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Abstract 

Tidal marshes are interfaces between terrestrial and aquatic ecosystems. They are known 

for their transformation capacities regarding inorganic and organic nutrients and can 

influence lateral nutrient fluxes in estuarine and coastal systems. In this study the tidal 

marshes of the Elbe estuary, Germany, were studied with respect to the silica cycle and 

the inorganic carbon system. Therefore, three sampling sites along the estuarine salinity 

gradient were sampled over a two year period to represent the whole land ocean 

transition zone. 

Results confirmed the tidal patterns of dissolved silica (DSi) concentrations observed in 

other tidal marsh environments. Seepage concentrations were several fold higher then 

concentrations during the bulk phase. Along the salinity gradient DSi concentrations 

increased from the freshwater to the brackish marsh as expected from the influence of 

salinity on biogenic silica (BSi) dissolution rates. Seasonally, DSi concentrations increased 

from spring to autumn at the brackish and salt marsh site. The impact on benthic DSi 

uptake on seepage concentrations could be studied in March 2011. There, DSi 

concentrations were reduced by 18.6% between sunrise and noon, corroborating the 

importance of benthic diatoms for the regulation of nutrient fluxes in these ecosystems. 

DSi fluxes from the tidal marshes were significant contributors to the estuarine DSi 

budget in July, accounting for 52-70% of the total DSi load of the Elbe River. 

The second part of the thesis explored the importance of DSi fluxes for the total North 

Sea DSi budget to answer the question whether these fluxes can be significant on larger 

than estuarine scales. Geographic information system (GIS) data of salt marsh areas was 

combined with published DSi fluxes from salt marshes in Europe and the USA to derive 

the total DSi flux into the North Sea. It could be shown that the annual average 

contribution of salt marshes to the DSi budget of the North Sea amounted to only 0.7% 

of the annual riverine input. During summer this contribution was larger (2.4%) but still 

insignificant compared to the riverine inputs. It was concluded that salt marshes do not 

play an important role in the DSi budget of the North Sea. However, in coastal regions 

with low riverine DSi input and large salt marsh areas, like the English Channel, the 
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contribution could become significant in summer. Therefore, studies of smaller coastal 

segments should consider tidal marshes when assessing land ocean Si fluxes. 

In the third part of the thesis the distribution of stable silicon isotopes (d30Si) was 

studied. For the first time δ30Si were measured in water of tidal marsh ecosystems. It was 

shown that the tidal pattern of δ30Si was different at each sampling station. At the 

freshwater site flooding previous to the sampling caused the seepage and bulk signal to 

be virtually equal. At the brackish site seepage water had higher δ30Si values than the 

bulk water, indicating fractionation processes in the soil-plant system. These values were 

also amongst the highest reported for soil solutions, reaching 3.26‰. Surprisingly, the 

isotopic signal of the seepage water at the saline site was significantly lower than at the 

brackish site, probably due to less intense fractionation processes in the soil-plant system. 

The data from the estuarine transects revealed that the freshwater zone is a location of 

intense modification of the δ30Si signal. Uptake of DSi by diatoms caused increasing δ30Si 

values and a decrease of DSi concentrations along the estuary in October. In December, 

when biological activity was minimal, the estuary was a source for DSi, probably due to 

the input of DSi by tributaries. The isotopic signal was heavily altered in the region of the 

Hamburg harbour. Unfortunately, the lack of complementary data did not allow an 

identification of the main processes responsible for the alteration. In conclusion, this 

study showed for the first time, that the δ30Si signal is altered during estuarine transition 

even in month where biological DSi uptake is low.  

The last part of the thesis shed light on the spatio-temporal variability of the inorganic 

carbonate system in tidal marsh systems. It could be shown that carbonate dissolution in 

the tidal marshes of the Elbe estuary is the main process that turns these areas into 

sources of dissolved inorganic carbon and alkalinity for the estuary. On average the DIC 

export from the marsh areas could account for about 17% of the excess DIC in the 

estuary. This process was not accounted for in previous studies conducted in US tidal 

marshes. It was hypothesised that the different TA sources in US marshes and the study 

areas are related to the morphology and hydrology of the coastal zone, i.e. the presence 

of a shallow shelf sea combined with higher tidal forces. Due to the absence CaCO3 

dissolution, soil pH is possibly lower in the US marshes which would decrease the BSi 

dissolution rates of BSi and affects the overall long term storage capacity of those 
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marshes, which implies a coupling between the inorganic carbon cycle and the silica cycle 

in tidal marshes. 

In summary, it could be shown that the tidal marsh areas in the Elbe estuary are 

important parts of the estuarine silica and carbon cycle, with respect to lateral export 

fluxes. For the silica cycle however, the spatial significance of tidal marsh system seems to 

be small at scales larger than an estuarine system, as was shown for the North Sea. 

Regarding the inorganic carbon system of tidal marshes, it could be shown that calcium 

carbonate dissolution was the main TA generating process and not sulphate reduction as 

in tidal marshes of the USA. This finding lead to the hypothesis that the absence of the 

carbonate buffer might lead to an increased BSi long term storage, due to lower BSi 

dissolution rates – a link between the inorganic carbon cycle and silica cycle which had 

not been addressed. 
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Zusammenfassung 

Tidemarschen sind Schnittstellen zwischen terrestrischen und aquatischen Ökosystemen. 

Sie sind für ihre Transformationskapazitäten in Bezug auf anorganische und organische 

Nährstoffe bekannt und können laterale Nährstoffflüsse in der Küstenzone beeinflussen. 

In dieser Studie wurden die Tidemarschen des Elbe Ästuars, Deutschland, in Bezug auf 

den Silizium- und den anorganischen Kohlenstoffkreislauf hin untersucht. Dafür wurden 

drei Messstationen entlang des ästuarinen Salzgehaltsgradienten über einen Zeitraum von 

zwei Jahren beprobt, um die ganze Land Ozean Übergangszone einzubeziehen. 

Die Ergebnisse bestätigten die tidalen Muster gelöster Siliziumkonzentrationen (DSi), 

welche auch in anderen Tidemarschen beobachtet worden waren. Sickerwasser-

konzentrationen waren um ein Mehrfaches höher als Konzentrationen während des 

Hochwassers. Entlang des Salzgehaltsgradienten erhöhten sich DSi Sickerwasser-

konzentrationen von der Süßwassermarsch bis zur Brackwassermarsch, wie aufgrund des 

Einflusses von Salzgehalt auf die Lösungsraten von biogenem Silizium (BSi) erwartet. Im 

Jahresverlauf stiegen die DSi Konzentrationen in der Brackwasser- und Salzmarsch von 

Frühling bis Herbst an. Die Auswirkungen der benthischen DSi Aufnahme auf die 

Sickerwasserkonzentrationen konnte im März untersucht werden. Die DSi Konzentrationen 

wurden zwischen Sonnenaufgang und Mittag um 18,6% reduziert, was die Bedeutung von 

benthischen Diatomeen für die Regulation von Nährstoffflüssen in diesem Ökosystemen 

untermauert. Im Juli trugen die DSi Flüsse von den Tidemarschen signifikant zum DSi 

Budget des Elbe Ästuars bei und machten zwischen 52-70% der DSi Gesamtfracht der 

Elbe aus. 

Der zweite Teil der Arbeit untersuchte die Bedeutung der DSi Flüsse für das DSi Budget 

der Nordsee, um die Frage zu beantworten, ob diese Flüsse auf Skalen, die ästuarine 

Systeme überschreiten, signifikant sein können. Geographische-Informations-System (GIS) 

Daten von Salzwiesen wurde mit publizierten Salzmarsch DSi Flüssen aus Europa und der 

USA kombiniert, um den totalen Salzmarsch DSi Fluss in die Nordsee zu berechnen. Es 

konnte gezeigt werden, dass der mittlere jährliche Beitrag der Salzmarschen zum DSi 

Budget der Nordsee nur 0.7% des fluvialen Eintrags ausmachte. Im Sommer war dieser 

Beitrag höher (2.4%), aber immer noch unbedeutend im Vergleich zum fluvialen Eintrag. 
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Daraus wurde gefolgert, dass Salzmarschen keine wichtige Rolle im DSi Budget der 

Nordsee einnehmen. In Küstenregionen jedoch, in denen der fluviale DSi Eintrage niedrig 

und die Salzmarschflächen hoch sind, z.B. in Bereichen wie dem Ärmelkanal, kann der 

Beitrag im Sommer bedeutsam werden. Deshalb sollten Studien kleiner Küstenabschnitte, 

die den Land-Ozean Fluss von Silizium untersuchen, Salzmarschen berücksichtigen. 

Im dritten Teil der Arbeit wurde die Verteilung der stabilen Silizium Isotope (δ30Si) in den 

Tidemarschen und im Elbe Ästuar selbst untersucht. Es wurde gezeigt, dass die tidalen 

Muster des δ30Si an jeder Messtation verschieden waren. In der Süßwassermarsch 

verursachten Überflutungen eine Angleichung der δ30Si Werte aus Sickerwasser und 

Überschwemmungswasser an nahezu identische Werte. In der Brackwassermarsch hatte 

das Sickerwasser höhere δ30Si Werte als das Hochwasser, was auf Fraktionierungsprozesse 

im Boden-Pflanzen System hinweist. Diese Werte waren unter den höchsten, die für 

Bodenlösungen publiziert worden sind und erreichten Werte von 3,26‰. 

Überraschenderweise was das Isotopensignal in der Salzmarsch signifikant niedriger als in 

der Brackwassermarsch, was möglicherweise auf weniger intensive 

Fraktionierungsprozesse zurückzuführen war. Die Daten des ästuarinen Längsprofils 

zeigten, dass die Süßwasserzone des Ästuars ein Ort starker Modifikationen des δ30Si 

Signals ist. Im Oktober verursachten die Aufnahme von DSi durch Diatomeen steigende  

δ30Si Werte und sinkende DSi Konzentrationen entlang des Längstprofils. Im Dezember 

war das Ästuar eine Quelle für DSi, was möglicherweise auf den DSi Eintrag über 

Nebenflüsse zurückzuführen war. Das Isotopensignal wurde in der Region des Hamburger 

Hafens stark verändert. Bedauerlicherweise erlaubte der Mangel an komplementären 

Daten keine Identifizierung der Hauptprozesse, die für die Veränderung des δ30Si Signals 

verantwortlich waren. Zusammenfassend zeigte diese Studie zum ersten Mal, dass das 

δ30Si Signal während des ästuarinen Übergangs auch in Monaten, in denen die 

biologische Aktivität niedrig ist, stark verändert werden kann. 

Der letzte Teil der Arbeit untersuchte die räumlich-zeitliche Variabilität des anorganischen 

Karbonatsystems in Tidemarschen der Elbe. Es konnte gezeigt werden, dass die 

Tidemarschen der Elbe Quellen für gelösten anorganischen Kohlenstoff (DIC) und 

Alkalinität (TA) waren. Im Durchschnitt war der DIC Export von den Marschflächen für 

17% des überschüssigen DIC des Ästuares verantwortlich. Zusätzlich wurde gezeigt, dass 
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die wichtigste Quelle für TA Kalziumcarbonat Lösung war. Dieser Prozess wurde in 

vorhergehenden Studien in den USA nicht berücksichtigt. Es wurde vermutet, dass die 

Verschiedenen TA Quellen in US Marschen und den Elbmarschen auf die unterschiedliche 

Morpho- und Hydrologie der Küstenzonen zurückgeht, d.h. die Präsenz einer 

Flachwasserküste in Kombination mit höheren Tidekräften. Aufgrund des Fehlens der 

CaCO3 Lösung in US Marschen ist der Boden pH möglicherweise niedriger, was eine 

Erniedrigung der BSi Lösungsraten zur Folgen haben könnte. Dies würde die 

Langzeitspeicherung von BSi in diesen Marschböden erhöhen. 

Zusammenfassend konnte gezeigt werden, dass die Tidemarschen der Elbe, in Bezug auf 

laterale Stoffflüsse, wichtige Teile des ästuarinen Silizium- und Kohlenstoffkreislaufs sind. 

Für den Siliziumkreislauf jedoch, sind die DSi Flüsse von Salzmarschen in der Küstenzone 

auf Skalen, die die ästuarine Dimension überschreiten, von geringer Bedeutung, wie am 

Beispiel der Nordsee gezeigt worden ist. Bezüglich des anorganischen Kohlenstoffsystems 

der Tidemarschen konnte gezeigt werden, dass Kalziumkarbonat Lösung der wichtigstes 

TA erzeugende Prozess war und nicht Sulfatreduktion, wie es in US amerikanischen 

Tidemarschen der Fall ist. Dieser Befund führte zur Hypothese, dass das Fehlen des 

Karbonatpuffers in den Böden der Tidemarschen zu einer erhöhten Langzeitlagerung von 

BSi aufgrund niedriger BSi Lösungsraten kommen könnte. Dies würde eine neue 

Verbindung zwischen dem anorganischen Kohlenstoffkreislauf und dem Silizium Kreislauf 

darstellen, die bisher noch nicht Untersuchungsgegenstand biogeochemischer Studien 

gewesen ist. 
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1 General introduction 

The direct interface between the land and the ocean are estuaries. There, the mixing of 

freshwater with seawater and the presence of tidal forces create a unique environment 

for biogeochemical transformations to take place. Recently, the fate of carbon (C) and 

silicon (Si) during the estuarine transition came in focus of biogeoscientists around the 

world due to the importance of these two elements for the global climate. 

Silicon is the second most abundant element of earth (Garrels & Mackenzie 1971). Its 

cycle is tightly linked with the carbon cycle via chemical weathering and the subsequent 

use of Si by diatoms, a group of silica-secreting algae. During the chemical weathering 

process water and carbon dioxide (CO2) react with the silicate minerals, breaking up the 

mineral bonds and bringing Si into solution. Over geological timescales this process 

controls the atmospheric CO2 concentration (Kempe 1979, Zeebe & Caldeira 2008). Once 

in solution it forms silicic acid (H4SiO4, dissolved silica (DSi)), which is an essential nutrient 

for diatom growth (Paasche 1980). Diatoms use DSi to form a silicified cell wall composed 

of amorphous silica also referred to as biogenic silica (BSi). As diatomaceous primary 

production (PP) accounts for ~40% of the marine PP (i.e. ~¼ of global PP) and for ~50% 

of the organic carbon exported to the oceans interior (Nelson et al. 1995) the availability 

of DSi in the ocean partly controls our climate on glacial-interglacial timescales (Falkowski 

et al. 1998). Hence, the availability of DSi in the oceans is of global importance for earth’s 

climate. 

Anthropogenic influence has disturbed the silica cycle, especially the delivery to the 

ocean (Ittekkot et al. 2000, Laruelle et al. 2010). As about 62% of the total Si input into 

the ocean is delivered by river discharge (Tréguer & De La Rocha 2013), it is important to 

understand the effect of the land ocean interfaces on to silica fluxes to the ocean,  

because of the direct effect on the coastal and marine carbon cycle (see above). 

Tidal marshes are such interfaces between terrestrial and aquatic ecosystems. They are 

found worldwide along coastal or estuarine shores (Mitsch & Gosselink 1993). Their 

biogeochemistry is influenced by physical and chemical variables such as tidal flooding 

frequency and duration, soil salinity, and nutrient limitation, especially nitrogen (Mitsch & 
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Gosselink 1993). These ecosystems are dominated by wetland grasses which are adapted 

to these conditions. Their primary productivity is amongst the highest in the world with 

values of up to 8000 g m-2 yr-1 (Mitsch & Gosselink 1993). Additionally, benthic diatoms 

inhabit these ecosystems, which also can sustain high rates of primary production 

(Macintyre et al. 1996). 

The pulsing of the tides drives the exchange of matter with the adjacent water body, e.g. 

the estuary or the coastal seas. This natural phenomenon was conceptualised in the 

“outwelling hypothesis” (c.f. Odum 2000), which linked the productivity in tidal marshes to 

the one of the estuary. Many studies, inspired by the “outwelling hypothesis”, focused on 

the nitrogen, phosphorus and the carbon cycle in marsh-estuary systems because of the 

apparent anthropogenic influence on these cycles (e.g. Valiela & Teal 1979; Jordan et al. 

1983; Bowden 1986; Loomis & Craft 2010; Sousa et al. 2010). The carbon cycle, however, 

was only assessed with regard to the organic fraction, because of its importance for 

marsh and estuarine food webs (Sherr 1982, Borey et al. 1983, Chalmers et al. 1985). Its 

inorganic component was only included episodically in studies (Winter et al. 1996). 

Likewise, the silicon cycle gained not much attention except for episodically reports on 

DSi concentrations (Imberger et al. 1983, Dankers et al. 1984).  

For the silicon cycle, this changed with the publication of the paper “Silicon is the link 

between tidal marshes and estuarine fisheries: A new paradigm” by Hackney et al. (2000). 

In this work the authors suggested that estuarine foodwebs are fuelled by the export of 

DSi from tidal marsh areas. This hypothesis was put to test only recently by scientist 

(Struyf et al. 2005a, Struyf et al. 2005b, Struyf et al. 2006a, Struyf et al. 2007, Jacobs et al. 

2008, Vieillard et al. 2011, Müller et al. in press). These studies revealed that tidal marshes 

are indeed hot spots for the cycling of silica. The growth of silica accumulating plant 

species, i.e. grasses and diatoms, leads to an enrichments of BSi in the soil, which is 

partly recycled partly stored. The recycled part leaves the system as DSi. The export fluxes 

of only a few tidal exchanges can equal the monthly DSi flux of the estuarine or river 

systems to the coastal zone which was shown in the Scheldt estuary, Belgium (Struyf et 

al. 2006a) and a saltmarsh system in Massachusetts, USA (Vieillard et al. 2011). 

Understanding the silica cycle of the tidal marshes is thus an important prerequisite for 

the understanding of the land – ocean delivery of Si, especially in times where 
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anthropogenic influence has severely disturbed the natural fluxes of nutrients to the 

coastal zone. 

The interest in the coastal carbon cycle, including the one of tidal marshes, grew because 

studies showed that inner estuaries play a disproportionately important role in the marine 

carbon cycle despite its small areal fraction (Gattuso et al. 1998, Borges 2005).  

Estuaries are net heterotrophic systems where organic carbon is transformed to inorganic 

carbon (Cadée & Laane 1983, Eisma et al. 1985, Abril et al. 2002, Middelburg & Herman 

2007) turning inner estuaries into sources of CO2. These systems emit about 22.5 ± 19.2 

Tmol C yr-1 (1 Tmol = 1012 mol) which is close to the amount that is absorbed on the 

continental shelf (Laruelle et al. 2010). The net heterotrophy in inner estuaries is partly 

fuelled by the lateral input from tidal marshes (Winter et al. 1996, Raymond & Ab 1997, 

Cai et al. 1999). In tidal marshes soil respiration creates CO2 which dissolves in the soil 

porewater, resulting in high DIC concentrations. Advective transport of soil porewater and 

diffusive exchange during flooding are the processes that lead to enrichment of estuarine 

water with dissolved inorganic carbon (DIC) (Cai et al. 1999, Cai et al. 2000, Wang & Cai 

2004). If marsh areas are large enough this can lead to significant contribution to the 

estuarine net heterotrophy (Neubauer & Anderson 2003). This DIC export was termed 

“marsh CO2 pump” (Wang & Cai 2004) and is an important process at the marsh 

dominated estuaries and continental margin of the Southern Bight, USA (Cai et al. 2003a). 

Because estuaries are an important component in the coastal carbon cycle the knowledge 

about the influence of tidal marshes on the net heterotrophy is important to understand 

the carbon cycle in the land ocean transition zone.  

1.1 Identifying research gaps  

Existing studies about the silica cycle in tidal marshes only focussed either on freshwater 

or on salt marshes (e.g. Struyf et al. 2006a, Vieillard et al. 2011). This does not allow a 

complete description of the estuarine silica cycle, because the representation of the 

brackish zone is missing. This zone is characterized by huge salinity variations. Salinity is 

an important variable with major influence on BSi dissolution rates. Salinity affects the BSi 

dissolution rates directly due to the presence of cations which have a catalytic effect on 

the hydrolysis of siloxane bonds at the silica surface (Loucaides et al. 2008). Additionally, 

salinity fluctuations can have an indirect influence on BSi dissolution via its simulating 
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effect on microbiological respiration rates (Capone & Kiene 1988, Cunha et al. 2000). 

Bacteria decompose the organic coatings of phytoliths or diatom frustules which make 

them more prone to dissolution (Bartoli & Wilding 1980, Bidle 1999, Rickert et al. 2002). 

The BSi dissolution rate plays a key role in the tidal marsh silica cycle, because it 

determines the accumulation rate of BSi and the amount of DSi which is available for 

export. Therefore, the investigation of freshwater, brackish and saltmarshes along an 

estuarine salinity gradient could deliver valuable information about the pattern of DSi 

export and BSi accumulation in marsh soils which is still missing for the complete 

description of the estuarine silica cycle.  

Also unaccounted for is the relative importance of tidal marsh DSi export on regional or 

global scale. The existing studies showed that the DSi export from tidal marsh areas can 

be of local importance in estuarine (Struyf et al. 2006a) and coastal systems (Vieillard et 

al. 2011). Regional and global land ocean flux studies (Beusen et al. 2009, Laruelle et al. 

2009, Dürr et al. 2011, Tréguer & De La Rocha 2013) or continental to global scale 

studies on terrestrial DSi mobilisation (Hartmann et al. 2010, Jansen et al. 2010, Moosdorf 

et al. 2011) currently do not include tidal marsh areas in their models. To answer the 

question whether or not the tidal marsh DSi fluxes are also significant on regional or 

global scale, studies should analyse the importance of tidal marsh DSi export on these 

scales with respect to riverine DSi fluxes. 

Another topic that only started to gain attention is the isotopic silica cycling in estuaries 

and tidal marshes. The average isotopic composition (δ30Si) of seawater reflects the 

balance between river and hydrothermal inputs of DSi into the ocean. The average δ30Si 

value of the oceans is about 1 ‰. This values reflects the much greater input of riverine 

DSi (δ30Si = 0.5-3.4 ‰) (Opfergelt & Delmelle 2012) to the ocean than of hydrothermal 

DSi from ridge flanks (δ30Si = -0.4 ‰) (Basile-Doelsch 2006). Additionally, there removal 

of DSi in estuaries is only poorly constrained (Tréguer et al. 1995, Tréguer & De La Rocha 

2013). Better understanding the effect of estuaries on the riverine inputs and δ30Si values 

would help to improve the global budget for the Si cycle as well as to constrain the 

isotopic input of the ridge flank hydrothermal flux of Si and Si isotopes into the ocean. 

Regarding the carbon cycle the majority of studies were conducted in the tidal marsh 

systems of the south-east USA, (Cai & Wang 1998, Cai et al. 1998, Cai et al. 1999, Cai et 
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al. 2000). These marshes differ from the tidal marshes in the southern North Sea with 

regard to their, soil properties, tidal regimes and coastal zone topology (compare Mitsch 

& Gosselink 1993, Allen 2000). Their soils are mostly organic soils with high carbon 

concentrations (> 10%) and low soil densities (< 0.6 g cm-3) (Mitsch & Gosselink 1993), 

while the European marsh soils are mineral soils (Allen 2000), with low organic carbon 

contents and higher soil densities. The tidal amplitude at the southeaster coast of the 

USA is lower (0.9 – 2.1 m Flick et al. (1999)) than in the southern North Sea (2 – 3 m BSH 

(2010). The topological difference is related to the presence of the “Wadden Sea” along 

the eastern shore of the North Sea. It is the largest unbroken system of intertidal sand 

and mud flats in the world (UNESCO 2013) and a source for carbonate rich sediments. It 

is hypothesised that these differences affect the inorganic carbon cycling in tidal marshes, 

which would question the applicability of the results obtained in the US marshes to tidal 

marsh systems in Europe. So far, only a few studies have investigated the inorganic 

carbon chemistry of tidal marshes and the adjacent estuary outside of North America 

(Winter et al. 1996, Hellings et al. 2000, Forja et al. 2003, La Paz et al. 2008). These 

studies indicate that calcium dissolution could be the source of alkalinity (TA) in European 

marshes soils, a process which is absent in the US systems (Wang & Cai 2004 p. 352). 

The applicability of the results regarding the inorganic carbon cycle, which were obtained 

in the US tidal marshes, to European systems must therefore be doubted and should be 

investigated.  

1.2 Contribution of this thesis 

This thesis tries to close the research gaps, which were presented in the previous section 

to advance the understanding of the silicon and carbon cycling in tidal marsh systems 

and the influence of the intertidal ecosystems on the biogeochemistry of the estuary 

itself.  

In the first part the seasonal and spatial variation of DSi and BSi as well as the export of 

DSi in tidal marshes in the inner Elbe estuary is investigated. It is hypothesised that the 

stimulating effect of salinity on the dissolution of BSi will be reflected in the 

concentration pattern along the estuarine salinity gradient. Factors, steering the 

seasonality of DSi export and differences between the sites like temperature, hydrology, 

salinity and plant uptake of DSi are discussed.  
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The second part tries to answer the question if DSi export from tidal salt marsh areas is 

significant for regional land ocean DSi fluxes using the example of the North Sea. 

Additionally, the influence of seasonality on the relative contribution of salt marsh DSi 

export in the North Sea DSi budget is explored using data from the GLORICH river 

chemistry database. 

The third part takes a look into the isotopic signature (δ30Si) of dissolved silica in the Elbe 

estuary, including tidal marsh areas. Because it is the first study that has measured δ30Si 

values in tidal marshes the main research questions are: What is the range of δ30Si values 

in tidal marsh surface waters? Do differences in δ30Si exist between the marsh areas along 

the salinity gradient? What is the seasonal influence on δ30Si values at the brackish 

marsh? The discussion focusses on the controlling factors which influence δ30Si signatures 

of DSi. Regarding the δ30Si values in the estuarine water, the questions concern the 

spatial patterns of δ30Si values: How are δ30Si values altered during estuarine transition 

and what are the main processes responsible for those alterations?  

The fourth part of the thesis deals with the carbonate system in tidal marsh creeks. 

Furthermore the DIC export from the tidal marsh areas in the Elbe estuary is assessed to 

analyse its influence on the estuarine carbonate system and its importance for land ocean 

DIC fluxes. The contribution of different biogeochemical processes, such as carbonate 

dissolution and sulphate reduction, is analysed using cation measurements in 

combination with stoichiometric relationships of these processes. The results are 

compared to studies conducted in the US, to answer the question if the results obtained 

in these systems are applicable to north European tidal marsh system. 

2 Study area 

2.1 The Elbe estuary 

The river Elbe forms - with a length of 1094 km and a catchment area of 148,268 km2 - 

the fourth largest river basin in central Europe. The catchment supports more than 24.5 

million people (as of the year 2003) with densities varying from 40 to more than 3000 

inhabitants per km2 (IKSE, 2005). The Elbe can be divided into the non-tidal middle and 
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upper Elbe and the tidal stretch (the latter one is 142 km in length), which is located in 

Northern Germany and feeds into the German Bight, North Sea (Figure 2.1, all data from 

IKSE (2005)). 

The Elbe runoff features high discharges in winter and spring with a long-term maximum 

occurring in April (Kempe 1992). The mean annual long-term discharge of the Elbe river 

at the last non-tidal gauge of Neu Darchau (Elbe-km 536) is 704 m3 s-1 (std. dev. 

442 m3 s-1; years 1900-2011). This gauge has a catchment area of 131,950 km2 which 

represents 89% of the total catchment (IKSE 2005). 

The tidal Elbe is a turbid, well-mixed, macrotidal estuary (Middelburg & Herman 2007) 

with a pronounced maximum turbidity zone (MTZ), on average located around Elbe-km 

695 (Brunsbüttel). The range of the semi diurnal tide at the Hamburg harbour is 3.6 m. 

High tidal current velocities (up to 1.8 m s-1) (Bergemann & Gaumert 2010) cause a steep 

horizontal salinity gradient. The freshwater section reaches from the weir downstream to 

about Elbe-km 670 (Glückstadt). The water residence time in the tidal stretch ranges from 

2 to 12 weeks depending on discharge (Table 2.1). 

Table 2.1: Typical residence time in the four zones of the Elbe estuary as a function of low, mean and high 

discharge (Q) (Bergemann et al. 1996). Typical summer discharge ranges between 300 and 550 m3 s-1. 

 

The Elbe estuary can be divided into four distinct zones (Table 2.1, Figure 2.1 C) with 

different dominating biogeochemical processes:  

zone name Elbe-km residence time (days) 

   Q=250 m3 s-1 Q=700 m3 s-1 Q=1200 m3 s-1 

I pre-OMZ 585-620 3 1 <1 

II OMZ 620-650 11 4 2 

III MTZ 650-705 35 14 10 

IV post-MTZ 705-730 30 11 6 
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Figure 2.1: (A) Overview of Europe, (B) Elbe estuary (marked with black box) located in Northern Germany, (C) 

detailed view on the estuary, numbers are river kilometres (count starts at the German border). The bottom 

graph shows an exemplary distribution (2007 summer means) of the zone characteristic parameters 

suspended matter (SPM), dissolved oxygen (DO) and salinity (graphic courtesy of ARGE Elbe, modified). 
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1. The pre-OMZ, zone characterised by high values of dissolved oxygen (DO) due to 

upstream primary production (salinity <1); 

2. The oxygen minimum zone (OMZ), including the harbour of the city of Hamburg, 

shows the abrupt decrease of oxygen. Its formation occurs mainly during the 

summer months (salinity <1); 

3. The maximum turbidity zone (MTZ) with high concentrations of suspended matter 

(SPM) due to a long residence time (salinity range between <1 and 5); 

4. The transition to the full marine system (post-MTZ) of the German Bight shows 

increasing salinity and stabilised DO and SPM values (salinity range between 1 and 

20). 

2.2 Tidal marshes of the Elbe estuary 

Between Hamburg and Cuxhaven (km 637-721) an area of about 79 km2 can be regarded 

as dyke foreland (Figure 2.2). That is the area between the dyke foot and the estuarine 

channel (Figure 2.3). Not included in this definition are the pioneer zone, mudflats and 

buildings. The dyke foreland in the Elbe estuary is a mixture of natural and artificial areas 

covered by different vegetation communities. The artificial areas are covered mainly with 

grassland. These areas are normally grazed by sheep in the summer and can be found 

along the whole salinity gradient. Adjacent to this artificial dyke foreland, bordering the 

estuarine channel, natural vegetation communities can be found.  

Along the longitudinal axis of the Elbe estuary the salinity as well as the dominant 

vegetation cover of the dyke foreland changes (Table 2.2). The natural vegetation covers 

about 40% of the total dyke foreland of the Elbe estuary. The remaining 60% are 

meadows which were or are used for cattle or sheep grazing. Salinity increases from 

freshwater values of <0.5 units to mesohaline values of up to 30 units in the mixing zone 

of Elbe river water and water from the North Sea. 

The whole dyke foreland is drained via a network of ditches and creeks with a 

characteristic design (Figure 2.3). Small drainage ditches are connected perpendicular to 

the main creek and together are forming a channel network. Each main creek is 

separated from the neighbouring one via a dam, so that one creek is separated from the 

others. The sampling point was located near the outlet of the main drainage creek, to 
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include as much area of the creek’s drainage network as possible. All three sampling 

locations in this study do not receive terrestrial runoff via rivers or channels.  

2.2.1 Sampling sites 

To represent the three salinity classes of the inner Elbe estuary (Table 2.2) three sampling 

sites were chosen. The freshwater site (HDM), the brackish site (NF), and the saline site 

(DSK). 

 

Figure 2.2: Overview of the Elbe estuary. The dyke line (---) and the dyke foreland areas (grey shade) are 

shown, together with the sampling sites () and the position of the gauge stations () 

Freshwater (HDM) 

The freshwater site (Figure 2.3 A; 9°33.125’’E, 53°39.116’’N; km 657) is located in a side 

branch of the Elbe estuary and is part of a nature protection area. Its total area is 0.171 

km2. Today the area is intermittently grazed by cows. Phalaris arudinaceae / Glyceria 

maxima reed covers 23% of the total sampling area. The northern border of the site is a 

dam which connects to a small woodland. Adjacent to the dam, an artificial pond is 

located, which is covered with Typha sp. This pond is connected to the Elbe estuary by a 

tidal creek. At the outlet of the creek and behind the pond a dense population of 

Phragmites australis can be found. Together these two species cover 25% of the total 
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area. The tidal range in this area is 3.1 m with a mean high tide of +1.8 m above sea-

level (m.a.s.l. according to German height reference system, Potsdam level; (BSH 2010)). 

The grassland area lies about +2.1 m.a.s.l. Therefore the total marsh surface is inundated 

only during very high spring tides and storm surges. The elevation of the artificial pond is 

+1.6 m.a.s.l. and gets inundated every tide, except during very strong neap tides.  

Brackish (NF) 

The brackish marsh is located at the beginning of the estuarine mouth (Figure 2.3 B; 

9°1'47.209"E 53°54'8.073"N, km 703). The main creek, where sampling took place, drains 

an area of 0.167 km2. Three vegetation types cover 95% of its area. Phragmites australis 

covers 45%, Elymus athericus 15% of the area. The rest is grassland (37%). The main 

creek itself is fed by smaller ditches which are perpendicular to the main channel. The 

tidal range is 2.9 m with a mean high water of +1.5 m.a.s.l. (BSH 2010). The upper marsh 

only gets flooded during spring tides with water levels of +2.0 m.a.s.l. 

Saline (DSK) 

This site is located at the mouth of the estuary (Figure 2.3 C; 8°52'55.674"E 

53°58'26.242"N, km 713.5) and part of the Schleswig-Holstein Wadden Sea National Park. 

The sampling site has an area of 0.568 km2. Water samples were taken from a creek 

which divides an experimental area. Pasture land on the northern side of the creek is 

grazed by sheep whereas the southern side was abandoned in 1990 and is no longer 

grazed. Vegetation on the northern site is dominated by Festuca rubra meadow, the 

southern side by Elymus athericus meadow. The watershed of the creek had a mean 

elevation of 2.1 m. The tidal range of the area is 2.9 m with a mean high tide at 

+1.6 m.a.s.l. (BSH 2010). Even at spring tide, most of the area is not inundated. 

2.2.2 Hydrology of sampling sites 

According to UVU (1997) the sampling sites differ in their hydrology. The groundwater 

table is deepest at the freshwater site with >80 cm below the soil surface. At the brackish 

and saline site the groundwater table lies 40-80 cm below the soil surface.  

Furthermore, the saturated water conductivity of the soils associated with the sampling 

sites changes along the salinity gradient. The freshwater site has the highest saturated 
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water conductivity with 10-40 cm d-1 whereas the soils at the brackish and saline site 

have lower values with 1-10 cm d-1 (UVU 1997). 

Table 2.2: Summary of the characteristics of the three salinity classes in which the sampling sites were 

located. For each salinity class possible salinity range is given as well as the dominant vegetation type of 

each zone. The area is the total area of the salinity class in the Elbe estuary (see Figure 2.2). Note that the 

species resolution of the saline sampling site is higher, because different vegetation maps were used 

sampling 

site 

salinity class Elbe km salinitya  area (km2) dominant 

vegetationb 

areal proportion (%) 

fresh (HDM) limnic 638-680 < 0.5 40.58 Phragmites australis 37 

     trees/scrubs 30 

     grassland 27 

brackish (NF) mixo-mesohaline 680-705 5-18 20.68 grassland 41 

     Phragmites australis 17 

     salt meadow 15 

saline (DSK) mixo-mesohaline 

/ euhaline 

705-721 5-30 17.90 Festuca rubra 22 

     Elymus athericus 20 

     Puccinella maritima 14 

     Spartina anglica 13 

 total   79.16   

a salinity characterization was taken from (UVU 1997), chapter 4, table 4.2  

(http://www.portal-tideelbe.de/Projekte/FRA1999/Antragsunterlagen/UVU/Kartenband/index.html) 

b Data for the zones between Elbe km 638-705 were taken from the vegetation map “Biotopenkartierung 2006”, Zentrales 

Datenmanagement der WSD Nord, www.portaltideelbe.de, May 2011. Data for the saline site were taken from the vegetation 

map “Salzwiesenkartierung 2006/2007”, LKN-Schleswig-Holstein/Nationalparkverwaltung 
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Figure 2.3: Aerial photographs (left) and DEM representation of the sampling sites (right). A) Freshwater site 

(HDM), B) brackish site (NF) and C) saline site (DSK). The white border encloses the area of the creek’s 

drainage network. The DEM shows the terrain which is enclosed in the white border seen on the aerial 

photographs. The white star indicates the sampling location for the creek water. The elevation scale is given 

in metres above sea level (m.a.s.l, according to German height reference  system, Potsdam level; (BSH 2010)) 
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3 Silica dynamics of tidal marshes in 

the inner Elbe estuary, Germany 

3.1 Abstract 

In this study the seasonal and spatial variation of dissolved silica (DSi) and biogenic silica 

(BSi) in tidal marshes in the inner Elbe estuary was investigated. Seasonal sampling was 

conducted at three sites in the dyke foreland - the stretch of land between dyke and 

estuary - of the Elbe estuary, Germany. To assess the potential DSi export from the dyke 

foreland geographic information systems were used to calculate the DSi flux. Mean 

annual seepage DSi concentrations increased along the salinity gradient from 270 μmol 

L-1 to 380 μmol L− 1. BSi concentration of the soil showed the opposite trend decreasing 

from 15.8 to 4.8 mg g− 1. Temporal variations of DSi concentrations were lowest at the 

freshwater site. At the brackish and saline site DSi concentrations increased about 2-fold 

from March to November from 200 to 500 and from 300 to 550 μmol L− 1, respectively. In 

March a diurnal signal of DSi uptake by diatoms could be observed at the saline 

sampling site, DSi concentrations were reduced by 18.6 % between sunrise and noon, 

highlighting the role of sampling time and irradiance for the DSi-flux estimate. The DSi 

export from the dyke foreland is significant and equals the riverine DSi input into the 

estuary during times of low DSi concentrations. Furthermore the marsh DSi fluxes surpass 

DSi fluxes from highly active weathering regions, as reported in the literature, which 

corroborates the importance of tidal marsh areas for the coastal silica cycle. Factors 

steering the seasonality of DSi export and differences between the sites (temperature, 

hydrology, salinity and plant uptake of DSi) are discussed. 

3.2 Introduction 

Tidal marshes are important ecosystems for silica (Si) cycling in the land-ocean-transition 

zone (Struyf & Conley 2009). In these ecosystems the dissolved silica (DSi) which 

originates from weathering of silicate minerals (Garrels & Mackenzie 1971) is cycled 

through the vegetation (Norris & Hackney 1999). In tidal marshes diatoms and wetland 

grasses are the dominant plant taxa involved in the silica cycle (Struyf & Conley 2009). 
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Diatoms have an essential need for Si for their growth (Paasche 1980). During growth 

silicic acid is used to build up the cell wall called a frustule. Wetland grasses are also 

known to accumulate Si. These species take DSi up faster than expected from non-

selective uptake of DSi with water (Raven 2003). The DSi is deposited in the plant as 

amorphous silica structures known as phytoliths (Kaufman et al. 1981). Therefore these Si 

accumulator species can have silica contents between 1-70 mg Si g-1 dry weight (Struyf 

and Conley (2009), supplemental information). Both, the diatom frustules and the plant 

phytoliths are referred to as biogenic silica (BSi) due to their origin. 

The plant derived BSi will eventually be buried in the marsh soil. The burial however is 

not complete because of the high solubility of the plant derived BSi. At soil pH between 

4-8 this material is 100-10,000 times more reactive than clay minerals, primary mafic 

silicates and feldspars (Fraysse et al. 2009). Dissolution processes in the marsh soil 

transform a part of the BSi back to DSi, which results in the enrichment of DSi in the 

pore water of marsh soils and can lead to concentrations of 100-600 µmol L-1 (Norris & 

Hackney 1999, Struyf et al. 2005b), which is below the saturation concentration of 

amorphous silica (Loucaides et al. 2008, Fraysse et al. 2009). Gravitational drainage of soil 

pore water into the tidal creeks creates a slow stream of seepage water highly enriched 

in DSi. During flood tide this seepage water mixes with inflowing water and increases its 

concentrations. During ebb tide the enriched flooding water leaves the marsh. 

Additionally, DSi is exported during the seepage phase. The latter period of the tidal 

cycle can be responsible for up to 90% of the total DSi export from tidal marshes (Struyf 

et al. 2006a).  

In estuarine and coastal ecosystems diatoms build the base of the food web (Peterson & 

Howarth 1987, Sullivan & Monceriff 1990, Fry & Wainright 1991). The availability of DSi, 

which is an essential nutrient for diatoms, is thus a precondition for their growth. In 

eutrophic ecosystems DSi can become a limiting nutrient for diatom growth, decreasing 

their abundance in the ecosystem (Brush & Davis 1984). One possible consequence is a 

species shift towards non siliceous algae (Officer & Ryther 1980, Hecky & Kilham 1988), 

which may have negative effects on the ecosystem (Anderson et al. 2002). During times 

of DSi limitation marsh areas could mitigate growth limitation of diatoms in the adjacent 
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estuary due to the extra DSi input and thus play an important role for estuarine food 

webs (Norris & Hackney 1999, Hackney et al. 2000)  

This hypothesis was recently supported by the work of Struyf and colleagues (2006a) who 

showed that in the Scheldt estuary only six tidal cycles were necessary to resupply the 

total monthly estuarine DSi load of 280 Mmol (Mmol = 106 mol). Vieillard et al. (2011) 

showed that the “summerly” DSi export of the Rowley salt marsh in Massachusetts, USA 

to the coastal zone equalled the DSi input of the Ipswich River. Despite the possible 

importance of tidal marsh systems for the DSi delivery to the coastal zone these areas 

have been not well recognized in recent estimates of DSi fluxes in coastal zones (Beusen 

et al. 2009, Dürr et al. 2011). 

Until now, no study has investigated the silica distribution along an estuarine transect, 

but focused only either on freshwater or salt marshes from different geographical 

locations. This study evaluates for the first time the variability of Si in tidal areas along 

the inner Elbe estuary to better understand the role these areas play in the estuarine 

system and coastal Si cycle. This study compares DSi and BSi concentrations in one 

freshwater and two mesohaline tidal creek systems in the dyke foreland area of the Elbe 

estuary, northern Germany and applies geographic information systems (GIS) to estimate 

the DSi export from this areas. 

3.3 Material and Methods 

3.3.1 Sampling and analysis 

Water sampling 

From April 2010 to November 2011 an intensive sampling campaign took place at all 

three marsh sites (see Table 3.1 for sampling dates). At each sampling day, water samples 

were taken approximately every hour in the main creek of each sampling site to cover 

the seepage and the flood phase. All samples were surface samples, taken in the centre 

of the creek. The samples were filtered in the field using 0.45 µm nylon filters (Minisart®) 

and were stored in a cool box. In the laboratory they were stored at 4°C until analysis. 

Dissolved silica concentrations were obtained by using standard colorimetric techniques 

(Hansen & Koroleff 1983). It was assured that all chemicals and samples had no contact 

with glassware during handling and analysis and never froze.  
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Salinity, temperature and pH of the samples were measured in the field with handheld 

sensors (ConOX, WTW; Primatrode 6.0228.020, Methrom).  

Samples from the estuary were taken aboard of the R/V “Prandtl” with a Niskin bottle 

from approximately one metre depth. Samples were filtered immediately through 

membrane filters (∅ 47mm, 0.45µm; Sartorius) and were stored at 4°C until analysis in the 

laboratory (see above).  

Soil sampling 

Soil profiles were taken on 2010-07-25 and 2010-06-30 at the fresh and brackish site, 

respectively. At the salt marsh samples were taken on 2010-06-19 and on 2010-09-08 on 

the grazed and ungrazed side respectively. For sampling, a pit was opened from the soil 

surface to 40-135 cm depth. From each soil horizon one mixed sample over the depth of 

one horizon was taken and stored in a plastic bag. In the laboratory, the samples were 

homogenized manually.  

For BSi analysis a subsample of the homogenized samples of each horizon were taken, 

sieved through a 400 µm mesh and freeze-dried. After drying, samples were pound 

carefully with a mortar and pestle to break down small soil pellets. No brute force was 

applied during this procedure to avoid pulverization of the sample. 

For the analysis of BSi a variation of the DeMaster (1981) method was used. 

Approximately 30 mg of sediment per sample were leached in 40 ml 1% sodium 

carbonate (Na2CO3) in a shaking bath at 85°C. Aliquots were withdrawn at 3, 4, and 5 

hours, neutralized in 0.021 M HCl and analysed for DSi (see above). 

The amount of BSi was estimated from the intercept of the linear regression line through 

the time course aliquots. If no variation of DSi concentration during the time course was 

detected, the mean of all three time point was taken as the final BSi concentration in the 

sample. We are aware that the wet-alkaline extraction is prone to additional release of 

DSi from amorphous mineral silicates present in the soil. The term BSi for soil samples is 

therefore not exact, but for reasons of readability we use this term to refer to plant and 

soil derived BSi in following sections. 
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Samples for soil density were taken after the method described in (Eckelmann et al. 2006) 

using a handheld corer with a total volume of 100 cm3. Soil density was measured at the 

Institute of Soil Science, University of Hamburg. 

3.3.2 Digital elevation model and monitoring database 

To quantify the potential DSi export from the sampling sites and to place our data in a 

larger ecological context, we assessed the DSi export using GIS. Therefore a digital 

elevation model (DEM), water level data from gauge stations along the estuary, and DSi 

concentrations measured during two cruises along the Elbe estuary in July 2010 and 2011 

were used together with the DSi concentration data from the marsh sites. 

The DEM was provided by the State Office for Agriculture, Environment and Rural Areas, 

Schleswig-Holstein, Germany (Amtliche Geobasisdaten Schleswig-Holstein, © VermKatV-

SH). It was obtained by LIDAR technique in 2007 and included corrections for different 

vegetation cover, leading to an overall vertical accuracy of +/- 20 cm. The resolution of a 

raster cell was 1x1 metre (see Figure 2.3, right panels).  

To assess the watershed area of the sampling creeks in the DEM we firstly marked the 

creeks at its outlet. To assure that the creek visible in the DEM was the sampling creek, 

we compared them with the Microsoft Virtual Earth (© 2009 Microsoft Corporation) Map, 

which is linked into the ArcGIS software (ESRI® Version 10.0).  

In the next step the watershed of each creek point was calculated by applying the “flow 

direction”, “flow accumulation”, “fill” and finally the “calculate watershed” function in 

ArcGIS for the creek points. The obtained watershed was in good agreement with the 

drainage network design described in section 2.2, which confirmed that the DEM could 

reproduce the main features of the drainage network (see Figure 2.3). The watersheds 

were then corrected manually to fit the watershed of the main drainage creek. This was 

done using the Microsoft Virtual Earth© Map. 

For each sampling station the nearest gauge station was chosen to obtain the water level 

of every sampling time point (Figure 2.2). The accuracy of these data was +/- 2 cm. 

Because the gauge stations were located in the channel of the Elbe differences in water 

height between the marsh areas and the river were possible. We checked for these 
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differences with data from water level sensors which were placed in the same or in an 

adjacent creek. Because these water level sensors were removed prior to the end of our 

study, we used the water level data from the gauge station in the Elbe. Good agreement 

between the two measurements was found (water levelriver = 1,0367 * water levelmarsh-

0.0533, R2 = 0.9658). Because of the higher uncertainty of the DEM elevation, we 

assumed that the use of the gauge data in the main stream was sufficiently accurate for 

our approach. 

Export calculations 

For the export calculation we applied the equation published in Neubauer and Anderson 

(2003). Firstly, for each set of adjacent time point during ebb tide t(i) and t(i+1) the 

average DSi enrichment (DSienrichment, mmol m-3) was calculated (Eq. ) 

                                  Eq. 3.1 

 

where DSimarsh is the DSi concentration measured in the tidal creek at high tide and 

DSiriver is the DSi concentration in the estuary obtained during the the two Elbe cruises in 

July. 

To calculate the DSi export per ebb tide (DSiexport, mmol tide-1) the DSienrichment was 

multiplied by the change in volume (V, in m3, Eq) between two sampling time points. The 

volumes at each sampling time point were calculated for each sampling site with the 

DEM and the water level from the nearest gauge using the build in function “Surface 

Volume” of the ArcGIS software (ESRI® Version 10.0). This calculation was done with the 

original DEM elevation and an elevation which was 20 cm lower to account for the 

uncertainty of the DEM due to vegetation cover. 

           
                  )                     )

 
  (    )        )) 

 

Eq. 3.2 

 

To obtain the DSi flux from the sampling sites the mean DSiexport was calculated from the 

original and the -20 cm DEM and was then divided by the area of the sampling site. For 

the extrapolation to the whole Elbe estuary the fluxes from the fresh, brackish and saline 

sampling site were multiplied with the total dyke foreland area of the respective salinity 
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class in the Elbe estuary (Table 2.2). The total DSi flux from the dyke foreland of the Elbe 

estuary was calculated by summing up the individual fluxes of the three salinity classes. 

It is important to note that the calculated DSi export only represents the bulk phase of 

the ebb flow. The contribution of the seepage phase is not included in Eq. 3.2. 

Furthermore evapotranspiration is not included in the DSi export calculation. 

3.3.3 Statistics 

To test for differences of DSi and BSi concentrations between the three sampling sites 

(fresh, brackish, saline) the nonparametric Mann-Whitney U-Test was used, because 

samples were not normally distributed. All statistical analyses were carried out in 

STATISTICA 8.0 (StatSoft Inc.). 

3.4 Results 

3.4.1 Physical characteristics of the sampling sites 

A clear salinity gradient between the sites was detected (Table 3.1). Salinity increased 

about 4 units between the fresh and the brackish site and about 11 units between the 

brackish and the saline site, respectively. There was no clear seasonal pattern of salinity at 

all sites.  

Temperature showed a seasonal signal with lowest temperatures in March and November 

and highest in July. The freshwater site had on average the lowest temperatures 

throughout the year never exceeding 20°C. At the brackish and the salt marsh maximum 

temperature reached 27.9 and 32.9°C, respectively.  

The pH showed high variability at all three sites and did not show a seasonal signal. 

3.4.2 Silica concentrations of the fresh, brackish and saline sampling 

site 

Temporal development of seepage DSi concentrations 

DSi concentrations throughout the year differed between sampling sites and tidal phases. 

Average DSi concentrations were lower during the bulk tidal phase (Figure 3.1 A) than 

during the seepage phase (Figure 3.1 B). 
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Bulk DSi concentrations at the fresh and brackish site showed a seasonal pattern with 

lower concentrations in spring and summer and higher concentrations in autumn. At the 

saline site no such trend was detected and DSi concentrations stayed at the same level 

the whole year. The similar bulk and seepage concentrations at the saline site in 2011-07 

were caused by an afflux of seepage water at the sampling location. Also at the saline 

site, there was no bulk inflow of estuarine water during the sampling in 2011-03; due to 

a very low high tide, therefore this data point is missing in Figure 3.1 A. 

At the freshwater site seepage DSi concentrations did not follow a seasonal pattern 

(Figure 3.1 B). Maximum concentrations of 299 µmol L-1 were reached in July while the 

September concentrations were the lowest during the year, with 235 µmol L-1. The 

seepage water DSi concentration at the brackish site showed a clear seasonal pattern 

with minimum concentrations in March and maximum concentrations of in November. In 

2010 concentrations nearly doubled from March to November from 270 to 535 µmol L-1. 

In 2011 concentrations also doubled between March and November, but on a lower level. 

 

Figure 3.1 Temporal development of the mean ± standard deviation DSi concentrations of the bulk (A) and 

seepage phase (B) of all three salinity types. No data of bulk DSi concentrations was available in 2011-03 (see 

text for explanation). The number of measurement for each data point ranged between 1-11 for both bulk 

and seepage phase. Note that the dotted lines also connect non adjacent data points for visual guidance and 

readability. 
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At the saline site DSi concentrations also increased during the course of the year. Due to 

the low temporal resolution the pattern is less clear than at the brackish site.  

On 2011-03-14 (Figure 3.2) the water level in the Elbe estuary was low and did not enter 

the creek of the saline sampling site, which made it possible to observe the development 

of the DSi concentrations in the seepage water over a period of twelve hours.  

 

Figure 3.2 Diurnal pattern of DSi, O2 

concentrations and temperature of seepage 

water at the saline site on 2011-03-14. The 

sampling time is given in Central European 

Summer Time (CEST). During this sampling 

the creek was not flooded and only out-

flowing seepage water was sampled. 

During the first four hours of sampling DSi concentrations dropped with a rate of 20 

µmol L-1 h-1 from 348.6 µmol L-1 at 8:52 a.m. to 282.7 µmol L-1 at 12:43 p.m. DSi 

concentrations stayed at the same level until 5:31 p.m. when they started to raise again. 

The drop in DSi concentrations was accompanied by an increase of dissolved oxygen 

saturation from 70% to 150% in the seepage water until 2:38 pm. Afterwards oxygen 

saturation decreased to the initial level.  

Spatial distribution of DSi and soil BSi concentrations 

The comparison of the mean seepage DSi concentration and soil BSi concentrations of 

the three sampling sites showed that the concentrations follow opposed trends along the 

salinity gradient (Figure 3.3).  

The average seepage DSi concentrations were significantly lower at the freshwater site 

(p< 0.01) and increased, yet non-significantly, towards the saline site. 



 

 

Table 3.1 Summary of physico-chemical parameters of all samplings. N is the number of samples taken at the sampling day. Normally, samples were taken every hour 

with the exception of 2010-05-25 at the brackish site, where samples were taken every 30 minutes during the flooding. For salinity, temperature and DSi concentrations 

minimum values where normally measured during flooding and maximum values during seepage phase. For pH no such relationship could be observed. 

   pH (NBS)  temperature (°C)  salinity  DSI (µmol L-1) 

site date N mean min max  mean min max  mean min max  mean min max 

fresh  2010-9-15 8 7.89 7.66 8.31  16.0 15.1 16.9  0.3 0.3 0.3  168.0 121.6 247.2 

(HDM) 2010-11-15 12 7.84 7.73 7.99  8.3 7.3 10.0  0.3 0.3 0.3  243.5 201.5 316.4 

 2011-3-16 12 8.56 7.94 8.83  4.2 1.8 5.5  0.4 0.2 0.4  217.7 150.8 291.4 

 2011-5-16 12 7.76 7.52 7.96  14.0 12.6 14.7  0.4 0.4 0.5  85.2 7.6 262.6 

 2011-7-25 7 7.74 7.57 7.92  17.8 17.5 18.7  0.5 0.5 0.5  81.4 10.4 299.5 

  2011-11-30 7 7.94 7.78 8.05   6.2 5.7 6.5   0.5 0.5 0.5   235.7 209.1 291.1 

brackish 2010-4-22 12 8.23 7.77 8.51  12.1 7.3 15.2  2.9 2.3 3.3  262.1 161.3 283.7 

(NF) 2010-5-25 15 8.28 7.94 8.58  15.6 11.4 18.4  2.9 2.0 3.9  127.4 21.4 319.8 
 

2010-7-7 11 8.27 7.99 8.45  25.5 18.7 30.2  4.7 3.8 5.5  322.6 122.4 412.4 

 2010-8-16 10 8.10 7.83 8.37  21.9 20.3 24.1  4.5 3.0 5.4  307.3 58.5 440.5 

 2010-11-17 8 8.02 7.75 8.31  6.3 5.7 6.8  2.7 1.4 3.4  429.4 195.0 566.3 

 2011-3-11 12 8.11 7.77 8.57  6.8 3.3 9.8  2.3 2.1 2.7  186.8 147.4 240.0 

 2011-5-18 12 8.20 7.66 8.93  20.1 15.7 23.6  5.1 4.9 5.4  232.4 31.3 361.0 

 2011-7-7 12 7.99 7.72 8.35  27.5 22.1 32.9  6.3 5.8 6.8  273.2 66.0 445.2 

  2011-11-22 7 8.24 8.21 8.30   4.6 3.7 5.6   5.6 5.3 5.9   277.8 138.4 458.6 

saline 2010-9-21 12 7.90 7.65 8.08  16.0 12.8 18.5  13.2 12.5 14.4  374.6 146.2 459.5 

(DSK) 2011-3-14 12 7.97 7.80 8.13  11.7 8.7 14.6  12.0 11.5 12.8  300.7 282.7 348.6 

 2011-7-28 8 7.97 7.80 8.35  24.4 19.9 27.9  18.7 17.9 19.5  467.8 399.5 525.6 

  2011-11-11 8 7.98 7.72 8.07   7.0 6.2 7.6   19.1 15.8 20.5   198.7 69.2 561.2 

2
3
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Figure 3.3: Averages of all seepage DSi 

concentration measurements (white) and 

depth integrated BSi concentrations (grey) 

of the three sampling sites along the 

salinity gradient. Depth was integrated over 

40 cm. Whiskers indicate the standard 

deviation of the mean, boxes are the 

standard error. In each group (DSi or BSi) 

different letters indicate a statistically 

significant difference between the 

concentrations. The differences in DSi 

concentrations were significant with p < 

0.01. For the BSi concentrations the 

significant differences were significant with 

p<0.05. N indicates the number of total 

measurements. 

The soil BSi contents opposed the increasing trend of the seepage DSi concentrations 

along the salinity gradient. A statistically significant decrease of about 50% between each 

salinity class was observed (Figure 3.3).  

DSi export in July 

The DSi export from the sampling sites were calculated for July using DSi concentration 

data obtained during two cruises in 2010 and 2011. The distribution of DSi 

concentrations along the Elbe estuary is shown in Figure 3.5.  

The results of the DSi export calculations of the individual samplings in July are shown in 

Figure 3.4. The DSi export from the fresh site is 2.0 ± 0.4 mmol m-2 tide-1. At the brackish 

site the DSi export in 2010 was lower than in 2011 and in the range of the freshwater 

site. At the saline site the export is 2 to 3.5 times higher than at the other two sampling 

sites and reaches 4.6 ± 1.1 and 7.3 ± 1.7 mmol m-2 tide-1 in 2010 and 2011, respectively. 

Extrapolation of the average DSi exports shown in Figure 3.4 to the area of the whole 

dyke foreland of the respective salinity is summarised in Table 3.2. The DSi export from 

the saline dyke foreland is highest followed by the freshwater class. Export from the 

brackish areas is about 40% smaller. In total 14.0 ± 2.8 Mmol DSi per month is exported 

from the dyke foreland areas of the Elbe estuary. Compared to the monthly DSi load of 

the Elbe estuary in July, the DSi export from the dyke foreland amounts to 52-70%. 
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3.5 Discussion 

3.5.1 Temporal development of DSi concentrations along the salinity 

gradient 

The seasonality observed in the bulk water of the fresh and brackish site clearly reflects 

the seasonality of the DSi concentrations in the Elbe estuary. From November till 

February the estuary receives water with high DSi concentration of 180-200 µmol L-1. In 

March, April, and September and October intermediate concentrations of 60-100 µmol L-1 

are common. From May to August concentrations stay below 20 µmol L-1 or can even 

reach the detection limit (all data taken from (ARGE 2000)). At the saline site DSi 

concentrations are similar in 2010-07 and 2010-09 which could be attributed to the 

morphology of the sampling site. Water that enters the tidal creek has travelled over 

extensive tidal flats and through a 1.8 km long tidal creek in the lower marsh. When it 

reaches the sampling location, it has mixed with outflowing seepage water and pore 

water from the tidal flat and no longer represents the DSi concentration in the estuary. 

Seepage DSi concentrations at the brackish and saline sites increased during the course of 

the year. This observation was also made in a mesohaline marsh in North Carolina, USA 

where DSi pore water concentrations at three different depths nearly doubled between 

January and September (Norris & 

Hackney 1999). In a salt marsh in 

the Ems-Dollard estuary, The 

Netherlands, concentrations of 

120-180 µmol L-1 were measured 

between August and November. 

During the rest of the year they 

were considerably lower with 

concentrations between 60-100 

µmol L-1 (Dankers et al. 1984). A 

similar temporal pattern was also 

described in freshwater marshes 

of the Scheldt estuary, Belgium 

between January and July (Struyf 

 
Figure 3.4: Areal DSi export from the three sampling location 

from 2010-07  and 2011-07. At the freshwater site no sampling 

took place in 2010-07. 
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et al. 2005b). 

The increase of DSi concentrations 

towards July is most likely the 

result of higher temperatures 

(Table 3.1). BSi dissolution rates 

are doubled by a temperature 

increase of 10°C (Kamatani 1982). 

Thus more BSi is transformed into 

DSi during summer which leads to 

an accumulation of DSi in the soil 

pore water. At higher 

temperatures evapotranspiration is 

also increased, which lead to an 

up-concentration of dissolved 

matter in the soil solution further 

increasing the DSi concentrations. 

Additionally BSi dissolution rates could be enhanced by biological activity, which is also 

stimulated under higher temperatures. Bacteria release exoenzymes which could break up 

organic matter coatings around BSi particles creating fresh weathering spots on the 

particle surface which enhances their dissolution (Bidle 1999, Bidle & Azam 2001, Roubeix 

et al. 2008a). Vascular wetland plants are known to release organic acids into the 

rhizosphere which enhance the dissolution of Aluminium oxy-hydroxides and can form 

organometallic complexes (Jones & Kochian 1996). Mucha and colleges (Mucha et al. 

2010) could show for the salt marsh plant Scirpus maritimus and Juncus maritimus that 

the release of such substances is highest in summer and autumn. The organic acids could 

thus increase the solubility of BSi particles in two different ways. On the one hand 

organic acids could remove the Aluminium oxy-hydroxide coatings which form on BSi 

particles during aging. The removal of these coatings is known to increase the solubility 

of the aged particles (Michalopoulos & Aller 2004). On the other hand the organic acids 

could adsorb dissolved Aluminium from the soil pore water making it unavailable for the 

Figure 3.5: DSi concentrations in the Elbe estuary in 2010/7 

and 2011/7 along the longitudinal axis of the estuary. The 

vertical dotted lines indicate the position of the sampling sites 

in the dyke foreland 
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formation process of Aluminium oxy-hydroxide coatings which would prevent aging of 

the BSi particles making them more susceptible to dissolution. 

Table 3.2: DSi export from the total dyke foreland area of the Elbe estuary and its contribution to the total 

DSi load of the estuary (%-Elbe load) for the month of July. To calculate the monthly DSi load of the Elbe 

estuary a dataset from the monitoring station “Wehr Geesthacht”, which is located at the beginning of the 

estuary, was used. The database covered the years 1996-2004 and included bi-monthly measurements of DSi 

concentration and monthly mean discharge from July. 

  dyke foreland DSi export 

(Mmol month-1) 

  

salinity class area (km-2) mean stdev Elbe DSi load 

(Mmol month-1) 

% Elbe load 

fresh 40.6 5.1 1.1 22.9 18-27 

brackish 20.7 2.3 1.4 22.9 4-16 

saline 17.9 6.6 2.2 22.9 20-38 

total 79.2 14.0 2.8 22.9 52-70 

The fact that the influence of DSi uptake by plants is not visible in our data suggests that 

the above mentioned factors exert a stronger control on the DSi concentrations than the 

DSi uptake by plants itself. Struyf et al. (2005b) argued that the influence of plant uptake 

may not be visible if the DSi stock in the soil solution is high enough that the amount of 

DSi removed by plants is low in comparison to the total DSi amount in the soil solution. 

DSi concentrations kept rising after July, which is the warmest month during the year 

(Table 3.1). This is surprising because declining temperatures decrease the above 

mentioned influence of temperature on the BSi dissolution. A possible explanation could 

be the extra BSi input from the plants which is added to the soil after the vegetation 

period. At this age they contain high amounts of easily dissolvable BSi (Norris & Hackney 

1999, Struyf et al. 2005b, Querné et al. 2011). Additionally the cessation of DSi uptake by 

plants and benthic diatoms would allow the DSi concentrations to increase. Together, 

these two factors seem to outweigh the negative effect of low temperatures on the 

dissolution of BSi, further increasing the DSi concentrations in the seepage water.  

The difference between the November and March DSi concentrations could be a result of 

the combined effect of low BSi dissolution rates at low temperatures and the constant 

dilution of soil pore water due to storm surge flooding, which allows a larger amount of 

water to infiltrate the marsh surface than flooding under non storm surge conditions 
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(Duve 1999) and precipitation. The low BSi dissolution rates cannot resupply the DSi 

which is washed out after the storm surges or rainfall events, which is reflected in the 

lower seepage DSi concentrations. 

At the freshwater site the seasonal fluctuation of seepage DSi concentrations was less 

pronounced and the concentrations significantly lower than at the mesohaline sites. Two 

factors might explain these observations; the difference in soil-hydrology of the 

freshwater site and its lower salinity. At the freshwater site the saturated water 

conductivity of the soil is higher than at the brackish and saline site (see section 2.2.2). 

Therefore, the soil pore water residence time at the freshwater site may be lower as well. 

As a consequence the reaction time between the soil BSi and the pore water is shorter 

and result in lower DSi equilibrium concentrations, as shown by Gerard et al. (2002) for 

an acidic brow soil. Additionally, low salinity further impedes BSi dissolution. Loucaides 

and colleagues (2008) showed that the dissolution rates of fresh diatom frustules 

increased 2.7 or 4-fold if the salinity increases from 0 to 3.5 or 8.75, respectively. The 

corresponding salinity increase from the fresh to the brackish or saline site was 4 and 15 

units, respectively. The observed decrease of soil BSi concentrations from the freshwater 

to the saline site, from about 16 mg g-1 to 5 mg g-1 therefore might be the result of 

overall higher BSi dissolution rate at the brackish and the saline site.  

However, salinity might not be the only variable that controls the BSi concentration in the 

soils. It could be possible that the BSi input is just highest at the freshwater site. 

Therefore the factors that control the BSi input should also be considered. These factors 

are vegetation cover and net sedimentation. 

Wetland grasses contain high amounts of BSi. With their ability to accumulate silica they 

can alter the BSi content of the soils because not all of the incorporated silica is dissolved 

after the vegetation period and is stored in the soil matrix. Struyf et al. (2005b) showed, 

that the sediment under P. australis stands in a tidal freshwater marsh in the Scheldt 

estuary contained more BSi than under stands of other plant species. The BSi content of 

P. australis was one to two orders of magnitude higher than in the other plant species, 

indicating that the difference in plant BSi concentrations could have caused the different 

soil BSi contents. However, to quantify the influence of different plant species on the soil 

BSi concentrations plant production data is necessary. Unfortunately, no such data exists 
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for the sampling sites, that only a qualitative discussion about this factor can be made. 

We did not measure plant BSi contents in our study but can infer typical plant BSi 

contents from the literature (Table 3.3). The dominant vegetation cover of the freshwater 

sampling site was meadow / scrubs and Glyceria maxima / Phalaris arudinaceae which 

contain less BSi than P. australis. At the brackish site P. australis was dominant with 43% 

coverage. Following the assumption that the soil BSi concentration reflects the plant BSi 

concentration the brackish site should have the highest soil BSi concentrations, which was 

not the case. At the saline site the BSi content of the dominant plant species also did not 

match with the soil BSi content.  

Sedimentation may import considerable amounts of BSi to the marsh surface, as was 

shown for tidal freshwater marshes in the Scheldt estuary (Struyf et al. 2005a, Jacobs et 

al. 2008). The BSi delivery to the marsh surface due to sedimentation depends on the 

quality of the suspended matter and its quantity. Sedimentation of small amounts of 

diatom and phytoliths rich sediment can lead to higher BSi delivery as sedimentation of 

huge amounts of BSi depleted sediments. Mean annual sedimentation rates in the dyke 

foreland of the Elbe estuary which were measured from 2010-03 to 2011-03 at the fresh, 

brackish and saline site showed values of 2445 ± 1607 g m-2 yr-1, 3079 ± 1875 g m-2 

yr-1 and 1050 ± 609 g m-2 yr-1, respectively (data from Butzeck et al., in prep.). Most of 

the sediment is deposited on the marsh surface in winter when storm surges frequently 

occur (Duve 1999, Müller et al. in press). It can be assumed that the BSi in winter consists 

mostly from phytoliths, which were brought into the river by soil erosion (Cary et al. 

2005). In summer a substantial amount of the total BSi can consist of diatoms (Carbonnel 

et al. 2009). In the Elbe estuary diatom concentrations are highest in the freshwater part 

and decline towards the brackish part due to unfavourable growth conditions and 

subsequent die-off (Wolfstein & Kies 1995, Kerner 1997). In the brackish part suspended 

matter accumulates due to higher residence times than in the upstream parts (Herman & 

Heip 1999), which includes the remaining diatom frustules from the freshwater zone. The 

brackish part of the estuary should thus have the highest BSi concentrations and BSi 

components of similar quality (fresh diatom frustules) than the freshwater part. 
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Table 3.3: Compilation of the dominant vegetation types at the sampling sites. The BSi concentrations of the 

plant species were taken from the literature to complement the soil BSi data which were measured in this 

study. 

Salinity class Vegetation typea ASi content (mg g-1) Source 

fresh meadow / scrubs n.d.  

 Glyceria maxima / Phalaris arudinaceae ~13 / ~12 (Schoelynck et al. 2010) 

 Typha angustifolia+ 3.7 (Lanning & Eleuterius 1983) 

 Phragmites australis 15 - 60 (Lanning & Eleuterius 1983) 

(Struyf et al. 2005b, Schoelynck 

et al. 2010) 

  woodland n.d.  

brackish Phragmites australis 15 - 60 (Lanning & Eleuterius 1983) 

(Struyf et al. 2005b, Schoelynck 

et al. 2010) 

 Elymus athericus 13.8, 16 (de Bakker et al. 1999, Bauer 

2010) 

  meadow n.d.  

saline Festuca rubra 11.5, 12 (Bauer 2010) 

 Elymus athericus  13.8, 16 (Lanning & Eleuterius 1983, 

Bauer 2010) 

  Puccinellia maritima  5.5 (Bauer 2010) 
a
 only vetetation types with a cover of ≥ 10% were listed, exception Puccinellia maritime 

n.d.: no data 

Together with the high sedimentation rates, the brackish sampling site should receive the 

highest amounts of BSi. The fact that the soil BSi concentrations at the brackish site is 

lower than at the freshwater site suggests that the excess BSi deposit at the brackish site 

compared to the freshwater site is lost. One possibility could be the erosion of BSi from 

the site, but erosion data is missing to proof this hypothesis.  

The effect of salinity on dissolution rates of BSi could explain the observed pattern 

reasonable well and would explain the overall higher seepage DSi concentrations at the 

mesohaline sites as well as the decreasing soil BSi concentrations along the salinity 

gradient.  

Diurnal patterns of seepage DSi concentrations 

DSi uptake by vegetation and benthic diatoms during the course of the day was studied 

for the saline site (Figure 3.2). In March 2011 the high water did not reach the sampling 

location and as a result only seepage water was sampled over a 12 h period during the 

day. A decrease of DSi concentrations by 18.9% in the first four hours of sampling was 
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measured. The decrease was accompanied by raising temperatures and increasing oxygen 

saturation of the seepage water. Latter observation suggests that the DSi concentration 

decrease is due to uptake by benthic diatoms, supported by the observations of biofilms 

in the creek bed (A. Weiss, field obs.). Despite the fact, that DSi uptake in diatoms is not 

directly coupled to their primary production (Brzezinski 1992, Claquin et al. 2002), light 

availability seems to enhance it (Bartoli et al. 2003, Leynaert et al. 2011), which would 

explain the diurnal pattern of the DSi concentration. 

This observation has important implications for the DSi export from the dyke foreland 

area of the Elbe estuary and possibly of other tidal marsh systems as well. Because of the 

biological uptake of DSi, the DSi export from those sites during daylight will be 

significantly lower than during the night. Higher irradiance and longer light periods in 

April to September in comparison to March may decrease DSi concentrations even more. 

Future studies should therefore include nightly sampling to assess difference in DSi 

export during day and night time. 

3.5.2 DSi export 

The DSi export was calculated for the month of July for all three sampling sites in order 

to assess the influence of the dyke foreland areas on the estuarine DSi concentration. The 

individual samplings showed the highest export rates at the saline site and similar export 

at the brackish and freshwater site. The differences between the fresh, brackish and saline 

systems in the Elbe estuary are likely a result of the morphology of the saline site and 

not a result of the different DSi concentrations at the sampling sites. At the saline site the 

flooding water flows over extensive tidal flats and through a 1.8 km long channel before 

entering the sampling creek. It mixes with seepage water which is enriched in DSi and 

therefore already has high DSi concentrations when it reaches the sampling creek, which 

can be seen in the tidal patter of DSi concentrations (see Appendix 1).  

The spatial separation of estuarine water and sampling site by tidal flats and tidal creeks 

causes an overestimation into the DSi export calculation. The assumption that all DSi 

enrichment happens in the sampling creek is no longer valid when the above mentioned 

morphological features are present. Thus the here applied method for the DSi export 

calculation most likely overestimates the DSi export of the saline site.  
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At the brackish and the freshwater site the tidal flats are less extensive and there are no 

long tidal creeks through which the flooding water has to pass. The DSi concentration of 

the inflowing water at the fresh and brackish site is therefore closer to the estuarine 

value (see Appendix 1) and the error associated with Eq. 3.1 lower.  

The values from the freshwater site lie in the range of those measured by Struyf and 

colleagues in a tidal freshwater marsh in the Scheldt estuary, Belgium (Struyf et al. 2006a) 

There, DSi export ranged from 0.2 mmol m-2 tide-1 to 7.7 mmol m-2 tide-1 around the 

year. Another study from the same tidal marsh reported a DSi export of 15.5 mmol m-2 

tide-1 for the month of July (Struyf et al. 2005a). 

Because the DSi export calculation of the study at hand does not include the seepage 

phase, which can be the most significant contributor to the total DSi export (Struyf et al. 

2005a, Struyf et al. 2006a) export rates are likely to be underestimated. The magnitude of 

seepage flow was not assessed, but data from a study published in 1999 (Duve 1999)  

showed that the seepage flow from a mesohaline tidal creek in the dyke foreland of the 

Elbe estuary in July, was 0.005 m3 m-2 tide-1. If we use this value and the mean seepage 

DSi concentration at the brackish site from 2011-07 (445 µmol L-1) to calculate the 

seepage DSi export, we derive a seepage DSi export of 2.2 mmol m-2 tide-1. The mean 

DSi export during bulk phase was 1.8 mmol m-2 tide-1. Thus the DSi export during the 

seepage phase would account for 54% of the total export and should be taken into 

account in future studies. 

The extrapolation of the DSi export to the whole dyke foreland area in the Elbe estuary 

showed that the tidal exchange could be an important contributor of DSi to the estuary. 

The fresh and the brackish areas contribute equally to the DSi load of the estuarine 

system in July. The saline site seems to be most important in terms of DSi input into the 

estuary but the results have to be interpreted with caution because of the above 

mentioned uncertainties of the DSi export calculations. 

As already mentioned by Struyf and colleagues (Struyf et al. 2005a, Struyf et al. 2006a) 

the DSi export from marshes in the freshwater part of estuaries might sustain diatom 

growth in times of DSi limitation. The DSi input in the brackish part of the estuary 

however does not directly promote diatom growth in the estuarine channel because of 
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the light limiting condition in this part of the system (Wolfstein & Kies 1995). The DSi 

input from the brackish part can accumulate in the estuarine water because of the higher 

residence time of the brackish part of the estuary in comparison to the upstream 

freshwater part. The accumulation of DSi forms a leaky reservoir towards the North Sea, 

from which DSi is mixed into the coastal water (see Figure 3.5). The DSi from the dyke 

foreland areas in the brackish zone might therefore not be reducing the DSi limitation in 

the estuary itself but providing additional DSi to the coastal waters where it may also 

prolong diatom growth. 

The DSi export numbers from the dyke foreland areas seem to be the same order of 

magnitude as DSi export rates from pyroclastic flows and fresh volcanic rocks in humid 

areas. DSi fluxes in such areas can reach of up to 1.4 Mmol Si km-2 a-1 (Beusen et al. 

2009, Hartmann et al. 2010). If the monthly DSi export rates from the fresh and brackish 

zone of the Elbe estuary are converted into annual export rates, the DSi export of each 

zone is of similar magnitude as the export from pyroclastic flows and fresh volcanic rocks 

(1.5 and 1.3 Mmol Si km-2 a-1). In the Scheldt estuary, Struyf and colleagues (Struyf et al. 

2006a) have shown that the marsh areas can replenish the total DSi load of the estuary. 

In their study only six tidal cycles were necessary to deliver the total amount of Si 

transported by the estuary in summer. Another study conducted in a salt marsh system in 

Massachusetts, USA (Vieillard et al. 2011) could also show that the DSi delivery by the salt 

marsh could equal the DSi input of a small river, stressing the importance of tidal marsh 

areas in the coastal silica cycle. 

The extrapolated DSi exports however have to be seen as a first estimate and more 

precise data is needed to reduce the uncertainty of the flux calculations. The lack of DSi 

flux measurements during the seepage phase of one tidal cycle, as discussed above, 

could introduce an error of at least 50% or more into the DSi export calculations. In other 

tidal marsh exchange studies the contribution of the DSi export during the seepage 

phase can be as high as 90% due to the very high DSi concentrations in the seepage 

water (Struyf et al. 2006a). The combination of low water volumes and high DSi 

concentrations (up to 556 µmol L-1, Table 3.1) outweigh the high volumetric exchange 

combined with low DSi concentrations during the bulk tide (Struyf et al. 2006a).  
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Another problem is associated with the use of the DEM for the DSi export calculations. 

To derive the correct water volume from the DEM the model has to represent the creeks 

and drainage ditches at the sampling watersheds. The comparison with aerial photos 

confirmed that the large creeks and ditches were reproduced correctly by the DEM 

(Figure 2.3). However the extend of smaller drainage ditches were not reproduced 

correctly. The reason for this underestimation of the creek length is the interference of 

vegetation in the LIDAR technique. If the vegetation covers the channel the incoming 

laser impulses cannot penetrate to the channel bottom, which leads to a false elevation 

in the DEM. The elevation bias on the marsh surface which is associated with the 

vegetation cover may not be influencing the DSi export calculation strongly because 

during the July sampling the flooding water was confined into the creeks. The volume 

which was calculated with the DEM is therefore only sensitive to errors of the creek bed 

elevation. 

The elevation bias was shown to be highest in tidal creeks where the real elevation is 

overestimated (Chassereau et al. 2011). That means that in reality the creek bed elevation 

is lower than represented in the DEM. Overestimation of the DEM elevation leads to an 

underestimation in the volume of the creek channel network. Because of the volume term 

in Eq. 3.2 the DSi export would also be underestimated. All in all the DSi export rates in 

this study seem to be underestimated, but nevertheless provide a first insight into the 

silica cycle of the Elbe estuary and add new data to the few yet existing marsh DSi export 

values. 

3.6 Conclusion 

For the first time the distribution and temporal variability of DSi and BSi along a salinity 

gradient in the same estuarine system was analysed. The combination of field sampling 

and GIS-calculations can be used to estimate potential DSi export fluxes from the dyke 

foreland of the estuary. Results suggest that specifically the export of DSi during seepage 

phase needs to be included in the calculations. 

The complex relationship between abiotic and biotic factors, which influence the 

distribution of silica in watersheds lead to a textbook like distribution of BSi and DSi 

concentrations along the salinity gradient. The tidal exchange in the Elbe estuary seems 



 

35 

to play an important role as DSi supplier to the system and stress the importance of tidal 

marsh areas for the water quality in eutrophied estuaries.  
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4 The role of salt marshes in the silica 

budget of the North Sea 

4.1 Abstract 

Local studies showed that salt marshes are effective recyclers of silica and could 

significantly attenuate the DSi limitation in coastal waters during summer months by net-

exports of DSi. These observations lead to the hypothesis that salt marshes can be 

significant sources of DSi to the North Sea during summer months also at the regional 

scale. To test this hypothesis, we extrapolate DSi fluxes reported by local studies to salt 

marsh areas adjacent to the North Sea. The resulting annual average contribution of salt 

marshes to the DSi budget of the North Sea amounts to 0.7% of the annual riverine 

inputs to the North Sea. During summer, this contribution still does not exceed 2.4%. 

Thus, the hypothesis is rejected for the North Sea, and it is concluded that salt marsh DSi 

fluxes need not to be included in DSi budgets of regional seas. However, for smaller 

regions with favourable geographic conditions of low river inputs and large marsh areas, 

like in this study the English Channel, salt marsh DSi exports can be a significant 

contribution to coastal DSi budgets during summer.  

4.2 Introduction 

Dissolved silica (DSi) is an important nutrient in coastal marine ecosystems (Schelske & 

Stoermer 1971, Officer & Ryther 1980). It originates from chemical weathering of silicate 

rocks (Derry et al. 2005) and is delivered to the oceans by rivers (Tréguer et al. 1995, 

Laruelle et al. 2009, Dürr et al. 2011). Silica can be retained in rivers and lakes (Lauerwald 

et al. 2013) before reaching estuaries, which can act as filters and also shift the seasonal 

distribution of DSi inputs into the oceans (e.g. Arndt et al. 2009). Particularly during the 

main growing season, when river DSi exports decline (e.g. for the Rhine (Hartmann et al. 

2011)), the absence of DSi may lead to harmful blooms of non-diatom algae (Smayda 

1990, Hallegraeff 1993). 

Tidal marsh systems were hypothesized to function as buffer attenuating the seasonal DSi 

limitation in coastal marine environments (Hackney et al. 2000). This hypothesis is 
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supported by local studies showing that tidal marshes export DSi to the adjacent water 

bodies (Dankers et al. 1984, Struyf et al. 2005a, Struyf et al. 2006a, Vieillard et al. 2011, 

Müller et al. in press) because they are effective biogenic silica (BSi) recyclers. The BSi 

pool is built up during the growth of marsh vegetation and diatoms, and by the trapping 

of sediments containing BSi. The BSi accumulated in the marsh soils dissolves rapidly, 

because of its high dissolution rate compared to clay minerals (Fraysse et al. 2009). The 

resulting DSi accumulates in the pore water and is exported from the marsh via diffusive 

exchange during high water and most importantly by advective drainage through the 

tidal creeks (Struyf et al. 2005a). For example, the tidal marsh areas of the Scheldt 

estuary, Belgium, were reported to be able to deliver the total monthly DSi river load 

(minimum 1.78 kmol month-1) in only a few days (marsh DSi export 0.35-0.71 kmol per 

tidal cycle) (Struyf et al. 2005a).  

Continental to global scale studies on terrestrial DSi mobilization (Hartmann et al. 2010, 

Jansen et al. 2010, Moosdorf et al. 2011) or its input into coastal waters (Beusen et al. 

2009, Dürr et al. 2011, Tréguer & De La Rocha 2013), as well as silica budgets of regional 

seas (Proctor et al. 2003) do not account for the effect of DSi fluxes from tidal marshes. 

The findings from local studies lead to the hypothesis that the DSi fluxes from salt 

marshes would be significant also on larger scales. In this study, we test this hypothesis 

for the North Sea.  

4.3 Materials and Methods 

Four local studies that quantify the area specific DSi exports from salt marshes can be 

used for upscaling to the salt marsh area around the North Sea coast (Table 4.1). These 

studies derived their DSi export fluxes from direct discharge and DSi concentrations 

measurements in tidal creeks over at least one tidal cycle. The average specific DSi flux of 

the studies is 0.14 Mmol km-2 a-1 (Table 4.1). 

Three other works which report DSi exports from salt marshes were discarded from this 

selection, because the DSi fluxes from the salt marshes were blurred by external DSi 

inputs to the marsh areas (Daly & Mathieson 1981, Imberger et al. 1983, Poulin et al. 

2009). These fluxes would have been very small (0.01 Mmol km-2 a-1 for the Pointe-aux-

Epinettes salt marsh (Poulin et al. 2009) and 0.03 Mmol km-2 a-1 for the Crommet creek 

marsh (Daly & Mathieson 1981), and 0.004 Mmol Si km-2 a-1 for the Duplin River, Georgia 
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(Imberger et al. 1983)) Influxes by streams or groundwater render the salt marsh area not 

representative for the reported DSi flux. Further, studies quantifying diffusive DSi flux 

(Scudlark & Church 1989) cannot be used to represent total DSi fluxes (Struyf et al. 

2005a) and were thus also not regarded in this study. 

Table 4.1: Literature values of dissolved silica fluxes from salt marshes. 

Reference Location 
Flux (Mmol 

km-2 a-1) 
Description 

Dankers et al. 

(1984) 

Ems-Dollard Estuary, 

The Netherlands 
0.11 low marsh, on average slightly above high tide level 

Struyf et al. 

(2006a) 
Carmel Polder, France 0.33 young marsh, macrotidal waters 

Müller et al. (in 

press) 

Söhnke-Nissen Koog, 

Germany 
0.09 

low salt marsh (0.9 - 2.6 m NHN), high flooding 

frequency 

Müller et al. (in 

press) 

Dieksanderkoog, 

Germany 
0.05 higher elevated salt marsh (1.2 - 2.8 m NHN) 

Vieillard et al. 

(2011) 
Rowley, MS, U.S.A. 0.04 

fully established, large mature marsh; data only from 

July 

The average specific DSi flux of the four included studies was extrapolated to the salt 

marsh areas tributary to the North Sea. To evaluate the significance of the DSi flux from 

salt marshes in the marine DSi budget, the DSi flux from salt marshes was included into 

an existing DSi budget of the North Sea (Proctor et al. 2003), which represents advective 

flux in the ocean, benthic flux, river transport, and internal fluxes within five “boxes” of 

the North Sea and the English Channel. The boxes were defined by Proctor et al. (2003) 

as regions with similar hydrodynamic behaviour, which are:  

“1. The area of the northern North Sea between the Dooley current (57.758 N) and north 

of the Dogger Bank, all stratified water;  

2. Stratified water around the Dogger Bank, bounded in the north by Box 1, in the south 

by the tidal front, and in the east by the coastal area affected by the river discharges;  

3. Well-mixed waters of the southern North Sea;  

4. The river plume dominated areas of the German Bight; and  

5. The well-mixed English Channel” 
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The spatial extent of the Boxes is shown in Figure 4.1. Salt marsh areas were taken from 

the European EEA CORINE land cover 2006 data. Data for Great Britain was added from 

originally gridded CORINE land cover 2005 data from (CLC2000 100x100 m version 

8/2005). No data on salt marshes were available for Norway. However, due to the small 

contribution of Norway to the total considered coast area, and due to the predominantly 

steep rocky shoreline (Lundberg 1996), preventing extensive salt marsh formation, the 

resulting underestimation of salt-marsh derived DSi in Box 1 is expected to be minor. The 

salt marshes were manually attributed to the boxes of Proctor et al. (2003) using the 

software ArcGIS 10 (ESRI®). In total, the salt marshes in the North Sea tributary area and 

the English Channel amounted to an area of 809 km². 

To quantify the relative contribution of salt marshes to the DSi budget in coastal waters 

during the growing season, we analysed monthly riverine DSi exports using data from the 

GLORICH river chemistry database (containing published data from the DEFRA 

Monitoring Scheme and published studies (Krinitz 2000, Deutsche Kommission zur 

Reinhaltung des Rheins (DK Rhein) 2008)). In total, 65 rivers were included in the 

seasonality analyses (63 British rivers, the Elbe River and Rhine River). Only sampling 

locations close to the river mouths were included. To assess the seasonality of individual 

boxes, the annual average river DSi exports of Proctor et al. (2003) were corrected by a 

seasonality factor based on the maximum reduction in summer of the river dataset that 

was considered representative for the individual boxes (English rivers: Box 1, 2, 5; Rhine: 

Box 3; Elbe: Box 4). The seasonality factor was calculated as: 

SFBoxNr = FDSimin / FDSiavg 

Where SFBoxNr is the seasonality factor for each box number, FDSimin is the minimum 

monthly DSi flux of the river dataset representing that box number and FDSiavg is that 

dataset’s annual average monthly DSi flux. For the North Sea, the average SF of all three 

datasets was used. 

4.4 Results and Discussion 

Extrapolating the specific DSi flux of 0.14 Mmol km-2 a-1 (=3.95 t Si km-2 a-1) to the 809 

km² salt marshes adjacent to the North Sea results in a total annual flux of 

113 Mmol Si a-1 (3.2 kt Si a-1). This equals 0.7% of the annual riverine DSi inputs to the 
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North Sea area reported by Proctor et al. (2003). The comparison to rivers is justified by 

the spatial connection of both inputs and because previous comparisons in local studies 

highlighted that DSi fluxes from rivers and tidal marshes were in the same magnitude 

locally (Struyf et al. 2005a, Struyf et al. 2006a, Vieillard et al. 2011). From the 

distinguished regions of the North Sea, the Boxes 4 and 3, the German Bight, and the 

well mixed waters of the southern North Sea, have the largest salt marsh areas (Box 4: 

275 km²; Box 3: 218 km²) and consequently the largest total DSi fluxes from salt marshes 

(Figure 4.2). However, because they also receive the most DSi from riverine input, the 

relative DSi flux from salt marshes compared to rivers remains small (0% (Box 4) and 1% 

(Box 3), Figure 4.1). The relative contributions of annual DSi fluxes from salt marshes rise 

to 3% and 6% in the Boxes 1 and 5 (salt marsh area: 150 km² and 162 km², respectively), 

the stratified water north of the Dogger Bank and the English Channel, which have 

smaller river contributions (Figure 2). Box 2, the stratified waters around the Dogger Bank, 

has the smallest river contributions but also only 4.5 km² of mapped salt marsh area, 

resulting in very low DSi fluxes from these sources. This shows that on annual average, 

the contribution of salt marsh areas to the DSi fluxes is small for the North Sea and does 

not exceed 6% of river fluxes even under favourable geographic conditions. 

However, for DSi consuming marine organisms (e.g. diatoms) the DSi fluxes during times 

of silica scarceness, which is usually spring to summer, are likely more important than 

annual fluxes. In summer, regional scale riverine DSi exports are on average reduced to 

30% of their annual average monthly flux (Figure 4.3). The seasonal behaviour of DSi 

fluxes from salt marshes is less clear. While they were reported to remain constant in two 

salt marshes in the lower St. Lawrence estuary (Poulin et al. 2009), doubling of DSi fluxes 

from tidal marshes during summer months was also reported (Scudlark & Church 1989, 

Struyf et al. 2006a). In the studies analysed here, no clear seasonal pattern was visible for 

DSi fluxes from salt marshes (Figure 4.3). Thus, with assumed constant DSi fluxes and the 

river flux decrease, the proportion of DSi from salt marshes does not exceed 2.4% of the 

riverine exports to the North Sea in summer. In addition, the summer decrease of riverine 

DSi is accompanied by an increase of exported BSi (Conley 1997, Roubeix et al. 2008b), of 

which a substantial proportion can be redissolved in the coastal zone (Yamada & D'elia 

1984, Anderson 1986).  
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Figure 4.1: Location of salt marshes and numbers of the boxes defined by Proctor et al. (2003). Salt marshes 

around the North Sea and English Channel are highlighted in black, salt marshes outside that area are 

marked in grey. The figure exaggerates the area of the salt marshes for visibility reasons. Base map is the 

“Oceans Basemap” by ESRI® ArcGIS Online, updated January 2013. 

This effect further reduces the relative proportion of DSi exports from salt marshes. 

However, in favourable regions like the English Channel (Box 5), where small river inputs 

meet large salt-marsh areas, DSi flux from salt marshes can account for up to 15% of the 

riverine inputs during summer. In that area, the lateral advective DSi inputs with marine 

currents is about four times higher compared to rivers (Proctor et al. 2003). 

Comparing the salt marsh fluxes with the benthic fluxes highlights that the benthic 

component is the most important recycling based system in the North Sea, due to the 

large area. However, the benthic fluxes are tightly coupled to the siliceous water column 

primary production (Grunwald et al. 2010), i.e. the fluxes are highest after deposition of 

fresh diatom frustules (Gehlen et al. 1995). The salt marsh fluxes on the other hand are 

decoupled from the water column primary production. In areas, where the benthic -

pelagic coupling is reduced due to deeper water depth, weaker vertical mixing or a 
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combination of both, the salt marsh DSi 

flux may bemore important for the marine 

DSi budget, especially during the diatom 

blooming season. 

Although the total DSi export from salt 

marshes is small compared to the riverine 

export at the regional scale, the specific 

fluxes (regarding the area) are high. In the 

North Sea tributary area, the average 

specific DSi flux from rivers is 0.04 Mmol 

DSi km-2 a-1 (Dürr et al. 2011); the assumed 

specific DSi flux from salt marshes is 3.5 

times higher. For comparison, the assumed 

specific DSi flux from salt marshes equals 

2.5 times the global average specific DSi 

fluxes from the continents (Dürr et al. 

2011). It is 3.7 times above the average 

specific DSi mobilization into rivers by 

chemical weathering in North America 

(Moosdorf et al. 2011), but less than the 

specific DSi mobilization on the highly 

active Japanese Archipelago (Hartmann et 

al. 2010). The high specific DSi fluxes from 

salt marshes imply that the reduction of 

salt marsh areas by levee construction 

along the coast of the North Sea and the 

canalization of European estuaries heavily 

impacted the DSi supply of coastal waters. 

The historic salt marsh area, before 

embankment of tidal areas started, was 

reported as about ten-fold larger than 

today along the coast of the Wadden Sea 

 
Figure 4.2: DSi fluxes (t Si a-1) from salt marshes 

compared to advective input, benthic efflux and river 

input taken from Proctor et al. (2003). The 

percentages compare the DSi flux from marshes and 

rivers (% of annual river fluxes / % of summer river 

fluxes). The extent of the individual boxes is provided 

in Figure 4.1. Only the bold black DSi fluxes from salt 

marshes are results from this study; the grey DSi 

fluxes were quantified by Proctor et al. (2003). 
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(Reise 2005). If the specific DSi export from these salt marshes followed the same 

patterns as today, the embankment substantially decreased the seasonal DSi supply to 

the North Sea coastal waters. 

 

Figure 4.3: Deviation of monthly average DSi flux from annual average DSi flux for river (bars) and salt marsh 

(point markers) DSi exports. In Brackets, the corresponding North Sea regional boxes (after Proctor et al. 

(2003)) are provided , as well as the salt marshes from which the DSi is exported: Carmel Polder (Struyf et al. 

2006a), the Ems-Dollard estuary (Dankers et al. 1984) and the Söhnke-Nissen Koog (SNK) and Dieksander 

Koog (DSK) from (Müller et al. in press). For the salt marshes, all available months were taken as annual 

average, despite not representing a complete annual cycle. 

4.5 Conclusions 

For the North Sea as a whole, the contribution of the salt marshes to DSi inputs is small 

annually (0.7% of riverine inputs) and even in summer (2.4% of riverine inputs), when river 

DSi fluxes are low. However, in smaller subsections where small river inputs meet large 

salt marsh areas, like in the English Channel, the summer DSi fluxes from salt marshes 
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can exceed 15% of the riverine DSi exports, leaving salt marshes a seasonally significant 

source of DSi to coastal waters. 

Concluding, for the North Sea as a whole, the hypothesis of major impact from salt 

marshes on DSi seasonality can be rejected, and we conclude that salt marshes do not 

need to be included in models of dissolved silica fluxes from the regional sea scale (e.g. 

Meybeck et al. 2007) to global scale (e.g. Tréguer & De La Rocha 2013). However, we 

confirm the local results of (Struyf et al. 2006a), who showed that for certain areas, like in 

the here presented case of the English Channel, salt marshes should not be ignored in 

seasonal DSi budgets. Thus, in studies which resolve individual coastal segments 

(“COSCATS” (Meybeck et al. 2006, Beusen et al. 2009, Garnier et al. 2010)), the 

consideration of salt marshes may be relevant for the representation of the annual DSi 

supply and its seasonality. 
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5 Silicon Isotopes in the Elbe estuary 

5.1 Abstract 

The distribution of DSi and δ30Si where studied in the Elbe estuary, Germany and its tidal 

marshes. Water samples from three tidal marsh areas along the estuarine salinity gradient 

where taken over one tidal cycle. All three sites were sampled in November, whereas 

extra samplings were carried out in May and July at the brackish marsh. Additionally, two 

cruises along the main axis of the estuary where conducted in October and December to 

gain insight in the estuarine distribution of δ30Si. Tidal marsh samples were characterised 

by high DSi concentrations during seepage phase and low DSi concentrations during bulk 

phase. The δ30Si values showed site specific tidal patterns. At the freshwater site the 

seepage and bulk samples only differed by 0.1‰ (range 1.71 ± 0.08‰ to 1.87 ± 0.13‰) 

with lower values during the seepage phase. At the salt marsh the seepage water had 

lower values than the bulk water (range 1.81 ± 0.03‰ to 2.59‰). The tidal pattern of 

δ30Si values at the brackish marsh was similar during May, July, and November with 

higher values in the seepage phase than during the bulk phase. Highest absolute values 

were 3.26 ± 0.10 ‰, 2.98 ± 0.15‰, and 2.78 ± 0.11‰ in May, July, and November 

respectively. The isotopic signatures were always positive and ranged between 1.71 ± 

0.08‰ and 1.87 ± 0.13‰ at the freshwater site. At the brackish site highest δ30Si values 

were observed (1.97 ± 0.08‰ – 2.78 ± 0.11‰). The October cruise showed DSi uptake 

by diatoms which decreased concentrations in the freshwater part of the estuary. The 

δ30Si values increased from 1.64 ± 0.02‰ to 2.21 ± 0.08‰, which was best explained by 

open system fractionation. In December DSi was added to the estuary, most probably by 

tributaries. The δ30Si values were lower than in November (0.85 ± 0.08‰ to 1.61 ± 

0.08‰), reflecting the absence of biologic activity. The δ30Si values were heavily altered in 

the freshwater part, possibly due to the combined effect of mixing with tributary water 

and fractionation. 

5.2 Introduction 

The average silicon isotopic composition (δ30Si) of seawater represents the balance 

between river and hydrothermal inputs of dissolved silicon (DSi) to the ocean. The oceans 

have an average δ30Si (around +1‰) that is much closer to typical riverine values 
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(+0.5‰ to +2‰) than to deep sea hydrothermal DSi (-0.4‰), reflecting the much 

greater input of river Si than hydrothermal Si (Tréguer & De La Rocha 2013). There are 

severe weaknesses in our elemental and isotopic budget for Si in the ocean. We have 

only rough estimates for how much river DSi is removed in estuaries and therefore never 

input into the ocean (Tréguer et al. 1995, Tréguer & De La Rocha 2013) and next to no 

idea to what extent the estuarine Si cycling alters the δ30Si before it reaches the sea. Also, 

currently unknown and unaccounted for is the diffuse input of hydrothermal DSi through 

ridge flanks (Wheat & McManus 2005), although it may be an order of magnitude 

greater than the current estimate for hydrothermal inputs. Better constraining the impacts 

of the estuaries on the riverine inputs and δ30Si would not only allow us to improve the 

global budget for the Si cycle, it would help us to constrain the size and isotopic input of 

the ridge flank hydrothermal flux of Si (and Si isotopes) into the ocean. 

Estuaries serve as the interface through which solutes delivered to the ocean from the 

terrestrial biogeosphere must pass. These estuaries are complex environments, showing 

stark river to ocean gradients in turbidity, salinity, and pH (Bianchi 2007). Through colloid 

formation, scavenging, reverse weathering, and the production and sedimentation of 

biogenic materials, significant quantities of river borne solutes are retained in estuaries 

(Bianchi 2007), severely diminishing the input of these salts to seawater. Likewise, 

dissolution of estuarine materials may at times serve as a source of solutes, as shown for 

calcium in the Gironde estuary (Abril et al. 2003). 

This is especially true for Si in tidal marshes (Struyf & Conley 2009). Numerous studies  

(Struyf et al. 2005a, Struyf et al. 2006a, Struyf et al. 2007, Jacobs et al. 2008) have 

demonstrated that biogenic silica (phytoliths from marsh plants and frustules of diatoms) 

in marsh serves alternately as a net sink and a net source of Si to adjacent estuarine 

waters, varying over seasons and tidal cycle. As both silica production (De La Rocha et al. 

1997, Opfergelt et al. 2006, Ding et al. 2008a, Ding et al. 2008b) and dissolution 

(Demarest et al. 2009) fractionate silicon isotopes, this cycling of (and retention of a 

portion of) riverine DSi in tidal marshes likely alters the δ30Si of DSi delivered to the 

ocean, and therefore plays a key role in controlling whole ocean δ30Si. We propose to 

take the first look at the cycling of Si isotopes in tidal marshes to begin to quantify this 

effect. 
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5.3 Material and Methods 

5.3.1 Sampling  

Silicon isotope samples of the Elbe estuary were taken from surface water during two 

cruises along the main axis of the Elbe estuary in October and December 2011. Samples 

from the tidal marsh areas were obtained in November 2011 at all three sampling sites 

and additionally at the brackish site in May and June 2011. For 7-12 hours every hour 

superficial water was taken with a plastic bottle attachted to a telescope bar. The phyical 

parameters pH, temperature, dissolved oxygen (DO) and salinity were measured with a 

handheld sensor (pH, temperature: Methrohm pH 827, Primatrode 6.0228.020 or 

Aquatrode 6.0257.000; salinity and oxygen: WTW 350i ConOX). Tidal marsh DSi samples 

were filled into acid cleaned plastic bottles and stored in a cool-box. In the laboratory the 

samples were vacuum filtered through 0.45 µm PC filter (Sartorius). The filtrate was stored 

in acid cleaned plastic bottles until analysis. The estuarine samples were filtered on board 

of the research vessel and stored at 4°C. 

The dissolved silica (DSi) concentrations in the samples were measured using standard 

colorimetric techniques (Strickland & Parsons 1972).  

5.3.2 Isotopic measurement 

All work described here was carried out using Suprapur (Merck) grade acids, deionized 

distilled water (18.2 MΩ cm-1), and acid-cleaned labware (PTFE and LDPE). 

Dissolved silicon was precipitated from the samples applying the Triethylamine 

Molybdate (TEA-Moly) method as described in (De La Rocha et al. 1996). Firstly, the DSi 

was precipitated over night in TEA-Moly solution and then filtrated on 0.6 µm PC filter. 

The filtrate was then combusted in two steps in a muffle furnace using platinum 

crucibles. To remove organic compounds the samples were brought to 500°C for two 

hours. In the second step the temperature was ramped up to 1000°C for ten hours. 

The silicon recovered as silica was dissolved in 40% HF to 229.855 mmol L-1 (4 µmol Si in 

17.4 µl). Samples were diluted to a concentration of 518.3 µmol Si L-1 then loaded onto 

ion exchange columns filled with 1 X-8 resin (Eichrom) following the protocol outlined in 

Engström et al. (2006) and utilized previously in the lab (De La Rocha et al. 2011). A 



 

48 

solution of 95 mM HCl plus 23 mM HF was used to elute matrix elements while Si eluted 

with a solution of 0.14 M HNO3 plus 5.6 mM HF.  

Silicon isotope abundances in the samples were measured using a Neptune multi-

collector inductively coupled plasma mass spectrometer (MC–ICP–MS) (Thermo Scientific). 

Settings are given in Table 5.1. Samples were diluted with 0.16M nitric acid to 2 ppm Si 

and sample and standard beam intensities and HF concentrations (~1 mM HF) were 

matched within 10%. The standards used were NBS28 and a laboratory working standard 

of 99.995% pure silica sand (Alfa Aesar). A final concentration of 0.1 ppm magnesium was 

added to the samples and the standards to allow monitoring of mass fractionation during 

the isotopic measurements. For each measurement, beam intensities at masses 25 and 26 

(Mg), and 28, 29, and 30 (Si) in dynamic mode were monitored for 1 block of 25 cycles of 

8 second integrations. Roughly 5 minutes of rinse with 2% nitric acid occurred between 

silicon-containing solutions (i.e. samples and standards). 

Magnesium correction was used to correct the measured silicon isotope ratios (30Si/28Si 

and 29Si/28Si) for mass bias within the mass spectrometer following Cardinal et al. (2003). 

The corrected ratio (30Si/28Si)corr is: 
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 Eq. 5.1 

where (30Si/28Si)meas is the 30Si to 28Si ratio measured and 28SiAM and 30SiAM are the atomic 

masses of 28Si and 30Si. The beam intensities on masses 25 and 26 allow estimation of 
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where (25Mg/26Mg)meas is the ratio measured, 25MgA/26MgA is the ratio expected based on 

the natural abundances of the isotopes, and 25MgAM and 26MgAM are the atomic masses 

of 25Mg and 26Mg. 
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The corrected silicon isotope ratios obtained from a set of bracketed standard-sample-

standard measurements consisting of 2 blocks of the sample ratio and 3 of the standard 

ratio were used to calculate the average 30Si and 29Si values for each sample: 

      
          

    
    

 5.3 

where δxSi is δ29Si or δ30Si, and Rsam and Rstd are the 29Si/28Si (for δ29Si) or the 30Si/28Si (for 

δ30Si) of the sample and standard. 

The precision for individual measurements of 30Si was generally ± 0.04‰ (1σ standard 

deviation) on 30Si. The long term precision (also 1 SD), including the column chemistry, 

was ±0.07‰, based on 22 separate samples of the standard measured between July 6, 

2009 and September 1, 2010. Both the backgrounds during analysis and the procedural 

blanks were normally less than 1% of the sample signal. Final values obtained fell along 

the mass dependent fractionation line expected for silicon of 30Si = 1.93 * (29Si) (see 

Appendix 5). 

Table 5.1: Operating conditions for the Neptune MC-ICP-MS 

resolution medium 

sensitivity ~6 V ppm-1  

forward power 1200 W 

accelerating voltage 10 kV 

cool gas  15.5 L min-1 

auxiliary gas 0.8 L min-1 

sample gas 1 L min-1 

sampler cone standard Ni cone 

skimmer cone standard Ni cone 

desolvator Apex (ESI) 

nebulizer 60 µl min-1 PFA 

microconcentric  
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5.4 Results 

5.4.1 Tidal marsh areas 

The δ30Si values of the tidal marsh samples lay between 1.71 ± 0.08‰ and 3.26 ± 0.10‰ 

(Figure 5.1). They showed different tidal signals at each sampling location. At HDM δ30Si 

values were similar during the seepage and the bulk phase (1.71 ± 0.08‰ to 1.87 ± 

0.13‰) and the lowest of all three sampling stations. At NF seepage values were always 

higher than the bulk values. They also differed seasonally, with highest values in May and 

lowest in October. At DSK the pattern was reversed and bulk δ30Si values were higher 

than in the seepage phase. DSi concentrations on the other hand were at all sites always 

higher during the seepage phase than during the bulk phase which led to distinct 

correlations between δ30Si and DSi concentrations (Figure 5.2). A positive correlation was 

present at NF (Pearson’s r2 = 0.59) while at DSK the values were negatively correlated 

Pearson’s r2 = 0.64). At HDM no correlation was found (Pearson’s r2 = 0.09). 

 

Figure 5.1: Overview of DSi concentrations, d30Si values and salinities in the fresh, brackish and salt marsh 

sampling sites. DSi concentrations were highest during seepage phase and lowest during bulk phase. Error 

bars on the δ30Si data points are 1 σ standard deviation.  
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5.4.2 Estuarine transects 

Physico-chemical parameters 

During the October and December the monthly mean river discharge was 572 m3 s-1 and 

604 m3 s-1 respectively, which differed not much from the discharge on the sampling day 

(638 and 674 m3 s-1 for the October and December cruise, respectively). Also of similar 

magnitude and distribution along the estuarine transect were the DO saturation and pH 

values (Figure 5.4, A and B). At km 609 both DO saturation values were in equilibrium 

with the atmosphere and decreased by about 14% towards km 659 (see section 2.1 for a 

more detailed description of the biogeochemical zonation of the Elbe estuary). The pH 

was also highest at km 609 and decreased slightly towards km 659. In December the DO 

saturation and pH values had another minimum at km 724. The water temperature was 

higher in October and increased towards the estuarine mouth. In December temperatures 

were around 4°C with only a minor downstream increase. 

SPM concentrations showed that the maximum turbidity zone was located between km 

649 and km 699 during both cruises (Figure 5.4, C and D). Maximum concentrations were 

higher in December, reaching 364 mg L-1. The first SPM maximum coincided with the 

location of the DO minimum. 

 

Figure 5.2: δ30Si as a function of DSi concentrations for all three sampling locations. The samples of one 

sampling station are enclosed in one ellipsis. HDM = red, NF = green, DSK = dark yellow. Stars denote 

seepage samples, squares bulk samples. Error bars are 1 σ standard deviation. 
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DSi concentrations and δ30Si 

October 

DSi concentrations decreased non-conservatively over the whole transect from about 

165 µM to 52 µM at the estuarine mouth (Figure 5.3), with significant quantities removed 

only after km 639 (Figure 5.4, C). 

The δ30Si values increased stepwise from 1.43 ± 0.11‰ at km 609 to about 1.63‰ until 

km 639 and again to about 2.02‰ at km 659 after which they stayed constant with the 

exception of the value at km 699 (Figure 5.4, C). The increase after km 639 coincided with 

the increase of SPM concentrations (Figure 5.4, A, C).  

 

December 

In December, DSi concentrations increased from 184 µM at km 609 to 202 µM at km 669 

(Figure 5.4 D) after which they were mixed conservatively with salinity (Figure 5.3). The 

increase of DSi concentrations at km 724 is due to the change of tides during the cruise, 

as indicated by the decrease of salinity at this sampling point. The δ30Si values decreased 

gradually from 1.47 ± 0.12‰ at km 609 to 0.85 ± 0.08‰ at km 629. After the minimum 

the values increased together with SPM concentrations to about 1.54‰, with the 

exception km 679. 

  

 

Figure 5.3: Distribution of DSi along the estuarine salinity gradient during the October (left) and December 

(right) cruise. 
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5.5 Discussion 

5.5.1 Tidal marshes  

The δ30Si values measured in the seepage water of the brackish marsh are the highest 

reported so far for soil solutions (Opfergelt & Delmelle 2012) and on the upper end of 

those reported for rivers, lakes and the ocean. Several factors affect the isotopic signature 

in soil solutions, including liquid-solid exchanges between monosilicic acid (H4SiO4) and 

neoforming minerals, such as clays and oxy-hydroxides (Basile-Doelsch 2006, Opfergelt & 

Delmelle 2012). The fractionation associated with these exchange processes is augmented 

by successive dissolution/precipitation or adsorption/desorption cycles (Opfergelt & 

Delmelle 2012). Additionally, plant mediates processes also affect the isotopic composite 

on of the soil porewater and the seepage water (e. g. De La Rocha et al. 1997, Ding et al. 

2005). Finally, the soil hydrology also plays its part in the distribution of δ30Si signatures 

in soil, due to its influence on mixing processes of different water masses which can have 

distinct isotopic signatures. Detailed knowledge of the rates and the isotopic composition 

of the endmembers present in the marsh soil would be necessary to quantify each of the  

 

 

Figure 5.4: Overview of temperature, pH and DO saturation (panel A and B) and DSi concentrations, δ30Si 

values and salinity (panel C and D) distributions along the main axis of the Elbe estuary in October 2011 and 

December 2011. Elbe km denotes the distance from the Czech border. Errors bars are 1 σ standard deviation 
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above mentioned process Because the here presented dataset lack these requirements 

the following discussion will focus on a qualitative description of processes important for 

the silica cycle in tidal marshes. 

Hydrology 

The occurrence of regular and irregular flooding events distinguishes tidal marsh soils 

from terrestrial soils. The Elbe estuary has a semidiurnal flooding regime with two tides 

approximately every 25 h (BSH 2010). Most of the tides flood only the tidal creeks and 

do not inundate the marsh surface. Between September and March the probability of 

storm surges is increased. Such events flood the complete marsh surface to a depth of 

several decametres to metres. During inundation events estuarine water infiltrates into 

the marsh soil over the whole marsh area, while during the regular tides the infiltration is 

confined to the creek bed or even non-existent.  The hydraulic pressure gradient between 

the soil and the creek allows infiltration of inundation water only if the water level 

exceeds the marsh surface (Gardner 2005a). Infiltration is further positively correlated with 

the soil permeability. 

The seepage water, which drains into the tidal creek, is drawn from the pool of soil 

porewater only several metres away from the edge of the tidal creek (Gardner 2005a). 

Because of the constant drainage, this water has shorter turnover times than the soil 

porewater in the centre of the marsh. The seepage water can thus be seen as a 

representation of the soil porewater close to the creek edge.  

The fact that the seepage sample at HDM did not differ from the bulk samples could be 

explained by the hydrological conditions of the sampling site. The sampling site has high 

saturated water conductivity (see section2.2.2) and was also flooded before the sampling 

day. Between November 26 and November 28, the marsh site was inundated to a depth 

between 0.55 to 1.7 m. The high water 4.5 hours before the sampling inundated the 

marsh surface to a depth of 0.5 m. These flooding events allowed the infiltration of 

estuarine water into the soil. The comparison of sampling days without prior flooding and 

this sampling day, showed that the water discharge during the seepage phase was visibly 

much higher (A. Weiss, pers. obs.), which corroborated the hypothesis that the infiltration 

of estuarine water into the marsh soil occurred, because during the seepage phase that 

water is released back from the marsh soil. This so called sponge effect of marsh soil was 
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also reported from another study of tidal marshes in the German Wadden Sea National 

Park (Müller et al. in press). The infiltration of estuarine water shifted the δ30Si values of 

the porewater to the estuarine signature, resulting in the observed similar δ30Si signal 

during the whole sampling. For the here presented data hydrology can be considered as 

the dominant factor for the isotopic signal at the freshwater site. The brackish and the 

salt marsh were not affected by inundation events 68 and 70 days prior to the respective 

sampling day. Therefore the patterns observed at these sampling sites are most likely the 

result of the interplay between hydrology and other factors.  

Brackish (NF) and salt (DSK) marsh  

Vegetation 

The importance of vegetation for the cycling of silicon through tidal marshes was recently 

highlighted in several studies (Struyf et al. 2005b, Struyf et al. 2006b, Struyf et al. 2007, 

Struyf & Conley 2009, 2011). 

Tidal marshes are grassland ecosystems, dominated by species like Phragmites australis, 

Elymus athericus, Thypha spp., Spartina spp. and Phalaris arudinace, which all are silica 

accumulation species (Raven 2003). In the plant the DSi is partly precipitated as biogenic 

silica (BSi), which is a form of amorphous silica. These BSi structures in plants are called 

phytoliths (Kaufman et al. 1981). The BSi content of tidal wetland plants can reach values 

of about 70 mg g-1 dry weight, which is comparable to that of rice (Struyf and Conley 

(2009), electronic supplemental material).  

Especially P. australis has high BSi contents. The storage of BSi in P. australis in a tidal 

freshwater marsh in the Scheldt estuary, Belgium accounted for 90% of all BSi found in 

the vegetation (Struyf & Conley 2009). This BSi is several orders of magnitude more 

soluble than clay minerals, primary mafic silicates and feldspars (Fraysse et al. 2009). As a 

result it is has short turnover times compared to other particulate silica components. It 

was shown for a tidal freshwater marsh that 50% of all BSi in litter of the common reed 

P. australis were dissolved after only 20 days, after one year 98% of the BSi was leached 

from the samples (Struyf et al. 2007).  

Monocotyledonic plant species favour the incorporation of light silicon isotopes during 

the uptake of DSi, as was shown for several species like, banana (Opfergelt et al. 2006), 
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bamboo (Ding et al. 2008b), rice (Ding et al. 2008a) and wheat and corn (Ziegler et al. 

2005). The fractionation factor of the DSi uptake seems to be very similar for all these 

species, with a value of about 1‰. Additionally, isotopic fractionation occurs during the 

formation of phytoliths in the plant along the root – shoot transport path (Opfergelt et 

al. 2006, Ding et al. 2008b) This results in higher δ30Si values in phytoliths located in the 

upper parts of the plant (Ding et al. 2005, Ding et al. 2008a, Opfergelt et al. 2008). The 

highest δ30Si values were in general observed in the leaves (excluding husks and seeds).  

Especially P. australis has the potential to create very high δ30Si values in the soil solution. 

The plant is known for its very high transpiration rates, which can exceed the annual 

precipitation of the habitat (Herbst & Kappen 1999). The very high water throughput is 

accompanied by the uptake of DSi, which, together with the above mentioned 

fractionation, would results in the enrichment of heavy Si isotopes in the remaining soil 

porewater. Additionally, the plant can reach heights of 3-4 m which could create highly 

enriched BSi in the plant leaves and a lighter pool in the culms. The time lack of 

complete BSi dissolution in the culms compared to leaves (see above) would trap the 

reservoir of light Si isotopes in the plant material could contribute to the δ30Si 

enrichment of the soil porewater and explain the high values observed at NF. The 

differences between δ30Si values at DSK and NF in November could indicate a weaker 

influence of the vegetation on the isotopic composition in the seepage water. At DSK 

E.  athericus dominated the vegetation. This grass does not grow high stems like 

P. australis, but forms a dense leave cover of about 0.3-0.5 m in height. It also tends to 

have lower BSi concentrations compared to P. australis (Chapter 3, Table 3.3), which may 

be the result of lower transpiration rates compared to P. australis, caused by self-shading 

due to its growth form. 

Adsorption/desorption processes 

It has been shown that the adsorption of DSi onto iron oxides is accompanied by 

isotopic fractionation (Delstanche et al. 2009). Lighter isotopes are preferentially 

adsorbed, which results in the decrease of δ30Si. The adsorption is pH dependant and 

reaches its maximum around pH 9 (Jones & Handreck 1963, Hiemstra et al. 2007). 

The redox state of tidal marsh soils and therefore the availability of Fe oxides are 

governed by hydrological and biogeochemical factors which interact in a complex way. 
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For example, on the one hand inundation reduces the oxygen availability due to the low 

oxygen diffusion in water compared to a porous medium like drained soil (c.f. Mitsch & 

Gosselink 1993, p. 120), resulting in reducing conditions favouring the formation of iron 

sulphides. On the other hand infrequent flooding paired with low precipitation and high 

temperatures cause the drying of the marsh soil which can cause desiccation cracks. 

Under these conditions atmospheric oxygen can penetrate into the soil. As a result the 

oxidation of iron sulphides to iron oxides is favoured. Furthermore, availability of iron 

oxides is regulated by plants, via the effect of root aeration on the availability of poorly 

crystalline iron for microbial iron reduction (Weiss et al. 2004). As the fractionation factor 

of iron oxides is positively related to their cristallinity (Delstanche et al. 2009), the 

presence of plants may decrease the influence of adsorption on the δ30Si signature in the 

soil porewater. 

It can be assumed that the factors which increase the availability of iron oxides in the 

marsh soil are more prevalent in warmer month, because conditions favour the processes 

that are responsible for oxygenation of the soil (dense vegetation cover, better soil 

drainage, desiccation cracks) and thus oxidation of iron. Hence, the influence of 

adsorption on δ30Si values of the marsh porewater in the here presented November 

sample was most likely small. However detailed studies are needed to quantify the effect 

of the adsorption/desorption process on the δ30Si signatures in pore and seepage waters 

in tidal marshes. Additionally, these studies should include the effect of aluminium oxides 

because they are twice as effective in sorbing Si than iron oxides (Jones & Handreck 

1963). 

5.5.2 Elbe estuary 

Both Elbe cruises showed that in the freshwater zone of the estuary modifications of the 

δ30Si ratios of DSi occur. In the salinity gradient on the other hand, conservative mixing 

seems to be the only active process as indicated by stable δ30Si ratios. Until now only two 

published datasets of δ30Si values from estuaries exists. In the Tana River estuary, Kenya 

(Hughes et al. 2012), DSi was only affected by conservative mixing. The second dataset is 

from the Yangtze River, China (Ding et al. 2004) and includes only five δ30Si values from 

the tidally influenced freshwater part of the river which were sampled on different days. 
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There, the increase of δ30Si ratios (up to 3.4‰) was explained with the presence of rice 

paddies and wetlands. 

October cruise modelling and interpretation 

Uptake of DSi by diatoms 

Diatoms need Si to build up their frustules. The uptake of DSi is associated with a 

fractionation factor of about -1.1‰ (De La Rocha et al. 1997, Milligan et al. 2004). 

Benthic diatoms are abundant on the tidal flats of the Elbe estuary and have been shown 

to alter nutrient fluxes in the coastal zone (Sigmon & Cahoon 1997). However they only 

create negative DSi fluxes during a short period of the day (Ní Longphuirt et al. 2009) 

and most likely assimilate DSi directly from the sediment porewater (Ní Longphuirt et al. 

2009), which rules out than benthic diatoms are the main sink for DSi in the water 

column. Their activity however, can influence the δ30Si value, due to the fractionation 

during DSi uptake.  

Pelagic diatoms in the Elbe estuary can reach primary production rates between 20-

50 mg C m-2 d-1, even in the maximum turbidity zone (Goosen et al. 1999). The pelagic 

plankton community during late summer/autumn only partly consist of diatoms, why the 

diatomaceous primary production rate is lower than the above mentioned values. To 

account for that in the calculation of theoretical DSi uptake rates by pelagic diatoms this 

values is assumed to be 50% smaller. Together with SiO2:C ratios (weight based) for 

freshwater diatoms of 1.89 (lowest value, Sicko-Goad et al. (1984)) and the water surface 

area between km 639-680 (63.4 km2) the pelagic DSi uptake is 19.9-49.9 kmol Si d-1. 

These values could explain the loss of 28.6 kmol Si observed in this zone and also the 

change of the δ30Si signature.  

Based on the assumption that DSi is taken up by diatoms the data can be interpreted as 

a combination of open system fractionation and conservative mixing between the 

estuarine and North Sea water. However, two assumptions must be made. Firstly, that the 

δ30Si value of 2.21 ± 0.08‰ at km 699 is correct and the value of 1.43 ± 0.11‰ at 

km 609 is too small. The assumptions have to be checked by re-measuring these 

samples. These checks could not be included into this work, because practical constrains 

in the isotopic laboratory delayed the measurements until after the submission deadline 

of this thesis.  
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The spatial distribution of DSi shows three distinct zones (Figure 5.4). Zone 1 between km 

609-639 where DSi concentrations and δ30Si values are constant, if the δ30Si value of 1.43 

± 0.11 ‰ is excluded. Zone 2 after km 639 to km 699 where DSi is significantly removed 

and δ30Si values increase. Finally, zone 3 where DSi is mixed conservatively with seawater.  

If the light δ30Si value in zone 1 is excluded the freshwater endmember is 1.64‰. The 

increase of the δ30Si signal in zone 2 from 1.64‰ to 2.21‰ can then be best described 

as an open system model fractionation (Figure 5.5). One δ30Si value falls off the modelled 

fractionation line by about 0.2‰. It could indicate that at this sampling location input of 

enriched DSi occurs. However, due to the lack of isotopic data from tributaries, a possible 

source for enriched DSi, this interpretation remains speculative. 

Absorption onto clay minerals 

The coincidence of the DSi and δ30Si changes with increase in SPM concentrations could 

indicate that Si adsorption onto particles caused the shift of the isotopic composition. 

Suspended matter in the Elbe estuary consists to 70% of silt particles < 20 µm, the clay 

fraction (<2 µm) makes up about 30% (Schwedhelm et al. 1988). illite is the dominant 

 

 

Figure 5.5: δ30Si as a function of DSi. The blue dotted line represents the closed system model fractionation, 

the solid black line is the open system model fractionation. The conservative mixing between a seawater 

endmember of 1.4‰ and 29 µmol L-1 DSi is indicated by the red dotted line. The average δ30Si value of the 

river endmember is the mean of the encircled data points, yielding 1.64‰.  
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mineral (~50%) in the 2-20 µm fraction, followed by kaolinite and chlorite (~20%, 

respectively). The clay fraction < 2 µm also consists of illite (~45%), kaolinite (~20%) and 

chlorite (~10%), but also contains smectite in considerable amounts (~20%) (Schwedhelm 

et al. 1988). The SPM composition has thus the prerequisites for DSi adsorption onto 

aluminium oxide surfaces of the clay minerals. Assuming the removal of DSi is solely due 

to the adsorption of DSi on clay mineral surfaces, the adsorption capacity of the SPM 

must be as high as 309 mmol kg-1 to account for the loss of 28.6 Mmol Si. This 

calculation is based on a mean tidal volume of 571 X 106 m3, an average SPM 

concentration of 161.6 mg L-1 and a DSi loss of 50 µmol L-1 between km 639 and km 679. 

The value of 309 mmol kg-1 exceeds by far all adsorption capacity measurements made 

for metal ions (e.g. Manning & Goldberg 1996) or dissolved silica (Delstanche et al. 2009) 

by at least 3 orders of magnitude. To come close to the adsorption capacity cited in the 

literature the SPM concentration in this zone must be > 1000 mg L-1. These values do 

occur in nature but only in fluid mud systems as shown in the Gironde estuary (Abril et 

al. 2000). SPM concentrations in the Elbe estuary seldom exceed 300 mg L-1 (FGG Elbe 

2012) in the surface water but can be up to six times higher near the sediment (Goosen 

et al. 1999). However, the zones with such high SPM concentrations are confined to a 

small fraction of the total water column, which limits their contribution to the adsorption 

processes. Adsorption on sediment particles is thus most likely not the main cause for 

the decline of DSi concentrations and the increase of δ30Si values in the freshwater part 

of the estuary. 

Dilution 

The DSi concentrations and δ30Si values in the main stream of the Elbe could also be 

changed by input of tributary water. These waters must have lower DSi concentrations 

than the main stream to decrease its DSi concentration. However, during this time of the 

year, the tributary DSi concentrations are equal or even higher than in the main stream 

(FGG Elbe 2012), ruling out dilution as a reason for the DSi concentration decline. 

December cruise interpretation 

The distribution of DSi during the December cruise was typical for this time of the years 

as shown by monitoring data from 1992-2009 (FGG Elbe 2012). Due to the lack of biotic 

activity, high DSi concentrations are delivered from the non-tidal river to the estuary 

where they are further increased, most probably due to tributary input. 
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The tributaries of the estuary have higher DSi concentrations than the main stream (FGG 

Elbe 2012). Due to the distribution of the main tributaries the cumulative discharge 

increases gradually along the estuarine axis (Figure 5.6) Because the water residence time 

also increases towards the mouth (Figure 5.6), more DSi from tributaries input may 

accumulate in the same water body as further upstream, causing the slight DSi increase 

in the estuary. Additional DSi input along the estuarine axis may come from the tidal 

marshes as described in chapter 3. Their spatial extend increases drastically after km 640. 

The δ30Si signal (Figure 5) is lower than during the October cruise, corroborating the 

hypothesis that uptake of DSi by diatoms caused the decrease in October. Due to the DSi 

distributions the estuary can be separated into two zones. Firstly, zone 1, the DSi gain 

zone, between km 609-669 and secondly, zone 2, where DSi concentrations decrease due 

to conservative mixing. In zone 1 the δ30Si values decrease and then increase again. 

Finding an explanation for the observed pattern, however, is much more difficult than for 

the October data. It seems to be that a combined effect of mixing with tributary water 

and fractionation due to a liquid-solid exchange is responsible for the observed pattern. 

 

Figure 5.6: cumulative discharge of tributaries along the estuary in relationship with DSi concentrations and 

water residence time. The cumulative discharge was calculated with the long term annual mean discharge of 

the individual tributaries. The water residence time is based on the Elbe discharge at Neu Darchau and the 

empirical relationship WT = a*discharge2 + b * discharge + c, which was derived from figure 3 in Bergemann 

et al. (1996). 
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The decrease in the first half of zone 1 coincides with the harbour area of the city of 

Hamburg. There one tributary, the Alster, enters the main stream of the Elbe at km 615. 

Additionally, the inlet of the sewage treatment plant is located at km 620. This could 

indicate the mixing of isotopic lighter water to the main stream, which could have caused 

the drop of δ30Si. A back of the envelope calculation, with mean DSi concentrations, 

discharge data from the tributaries and the sewage treatment plant, as well as assumed 

d30Si values (Table 5.2), reveals that the input of DSi by the tributaries is unable to explain 

the observed drop of δ30Si in that area. The tributary input would lower the δ30Si 

signature from 1.47‰ to only 1.28‰, which is not even near the observed 0.85‰. 

Because until now no δ30Si measurements exists for the tributaries in question and the 

discharge data was not recorded during the sampling period it is not possible to make a 

quantitative estimation of the inputs and the answer to the hypothesis remains 

speculative. 

 

The subsequent increase of δ30Si from the local minimum at km 629 to 1.54‰ could 

reflect the input of water with higher δ30Si values and DSi concentrations coming either 

from seven tributaries which discharge into the estuary between km 630-660 and/or from 

the tidal marsh areas. As showed in Figure 5.2, the δ30Si values and DSi concentrations 

Table 5.2: Overview of discharge, long term mean DSi concentrations from December, and δ30Si values 

of tributaries used in the probability check calculation (explanation see text). Discharge is the long 

term mean for December plus its standard deviation to yield a maximum estimate (data from FGG 

Elbe (2012)). The same procedure was applied to the DSi concentrations. The DSi concentration of the 

Alster was set to 200 µmol L-1, due to lack of data. The δ30Si values of the tributaries were assumed to 

be 0‰, the lowest values measured in rivers (Opfergelt & Delmelle 2012). The DSi concentration of 

the sewage treatment input was assumed to be 1000 µmol L-1, which was based on measurements of 

tap water in the author’s laboratory in Hamburg. For the δ30Si signature, the lowest value measured in 

groundwater was used (Opfergelt & Delmelle 2012). 

  Discharge (m3 s-1)  Dsi (µmol L-1)  δ30Si (‰)  

 location of 

tributaries  

(Elbe km) 

mean stdev  mean stdev   

Ilmenau 599 9.2 2.7  262.3 36.3  0 

Seeve 605 4.6 1.2  193.6 90.3  0 

Dove Elbe 615 2.6 1.2  244.5 11.4  0 

Alster 622.3 6.4   200.0   0 

Sewage treatment plant 623 5.1   1000.0   -1.43 
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from the marsh side all exceed the δ30Si values from the estuary and especially the low 

value of 0.85‰ of the harbour region. If the δ30Si signature of the marsh water is the 

same in December as in November, input of this water into the estuary thus might as 

well increase the δ30Si value. Another process that might increase δ30Si values is the 

fractionation due to solid-liquid exchange on clay minerals or biological uptake as 

described above. Under the temperature and light conditions the latter process would be 

severely down regulated. The solid-liquid exchange would be favoured by the increase of 

the SPM concentrations from 20.7 to 364 mg L-1, but would not explain the increase of 

DSi concentrations. Only a combination of the before mentioned processes could explain 

the changes of δ30Si in zone 2. Yet, to answer the open questions, future sampling 

campaigns must be carried out, including all possible DSi sources, such as tributaries, 

groundwater and the sewage treatment plant discharge. Additionally, the role of the 

harbour basins in altering DSi and δ30Si signals should be analysed to quantify the 

influence of anthropogenic disturbance on the distribution of δ30Si in the estuary. 

5.6 Conclusions 

The Elbe estuary is a location where alteration of the isotopic signal of DSi takes place. 

This finding is new in silica isotope related studies and underlines the role of estuaries for 

the alteration of the riverine δ30Si signal. Especially in the tidal freshwater zone the 

changes of δ30Si signatures can be huge, which highlights the importance of this zone for 

biogeochemical transformations of silica in tidal estuaries. However the lack of knowledge 

about the DSi and δ30Si dynamics of external sources prevents a detailed quantification of 

the isotopic landscape. This, however, is a prerequisite for the understanding of the 

influence estuaries have on the isotopic silica cycle in the land ocean transition zone and 

thus the marine cycle. Future studies of estuarine silica dynamics should therefore include 

isotopic sampling of all possible endmembers as well as seasonal sampling to promote 

our understanding of the processes which influence the silica cycle in estuaries, which, in 

face of anthropogenic disturbance of the two elemental cycles and the consequences for 

the global climate, is an important undertaking.  
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6 Sources and export of DIC and TA 

from tidal creeks along a salinity 

gradient in the Elbe estuary, 

Germany 

6.1 Abstract 

Tidal marshes are direct sources of DIC and TA to adjacent water bodies due to advective 

transport of highly enriched soil porewater from the marsh area. Based on studies 

conducted on the east coast of the USA, the main source of DIC and TA is thought to be 

sulfate reduction. In north European tidal marsh systems, however, it is possible that 

CaCO3 dissolution may be an important source of DIC and TA, because hydrological and 

morphological conditions of the coastal zone favour the import of CaCO3 rich sediments 

to the tidal marsh areas. In this study the spatio-temporal variability of the carbonate 

system and the DIC export fluxes from three tidal marshes along a salinity gradient in the 

Elbe estuary, Germany were studied. DIC and TA concentrations together with major ion 

concentrations were measured over one tidal cycle in different seasons in the main creek 

of the sampling location. The mean DIC and TA concentrations increased from the 

freshwater to the two brackish sampling sites by more than 2-fold. They were the highest 

concentrations measured in tidal marsh studies reaching 14237 µmol kg-1 at the brackish 

sampling site in summer. The tidal variability was also high, showing a 1.7 to 3.2 fold 

difference between low and high tide concentrations. Mixing analysis revealed that 

carbonate dissolution is the dominant source for TA in these systems, as opposed to tidal 

marshes in the USA, where sulphate reduction is the main TA generating process. Export 

fluxes of DIC and TA were similar due to the low percentage of CO2 in the water 

(< 4.4%). The export fluxes ranged from 0.06 ± 0.03 to 0.24 ± 0.07 mol m-2 d-1 with no 

apparent seasonal pattern. The lowest but also the highest flux was calculated for the 

freshwater sampling site. DIC export from the whole tidal marsh areas could account for 

7.5-27.8% of the excess DIC (i.e. DIC in excess of that expected from conservative mixing 
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between seawater and freshwater and equilibrium with the atmosphere) measured in the 

estuary. The area weighted fluxes are 194 to 621-fold higher than the DIC export from 

the Elbe watershed, stressing the importance of these areas in estuarine and even 

regional land-ocean DIC fluxes. 

6.2 Introduction 

Studies of estuarine carbon dioxide (CO2) and dissolved inorganic carbon (DIC) dynamics 

have shown that inner estuaries exhibit high rates of net heterotrophy, i.e. respiration 

exceeds primary production in this systems, and are generally supersaturated with respect 

to CO2 (Smith & Hollibaugh 1993, Frankignoulle et al. 1998, Gattuso et al. 1998, Borges 

2005). Sources of the net heterotrophy in estuarine systems  include water-column and 

benthic respiration, groundwater inputs (Kempe et al. 1991), photo degradation of 

dissolved organic matter (Tzortziou et al. 2007), and inputs of inorganic carbon from 

intertidal marshes (Cai & Wang 1998).  

Tidal salt marshes play an important role as a source for DIC and TA in marsh dominated 

estuaries along the east coast of the United States (Cai & Wang 1998, Cai et al. 1999, Cai 

et al. 2000, Cai et al. 2003a, Jiang et al. 2008). Studies showed that the export of DIC and 

TA from the marsh areas can account for a major fraction of the net heterotrophy 

observed in the estuarine systems. In the York River estuary, for example, the tidal marsh 

export of DIC could account for 47 ± 23% of its excess DIC production (i.e. DIC in excess 

of that expected from conservative mixing between seawater and freshwater and 

equilibrium with the atmosphere) (Neubauer & Anderson 2003). On a regional scale it 

has been shown that the DIC export flux from tidal marshes contribute about 58 Tmol 

C yr-1 to the total DIC flux to the continental shelf in the U.S South Atlantic Bight of 108 

Tmol C yr-1 (Cai et al. 2003a).  

Considering European estuaries, there exist only a few studies about the sources and the 

influence of tidal marshes on the estuarine carbonate system, with a regional focus on 

the Mediterranean tidal marsh systems. For example, Forja et al. (2003) showed that the 

circulation of coastal water from the Bay of Cádiz through a salt marsh system increased 

the DIC flux by a factor of 2.8. Also in the Bay of Cádiz La Paz et al. (2008) showed that 

Rio San Pedro, a tidal creek influenced by fish farming activities, exported DIC to the 

adjacent coastal area. Only one study examined the origin of DIC interstitial waters of 
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tidal freshwater marshes (Hellings et al. 2000), without addressing the influence of the 

marsh areas on the carbonate system of the estuary.  

The processes which create DIC and the TA in marshes (salt and freshwater) are manifold. 

Under anoxic conditions, as frequently present in the water logged marsh soils, nitrate, 

manganese, iron, and sulphate reduction are the main respiratory pathways (Mitsch & 

Gosselink 1993) which all produce DIC and TA. The contribution of each process to the 

total soil respiration is governed by various factors such as temperature, water-table level, 

reduction-oxidation potential, pH (Mitsch & Gosselink 1993), plant growth (Neubauer et 

al. 2005, Keller et al. 2012) and the availability of electron donors and electron acceptors 

(Sutton-Grier et al. 2011). All of these processes haven been frequently used to explain 

the excess DIC and TA concentration, i.e. DIC in excess of that expected from 

conservative mixing between seawater and freshwater and equilibrium with the 

atmosphere, in the above mentioned studies of the marsh dominated estuaries (Raymond 

et al. 2000).  

Additionally, DIC and TA can be produced by the dissolution of calcium carbonate 

(CaCO3), a process widely recognized in marine sediments (c.f. Morse et al. 2007 and 

references therein) which has never been reported to play an important role in the TA 

generation in tidal marsh sediments or marsh-estuarine systems. In the Elbe estuary the 

calcite content of suspended matter ranges between 3-17%-wt. which is mainly of marine 

origin (Schwedhelm et al. 1988). The tidal marshes of the Elbe estuary trap the CaCO3 rich 

sediments resulting in CaCO3 bearing marsh soils. The production of protons during the 

anaerobic degradation of organic carbon can thus be buffered by the dissolution of 

CaCO3, increasing the DIC and TA concentration in the soil porewater. Surprisingly, this 

process has been mentioned as a DIC and TA source only episodically for environments 

such as estuaries (Kempe 1982, Hellings et al. 2000) and submarine groundwater 

estuaries in a salt marsh environment (Cai et al. 2003b). 

In this study the carbonate system of tidal creek water of three sampling sites along an 

estuarine salinity gradient of the temperate Elbe estuary is analysed. It is hypothesised 

that a major part of the alkalinity stems from CaCO3 dissolution. The export of DIC and 

TA from the tidal creek systems is assessed combining geographic information systems 

(GIS) with field measurements. 
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6.3 Material and Methods 

6.3.1 Study area 

The Elbe estuary in northern Germany is the connection to the North Sea for the fourth 

largest river basin in Europe and heavily influenced by human activities. It underwent a 

phase of extensive anthropogenic pollution from the 50s to 80s but is now recovering 

from this eutrophication (Adams et al. 2002, Amann et al. 2012). The anthropogenic 

influence is still high due to river engineering, e.g. dyke construction, bank protection 

measures and the deepening of the shipping channel, which lead to the loss of tidal 

marshes in the estuary. The tidal influence reaches 142 km inland to the city of 

Geesthacht where a weir stops the tidal wave. Tides are diurnal with mean tidal 

amplitudes of 3 m at the mouth and 3.6 m at the harbour region of the city of Hamburg 

(for more details see section 2.1).  

Three sampling sites in the dyke foreland of the Elbe estuary were chosen along its 

longitudinal axis to represent three different salinity zones of the estuary. One freshwater 

site and two mixo-mesohaline sites, with a long term salinity range of 5-18 and 5-30, 

respectively. The sites differ in their dominant vegetation as well as in their hydrology. A 

detailed description can be found in section 2.2.2.  

6.3.2 Sampling and analysis 

Sampling was carried out seasonally in 2010 and 2011. At each sampling day, water 

samples were taken in hourly intervals for 7-12 hours to obtain water from the seepage 

phase as well as the bulk phase of the tidal cycle. The seepage phase represents soil pore 

water which drains from the marsh area during ebb tide. The bulk phase is defined as the 

period of time where estuarine water is flowing in or out of the tidal creeks in great 

volume. During this period the water depth in the creek is several decametres high. At 

high tide the creek is normally filled up to its edge. The bulk water mass is dominated by 

the estuarine endmember. The seepage phase is the period of time were gravitational 

drainage of soil pore water from the marsh occurs. During this phase generally only a 

small central channel of about 15-40 cm in width and about 5-10 cm in depth was filled 

with water. The water mass during this period is dominated by the soil pore water from 

the marsh area. Occasionally the water level during the seepage phase was higher than 



 

68 

several cm because of an intense flooding event during the previous flood, which led to 

infiltration of high amounts of flooding water into the marsh soil. This water was then 

released during the seepage phase in which sampling occurred.  

pH, temperature, salinity ,and oxygen 

Temperature, salinity, pH and oxygen were measured with handheld sensors (pH, 

temperature: Methrohm pH 827, Primatrode 6.0228.020 or Aquatrode 6.0257.000; salinity 

and oxygen: WTW 350i ConOX) after the DIC samples were taken. Therefor the plastic 

cylinder was carefully filled to avoid bubble formation and turbulence. The cylinder was 

then placed on a magnetic stirrer which was set on slow rotation. This was done to avoid 

the formation of a stagnant layer around the sensors that would otherwise have caused 

erroneous measurements of the oxygen concentrations and the pH. A three point 

calibration with NBS standards was performed in the morning of every sampling day. The 

oxygen sensor was calibrated at the same time using the calibration chamber provided 

by WTW.  

To calculate average pH values the pH was first converted to H+ concentrations, averaged 

and converted back to pH, to avoid errors that are associated with the averaging of 

logarithmic data, such as pH. The error can be as high as 0.2 pH units which is a 

significant value when calculating pCO2 and TA from pH and DIC concentrations (Dickson 

et al. 2007).  

Nutrients, major Ions 

Water was sampled with a plastic cylinder attached to a telescope bar. The water from 

the cylinder was transferred to a syringe and filtered through 0.45µm nylon filters 

(Minisart®). Aliquots of the filtered water were used for metal, nutrient and major ion 

samples. The cation samples were acidified (2 vol-% concentrated HNO3) and nutrient 

samples poisoned with HgCl2 to suppress microbial activity. All samples were stored in a 

cool box. In the laboratory they were stored at 4 °C until analysis. 

Concentrations of nitrate, nitrite, phosphate, and ammonium were measured with a 

Technicon AutoAnalyzer System III, silicate was measured manually. Both, automatic and 

manual measurements followed standard colourimetrical techniques (Hansen & Koroleff 

1983). 
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The concentrations of Ca2+ and Mg2+ were measured after appropriate dilution by 

inductively coupled plasma (ICP) optical emission spectrometry (at the Institute of Baltic 

Sea Research, IOW) with IAPSO low salinity seawater standard (OSIL Ltd.) as internal 

standard, Cl- and SO4
2- were measured chromatographically on a Metrohm 881 Compact 

IC Pro system. The recovery for the determination of Cl- and SO4
2- were 99.0 ± 1.7 % and 

97.5 ± 3.3 %, respectively. The precision for the determination of duplicate samples was 

better than 1% for both ions  

Dissolved inorganic carbon  

DIC samples were taken in duplicates with 250 ml glass bottles (Schott Duran®) using 

the telescope bar.  The bottles were filled slowly at the water surface to reduce turbulent 

mixing and to prevent bubble formation, which would have caused outgassing of CO2. 

Immediately after filling 120-360 µl saturated HgCl2 was added and the bottles were 

capped with screw caps holding gas tight PTFE septa. The samples were stored at 4°C in 

the laboratory until analysis. 

DIC samples were measured with a Marianda VINDTA 3D automated DIC analyser at 

constant temperature of 25°C. The system was calibrated using certified reference 

material (CRM, Dickson). The same material was used as an internal check standard 

during measurements. The mean accuracy of the measurements was 0.37% (0.001%-

1.590%). 

Calculation of the carbonate system 

The excel macro of the CO2sys program (Pierrot et al. 2006) was used to calculated the 

TA and the pCO2 as well as the saturation state of calcite and aragonite, correcting for 

dissolved silica and dissolved phosphorous. The following settings were used:  

1. Constants: Cai & Wang 1998 

2. KHSO4: Dickson 

3. pH scale: NBS 

4. input parameter case: DIC and pH 

For each parameter of the carbonate system the average of the duplicate samples was 

calculated and used in the data analysis. 
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6.3.3 DEM Modelling  

Digital elevation model 

To quantify the DIC export from the sampling sites geographic information systems (GIS) 

a slightly modified methodology as described in chapter 3 was used. 

The DEM was provided by the State Office for Agriculture, Environment and Rural Areas, 

Schleswig-Holstein, Germany (Amtliche Geobasisdaten Schleswig-Holstein, © VermKatV-

SH). It was obtained with LIDAR technique in 2007 and included corrections for different 

vegetation cover, leading to an overall vertical accuracy of ± 20 cm. The resolution of 

one raster cell was 1 x 1 m. To assure that the creeks visible in the DEM were consistent 

with the creeks at the sampling site the DEM was compared with the Microsoft Virtual 

Earth (© 2009 Microsoft Cooperation) satellite map which was linked into the ArcGIS 

software (ESRI ® Version 10.0). 

To be able to calculate the flooding volume of the tidal creeks on the sampling area, the 

tidal creeks were cut manually from the DEM using the ArcGIS software (ESRI ® Version 

10.0). This new dataset was used together with the water level data from the nearest 

gauge station (obtained from the Waterways and Shipping Administration of the Federal 

Government (WSV), subdivision Cuxhaven and Schleswig-Holstein). The vertical accuracy 

of this data was ± 2 cm.  

Export calculations 

For each set of adjacent sampling time point during ebb tide t(i) and t(i+1) the average 

DIC enrichment taking the Elbe river water as reference (DICenrich, mmol m-3) was 

calculated (Eq. 6.1),  

                       )           Eq. 6.1 

 

where DICmarsh,t(i) is the DIC concentration measured in the tidal creek at time point t(i) 

and DICriver is the DIC concentration in the estuary. The latter concentration was 

calculated from DIC concentrations of samples taken in the same month in the shipping 

channel of the Elbe estuary. Therefor spatial intervals were defined for each marsh 

sampling location and the DICriver
 concentration was calculated from all sampling points in 

these intervals. To account for natural variability of the DIC concentrations in the estuary 
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the “average + standard deviation” and the “average – standard deviation” were used to 

calculate the DIC enrichment. 

To calculate the DIC export per ebb tide (DICexport, mmol tide-1) the DICenrich was multiplied 

by the change in volume (V, in m3) (Eq. 6.2) between two sampling time points. The water 

volume at each sampling time point was calculated for each sampling site with the DEM 

and the water level data using the build in function “surface volume” of the ArcGIS 

software. This calculation was done with the original DEM elevation and an elevation 

which was 20 cm lower to account for the uncertainty in elevation due to vegetation 

cover. 

           
             )                 )

 
      )         )) Eq. 6.2 

 

With this procedure six DIC export values were produced for one sampling day, i.e. one 

set of the above mentioned three estuarine DIC concentrations for the original DEM and 

one set of three for the -20cm DEM. To get the DIC flux from the sampling sites the 

average of the six DIC export values were taken and divided by the area of the sampling 

locations. 

To account for the seepage phase, which is not represented by (Eq. 6.2), seepage 

discharge measured in July 2011 at NF and DSK was used. Seepage discharge was 

measured during this sampling days by stopping the time which floating particles on the 

water surface needed to travel a certain distance. To account for the bias induced by 

wind friction, which lowered the water velocity at the surface of the seepage stream, this 

value was multiplied by 1.3. Additionally, one  seepage discharge value reported for a 

brackish marsh (Duve 1999) was also taken Into account. From the six numbers the mean 

and the standard deviation was computed and a minimum and maximum calculated by 

adding or subtracting the standard deviation from the mean. The two values were then 

used to calculate a range of the seepage DIC flux from the mean seepage DIC 

concentration of all samples of the respective sampling location (Appendix 6). 
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6.3.4 Ca2+ excess and SO4
2- depletion 

The excess Ca2+ concentration in the seepage water samples were calculated by 

subtracting the theoretical Ca2+ concentration of the estuary for the sample salinity from 

the Ca2+ concentration measured in the sample (Eq. 6.3), 

[    ]        [    ]       [   ]       
 

 
     Eq. 6.3 

 

where [Ca2+]sample and [Cl-]sample are the ion concentrations in the seepage water samples 

and R the Cl-:Ca2+ ratio of the Elbe estuary at seepage sample salinity. R was computed 

from the best fit solution of a non-linear regression function using Ca2+, Cl- and salinity 

data obtained during 12 cruises in 2009-2010 (see Appendix 2). 

Sulphate depletion in the seepage water samples was calculated in the same manner 

according to the formula, 

[   
  ]           [   ]        

 

 
     [   

  ]       Eq. 6.4 

 

where [SO4
2-]sample and [Cl-]sample are the ion concentrations in the seepage water samples 

and R the Cl-:SO4
2- ratio of the Elbe estuary at seepage sample salinity. The ratio was 

computed from the best fit solution of a non-liniear regression function using SO4
2-, Cl- 

and salinity data obtained during 18 cruises in 2009-2011 (see Appendix 3 

From the Ca2+ excess and the SO4
2- depletion, the percentage contribution of CaCO3 

dissolution and SO4
2- reduction to the measured DIC and TA concentrations were 

calculated. 

6.4 Results 

6.4.1  Water column conditions 

Sampling was conducted during astronomical neap or mid tides with the exception of the 

sampling at NF on the 2011-05-18 which fell on a spring tide. The water was normally 

confined in the creek and only on two occasions the marsh surface was inundated. 

During the HDM150910 sampling strong winds led to an intense flooding which lasted 
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for approximately two hours and lead to the inundation of the marsh surface of 

approximately 0.5 m height. The sampling was conducted after the water retreated from 

the marsh surface. On 2011-03-11 the sampling site at NF was flooded for approximately 

20 minutes. The water depth on the marsh surface during the event was about 0.05 m. 

During this event sampling continued during the flooding.  

Physico-chemical parameters, namely salinity, temperature, pH, and DO showed variations 

depending on the sampling location, the season, and the tidal stage. The water 

temperature showed a clear seasonal signal at all three sampling site with slightly lower 

 

Figure 6.1 Seasonal variation of temperature and salinity in the bulk and seepage water of all three sampling 

sites. At DSK in March and July no bulk phase occurred due to low high water levels. 
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mean temperatures (significant with p <0.01, Mann-Whitney U-Test) at the freshwater site 

than at the brackish or saline site. The lowest mean temperatures were observed in 

November 2010, and March and November 2011 (Figure 6.1). July temperatures were 

highest throughout the year. 

The tidal variation of temperature could be substantial, especially in summer. A 

temperature increase of 11.5°C from 18.7 to 30.2°C between the inflowing bulk water and 

the nearly stagnant seepage water was measured during the NF sampling in 2010-07 

(data not shown). Salinity measurements confirmed the existence of a salinity gradient 

along the estuary. At HDM salinities never exceeded 0.5 units (Figure 6.1). At NF mean 

values ranged between 2.3 and 6.8 whereas salinities at DSK lay between 12.0 and 19.9 

(Figure 6.1). The tidal variation was small and never exceeded 1.7 units at NF and 2.0 

units at DSK. The pH range observed during the sampling period ranged from 7.51 to 

8.93 (Table 6.1). Averaged over all sampling dates NF had a significantly higher pH than 

DSK or HDM (Mann-Whitney U Test, p <0.001). The pH between the latter locations was 

not significantly different from each other (p = 0.96). On a monthly basis the, average pH 

values at HDM were in general the lowest of the three sampling site and lay between 

7.72 ± 0.14 and 7.92 ± 0.13, except in 2011-03 where it reached 8.36 ± 0.26 units.  

The DO saturation was positively correlated with the pH. Spearman’s rank correlation 

computed for each sampling date revealed that at HDM the DO saturation and the pH 

were in all cases significantly dependent (R ≥ 0.81) (Table 6.1). At DSK, the correlation 

coefficients above 0.58 indicated a lower dependence between pH and DO saturation 

than at HDM. At NF In four three of seven samplings the correlation coefficient ranged 

between 0.50 and 0.97. The other cases exhibited correlations coefficients below 0.3 or 

were even negative in one case.  

Absolute DO saturation values ranged between 30.2% and 212.8% which were measured 

at NF in 05/2011 during one tidal cycle. At the same location mean values were highest 

in 07/2010 with 123.2 ± 43.7%.  At HDM and DSK mean DO saturation was highest in 

03/2011 with 131.7 ± 19.2% and 113.7 ± 33.70%, respectively. The tidal variability of the 

DO saturation was also higher than the seasonal variation, as previously described for the 

pH data. 
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6.5 Carbonate system 

6.5.1 Spatial and temporal patterns 

Between site comparison 

Mean DIC and TA concentrations as well as pCO2 revealed a gradient from the freshwater 

to the brackish and saline site with lower mean concentrations and partial pressures in 

the freshwater marsh (Figure 6.2, A,B,C). For each sampling station, seepage 

concentrations were always higher than bulk concentrations (Figure 6.2, Mann-Whitney-U 

Test, p ≤ 0.01) with a maximum difference of the means at NF. There a 3.2-fold and 5.9-

fold difference between the mean seepage and bulk DIC concentration and pCO2 was 

observed. 

Seasonal variation 

Considering the maximum seepage DIC concentration as a proxy for the marsh pore 

water concentration no apparent seasonal pattern were visible. At HDM seepage DIC 

Table 6.1:  Summary of pH and DO statistics of all sampling dates. Spearmann’s Rank correlation (R) was 

calculated for pH vs. DO saturation values. Numbers printed in bold indicate statistically significant 

correlations for p < 0.05. 

   pH (NBS)  DO saturation (%)   

Location Date N mean stdev min max 

Overall 

mean 

Overall 

stdev 

 

Mean Stdev 

Overall 

mean 

Overall 

stdev 

 

R 

HDM  09-10 8 7.84 0.02 7.66 8.31 

   

82.2 11.5 

   

0.98 

HDM  11-10 12 7.83 0.11 7.73 7.99 

   

89.7 3.0 

   

0.90 

HDM  03-11 12 8.36 0.26 7.94 8.72 

   

131.7 19.2 

   

0.81 

HDM  05-11 12 7.73 0.16 7.52 7.96 

   

76.5 12.9 

   

0.82 

HDM  07-11 7 7.72 0.14 7.57 7.92 

   

75.6 5.9 

   

0.96 

HDM  11-11 7 7.92 0.13 7.78 8.05 7.87 0.18   88.4 5.5 92.8 23.7   0.85 

NF  07-10 11 8.24 0.17 7.99 8.45 

   

123.2 43.7 

   

0.85 

NF  08-10 10 8.08 0.01 7.83 8.37 

   

94.6 32.8 

   

0.28 

NF  11-10 8 7.97 0.02 7.75 8.31 

   

81.7 9.8 

   

0.98 

NF  03-11 12 8.06 0.23 7.77 8.57 

   

98.0 8.2 

   

0.04 

NF  05-11 12 8.00 0.51 7.66 8.93 

   

99.9 67.5 

   

0.71 

NF  07-11 13 7.95 0.21 7.72 8.35 

   

88.9 44.1 

   

0.50 

NF  11-11 7 8.24 0.00 8.21 8.30 8.05 0.26   90.0 9.0 97.5 39.9   -0.21 

DSK  07-10 10 7.97 0.02 7.78 8.45 

   

83.3 34.4 

   

0.59 

DSK  09-10 12 7.85 0.16 7.65 8.08 

   

67.9 15.5 

   

0.74 

DSK  03-11 12 7.66 0.15 7.51 7.91 

   

113.7 33.7 

   

0.73 

DSK  07-11 8 7.94 0.19 7.80 8.35 

   

98.9 40.0 

   

0.90 

DSK  11-11 8 7.97 0.12 7.72 8.07 7.84 0.18   86.1 6.1 89.8 32.3   0.61 
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concentrations increased from September to November 2010 (Figure 6.3). In 2011 the 

pattern was reversed with lowest concentrations in November and highest in March 2011.  

At NF a clear increase from 4788 µmol kg-1 to 14175 µmol kg-1 (Figure 6.3) was observed 

from March 2011 to November 2011. In 2010 no such pattern was visible. At DSK a trend 

of increasing maximum seepage DIC concentrations could only be observed in 2011 

(Figure 6.3). 

Tidal variation 

The tidal variation variations of concentrations and partial pressures during each sampling 

day were considerable (Figure 6.3). Including all samples, DIC concentrations ranged from 

1898 – 5276 µmol kg-1 at the freshwater site. At NF and DSK a higher variability was 

observed spanning from 1480 to 14273 µmol kg-1 and 2742 – 12236 µmol kg-1, 

respectively. 

 

 

Figure 6.2 Comparison of seepage and bulk pH, pCO2, DIC and TA concentrations at the three sampling 

locations. A) DIC, B) TA, C) pCO2, D) pH. Black squares are the means, boxes represent the standard error of 

the mean (white bulk water samples, grey seepage water samples), and whiskers the standard deviation of 

the mean. 
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Values of pCO2 were under-saturated with respect to atmospheric pCO2 of 390 µatm 

(March 2011 at HDM and NF, and May 2011 at NF) in 9 out of 172 samples. The 

remaining 163 samples had pCO2 well above 390 µatm. In the seepage water the mean 

super-saturation was 10.5 times the atmospheric value (range 2.6-17.9), the bulk water 

samples also were supersaturated but on a lower level (3.3-fold, range 0.4-7.8). At HDM 

the variability as well as the absolute range of pCO2 was the lowest of all sampling 

locations (Figure 6.3). The pCO2 maxima reached only 5434 µatm, whereas values of 

10232 µatm and 10191 µatm were reached at NF and DSK, respectively (Figure 6.3). 

Diurnal variation during the seepage phase 

During the sampling of 2011-03-14 it was possible to observe diurnal changes in the 

seepage water stream (Figure 6.4) because the tidal creek was not flooded due to a very 

low high tide. DO saturation increased more than 2-fold from the first sampling time 

point until 14:30h. After that point the DO saturation dropped to their starting value, 

 

 

Figure 6.3: Tidal variation of DIC, TA and pCO2 of all samplings. Open diamonds = pCO2, open circles = DIC, 

filled circles = TA. During the March 2011 sampling only seepage water was sampled at DSK because no 

flooding of the tidal creek occurred. 
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creating a nearly bell shaped 

pattern. The DIC 

concentration also showed a 

symmetrical pattern of 

decrease and increase 

during the sampling day, 

reaching their minimum at 

15:30h. Within the first 

seven hours of sampling the 

concentrations dropped by 

1303 µmol kg-1, or about 

11% of the starting value. 

The pH change followed the change of pCO2. Both parameters started to change after 

11:30h. The pH increased from 7.50 to 7.90 at 16:30h and returned to its starting values 

at the end of the sampling. The pCO2 decreased from 10000 µatm to 3870 µatm and 

nearly reached its starting values at the last sampling point. 

6.5.2 Carbonate speciation 

In the observed pH range there was little difference of the carbonate species distribution 

between the three sampling sites. The DIC of the seepage water consisted mainly of 

HCO3
- which represented 95.1 ± 1.1%, 96.1 ± 0.6%, and 94.4 ± 1.9% at HDM, NF, and 

DSK, respectively, causing nearly identical DIC and TA concentrations in the samples 

(Figure 6.3). The fraction of CO2 was highest at HDM with 4.4 ± 1.6%. At NF and DSK 

only 1.9 ± 0.8% and 1.9 ± 1.0% were present as CO2, respectively. The carbonate ion 

percentage was highest at DSK and represented 3.7 ± 2.7% of the DIC. At NF the 

percentage was slightly lower with 1.9 ± 1.2%. The lowest CO3
2- concentration was 

calculated for HDM, where it only was 0.4 ± 0.4%. These numbers were occasionally 

exceeded when primary production shifted the carbonate system to more basic 

conditions. This happened during the sampling at NF in May 2011 and at DSK in both 

July 2010 and 2011 when the fraction of CO3
2- was then 0.4 – 14.4 % of the DIC and the 

CO2 only 0.2 – 0.5%.   

 

 

Figure 6.4: Diurnal pattern of DIC, pH, pCO2 and DO saturation during 

a 12h sampling campaign in March 2011 at DSK. 
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6.5.3 Sources of DIC and TA  

The comparison of seepage water sample Cl-:Ca2+ and Cl-:SO4
2- ratios with the estuarine 

ratios showed deviations from the estuarine mixing line (Figure 6.5). Because Cl- 

concentrations in the seepage samples behaved conservatively (Appendix 4), the 

deviation from the estuarine ratios indicates addition of Ca2+ or removal of SO4
2-, 

respectively.  

While SO4
2- removal was obvious in seepage samples from NF (salinity 3-6.5), the samples 

from DSK and HDM had Cl-:SO4
2- ratios that were not clearly distinguishable from the 

variability induced by measurement errors. The NF samples that showed a clear deviation 

from the conservative mixing line in July and August, where temperatures were high. All 

Cl-:Ca2+ ratios of the NF and DSK samples deviated clearly from the estuarine ratios, while 

four samples from HDM lay above the mixing line 

The net contribution of CaCO3 dissolution and SO4
2- reduction to DIC and TA 

concentrations is summarised in Table 6.2. The SO4
2- depletion at NF accounted for about 

20 ± 13% of the DIC measured in the seepage water, which is similar to the relative 

contribution of CaCO3 dissolution at NF and DSK. The values do not change substantially, 

if the negative values were removed. The per cent contribution of CaCO3 dissolution to 

DIC at NF and DSK was 100% higher than at HDM. When removing the negative 

percentages from the HDM data, the contribution to DIC nearly doubled.  CaCO3 

 

 

Figure 6.5: Cl-:SO4
2- and Cl-:Ca2+ ratios in the seepage water samples as a function of salinity. For comparison 

the modeled estuarine Cl-:SO4
2- and Cl-:Ca2+ ratios (solid line) as well as the constant seawater ratios are 

shown (dashed line). The dotted lines indicate the 95% confidence band of the non-linear regressions. 



 

80 

dissolution accounted for 23.3-46.7% of the TA. Removing negative values from the HDM 

samples shifted the contribution to 42.6-57.7%. 

6.5.1 DIC export 

The individual DIC export fluxes from the three sampling sites, including bulk and 

seepage phase, ranged from 0.06 ± 0.03 to 0.24 ± 0.07 mol m-2 d-1 (Figure 6.6). With 

exception of the November 2010 sampling and despite the much larger water volume 

that was exported during ebb tide (Figure 6.7), the export fluxes were the lowest at HDM. 

The DIC export in during the seepage phase contributed between 24%-89% of the total 

DIC export of a given sampling date (Appendix 7). Extrapolation of the average DIC 

export per sampling station to the total area of the three different salinity zones of the 

estuary yielded a total export flux of 11.3 Mmol d-1 (range 4.8 – 17.7 Mmol d-1).  

The export calculations of the bulk phase contribution were most influenced by the water 

volume, derived from the DEM (Figure 6.7 A). Variation in the estuarine DIC 

concentrations had little effect on the DIC export (Figure 6.7 B), with exceptions for the 

sampling day in November 2010 and July 2011 at HDM, due to a higher variability of the 

estuarine DIC concentrations in the HDM interval.  

Table 6.2: Summary of relative contributions of SO4
2- reduction and CaCO3 dissolution to the DIC and TA 

concentrations in the seepage water samples. 

  

%DIC SO4
2- reduction (%) 

 

%TA SO4
2- reduction 

Location N mean stdev min max 

 

mean stdev min max 

NF 31 20.7 13.7 -10.4 48.9 

 

20.4 13.1 -10.3 46.4 

NF* 23.0 23.9 12.6 1.3 48.9 

 

23.5 11.9 1.4 46.4 

  

%DIC CaCO3 dissolution (%) 

 

%TA CaCO3 dissolution (%) 

Location N mean stdev min max 

 

mean stdev min max 

HDM 14 11.6 28.9 -35.0 43.6 

 

23.3 57.7 -70.0 87.2 

HDM*   28.9 6.8 23.9 43.6   57.7 13.5 47.8 87.2 

NF 30 23.3 8.8 13.4 40.9 

 

46.7 17.5 26.9 81.8 

DSK 37 21.3 7.3 0.0 30.7   42.6 14.6 0.1 61.4 

*: negative values excluded for the calculations 
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Figure 6.6: Average DIC export +/- standard deviation for all sampling sites. 

 

 

Figure 6.7: Influence of (A) water volume and (B) estuarine DIC concentrations and on the DIC export flux 

calculations.  
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6.6 Discussion 

6.6.1 Calcium carbonate dissolution as alkalinity source in tidal marsh 

sediments 

The Ca2+ excess calculations clearly show that the dominant TA source at all three 

sampling stations is CaCO3 dissolution, which is a new finding, considering tidal marsh 

related literature. The first studies that addressed the carbonate system in tidal marshes 

and their adjacent estuaries were all conducted at the east coast of the US, either in the 

Georgia salt marsh complexes (Cai et al. 1999, Cai et al. 2000, Wang & Cai 2004) or the 

Chesapeake Bay area, more specific in the Sweet Hall freshwater marsh of the Pamunkey 

River, Virginia (Neubauer & Anderson 2003). In several studies about estuarine DIC and 

TA dynamics it was hypothesised that sulphate reduction is the main source of TA (Cai & 

Wang 1998, Raymond et al. 2000). For example, Raymond et al. (2000) could show that 

the accumulation of sulphide in the sediment of a representative site directly adjacent to 

the York River estuary was sufficient to account for the net export of alkalinity. Several 

other studies showed that sulphate reduction in concert with pyrite burial is an important 

process in those marsh systems (Howarth 1979, Howarth & Teal 1979, Luther III et al. 

1982, Howarth & Giblin 1983). Only on study showed data that confirmed that CaCO3 

dissolution took place in a surficial groundwater aquifer located in a tidal marsh system 

in South Carolina (Cai et al. 2003b). This process, however, was only of major importance 

in groundwater of low salinity. The north European marshes and the eastern US marshes 

can thus be characterised as the CaCO3 type and the SO4
2- type, respectively, with respect 

on the main source of TA. The tidal marshes of the Elbe estuary belong to the CaCO3 

type. 

6.6.2 Differences between tidal marshes of the US east coast and 

northern Germany  

Several studies conducted in tidal marshes of Maryland, Virginia, Massachusetts, Rhode 

Island and Georgia showed mean soil pH values that were in general lower than those 

typically observed in tidal marshes of the Elbe estuary (see Table 6.3). The pH difference 

is probably related to the above mentioned differences in soil types. The peat in the US 

marsh soils is a possible source for organic acids which might lower the soil  
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pH. Additionally, re-oxidation of pyrite releases protons, which could also cause a steep 

pH drop. Although this events are rather infrequent, they can decrease the soil pH by 1 

unit within 24 hours (Seybold et al. 2002).  

Table 6.3: Comparison of different soil properties from tidal marshes of the east coast of the US and the Elbe 

estuary, Germany. Salinity refers to the values in the adjacent water bodies (estuary, coastal zone). 

  pH     

Location salinity mean stdev min max Corg content depth (cm) vegetation source 

Chesapeake Bay, 

Maryland 

n.d. 6.4 0.7 4.0 7.0 15% 

(0.1-47.3%) 

0-150 n.d. Darmody & Foss 

(1979) 

Ware Creek Marsh, 

Maryland 

4 6.1 0.1 n.d. n.d. n.d. n.d. S.c. Mendelssohn et al. 

(1976) 

Carter Creek Marsh, 

Maryland 

10 6.1 0.1 n.d. n.d. n.d. n.d. S.a., D.s., 

S.p. 

Mendelssohn et al. 

(1976) 

Wachapreague 

Marshes, Virginia 

30 6.7 0.1 n.d. n.d. n.d. n.d. S.a, S.v. Mendelssohn et al. 

(1976) 

Carter Creek Marsh, 

Maryland 

4-16 6.4 0.1 n.d. n.d. n.d. 0 S.a. Wolaver et al. 

(1986) 

 4-16 6.1 0.3 n.d. n.d. n.d. 10  Wolaver et al. 

(1986) 

 4-16 5.8 0.2 n.d. n.d. n.d. 0 mixed 

zone 

Wolaver et al. 

(1986) 

 4-16 6.5 0.1 n.d. n.d. n.d. 10  Wolaver et al. 

(1986) 

 4-16 5.9 0.6 n.d. n.d. n.d. 0 S.p., D.s. Wolaver et al. 

(1986) 

 4-16 5.8 0.4 n.d. n.d. n.d. 10  Wolaver et al. 

(1986) 

North Sunken 

Meadow, 

Massachussetts 

25-30 6.3 0.1 6.2 6.7  45 S.a., S.p., 

D.s. 

Portnoy & Giblin 

(1997) 

Kennon Marsh, 

Virginia 

0 7.3 0.3 6.4 7.8 90-100 g/kg 20 Z.a., B.l. Seybold et al. 

(2002) 

 0 6.5 0.3 6.1 7.3 50-80 g/kg 50  Seybold et al. 

(2002) 

Chace Cove Marsh, 

Massachussetts 

n.d. 4.7 1 n.d. n.d. 60.0 ± 10.2 % 0 S.p. Twohig & Stolt 

(2011) 

 n.d. 7 0.5 n.d. n.d. 80.0 ± 11.6 % 50  Twohig & Stolt 

(2011) 

Colonel Green 

Marsh, 

Massachussetts 

n.d. 6.5 1.1 n.d. n.d. 47.4 ± 7.8 % 0 S.p. Twohig & Stolt 

(2011) 

 n.d. 7.4 0.7 n.d. n.d. 53.6 ± 9.4 % 50  Twohig & Stolt 

(2011) 

Elbe estuary, 

Germany 

0-5 7.1 0.3 6.5 8.5 < 5% 0-150 P.a., mixed 

grasses 

Andresen (1996) 

          
B.l. = Bidens laevis, D.s.= Distichlis spicata, P.a. = Phragmites australis, S.a. = S. alterniflora,  S.c. = Spartina cynosuroides, 

S.p. = Spartina patens, S.v. = Salicornia virginica, Z.a. = Zizania aquatic.. n.d. = no data 
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The difference of the soil porewater pH could link the carbon cycle to the silica cycle in 

an interesting way. Tidal marshes are well known for their high silica content, because of 

the production of phytoliths by marsh vegetation (Struyf & Conley 2009). These 

phytoliths consist of amorphous silica which dissolves 100-100,000 times faster than clay 

minerals, primary mafic silicates and feldspars (Fraysse et al. 2009). Applying the function 

for phytoliths dissolution (Fraysse et al. 2009, equation 9) for the pH of 6.3 and 7.1, 

representative for the top 150 cm of soil of the US and Elbe marshes (see Table 6.3), 

respectively, yield a 0.40-1.03% difference in dissolution rates. This difference, albeit very 

small, could potentially alter the long term burial efficiency for phytoliths. It is possible 

that the pH in the first centimetre of the marsh soil is higher than the average values 

used in the calculation, due to the presence of higher amounts of CaCO3, which would 

increase the difference in dissolution rates even more. This would partly explain the fast 

dissolution of phytoliths in reed litter observed in a tidal freshwater marsh in the Scheldt 

estuary, Belgium (Struyf et al. 2007), an estuary which lies also in the influence of the 

Wadden Sea and thus receives CaCO3 rich sediments, which is mirrored in the high 

amounts of CaCO3 in the sediments of intertidal freshwater areas (Hellings et al. 2000). 

6.6.3 CaCO3 sources and transport in the Elbe estuary 

The CaCO3 buffer of the Elbe marsh soils is sustained by the delivery of CaCO3 rich 

sediments to the marsh surface. The deposition of these sediments in the tidal marshes 

of the Elbe estuary is driven by external processes, which create the prerequisites for the 

CaCO3 dissolution based TA generation. The first process is the production of CaCO3 rich 

sediments in the coastal zone of the Elbe estuary, the second process is the transport of 

these sediments into the estuary. 

The origin of the CaCO3 rich sediments is the Wadden Sea, an extensive intertidal zone in 

the south-eastern part of the North Sea, which includes the area of the outer Elbe 

estuary. There large amounts of CaCO3 are produced by molluscs, with long term 

averages of the living standing stock shell weight of 16 g m-2 for the bivalve Macoma 

baltica  (Beukema 1980) and 104 g m-2 for the bivalve Cerastoderma edule (Beukema 

1982). These molluscs are heavily predated by birds, crabs, and fishes, which results in the 

fragmentation of the carbonate shells (Cadée 1994) to a size-range from <0.1 to 8mm. 

The biologically mediated fragmentation of the shells facilitates the displacement of 
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CaCO3 particles by tidal currents, which otherwise were too weak to transport the whole 

shells (Flemming et al. 1992). As a result, the calcite content in the 2-63 µm fraction of 

sediments in the outer Elbe estuary can be as high as 17 %-wt. (Schwedhelm et al. 1988). 

Due to the funnel shape of the estuary and the deepening of the shipping channel, the 

flood current has higher velocities than the ebb current and is of longer duration. This 

means that sediment, which is suspended during flood tide, travels a longer distance 

than during ebb tide, resulting in a net upstream movement. This process is known as 

tidal pumping. As a result, sediment from the Wadden Sea is distributed throughout the 

whole estuary. At HDM (Elbe km 657) between 30% and 60% are of marine origin, 

increasing to 80-90% at DSK (Elbe km 713.5) (Schwedhelm et al. 1988). The calcite 

content in the 2-63 µm fraction of the suspended matter (SPM) lies between 3 and 14 %-

wt. Independent measurements of PIC concentrations in bulk suspended matter samples 

collected during 16 cruises on the Elbe estuary between 2009 and 2011 showed values 

between 1-9 %-wt. (T. Amann, in prep.). The PIC content of the suspended matter is 

higher than in the tidal marsh soils. In the upper 40 cm PIC concentrations were always 

lower than 1% (0.75 ± 0.13% – 0.92 ± 0.18%; K. Hansen, pers. comm.), indicating loss of 

PIC, which is in line with the observed Ca2+ excess. 

The CaCO3 rich suspended matter of the Elbe estuary reaches the tidal marsh areas 

during flood tides. The sedimentation on the marsh surface is heterogenic process and 

driven by extreme events, because the sedimentation rate is an exponential function of 

the inundation time of the marsh surface (Temmerman et al. 2003). This means, that of 

storm surges, which have water levels, that can be greater than 1 m above the marsh 

surface, contribute above-average to the sediment deposition. For example, during one 

major flooding at DSK in 2009, 36% of all sediments recorded for a study period of 23 

month were deposited (Müller et al. in press). 

6.6.4  Carbonate system of the seepage water 

Spatial patterns 

The absolute DIC and TA concentrations are much higher than previously reported for 

seepage water. They lie in a concentration range that is found in marsh soil porewater 

(Neubauer & Anderson 2003, Keller et al. 2009) or marine sediment profiles (e.g. Beck et 
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al. 2008) in several centimetre to decametre depth. Taking the porewater data from 

Neubauer and Anderson (2003, table 1) as an example, the influence hydrology and soil 

permeability can have on seepage and porewater concentrations is explained. The dataset 

shows that the DIC concentrations increase with distance from the creek bank. This 

observation is in line with the knowledge about seepage water hydrology in marsh soils. 

Gardner (2005b) showed that the seepage discharge of a tidal creek is mostly derived 

from sediments within several metres of the creek bank. Additionally, infiltration into the 

marsh soil only takes place if the water level surpasses the height of the creek bank, 

because flooding reduces the hydraulic pressure gradient between the porewater near 

the creek bank and the one farer away (Fischer 1994, Gardner 2005b). The infiltration 

occurs with maximum efficiency when the water level does exceed the height of the 

creek bank (Harvey et al. 1987, Fischer 1994, Xin et al. 2011). The Sweet Hall marsh is 

typically flooded to a depth of 20-40 cm at high tide, as opposed to the sampling 

locations in the Elbe estuary. During the study period they were flooded to a depth of 10 

cm 12.7% (HDM), 7.2% (NF) and 4.5% (DSK) of the time. The frequent inundation of the 

Sweet Hall marsh allows infiltration of estuarine water with lower DIC concentrations, 

which could explain the DIC concentration gradient perpendicular to the creek bank. It 

could also explain the concentration difference with respect to HDM, because HDM is 

less frequently flooded as the Sweet Hall marsh sampling site.  

The differences in flooding frequency together with different soil permeabilities, could 

also explain the concentration differences observed along the salinity gradient (Figure 

6.2). Data from an environmental impact study (UVU 1997), which analysed soil 

parameters in the tidal marshes of the Elbe estuary, showed that the average saturated 

water conductivity was higher at HDM (10-40 cm d-1) than at NF or DSK (1-10 cm d-1, 

respectively). A flooding event would thus lead to a higher infiltration volume per time at 

HDM, diluting the porewater stronger than at NF or DSK. Dissolved silica concentrations 

(Chapter 3), measured in samples taken together with samples for DIC and TA, displayed 

the same spatial pattern. This finding corroborates the hypothesis that the difference in 

soil permeability is the determining factor for the DIC and TA concentration distribution  

Another process that can decrease the concentration of dissolved matter is dilution due 

to precipitation. At the sampling sites dilution can occur through precipitation and tidal 
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inundation. Monthly mean precipitation during the sampling period was slightly higher at 

NF and DSK (about 40 mm per month; German Weather Service, DWD). Despite higher 

rainfall at NF and DSK, lowest concentrations were observed at HDM, ruling total 

precipitation amount out as a main driving factor for the observed concentration 

differences.  

The differences in pCO2 values between HDM and NF as well as DSK (Figure 6.2) are 

result of the higher DIC concentrations at the latter sites. Although the relative amount of 

CO2 was higher at HDM (4.4%) than at NF and DSK (1.9%) the absolute was not, because 

of the lower DIC concentration. Because temperature and salinity differed not very much 

between the sites the CO2 concentration affected the pCO2 calculation most. 

Tidal variation 

The different concentrations in the bulk and the seepage phase were commonly observed 

by other researchers as well. Neubauer and Anderson (2003) reported DIC concentrations 

during low tide which were 1.8 to 5.3-fold higher than the high tide concentrations, 

which is in the range of the observed concentration differences in this study. Wang and 

Cai (2004) measured a 10% difference between low tide and high tide water. The much 

lower concentration difference can be attributed to the bigger size of the tidal creek in 

the study, which reduces the ratio of marsh to estuarine water in the creek and thus the 

influence of the marsh seepage water on the DIC signal in the creek, as shown by 

Tzortziou et al. (2011). The high tide concentrations were in general higher than the 

estuarine DIC concentrations, due to the mixing with DIC enriched water during the flood 

phase. All three sampling stations are bordered with extensive tidal flats. The flooding 

water thus exchanges with the tidal flat porewater and is enriched in DIC and TA before 

it reaches the tidal creek.  

As benthic microalgae were present in all three sampling creeks throughout the year (A. 

Weiss, pers. observation) it is most likely that their activity was responsible for the 

observed correlation between pH and DO saturation in the tidal creeks. The sampling 

campaign at DSK in March 2011 clearly showed the influence of primary production in 

the physico-chemical parameters of the seepage water, which give further confidence in 

the interpretation of cause of the high pH and DO saturation values (see below). 
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Seasonal variation and the concept of the marsh CO2 pump 

Seasonal increase of DIC concentrations in a tidal marsh system was only reported by 

one study. Wang and Cai (2004) observed an increase of DIC concentrations from spring 

to fall in the Duplin River, a marsh dominated tidal creek system in Georgia, USA. They 

proposed a “marsh CO2 pump” concept to explain the observed seasonal variation of DIC 

concentrations and export. During spring and summer the marsh pumps in large 

amounts of atmospheric CO2 because of high rates of primary production, while the 

export is relatively small. This corresponds to an accumulation stage. In fall, primary 

production decreases while respiration increases and therefore less CO2 from the 

atmosphere is pumped into the marsh and more inorganic and organic carbon is 

pumped out. This situation corresponds to a releasing stage. In winter, both primary 

production and respiration in the marsh are at their annual low. 

While it can be assumed that the seasonal temperature differences have an influence on 

the soil respiration processes, the DIC and TA concentrations of the Elbe marshes do not 

reflect it in a way as shown by Wang and Cai (2004) for the Duplin River. The reason for 

this is most likely the difference in size between the two creek systems. The Duplin River 

is a 12.5 km long marsh-dominated nonriverine tidal river. It has a very long water 

residence time, compared to small tidal creeks of the Elbe marshes that are filled and 

drained every tidal cycle. The larger residence time turns the water mass in the Duplin 

river into a buffer that integrates the DIC signal from marsh export as well as from 

processes in the water column. It is therefore more comparable to estuaries than to small 

scale tidal marsh creeks. In small scale tidal creeks the tidal influence, i.e. complete water 

exchange during one tidal cycle, does not allow for an accumulation of DIC as in the case 

of the Duplin River. Additionally, small scale systems are also influenced by the tidal 

action with regard to their dissolved matter concentrations of the seepage water as 

described in the previous section. These two factors make the detection of a seasonal 

signal in the seepage water of the Elbe marshes impossible. The data from Neubauer and 

Anderson (2003), who sampled a creek system comparable in size, also showed no 

seasonal signal of DIC concentrations in the low tide seepage water and even in soil 

porewater taken near the creek bank. Furthermore, the DIC concentrations of two 

consecutive tides in November differed by more than a factor of two. It therefore can be 

concluded, that on the scale of a single small sized tidal creek the “marsh CO2 pump” 
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concept might not be applied and may be limited to larger scales, such as the marsh-

dominated nonriverine tidal rivers of the salt marsh system of Georgia, USA. 

Diurnal variation: the influence of benthic primary production on the carbonate 

system in the seepage water 

The sampling in March 2011 at DSK clearly showed the influence of primary production 

on the carbonate system in the seepage water of tidal creek (Figure 6.4). The creek banks 

were inhabited by benthic algae which formed dense mats (A. Weiss, pers. Obs.). The 

influence of benthic microalgae on the carbonate system of the seepage water is 

mediated through their potentially high primary production rates (Macintyre et al. 1996), 

which can increase the DO saturation as well as the pH on the sediment surface 

(Revsbech et al. 1988). The pH increase is a result of CO2 uptake by these organisms. 

Together with the physical water-air CO2 flux, the primary production leads to a decrease 

of the DIC concentrations, as observed during the sampling (Figure 6.4). It can be 

assumed that the reduction of the DIC concentrations by benthic algae will be higher in 

summer month, because primary production rates are positively correlated with 

temperature and solar radiation (Cadée & Hegeman 1974). However, only during 3 out of 

18 samplings (DSK 2010-07, DSK 2011-03, NF 2011-07, Figure 6.5) the pCO2 pattern 

showed signs of primary production during the seepage phase, indicating that the tidal 

influence can override the biological signal. 

Another intriguing hypothesis can be derived from the pH variation in the seepage water, 

which is induced by benthic primary production. As observed in March 2011 at DSK 

(Figure 6.4) benthic primary production can increase the pH by at least 0.5 units or even 

1.5 units when considering the micro environment of the microbial mat (Revsbech et al. 

1983). The shift of the pH from its initial values of about 7.1 in the soil to 8.6 in the 

seepage water could increase the dissolution rates of biogenic silica by 10-38%. Benthic 

diatoms could therefore increase their supply of DSi, by enhancing the dissolution of 

amorphous silica, including the frustules of dead diatoms. This process illustrates nicely 

the role tidal creeks play in routing and shaping the flow of matter from the tidal marsh 

system to the estuary. 
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6.6.5 DIC export 

The daily DIC export rates of 0.06 ± 0.03 to 0.24 ± 0.07 mol m-2 d-1 (Figure 6.6) lie in the 

same range of previously reported fluxes. Neubauer and Anderson (2003) reported values 

of 0.033 ± 00.15 to 0.082 ± 0.049 mol C m-2 d-1 for a freshwater tidal marsh. Another 

study reported marsh-water column fluxes of 0.054-0.126 mol m-2 d-1 for the Sapelo 

Island marsh, Georgia (Cai et al. 1999). 

Compared to the mean annual DIC export from the Elbe watershed, which is 63.5 

Gmol yr-1 (Amann et al. in prep), the flux from the tidal marsh areas in the estuary 

accounts for 2.8 to 10.2%. Normalized to area, the marsh flux is 194 to 621-fold higher 

than the DIC export from the Elbe watershed. Because of the high specific fluxes from the 

marsh areas, they contribute significantly to the estuarine excess DIC. Regarding the 

excess DIC (i.e. DIC in excess of that expected from conservative mixing between 

seawater and freshwater and equilibrium with the atmosphere) produced in the inner 

Elbe estuary, which is 23.3 Gmol yr-1 (T. Amann, in prep.), the tidal marsh export could 

account for 7.5 – 27.8%. This number is smaller than the one calculated by Neubauer and 

Anderson (2003) for the Pamunkey River and the York River, which is 47 ± 23%. In a 

global perspective the mean annual DIC flux of 51.9 Mmol km-2 yr-1 from the tidal marsh 

areas of the Elbe estuary is 312 time higher than the global average of 0.166 Mmol 

km-2 yr-1 reported for rivers (Hartmann et al. 2009) and still 7.8 times higher than the DIC 

flux from highly active weathering regions, like volcanic areas (6.6 Mmol km-2 yr-1, Dessert 

et al. (2003)).  

It is interesting that, despite the differences in the methodology applied to calculate the 

export rates and the differences of the tidal marsh ecosystems, similar results were 

obtained. Because of the current lack of comparable studies considering different tidal 

marsh environments, it is not possible to determine, whether the similarity of the export 

rates is mere coincidence or a feature of these ecosystems. The complexity of these 

systems, regarding the influence of hydrology on all biogeochemical processes that can 

affect the DIC export, makes it impossible to more than speculate about the reasons for 

different in export fluxes at different study sites. Detailed knowledge of the hydrology 

and the soil biogeochemistry of different sampling sites is the prerequisite for a 

meaningful comparison. Therefore, future studies should assess the parameters of the 
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sampling site in detail and combine their results with theoretical work (e. g. Gardner 

2005b), to advance the development of general model that can be used for the 

calculation of export fluxes from tidal marshes. 

6.6.6 Uncertainty assessment 

Because the same methodology as in chapter 3 was used, the uncertainty discussion is 

strongly based on it. To derive the correct water volume from the DEM the model has to 

represent the creeks and drainage ditches at the sampling watersheds. The comparison 

with aerial photos confirmed that the large creeks and ditches were reproduced correctly 

by the DEM (Figure 2.3) However, the extent of smaller drainage ditches were not 

reproduced accurately. The reason for this underestimation of the creek length is the 

interference of vegetation with the LIDAR technique. If the vegetation covers the channel, 

the incoming laser impulses cannot reach the channel bottom, which leads to false values 

in the DEM. The elevation bias was shown to be highest in tidal creeks where the real 

elevation is overestimated (Chassereau et al. 2011). That means that the actual creek bed 

elevation is lower than represented in the DEM. Overestimation of the DEM elevation 

leads to an underestimation in the volume of the creek channel network. Because of the 

volume term in Eq. 6.2, the DIC export would also be underestimated. These errors alone 

lead to an underestimation of the export rates during the bulk phase. The other error 

source is related to the export rates calculated for the seepage phase. They are based on 

only two crude measurements of seepage discharge in July 2011 and literature data from 

other marsh areas in the Elbe estuary. We argue that these values are a rather 

conservative estimation of the seepage discharge, because all values are from July, when 

the marsh soil was very dry. Additionally, the measurements at NF and DSK were not 

made after a total marsh flooding, when seepage discharge was normally higher, due to 

the marsh soils “sponge effect” (see Müller et al. (in press). 

6.7 Conclusion 

In this study the spatio-temporal variability of the carbonate system of three tidal 

marshes in the Elbe estuary, Germany, was assessed. Most of the observed variability 

could be explained by differences in site specific properties such as soil permeability, 

vegetation cover and flooding frequency. Short term control on the carbonate system 
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was influenced by benthic primary production, especially during the seepage phase and 

has the potential to decrease DIC export fluxes. Furthermore it was shown that the main 

source for TA was CaCO3 dissolution. If compared to previous studies from the US, where 

sulphate reduction was thought to be the main TA generating process, this finding adds 

new information to the variability of factors influencing the carbonate system in tidal 

marshes. The presence of the CaCO3 buffer in is linked to regional processes in the 

Wadden Sea, e.g. CaCO3 formation by molluscs and other organisms, and fragmentation 

of shells by their predators and may also be found in other parts of the world, where a 

Wadden Sea like ecosystem are present, e.g. Yellow Sea. The seasonal marsh CO2 pump, 

a concept developed for marsh dominated estuaries along the continental margin of the 

South Atlantic Bight, cannot be applied for the settings of the Wadden sea marshes, 

specifically for marshes with smaller tidal creeks. These findings stress the importance and 

the need for regional studies of tidal marshes around the Wadden Sea, because 

assumptions based on knowledge gained in US tidal marshes do not apply in those 

systems. 
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7 Synthesis 

7.1 Silica in tidal marshes: spatial-temporal patterns and lateral 

fluxes 

Part one of the thesis studied the spatio-temporal patterns of DSi concentrations in tidal 

creeks and the distribution of BSi in the marsh soil along a salinity gradient in the Elbe 

estuary, Germany. It could be shown that the general tidal patterns, i.e. high DSi 

concentrations in the seepage water and low concentrations in the bulk water, were 

present at all three sampling sites. Seasonally, DSi concentrations increased from spring 

to autumn at the brackish and saline site. At the freshwater site the variation was lower, 

which was attributed to different saturated water conductivities of the soils. Compared to 

other studies, DSi concentrations were among the highest reported in peer-reviewed 

literature (Müller et al. in press, table 2). Mean annual seepage DSi concentrations 

increased along the salinity gradient from 270 μmol L− 1 to 380 μmol L− 1. BSi 

concentration of the soil showed the opposite trend decreasing from 15.8 to 4.8 mg g− 1, 

which was explained with the catalytic effect of higher salinities on the dissolution rates 

of BSi. The DSi export from the total estuarine marsh area in July was significant and 

could account for 52-70% of the monthly Elbe river load, which was in line with a 

previous finding (Struyf et al. 2006a) in the eutrophied Scheldt estuary. Additionally, the 

importance of diurnal benthic DSi uptake by diatoms on the seepage DSi concentrations 

was shown. Concentrations were lower around noon than at sunrise or sunset. This 

observation implicates that DSi concentrations during the nightly seepage phase are 

higher than during daytime. Estimations of DSi Export which are solely based on daytime 

observations therefore might be underestimated. Future studies should include nightly 

sampling to assess difference in DSi export during day and night time. A comparison with 

DSi mobilisation fluxes from highly active weathering regions, i.e. pyroclastic flows and 

fresh volcanic rocks (Beusen et al. 2009, Hartmann et al. 2010), showed similar DSi export 

rates (~1,4 Mmol Si km2 yr-1) stressing the importance of tidal marsh areas in the coastal 

silica cycle, despite their limited size. 
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In the second part the relevance of DSi export from tidal salt marsh areas for regional 

land ocean DSi fluxes was assessed using the North Sea Basin as an example. Because of 

the importance of tidal marsh DSi fluxes in estuarine systems (local scale) it was 

hypothesised, that salt marshes could also be significant sources of DSi in the North Sea 

silicon budget (regional scale). However, it could be shown that mean annual DSi fluxes 

from the tidal salt marsh areas around the North Sea accounted for only 0.7% of the 

annual riverine inputs. During summer, when riverine DSi concentrations are low, the 

contribution did still not exceed 2.4%. Nonetheless, for smaller regions with favourable 

geographic conditions of low river inputs and large marsh areas, like the English Channel, 

salt marsh DSi exports accounted for up to 15% of the riverine DSi flux in summer. The 

importance of salt marsh DSi flux might be further enhanced in regions, where the 

benthic-pelagic coupling is reduced due to deeper water depth. There, the surficial 

supply of DSi into the coastal water would provide DSi which is instantly available, 

because its supply is independent from mixing processes. Concluding, for the North Sea 

as a whole, salt marsh DSi fluxes are insignificant for the total DSi budget and do not 

need to be included in models of DSi fluxes for the regional sea scale (e.g. Meybeck et al. 

2007) to global scale (e.g. Tréguer & De La Rocha 2013). Because of the importance of 

salt marsh DSi fluxes at local scale, however, studies resolving individual coastal segments 

(“COSCATS” (Meybeck et al. 2006, Beusen et al. 2009, Garnier et al. 2010), should include 

salt marshes DSi fluxes to improve the estimation of land-ocean DSi fluxes.  

7.2 Isotopes of dissolved silicon in the Elbe estuary and its tidal 

marshes 

7.2.1 Tidal marshes 

The third part of this thesis analysed spatial and temporal patterns of δ30Si in tidal 

marshes along an estuarine salinity gradient as well as along the main axis of the estuary, 

from the freshwater reaches to intermediate salinities. At the tidal marsh areas three tidal 

patterns of δ30Si were observed. Little variation between bulk and seepage phase δ30Si 

values (range 1.71 ± 0.08‰ to 1.87 ± 0.13‰) at the freshwater site was explained by 

previous tidal flooding of the area which led to high percentages of estuarine fraction in 

the seepage water. At the brackish site seepage δ30Si values were higher than bulk values 

(~0.8‰, reaching up to 3.26 ± 0.10‰), reflecting the discrimination against heavy 
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isotopes during plant uptake of DSi. At the saline site the patter was reversed. 

Additionally, absolute δ30Si values of the seepage water were ~1.8‰ lower than at the 

brackish site. It was hypothesised that differences in respiration rates of the dominant 

plant species were responsible. Seasonal variation of δ30Si at the brackish site was similar 

during May, July, and October. The δ30Si values measured in the seepage water of the 

brackish site surpass the highest published values for soil solutions (Opfergelt & Delmelle 

2012), showing once more that silica is intensely recycled in tidal marsh ecosystems. 

7.2.2 Elbe estuary 

The data from the estuary showed that alterations of δ30Si occurred mainly in its 

freshwater part, a new finding for estuarine δ30Si cycling. The distribution of δ30Si during 

the October cruise could be explained by two processes. The first one was diatom 

production increasing δ30Si values and decreasing DSi concentrations. The second process 

was conservative mixing. In December DSi concentrations increased along the estuarine 

axis, possible due to inputs from tributaries and marshes. The δ30Si signature showed a 

local drop of 0.6‰ in the harbour area of the city of Hamburg. Due to the poor data 

coverage it was not possible to pinpoint the exact process which led to the observed 

patterns. It was hypothesised that a combined effect of mixing with tributary water and 

fractionation due to adsorption/desorption on suspended matter was responsible. Yet, to 

answer the remaining open question, what processes were responsible for the alteration 

of the δ30Si signal in the tidal freshwater reach of the Elbe estuary, future sampling 

campaigns must be carried out, including all possible DSi sources, such as tributaries, 

groundwater and the sewage treatment plant discharge. Additionally, the role of the 

harbour basins in altering DSi and δ30Si signals should be analysed to quantify the 

influence of anthropogenic disturbance on the distribution of δ30Si in the estuary.  

The study showed that the estuarine transition can lead to relevant alterations in the 

riverine δ30Si signal. Despite the importance of estuarine Si transformations (Laruelle et al. 

2009) for land ocean silica fluxes, up to date only rivers and lakes are included in the 

representation of the isotopic silica cycle (Basile-Doelsch 2006, Opfergelt & Delmelle 

2012). So far, only two publications include δ30Si values from estuaries (Ding et al. 2004, 

Hughes et al. 2012). The here presented data clearly showed that estuaries have the 

potential to influence the riverine δ30Si signal before it reaches the ocean. The 
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consideration of estuarine δ30Si alterations should therefore be included into 

representations of the silica cycle, because of their possible influence on the whole ocean 

δ30Si signature. Future studies should take up the effort of this study to improve the poor 

data coverage of estuarine systems with respect to δ30Si values to help to close this 

knowledge gap in the land ocean silica cycle. This would help not only to improve the 

understanding of the present day silica cycle, with respect to anthropogenic disturbances, 

but would also help to reconstruct the marine silica cycle of palaeo-oceans. Because of 

the link between the marine silica cycle and the global climate, this knowledge might 

help to reconstruct palaeo-climates and might also improve our understanding of the 

future climate in a changing world. 

7.3 Carbonate system: spatial-temporal patterns and lateral fluxes  

The last part of the thesis dealt with the carbonate system of tidal marsh creeks in and 

the export of DIC to the Elbe estuary. The DIC export rates were comparable to rates 

measured in other systems. The flux from the tidal marsh areas accounted for 2.8-10.2% 

of the mean annual DIC export from the Elbe watershed and for 7.5-27.8% of the excess 

DIC in the estuary (i.e. DIC in excess of that expected from conservative mixing between 

seawater and freshwater and equilibrium with the atmosphere), which was in line with a 

previous finding (Neubauer & Anderson 2003). It was shown that the tidal marshes of the 

Elbe estuary are sources for DIC and TA. The main TA source was calcium carbonate 

dissolution. The presence of the CaCO3 buffer was linked to regional processes in the 

Wadden Sea, like CaCO3 formation, subsequent fragmentation and the import to the 

marsh areas by storm tides. Compared to previous studies from the US (Cai et al. 1999, 

Raymond et al. 2000, Neubauer & Anderson 2003, Wang & Cai 2004), where sulphate 

reduction is thought to be the main TA generating process, this finding adds new 

information to the variability of factors influencing the carbonate system in tidal marshes. 

It was hypothesised that the presence of the CaCO3 buffer in the Elbe marshes could link 

the inorganic carbon cycle with the silicon cycle. A comparison of soil pH data from US 

marshes with data from the Elbe marshes showed, that US marsh soils are more acidic. 

Higher pH values increase the solubility of BSi (Loucaides et al. 2008, Fraysse et al. 2009), 

which could led to decreased long term storage of BSi in the Elbe marshes compared to 

US marsh system. 
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7.4 Future work 

In times of anthropogenic disturbance of the land ocean silica fluxes (Laruelle et al. 2009), 

the presence of tidal marshes in coastal ecosystems could mitigate the negative effects. 

The riverine DSi flux is decreased mostly by damming (Humborg et al. 1997, Ittekkot et 

al. 2000), which traps BSi in the artificial lake environments, i.e. dams. This Si, as opposed 

to nitrogen and phosphorous, is not resupplied by anthropogenic activities downstream 

of the dams (Ittekkot et al. 2000), which leads to an increase in N:Si and P:Si nutrient 

ratios, with unfavourable effects for the aquatic ecosystems (Garnier et al. 2010). Because 

tidal marsh areas drastically declined in the last centuries due to land reclamation, dyke 

construction, and the conversion of tidal marsh areas to farmland (Mitsch & Gosselink 

1993, Reise 2005), the effectiveness of the natural Si buffer also declined, increasing the 

anthropogenic pressure on coastal ecosystems. Tidal marshes not only mitigate silicon 

limitation but are also important areas with respect to flood prevention. In light of rising 

sea-levels and increased tidal amplitudes in estuaries due to deepening of the shipping 

channel (Rolinski & Eichweber 2000, Meire et al. 2005), the renaturation of tidal marsh 

areas came into focus of ecosystem managers (e.g. Sigmaplan 2012). Because artificial 

tidal marsh system can differ from natural systems with regard to their biogeochemical 

cycling of nutrients (c.f. Anisfeld 2012), the controlling factors for the silica cycling and 

the controlling factors of DSi export from artificial tidal marsh areas should be addressed 

in future studies. This scientific background knowledge would enable the impact 

assessment of nutrient cycling in coastal ecosystems where tidal marsh areas will be 

created.  

The isotopic silica cycle in the land ocean transition zone is a new field of research with 

only episodic data reports (Ding et al. 2004, Hughes et al. 2012; this study). This 

knowledge is needed to improve the global budget for the Si cycle and to constrain the 

size and isotopic input of the ridge flank hydrothermal flux of Si (and Si isotopes) into 

the ocean. Future studies of estuarine silica cycling should therefore inculde δ30Si 

measurements to help to close the knoweldge gap regarding alterations of the riverine 

δ30Si signal during estuarine transition. Despite the relative good knowledge about the 

main processes that drive silica cycling in tidal marshes (Jacobs et al. 2008, Struyf & 

Conley 2009, Schoelynck et al. 2013) and despite their importance for the coastal Si cylce, 
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the isotopic cycling has not been assessed. Future work should be focused on the 

transformation processes, i.e. plant uptake, BSi dissolution, and absorption, which drive 

the isotopic fractionation to establish a baseline for δ30Si values in tidal wetlands. If the 

isotopic tidal marsh endmembers, i.e. plants, soil, porewater, are better characterised it 

may be possible to use it as a tool to quantify the contribution of marsh derived DSi to 

coastal DSi budgets. 

 

The here presented results show that the tidal marshes of the Elbe estuary export DIC 

and TA to the coastal zone, which confirms the findings from US studies (Cai et al. 1999, 

Cai et al. 2000, Neubauer & Anderson 2003). However, the presence of a “marsh CO2 

pump” (Wang & Cai 2004) could not be confirmed. Due to the difference of DIC and TA 

generating processes in the Elbe marshes and the marshes in the US, comparative studies 

should be carried out to assess if the presence or absence of a carbonate buffer affects 

the cycling of other elements, too. This knowledge would help to create a typology of 

tidal marsh areas in the coastal zone that could be implemented in recent coastal 

typologies, i.e (Meybeck et al. 2006), which are used for land ocean matter flux studies. 

Furthermore, in contrast to the US, where it was shown that the tidal marsh dominated 

continental margin has a significant influence on the carbonate system of the US 

Southern Bight (Cai et al. 2003a, Jiang et al. 2013), no such assessment has been made 

for the North Sea or other regional seas. As in the case of DSI fluxes, DIC fluxes in 

regions with large tidal marsh areas, i.e. English Channel, could be of significant 

importance for the coastal carbon budget. Because of rising atmospheric CO2 

concentrations, due to anthropogenic emissions, the assessment of sinks and sources in 

the coastal zone was a major undertaking in the past years (Borges 2005, Chen & Borges 

2009, Laruelle et al. 2010), to improve the marine carbon budget. These studies however 

did not include tidal marsh areas as a separate compartment. Studies which would assess 

the regional DIC fluxes could help to decide whether or not coastal tidal marsh systems 

should be included as an individual part of the coastal carbon cycle.  

In summary, the study of tidal marsh systems with respect to the silica and carbonate 

system and fluxes from a biogeochemical point of view has only begun recently. Future 

studies should aim to integrate the new findings about tidal marsh silica cycling in 

existing concepts of tidal marsh ecology, which were developed since the 1960s, to 



 

99 

deepen the understanding of these exceptional ecosystems in relation to nutrient cycling 

in the coastal zone.  
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Appendix 

 

Appendix 1: Overview of tidal cycles from July samplings which were used for the DSi export calculations. 

Time is given in central European summer time (CEST = UTC+2). A) freshwater site, July 2010. B) brackish site, 

July 2010. C) brackish site, July 2011. D) saline site, July 2010. E) saline site, July 2011. 
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Appendix 2: Cl-:Ca2+ ratios in the Elbe estuary as a function of salinity. The non-linear fit (black line), the 

respective 95% confidence bands (blue lines) and the 95% prediction bands (red lines) are shown. The non-

linear fit followed the equation y = a+b*x/(c+x). 

 

 

Appendix 3: Cl-:SO4
2- ratios in the Elbe estuary as a function of salinity. The non-linear fit (black line), the 

respective 95% confidence bands (blue lines) and the 95% prediction bands (red lines) are shown. The non-

linear fit followed the equation y = a+b*x/(c+x). 
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Appendix 4: Seepage water chloride concentrations as a function of salinity. The linear least square regression 

line (dotted) and the conservative mixing line (solid) are shown for comparison. Note that the deviation of 

the data points from the mixing line is within the measurement error. The function shows the result of the 

linear least square regression. 

 

 

Appendix 5: Mass fractionation line of δ29Si versus δ30Si for the here presented samples. The slid line is the 

theoretical mass fractionation line of δ30Si = 1.93 * δ29Si.  



 

121 

Appendix 6: Estuarine DIC concentrations used for the calculation of marsh DIC enrichment. The average 

concentration was calculated from all available samples in a certain spatial interval. The interval for HDM was 

Elbe km 630-670, for NF it was Elbe km 670-710 and for DSK Elbe km 710-724 was used. 

  
DICriver (µmol kg

-1
) 

sampling location date average avg-stdev avg+stdev 

HDM 2010-09 1994 1981 2007 

HDM 12010-11 2252 2148 2356 

HDM 02011-03 2281 2251 2312 

HDM 2011-07 1811 1754 1868 

NF 2010-07 2144 2092 2196 

NF 2010-11 2459 2432 2486 

NF 2011-03 2313 2303 2323 

DSK 2010-07 1963 1959 1967 

DSK 2010-09 2106 n.d. n.d. 

n.d. = only 1 sample available 
    

Appendix 7: Upper and lower limit of seepage and total DIC export and the percentage contribution of the 

seepage export to the total export. 

  

seepage DIC export  
(mol m

-2
 d

-1
) 

 
total export (mol m

-2
 d

-1
) 

 
% of total export (%) 

location date lower limit upper limit 
 

lower limit upper limit 
 

lower limit upper limit 

HDM 2010-09 0.02 0.07 
 

0.04 0.09 
 

66 82 

HDM 12010-11 0.02 0.07 
 

0.10 0.23 
 

24 31 

HDM 02011-03 0.02 0.07 
 

0.04 0.09 
 

57 78 

HDM 2011-07 0.02 0.07 
 

0.05 0.11 
 

52 61 

NF 2010-07 0.06 0.17 
 

0.09 0.20 
 

68 86 

NF 2010-11 0.06 0.17 
 

0.08 0.19 
 

74 89 

NF 2011-03 0.06 0.17 
 

0.09 0.20 
 

65 85 

DSK 2010-07 0.05 0.16 
 

0.09 0.20 
 

58 81 

DSK 2010-09 0.05 0.16   0.16 0.27 
 

32 59 
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