaluation exercises.

FIG. D2. As in Fig. 4, but for historical experiments.

FIG. D1. Multidecadal regional trends of R[ (Wm22 a21) for (left) ISCCP and (right) SRB3.0

observations.
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APPENDIX A

Models

CMIP models and experiments used in this study are

in Table A1. Expansions of acronyms are available at

http://www.ametsoc.org/PubsAcronymList.

APPENDIX B

Regions

Figure B1 shows the regions from the IPCC

SPEX (IPCC 2012). The defined regions are Alaska/

northwestern Canada (ALA); eastern Canada, Greenland,

and Iceland (CGI); western North America (WNA);

central North America (CNA); eastern North America

(ENA); Central America and Mexico (CAM); Amazon

(AMZ); Northeast Brazil (NEB); west coast South

America (WSA); southeastern South America (SSA);

northern Europe (NEU); central Europe (CEU);

southern Europe and Mediterranean (MED); Sahara

(SAH); western Africa (WAF); eastern Africa (EAF);

southern Africa (SAF); northern Asia (NAS); western

Asia (WAS); central Asia (CAS); Tibetan Plateau

(TIB); eastern Asia (EAS); southern Asia (SAS);

southeastern Asia (SEA); northern Australia (NAU);

and southern Australia/New Zealand (SAU).

APPENDIX C

Model Ranking

CMIP model rankings for historical and AMIP ex-

periments are summarized in Tables C1 and C2, re-

spectively. Acronyms for the datasets are as in Table 1.

FIG. D3. As in Fig. 5, but for historical experiments.
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APPENDIX D

Multidecadal Variability

The spatial distribution of the observed multidecadal

trends forR[ is shown in Fig. D1. Regional distributions

of trends for R[ (RY) similar to Fig. 4 (Fig. 5) are given

in Fig. D2 (Fig. D3).

APPENDIX E

Further Information

This paper summarizes the assessment of the CMIP3

and CMIP5 surface solar radiation fluxes but does not

provide detailed information on individual model de-

viations as well as temporal and spatial deviations be-

tween individual models and observations.

As the software used for the evaluation of the differ-

ent models is publicly available [Python Climate Model

Benchmarking Suite (pyCMBS); Loew 2015a], as are all

datasets, the interested reader might reproduce all re-

sults. The output of the software is comprehensive re-

ports, providing detailed information on individual

model deviations. The reports corresponding to the

processing of the present paper have been published

separately and are accessible in Loew (2015b).
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