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Summary i

Summary

Small-scale turbulence in the surface layer and the entrainment zone (EZ) of a

convective boundary layer (CBL) significantly affect the fluxes between the surface

and the free troposphere. Due to limitations in the resolution of large scale models

and even large-eddy simulations, small-scale turbulence is mostly unresolved and

therefore need to be modeled. Current models are still significantly inaccurate due to

the lack of understanding of these small-scale processes. To gain some understanding

of them, we use direct numerical simulation, which resolves turbulence accurately.

We address some open questions concerning turbulence in the surface layer and the

entrainment zone.

Regarding the surface layer, we ask:

• Do statistics at the surface layer for flows in pure free convection obey classical

similarity scaling?

• Does stratification, and therefore the outer scale, affect the surface layer statis-

tics? If so, how?

Regarding the entrainment zone, we ask:

• Does stratification impose a characteristic length scale different from the CBL

thickness?

• Does the EZ vertical structure affect the functional relationship between the

mean entrainment rate E = (1/w∗)dzi/dt and a convective Richardson num-

ber?

A consequence of this study is the establishment of the usefulness of direct numerical

simulation as a tool in atmospheric boundary layer turbulence research.
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1 Introduction

1.1 The atmospheric boundary layer

Figure 1.1: Sketch of the diurnal cycle of the atmospheric boundary layer over land
featuring the daytime convective boundary layer and the nocturnal stable boundary layer.
Source: Wikipedia Images

The atmospheric boundary layer (ABL) is the region of the lower troposphere

(around a few kilometers) that is in direct contact with the Earth’s surface. Because

of this direct contact, flows in the ABL are characterized by turbulence, which is

induced by convective motions due to surface heating by solar radiation, and by

shear effects due to the drag felt by the wind as the wind velocity is bound to be

zero at the surface. The type of turbulence forcing in the ABL depends on the

diurnal cycle, particularly over land: convective motions that destabilize the ABL

may dominantly drive turbulence during daytime while mean shear effects mainly

drive turbulence during nighttime as the surface radiatively cools and stabilizes the

ABL (see Fig. 1.1 for a sketch).

Above the atmospheric boundary layer is the rest of the troposphere, called the
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free troposphere, which is relatively nonturbulent and usually stably stratified. Tur-

bulence promotes the advancement of the ABL into the free troposphere through

entrainment of air from the free troposphere into the turbulent boundary layer. The

ABL’s advancement is, however, hampered by stable buoyancy forces within the

overlying free troposphere. Due to this interaction, a stable capping layer forms in

between the turbulent layer and the relatively nonturbulent free troposphere.

Consequently, the pollutants that we emit into the atmosphere are transported by

the turbulent motions but are usually trapped within the ABL because of the cap-

ping effect of the overlying stable region. Aside from pollutants, other quantities such

as air constituents (water vapor, oxygen, aerosols, greenhouse gases), momentum

(friction or drag), and energy are transported from the surface into the free tropo-

sphere, which consequently affect air quality, atmospheric chemistry, and boundary

layer clouds (that are crucial for the global climate problem!).

Within the big picture of the Earth as a system, the atmospheric boundary layer acts

as the thin buffer layer that couples the Earth’s surface and the rest of the tropo-

sphere and regulates the fluxes of different quantities between these two regions. An

adequate representation of the ABL is therefore crucial in general circulation mod-

els (GCMs), numerical weather prediction models, and pollution dispersion studies.

Properly representing the ABL then requires an understanding of the atmospheric

boundary layer and the processes affecting its growth.

The convective boundary layer

The dynamics and the structure of the convective daytime– and the stable nocturnal

boundary layer are quite different and both deserve to be studied comprehensively.

In this study, we only focus on the daytime boundary layer or the convective bound-

ary layer (CBL), particularly when the mean wind is relatively weak (usually during

fair weather days), and refer to Stull (1988) for a description of the nighttime bound-

ary layer.

The convective boundary layer is usually depicted as being composed of different

regions, which are sketched in Fig. 1.2:

• the unstable surface layer, which is typically 100-meters thick or 10%-20% of

the CBL thickness, wherein properties vary rapidly with distance from the

surface, and the vertical profiles of fluxes and shear stress are approximately
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constant

• the well-mixed layer, where the convective mixing due to rising buoyant ther-

mals and accompanying downdrafts cause conserved quantities (such as po-

tential temperature and humidity) to be relatively constant with respect to

altitude

• the entrainment zone, the relatively thin boundary between the CBL and the

free troposphere, a region of increased stability that caps the CBL

Figure 1.2: Visualization of the convective boundary layer featuring the different regions.

As depicted in Fig. 1.2, the elements of convective motions are in the form of ris-

ing buoyant plumes attached to the surface and rising thermals that are already

detached from the surface. The turbulent thermals tend to overshoot their level of

neutral buoyancy due to inertia and consequently penetrate into the stable region.

This overshooting is called penetrative convection (see Deardorff et al., 1969). The

thermals are then deflected by the opposing stable buoyancy force. As the thermals

are deflected, they tend to displace down wisps or sheets of more buoyant air from

the free troposphere into the mixed layer, wherein the nonturbulent fluid parcels

are entrained and mixed rapidly by the turbulent motions (see Chapter 5). Accord-

ingly, CBL growth is regulated by the interaction between turbulence and stable

stratification that occurs at the entrainment zone.

1.2 Review of related literature

Due to the importance of understanding the properties of the CBL, extensive re-

search has been done on it within the past five decades, involving laboratory exper-
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iments, field observations, and numerical simulations.

Earlier experiments regarding thermal convection in air (Deardorff and Willis, 1967)

and penetrative convection in a water tank (Deardorff et al., 1969) have paved

the way for the pioneering works of Deardorff and Willis (Willis and Deardorff,

1974; Deardorff, 1970; Deardorff et al., 1980; Deardorff and Willis, 1985) wherein

a convective boundary layer is mimicked in a water tank to investigate the vertical

structure of the CBL.

Findings in the laboratory regarding the vertical structure of the CBL were further

confirmed by Kansas and Minnesota field experiments (see Kaimal and Wyngaard,

1990, for an overview). These field campaigns justified the use of the boundary-layer

depth as the scaling length of the mixed layer (Kaimal et al., 1976) and reaffirmed

the findings of Willis and Deardorff (1974) that the convective scalings proposed by

(Deardorff, 1970) indeed characterized the variances of quantities within the mixed

layer. The Minnesota data (Kaimal et al., 1976) also showed evidence of entrainment

of free troposphere air into the mixed layer.

Numerical simulations, in particular the large-eddy simulations (LES) pioneered by

Deardorff (1972), were considerably successful in simulating a CBL with comparable

vertical structure, owing to the fact that the CBL is dominated by large eddies within

the well-mixed layer (Mason, 1994). Schmidt and Schumann (1989) further studied

the coherent structure of the CBL, which was made feasible by the availability of

entire velocity and temperature fields for certain points of time, a clear advantage

of numerical simulations over the other two aforementioned approaches.

Altogether, these studies have successfully established the general vertical structure

and the behavior of relevant low-order statistics of the potential temperature and

velocity fields within the well-mixed layer (Stull, 1988; Garratt, 1992; Zilitinkevich,

1991). In particular, the simplest canonical case, the dry, shear-free CBL growing

into a linearly stratified free troposphere, is considered to be a solved problem in the

sense that the growth rate of the CBL and the mean buoyancy behave proportional

to the encroachment scales (Carson, 1973) (see Chapter 3, section 3.2), and the

root-mean-square (r.m.s.) of fluctuations of buoyancy and velocity at the mixed

layer behave proportional to the convective scales (Deardorff, 1970) (see Chapter 3,

section 3.3). The robust vertical structure of the low-order statistics have motivated

the development of bulk layer frameworks, like the zero-order and first-order models,

which have been observed to work satisfactorily, at least for the simplest case of a

dry, shear-free CBL (Zilitinkevich, 1991; Fedorovich et al., 2004b). Thus knowledge
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of the mixed layer in general is quite complete and models related to this simplest

case are well developed. However, some details of the small-scale processes at the

surface layer and the entrainment zone still remain obscure.

1.3 Open questions

Regarding the surface layer, there is still uncertainty in the flux-gradient relations

in the limit of free convection (Beljaars, 1994; Grachev et al., 2000; Wilson, 2001)

and uncertainty on how the outer scales affect the surface layer (Businger, 1973;

Panofsky et al., 1977; McNaughton, 2004; Mellado, 2012) [addressed in Chapter 4].

Questions on the surface layer:

• Do statistics at the surface layer for flows in pure free convection obey

classical similarity scaling?

• Does stratification, and therefore the outer scale, affect the surface layer

statistics? If so, how?

Regarding the entrainment zone, the lack of understanding on how stratification

affects the characteristic length scale of turbulence in the entrainment zone reflects

on the large sensitivity of local properties to the particular length scale used for

subgrid-scale parameterization (Deardorff, 1980b; Stevens et al., 2000a; Sullivan and

Patton, 2011), while lack of understanding on the effect of the entrainment zone’s

vertical structure on the entrainment-rate parameters reflects on inconsistency and

disagreement in the entrainment-rate parameterizations that have been proposed

(Tennekes and Driedonks, 1981; Fedorovich et al., 2004b) [addressed in Chapter 5].

Questions on the entrainment zone:

• Does stratification impose a characteristic length scale different from the

CBL thickness?

• Does the EZ vertical structure affect the functional relationship between
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the mean entrainment rate E = (1/w∗)dzi/dt and a convective Richardson

number?

One may argue that for the simple case of a dry, shear-free CBL with a constant

surface buoyancy flux, the details of the surface layer and the entrainment zone are

unimportant as long as the model used sufficiently describes the mean buoyancy

flux at the surface, which constitutes the energy input into the system. Indeed,

large-eddy simulations give an accurate representation of the bulk properties and

large-scale dynamics of the system, even if the surface layer is not accurately rep-

resented (Fedorovich et al., 2004b; Sullivan and Patton, 2011), while a zero-order

bulk model predicts the entrainment rate well for this simple case, even if the zero-

order bulk model represents the entrainment zone as infinitesimally thin (Driedonks,

1982; Fedorovich and Mironov, 1995; Fedorovich et al., 2004b). However, when other

processes or complexities are added to the system – for instance, horizontal wind,

heterogeneity in the surface properties, and clouds – the details of the surface layer

model and the vertical structure of the entrainment zone become relevant.

Attempts to clarify these uncertainties have therefore been performed using the

same methods that established our knowledge of the mixed layer. However inherent

infirmities in these approaches render these studies inconclusive. For example, field

observations would ideally be useful for a deeper understanding of the surface layer

and the entrainment zone and for the development of more realistic ABL models

since they represent reality. However, atmospheric observations are simply not suit-

able for addressing the question of whether free convection scaling in the surface

layer applies in the limit of free convection because of the lack of control on such en-

vironments and the unavoidable presence of wind, no matter how weak. For studying

the entrainment zone, the currently achievable resolution and accuracy in remote

sensing techniques such as lidar and radar systems enable the measurement of pro-

files of turbulent variables within the lower troposphere (Hogan et al., 2009) and the

visual identification of the entrainment zone and different entrainment mechanisms

(Träumner et al., 2011). However, a more fundamental understanding of how these

mechanisms are affected by flow parameters is difficult to derive from atmospheric

observations not only because measurements of entrainment events and entrain-

ment zone thickness are difficult to obtain within the needed accuracy (Wulfmeyer

et al., 2010) but also because these measurements include the effect of different

complex processes, such as shear, that further complicate the entrainment mecha-



1.3 Open questions 7

nism (Grabon et al., 2009). Due to these complexities, there is always significant

scatter in the data, particularly in attempts to find a functional relation between

the entrainment rate and a Richardson number, and between the entrainment zone

thickness and a Richardson number (Träumner et al., 2011).

Controlled counterparts of the CBL in the laboratory have therefore been developed

to study free convection and the canonical flow of turbulent mixing across a stratified

density interface. Studies on free convection were usually set up as Rayleigh-Benárd

convection. However, many of these studies do not focus on questions regarding the

scalings of surface layer profiles. Besides, data in the surface layer are quite limited

due to the difficulty of obtaining accurate measurements inside the relatively thin

region, which require simultaneous access to several quantities at several positions.

Adding stratification to the flow even increases the difficulty in achieving a thick

enough surface layer in the lab since stratification makes a large scale separation

between the inner and outer scales more difficult to achieve. As for the entrain-

ment zone, laboratory studies addressed the entrainment zone length scale question

by using parcel theory to predict the penetration depth of thermals (Zeman and

Tennekes, 1977; Deardorff, 1979; Hopfinger, 1987) and the entrainment-rate para-

meterization question by finding power laws with respect to a Richardson number

[Rouse and Dodu (1955); Linden (1973); Deardorff (1979); Tennekes and Driedonks

(1981); Turner (1986), see Fernando (1991) for a review of early papers]. However,

a consensus regarding both questions still has not been reached. Part of the diffi-

culty in analyzing the details of the surface layer and the entrainment zone is due

to the high accuracy needed in data sampling, which then requires great ingenuity

and care. Laboratory experiments are also often criticized regarding their scalability

to the atmospheric flows because of the relatively low Reynolds numbers that are

achievable and because of the particular turbulent forcing used (e.g. oscillating grid,

imposed density difference by using salt) for mimicking atmospheric turbulence. In

tank experiments, possible side-effects, such as secondary circulations, may also be

induced by the tank’s boundaries. Moreover, the use of water instead of air in

tank experiments may lead to Prandtl number effects being significant (Jonker and

Jimnez, 2014), while in wind tunnels, stratifying the air is difficult.

Due to aforementioned difficulties in field observation and laboratory experiments,

most of the studies that addressed the aforementioned issues were based on data

from large-eddy simulations. However, as explained by Sullivan et al. (1998) and

Fedorovich et al. (2004b), LES were at that time not highly resolved and are still

unavoidably tainted by uncertainty due to subgrid-scale (SGS) models. This uncer-
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tainty manifests itself as sensitivity of statistics at the surface layer and the entrain-

ment zone to parameterizations. The sensitivity of statistics is even compounded

when complexity is added to the problem, a clear example of which is the CBL with

mean wind. The addition of shear has been observed to increase the contribution

of the small scales to the turbulence kinetic energy, consequently, SGS fluxes in

LES increase at the entrainment zone (Pino et al., 2003). Although there is finally

consensus that mean shear increases the entrainment flux (Pino and Vil-Guerau

De Arellano, 2008), how much it increases is still a bone of contention (Fedorovich

et al., 2004a) and a strong indication of the result’s sensitivity to SGS models.

Sensitivity of entrainment to the SGS model can be further observed in LES inter-

comparison studies for different cases: clear ABL (Driedonks, 1982), smoke-cloud,

(Bretherton et al., 1999; Stevens et al., 1999), stratocumulus-topped boundary lay-

ers (Stevens, 2002; Stevens et al., 2005; Wood, 2012), and CBLs with heterogeneous

surface (Huang et al., 2007).

In this respect, resolving more of the small scales should be able to address the

above-mentioned issue since the Navier-Stokes equations is theoretically the limit of

the filtered equations as the filter size goes to zero (Stevens and Lenschow, 2001).

To find out whether LES converges with grid refinement, Sullivan and Patton (2011)

varies the grid mesh from 323 to 10243. Their result shows that for a 5123 grid and

up, the vertical profiles of low-order statistics are already converging in the well-

mixed region when the ratio zi/(CsΔf) > 310, where zi is the CBL thickness, Cs is

the Smagorinsky constant and Δf is the filter size. This should be unsurprising since

the well-mixed region is dominated by the large scales, therefore SGS models should

play a relatively smaller role. In contrast, the results in Sullivan and Patton (2011)

clearly show lack of convergence for some statistics at the surface layer and at the

entrainment zone (like the temperature variance) where the effective Reynolds num-

ber is much smaller than that of the mixed layer. In these regions, the SGS model

represents turbulence poorly, as confirmed by their attribution of non-convergence

of the temperature variance to the use of a prescribed SGS closure based on an eddy

viscosity and a turbulent Prandtl number. They claim that having a fuller set of

prognostic equations for subgrid-scale temperature variance (e.g. Wyngaard (2004);

Hatlee and Wyngaard (2007)) can potentially improve convergence.

Clearly the price for being able to theoretically consider large Reynolds numbers

is the uncertainty introduced by the subgrid-scale model. We say here theoreti-

cally because it is also unclear whether LES results are indeed characteristic of high

Reynolds number flows due to unavoidable low Reynolds number effects inherent in
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limited grid resolution and the associated numerical artifacts, like numerical diffu-

sion. The lack of convergence at the surface layer and the entrainment zone could

be an indication of low Reynolds number effects since the effect of grid refinement

is to increase the effective Reynolds number by resolving more of the small-scale

eddies. Moreover, the obscured extent at which SGS models are able to represent

small-scale turbulence is, of course, detrimental to the physical understanding of the

dynamics of the flow at the surface layer and the entrainment zone. Although one

can put efforts on improving the SGS model, this effort is not much less than that

required to solve the Navier-Stokes equations directly.

1.4 Our approach: Direct numerical simulations

Based on the considerations presented in the previous section, we propose to use

direct numerical simulations (discussed in Chapter 2 section 2.3) as an alternative

approach for investigating the surface layer and the entrainment zone of the CBL,

since DNS resolves turbulence down to the smallest dissipative scales, and is there-

fore free from uncertainty introduced by turbulence models. The approach itself is

not new, since direct numerical simulations of the atmospheric boundary layer have

already been performed within the past two decades (Coleman et al., 1994; Cole-

man, 1999). However, the use of DNS in the field of atmospheric boundary layer

research is usually received with skepticism since resolving down to the dissipative

scale means that the achievable Reynolds numbers are restricted to low/moderate

values due to limited computing power, and that simulating turbulent flows with

atmospheric Reynolds numbers of O(108) is virtually impossible nowadays. Further

taking into account the high computational cost, DNS as a general purpose tool in

simulating atmospheric boundary layer flows seems to be out of the question.

The implicit assumption backing such skepticism is that for DNS to be useful in

atmospheric turbulence research, DNS should be executed at atmospheric Reynolds

numbers. However, as emphasized by Moin and Mahesh (1998), there are two

questions that are not very often raised: “How high a Reynolds number is high

enough?” and “What are the objectives of the computations?”.

The first question is worth asking because of Reynolds number similarity: the prin-

ciple, based on observation, that statistics related to the large scales become inde-

pendent of the Reynolds number once this is large enough (Tennekes and Lumley,

1972; Dimotakis, 2000; Monin and Yaglom, 2007) [see Chapter 2 section 2.2 for an
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expounded discussion]. The early DNS of ABL flows, such as that of Coleman et al.

(1994); Coleman (1999), was motivated and justified by Reynolds number similar-

ity. Quoting from Coleman (1999), “the issue of relevance of a numerical study of

the PBL does not hinge on the finescales (which after all are not present in LES

either), but on faithfully representing the physics of the scales that are resolved and

in doing so such that they are characteristic of high Re atmospheric turbulence.”

We justify our approach with the same argument. The key difference of our study

is that current technology makes this justification more plausible.

Regarding the second question, the particular objective of the computation is to

have a full characterization of the simplest canonical CBL (dry, shear-free, constant

surface buoyancy flux, linearly stratified free troposphere) (see Chapter 2 for the

problem description) such that the surface layer and the entrainment zone can be

studied in detail. The simplest case can be very useful as a reference and a limiting

case to compare with for understanding the more complex CBL. But such a char-

acterization needs to be free from uncertainties caused by turbulence models. For

such a goal, using DNS indeed makes the most sense.

In general, the objective of using DNS is neither to totally replace LES, nor to

become the general-purpose tool for studying atmospheric turbulence due to high

computational costs. For studies interested in statistics associated to the large-scale

turbulence, LES works well enough for a fraction of the computational cost that DNS

would require. Therefore, instead of replacing LES, the objective is to use DNS to

complement the other approaches summarized in the previous section, and complete

the modeling/simulation hierarchy DNS → LES → GCM: small-scale study of the

CBL could evaluate LES results that are usually used to evaluate bulk models and

GCM boundary layer schemes.



2 Formulation and

Methodology

2.1 Problem description

2.1.1 The equations of motion

The equations of fluid motion, in their general form, basically describe the transport

of mass, momentum, and energy of a flowing fluid:

∂ρ

∂t
+∇·(ρv) = 0

∂ (ρv)

∂t
+∇·(ρv ⊗ v) = ∇·(−pmδ + τ ) + ρf

∂ [ρE]

∂t
+∇·[ρE v] = ∇·[(−pmδ + τ ) · v] + ρf · v −∇·q

(2.1)

where ρ is the density, v is the velocity vector with components (v1, v2, w) along the

directions Ox1, Ox2 and Oz, respectively, E is the total energy (kinetic energy plus

internal energy), −pmδ and τ are, respectively, the isotropic and deviatoric part

of the stress tensor −pmδ + τ , where δ = [δij] is the unitary tensor; f is a force

per unit mass and q the heat flux vector. The first equation, called the continuity

equation, describes how mass is conserved, meaning in a closed system, it cannot

be created nor destroyed, thus there are no sources or sinks. The second equation,

the Navier-Stokes equation, is Newton’s second law applied to fluid motion, which

describes how the change in momentum is balanced by the net force acting on the

fluid. The third equation is the conservation of total energy, meaning, in a closed

system the total energy can neither be created nor destroyed, but can change form.

The equations of motion need to be complemented by the equations of state and the

constitutive equations (a model for τ and q) in order to form a closed system. The

resulting closed system of equations, when combined with well-formulated boundary

conditions, has been successful in adequately describing fluid motion, even that of

turbulent flows, as long as the fluid being studied can be considered as a continuum.

We particularize the general equations of motion to the case of the dry convective
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boundary layer. The energy equation is usually written in the form of an evolution

equation for thermal energy or enthalpy. Since we are dealing with the dry CBL

case, enthalpy is then linearly related to the buoyancy and the third equation is

therefore written as a transport equation for the buoyancy b = g(ρ0−ρ)/ρ, where ρ0

is the reference density. The following approximations are also made (see Garratt,

1992, for more details)

• the fluid (air) behaves approximately as a Newtonian fluid (viscous stresses

are proportional to the strain rate)

• air behaves approximately as an ideal gas (local thermodynamical equilibrium

is assumed, thus the equation of state is taken as the ideal gas law)

• the flow is approximately incompressible even though air is a compressible

fluid (see Nieuwstadt and Dop, 1984), therefore density changes resulting from

pressure changes are negligible

• density changes resulting from temperature changes are important only as they

directly affect buoyancy

The last two approximations combined are the Boussinesq approximation. Alto-

gether, these approximations simplify the equations of motion to the following:

∇·v = 0

∂v

∂t
+∇·(v ⊗ v) = −∇p+ ν∇2v + bk

∂b

∂t
+∇·(vb) = κ∇2b

(2.2)

where p is a modified pressure divided by the constant reference density, b is the

buoyancy (e.g. which is related to the virtual potential temperature θv by a linear

relation, b = g(θv − θv,0)/θv,0, θv,0 being the reference value). The parameter ν is

the kinematic viscosity, κ is the molecular diffusivity and k is the unit vector along

Oz.

.
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2.1.2 Defining properties of turbulent flows

Flows in the atmospheric boundary layer are characterized by turbulence. Although

there is no consensus over a strict definition of turbulence (Tsinober, 2009), some

established properties of turbulent flows are usually enumerated (Tennekes and Lum-

ley, 1972; Tsinober, 2009):

• Characterized by large Reynolds number - inertia dominates diffusion at the

large energy-containing scales

• Contain many degrees of freedom (wide range of scales in space and in time)

that are strongly and nonlinearly interacting

• Unpredictable in detail due to chaotic behavior, in spite of the equations of

motion’s being deterministic, thus a statistical description of the flow is suit-

able

• Highly dissipative, continuously losing mechanical energy into heat, which

means turbulent forcing is required to sustain turbulence, else it decays

• Rotational, therefore characterized by large vorticity fluctuations

• Highly diffusive, therefore transports and mixes quantities more efficiently

than molecular diffusion

Due to all of these properties combined, turbulence and an understanding of the

equations governing it have remained elusive from the point of view of rigorous

mathematical analysis of the Navier-Stokes equations1. Tackling the turbulence

issue through experiments, both laboratory and numerical, is also difficult due to

the complexity of the flow and the difficulty in reproducing the highly turbulent

flows found in nature.

2.1.3 The closure problem

Attempts to reduce complexity are usually in the form of some decomposition. Pop-

ular decompositions are: mean flow - fluctuating part (introducing Reynolds aver-

aging, as used in Reynolds-averaged Navier Stokes or RANS), resolved - unresolved

1One of the Millennium problems is to prove existence and uniqueness of a solution to the
Navier-Stokes equations.
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(introducing filtering, as used in LES). Such decompositions are known to suffer

from the curse of closure, meaning the averaged/filtered equations contain new un-

knowns and there are more unknowns than equations. Equations derived from the

Navier-Stokes equations for these new unknowns further contain other higher-order

unknowns, meaning an infinite number of statistical equations are needed to describe

turbulence statistically.

To close the problem, one has to come up with a way to relate these extra unknowns

to the other known variables of the flow in a manner that represent the dynamic

effects of the discarded part of the flow (for the above-mentioned decompositions,

this corresponds to the fluctuations from the mean or the scales that were filtered

out). These relations are called closure models. Quoting the colorful phrasing of

(Tsinober, 2013), a menagerie of closure models employ “dimensional analysis, vari-

ety of scaling arguments, symmetries, invariant properties and various assumptions,

many of which are of unknown validity and obscured physical and mathematical

justification (if any) along with using non-trivial ‘surgeries’ with removal of large

fractions of the flow field”. In the following, we present two tools that we use to

make the study of turbulent flows slightly more tractable.

2.2 Dimensional analysis and Similarity

A standard tool in fluid dynamics, dimensional analysis is a framework wherein the

crucial variables that characterize a system are identified and then organized into

a smaller number of dimensionless groups. The reduction of variables and proper

choice of groups lead to new classes of similarity – the apparent resemblance in

certain qualities of different properties or in the behavior of different phenomena

that may differ in the value of the individual variables but have the same values

for the proper dimensionless groups. A particular form of similarity that is quite

intuitive is geometric similarity, for example two triangles of different sizes are similar

if the corresponding sides have lengths in the same ratio.

The concept of similarity is widely exploited in the study of fluid flows since simi-

larity support the use of smaller scale laboratory experiments for studying real-life

flows of interest. For two flows to be similar, three types of similarity need to be

fulfilled: geometric similarity (same shape, different size), kinematic similarity (ratio

of velocities of particles are the same for both flows), and dynamic similarity (ratio

of all forces are the same for both flows) (Kline, 1986).
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2.2.1 Characteristic scales and dimensionless groups of the

CBL

Figure 2.1: Sketch of a canonical CBL with constant and homogeneous buoyancy flux B0

at the surface, growing against a stably stratified fluid with constant buoyancy frequency
N2 > 0.

We apply dimensional analysis to the convective boundary layer sketched in Fig. 2.1

and governed by equations (2.2). We focus on the fully developed turbulent regime

that is established after the initial transient, when the initial conditions have been

sufficiently forgotten (Tennekes and Lumley, 1972; Monin and Yaglom, 2007) and

the parameter space {ν, κ, B0, N} defines the system completely. The absence of an

externally imposed characteristic length scale and characteristic velocity is typical

of atmospheric buoyancy-driven flows, so we instead use B0 and N [following Zil-

itinkevich (1991) and Fedorovich et al. (2004b)] from the above set of parameters to

nondimensionalize the problem. The other two parameters are related to molecular

effects, which are negligible in the highly turbulent CBL. We construct a reference
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time scale N−1, and a reference length scale

L0 = (B0/N
3)1/2 . (2.3)

The resulting reference velocity scale (L0B0)
1/3 can be interpreted as the velocity

scale associated to a length scale L0 inside the inertial sub-range that follows from

inertial-range Kolmogorov scaling (Pope, 2000), since in the CBL the viscous dissi-

pation rate is observed to be approximately an order-of-one fraction of the surface

buoyancy flux B0.

The resulting length scale L0 has two physical interpretations. First, the length

scale L0 can be interpreted as an Ozmidov scale (ε/N3)1/2, which is a measure of

the smallest eddy size affected by a background stratification N2 in a turbulent field

characterized by a viscous dissipation rate ε (see, e.g., Ozmidov, 1965; Smyth and

Moum, 2000). In the CBL, the direct influence ofN2 concentrates in the entrainment

zone. Therefore, this reference Ozmidov scale L0 can be interpreted as an estimate

for an integral length scale of turbulence inside the entrainment zone, or a region

therein. A second interpretation of the length scale L0, namely, as the minimum

CBL thickness, is discussed in Appendix A.

The simplest CBL problem only has two basic quantities (length and time) and four

parameters {ν, κ, B0, N}. A systematic way of reducing the number of dimensional

variables to a smaller number of dimensionless groups was introduced by Edgar

Buckingham in 1914, which is named Buckingham Pi theorem (Buckingham, 1914).

According to this theorem, the system should then depend on only two dimensionless

parameters2. We choose them to be a reference buoyancy Reynolds number

Re0 =
B0

νN2
=

L0(L0B0)
1/3

ν
, (2.4)

and a Prandtl number Pr = ν/κ. This work investigates the role of Re0 only, thus

we fix Pr = 1, a value representative of atmospheric conditions. This approach

reduces the amount of work needed to obtain full information about this particular

CBL case, because instead of investigating separately the effects of changing the

surface buoyancy flux B0 and the stratification N2 (and in principle, κ, though in

the atmosphere, κ is given), we only need to investigate the variations with Re0.

2“If an equation in n variables is dimensionally homogeneous with respect to m fundamental
dimensions it can be expressed as a relation between n-m independent dimensionless groups.”
(Buckingham, 1914)
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The reference buoyancy Reynolds number Re0, is often used in the study of the

interaction between turbulence and stable stratification (see, e.g., Hebert and

de Bruyn Kops, 2006; Chung and Matheou, 2012). Re0 is constructed using L0 as a

length scale and (L0B0)
1/3 as a velocity scale. Hence, according to the interpretation

of L0 as the local integral length scale of turbulence inside the entrainment zone,

Re0 represents a Reynolds number of the turbulence inside the entrainment zone.

The results that support the interpretations presented here are further discussed in

Chapter 5 section 5.1.

2.2.2 Nondimensionalized independent variables

Since the system is statistically homogeneous inside the horizontal planes, the statis-

tics depend only on the vertical distance from the surface z and time t. A naive

way to nondimensionalize these variables is {z/L0, tN}. However, an inspectional

form of dimensional analysis can reveal a higher degree of similarity than a naive

dimensional analysis. We therefore propose to substitute {z/L0, tN}, without loss of
generality, with the equivalent set of independent variables {z/zenc, zenc/L0}, where

zenc(t) =

[
2B0

N2
(1 + Re−1

0 )(t− t0)

]1/2
, (2.5)

is the encroachment height (Lilly, 1968; Carson and Smith, 1975) (see also Chapter 3

section 3.2). The virtual time origin t0 quantifies the dependence on the initial

condition 〈b〉 (z, 0) and is defined such that

(1 + Re−1
0 )B0 (t− t0) =

∫ z∞

0

[〈b〉 (z, t)− bbg(z)] dz (2.6)

for any given time t, where

bbg(z) = N2z (2.7)

is the reference background buoyancy profile, and z∞ is located far enough into the

nonturbulent stably stratified region. Angle brackets denote horizontal averaging

hereinafter.

Since zenc is commensurate with the CBL height for the case of a CBL growing into

a linearly stratified atmosphere (see Chapter 3 section 3.1), the independent variable

z/zenc (or equivalent normalized height) is often employed to study the self-similar
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behavior of the CBL as it grows in time. In contrast, the use of

zenc/L0 = [2(1 + Re−1
0 )(t− t0)N ]1/2 (2.8)

instead of tN to measure the state of development of the CBL is less common. The

reason to use zenc/L0 in this work is twofold. First, according to the interpretation

of L0 introduced before and further discussed in Chapter 5 section 5.1, zenc/L0 is a

measure of the ratio between the integral length scale of the CBL and that of the

entrainment zone and is therefore one relevant measure of scale separation in the

CBL. Second, zenc/L0 retains the effect of both N and B0 simultaneously such that

we can study both the weak stratification regime – relatively thick EZ – and the

strong stratification regime – relatively thin EZ – in a single simulation as zenc/L0

grows in time. According to the results presented in the following section, the

distinction between the weak and strong stratification regimes occurs at zenc/L0 �
10.

For comparison with the atmospheric CBL, we use the estimates L0 � 20 − 200 m

[derived from typical values N � 0.6−1.8×10−2 s−1 and B0 � 0.3−1.0×10−2 m2 s−3

(Fedorovich et al., 2004b; Träumner et al., 2011)], zenc � 1000 m, and ν = 1.5 ×
10−5 m2 s−1 to obtain zenc/L0 � 5−50 and Re0 � 6×105−2×107. Our simulations

reach up to zenc/L0 � 26 (see Table 2.1), which is representative of atmospheric

conditions, and covers the different stratification regimes considered in Fedorovich

et al. (2004b), whose weakest and strongest stratification cases correspond to values

zenc/L0 � 7.3 and zenc/L0 � 23.5, respectively.

2.2.3 Reynolds number similarity

To have a flow that is dynamically similar to that of atmospheric boundary layer

flows, Re0 needs to be matched. For laboratory and numerical experiments of atmos-

pheric flows, dynamical similarity is a statement of an ideal due to the difficulty in

matching the Reynolds number of the atmosphere. In our simulations, the Reynolds

numbers Re0 = 42 and Re0 = 117 are still orders of magnitude smaller than atmos-

pheric values (see Table 2.1). However, basic turbulence research is also interested

in the asymptotic behavior of the system and of certain statistics when the Reynolds

number is increased.

In particular, we are interested in observing how certain statistics become insensi-

tive of the increase in Reynolds number. For example, numerical simulations with
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moderate Reynolds numbers (e.g. Spalart et al., 1991; Coleman et al., 1994) show

that first- and second order statistics are sufficiently accurate even with moderate

values of the Reynolds number. These statistics are said to exhibit Reynolds num-

ber similarity: the principle, based on observation, that statistics related to the

large scales become independent of the Reynolds number once this is large enough

(Tennekes and Lumley, 1972; Dimotakis, 2000; Monin and Yaglom, 2007). This

happens because the separation between the large energy-containing scales and the

small dissipative scales is wide enough so that the large scales barely feel the effects

of viscous dissipation and further increasing the Reynolds number simply increases

this scale separation. However, properties that strongly depend on the smaller scales

(like intermittency and higher-order statistics) might need larger scale separation for

the findings to be scalable to higher Reynolds numbers (Dimotakis, 2000). One is

therefore more cautious in transferring information to and making statements about

the full scale analog of the flow for these statistics.

In this study, we show in Chapter 3 that despite the moderate Reynolds numbers

Re0 � 100 achieved in our DNS, mixed layer statistics follow the expected scalings

based on the encroachment and the convective scales, thus reproducing the behav-

ior previously reported from atmospheric measurements and LES. Such qualitative

agreement indicates Reynolds number similarity, and we confirm it quantitatively

in two different ways.

First, we note that the increase of the CBL thickness zenc entails an increase in the

scale separation between zenc and the reference Kolmogorov scale η0 = (ν3/B0)
1/4

according to
zenc
η0

= Re3/4∗ , (2.9)

where the convective Reynolds number is defined as

Re∗ =
zencw∗

ν
=

(
zenc
L0

)4/3

Re0, (2.10)

and the velocity w∗ is the convective velocity (Deardorff, 1970)

w∗ = (B0zenc)
1/3. (2.11)

The convective Reynolds number is associated to the large-scale convective motions

and characterizes the turbulence inside the mixed layer. Since the advancement

in time is equivalent to the increase in zenc(t) (see Eq. 2.5), temporal evolution of
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quantities can be equivalently thought of as their evolution as Re∗(t) increases. As

a corollary, a quasi-steady or self-similar behavior of any statistic as the CBL grows

can be interpreted as independence from the convective Reynolds number. The

observations in this study that the large-scale statistics start to show a relatively

small dependence on the Reynolds number as we approach values Re∗ � 104 is in

accord with the behavior reported in other turbulent flows (Dimotakis, 2000).

Second, we compare the simulations Re040 and Re100 (see Table 2.1), whose vis-

cosities are roughly a factor of three different from each other. In this way, we can

ascertain if temporal variations in certain statistics are due to low Reynolds num-

ber effects in our DNS or, on the contrary, represent a true dependence on the CBL

state (measured in terms of the normalized time tN or the normalized height zenc/L0)

and are therefore applicable to the atmosphere. By comparing both cases, we show

throughout this study that Reynolds number effects on the results that we discuss

are small (at most 15%) for the statistics we are interested in. This is particularly

important for the detailed discussion of the entrainment zone in Chapter 5.

Interpreting the moderate Reynolds number of our simulations

Since Re0 is composed of {B0, N, ν}, the moderate Reynolds number implies that

if we choose to match the values of these parameters with those typical of the

atmosphere, one of the parameters can never be matched. For the highest value

of Re0 that we achieve (117) (see Table 2.1), if we first impose a particular B0 of

typical atmospheric values (1.0 × 10−2 m2 s−3) and kinematic viscosity ν of the

air (1.5 × 10−5 m2 s−1), then N (in units of s−1) will be, 2.4 s−1, two orders of

magnitude larger than that of typical atmospheric conditions (0.6− 1.8× 10−2 s−1).

The corresponding buoyancy gradient is actually very strong, which makes sense

since we need to fit the three layers (mixed layer, entrainment zone, free troposphere)

in our small domain. In particular, these values of B0 and N yield L0 = 2.7×10−2m,

and since we reach zenc/L0 = 18 for this case, the height of the CBL is roughly half a

meter. This interpretation can be used to define a laboratory experiment like that of

Deardorff (1980a) (see Fig. 2.2). Second, if we instead choose to impose atmospheric

values for N and ν, then B0 has to be very weak (0.63 − 5.7 × 10−7 m2 s−3),

the corresponding L0 then ranges from 0.31 − 0.54 m. This interpretation also

yields a small CBL of 5.6 − 9.7 m when zenc/L0 = 18. Last, if we instead take

atmospheric values for B0 and N , then we attain a value for the kinematic viscosity

ν = 0.17− 1.6 m2 s−1, a viscosity larger than that of molasses. One can imagine an
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atmosphere of the realistic size but is filled with very viscous fluid instead of air.

2.3 Direct numerical simulation

To avoid the closure problem, we use direct numerical simulation, an approach

whose main principle is to numerically solve the equations of fluid motion that are

neither averaged nor filtered. The range of scales of the flow that are explicitly

resolved include the large energy-containing scales (imposed by whatever is forcing

the turbulence in the flow or by the flow boundaries) down to the small dissipative

scales that are of the order of the Kolmogorov length scale, defined as

η = (ν3/ε)1/4 (2.12)

where ν is the kinematic viscosity and ε is the rate of viscous dissipation of kinetic

energy. Since the dissipation spectra peaks at around 24η (see, e.g., Pope, 2000),

it is more than enough to resolve the Kolmogorov length to ensure the inclusion of

the dissipative action of viscous forces; depending on the numerical scheme adopted,

even just down to around 3−10η is sufficient (Moin and Mahesh, 1998). The crucial

point is to resolve down to the dissipative scales because if not enough of them are

resolved, the build up of energy due to lack of dissipation could lead to blow up of the

numerical solution. In some circumstances, the numerical model wrongly remedies

this problem by introducing spurious and nonphysical numerical dissipation. Thus,

the differentiating principle of DNS is that it represent viscous dissipation physically

and not through a turbulence model that tries to mimic the dissipative action of the

small scales.

2.3.1 Advantages of DNS

As already mentioned in the introduction, the main advantage of DNS is that it

allows for simulations that are independent of the grid resolution for a given Reynolds

number, independent of the numerical algorithm, and free from the uncertainty

of turbulence models. This advantage allows for transparent comparisons between

different studies and confident quantification of the asymptotic behavior of statistics

with respect to the Reynolds number.

Although the absence of subgrid-scale models for turbulence in DNS is indeed the
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main advantage of DNS over LES, it is possible that one would think that DNS is

then an LES with a simple SGS closure. At the regions where the large-scale domi-

nates the statistics and the scale separation between the large scale and the smallest

resolved scale is large enough, there is indeed not much difference between DNS and

LES when only large scale statistics are of interest. But viewing DNS as such is an

over-simplification that sometimes does not work: in strongly anisotropic regions,

like the near-wall region and in strongly stratified regions, like the entrainment zone,

the correspondence between LES and DNS can become more difficult, at least for the

moderate values of effective Reynolds numbers that LES usually considers (see, e.g.,

Stevens et al., 2000b). Here the effects of SGS fluxes are significant yet obscured and

most of the time nonphysical. Near solid boundaries, the energy transfer may be

from the SGS to the resolved scales, while LES prediction of the entrainment zone

thickness, especially at large values of N , could not be as reliable due to poor perfor-

mance of SGS models in the strongly stratified regions (Sorbjan, 1996; Fedorovich

et al., 2004b). Furthermore, Deardorff (see Fox and Deardorff, 1972) found that the

commonly-used Smagorinsky model smears out the mean buoyancy gradient that

forms in penetrative convection. In the same spirit as the simplistic view on DNS,

LES can be considered as a theoretically high Reynolds number flow with a dubious

way of turbulent mixing. To improve the representation of unresolved scales, Dear-

dorff (1973) proposed a more complex SGS model that involves transport equations

for the SGS stresses, in particular ten additional transport equations. Although the

Deardorff SGS model, and even more complex SGS models (Kleissl et al., 2006) may

lead to improved results, the additional work needed to develop and evaluate these

more complex models undermines the practicality of doing an LES.

Indeed, there is a limit to the practicality and validity of LES. We always need to

ask whether we are saving enough points and can get away with a simple SGS to

address the questions we want to investigate. Towards the investigation of regions

where LES is questionable and would require more points and more complex SGS

models, one should ask whether it is worth pushing through using LES or instead do

a clean DNS. The choice is between accurately solving the Navier-Stokes equations,

which have been practically proven in time to be a very good model for fluid flows

during the last 150 years or solving filtered equations with different closure models,

all of which have been proven to be wrong (although sometimes practical) during

the last 50 years.



2.3 Direct numerical simulation 23

2.3.2 Limitations of DNS

The well-known limitation of DNS is its restriction to moderate Reynolds number

due to limitations in computing power and computer memory. Unlike laboratory

experiments wherein parameters such as the dynamic viscosity can be tweaked to

crank up the Reynolds number, the only way to increase the Reynolds number in a

simulation is to have more grid points, which requires more computing power and

memory. The size of the simulation, consequently the number of grid points, is

dictated by the two extremes of the range of scales: first, the domain has to be

large enough such that the largest turbulent scale of the flow is contained within the

computational domain and that statistical convergence is good enough; second, the

grid spacing must be sufficiently small to resolve the dissipative scales. In between

these two limits, there should be a wide enough range of intermediate scales such

that there is enough scale separation between the large energy-containing scales and

the small dissipative scales. In terms of the energy- and dissipation spectra, they

should not overlap for Reynolds number similarity to be observed in the large-scale

statistics (see, e.g., Pope, 2000).

For the CBL, the largest length scale is typically characterized by the CBL thickness,

which is of order 103 meters, while the Kolmogorov length scale is of the order 10−3

meters (see, e.g., Orlanski, 1975). The ratio of these two scales (cubed) yields an

estimate for the total number of grid points needed to resolve the entire range of

scales3, therefore at least O(1018).

As of 2013, the highest number of degrees of freedom achieved for a DNS is of the

order 1011 (Lee et al., 2013), while our largest simulation is of the order 1010. The

gap between achieved and atmospheric Reynolds numbers is already daunting and

we have not even mentioned the number of iterations needed for such a simulation.

However, this should not undermine the use of DNS since observation of Reynolds

number similarity in statistics of increasing order in state-of-the-art DNS of turbu-

lent flows (Jimenez, 2013) and development of more powerful supercomputers that

would allow an increase in achievable Reynolds numbers, encourage further use and

development of DNS as a clean research tool in atmospheric turbulence.

3Although for the CBL, and ABL in general, the vertical direction usually requires fewer grid
points due to smaller extent of vertical scales compared to the horizontal. Also, the number of
grid points needed to resolve the Kolmogorov scale depends on the employed numerical scheme.
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2.3.3 Numerics

As discussed in Rogallo and Moin (1984) and Moin and Mahesh (1998), there are

four main issues that require careful consideration for numerically solving the Navier-

Stokes equations. These are

• discretization of spatial derivatives

• time-stepping algorithm

• initial and boundary conditions

• computer implementation and organization

In each category there are different options available. We do not discuss these issues

in detail and simply refer the reader to the aforementioned references. We instead

discuss briefly our choice for each category and our justification for these choices.

Discretization of spatial derivatives

Discretization of equations (2.2) in space is performed using sixth-order spectral-

like compact finite-differences on a structured Cartesian grid. Finite differences are

chosen over spectral methods even though the latter yields higher accuracy for the

same number of grid points, because standard spectral methods do not easily allow

the use of non-uniform grids, which we employ for grid refinement and stretching

at the vertical direction. Sixth-order-accurate scheme is chosen over a second-order

finite difference scheme since care and accuracy are needed for resolving down to

Kolmogorov scale and the accuracy required to do such would require more grid

points if second-order finite differences were used.

In our simulation of the CBL, we take care of resolving the near-wall region where

the diffusive layer is located. Experiments on the neutrally-stratified N2 = 0 case

(so-called ‘heated plate’ case) (see Mellado, 2012) have established that the required

resolution using the finite difference scheme we chose is Δz/η � 1.2 or less, where Δz

is the vertical grid spacing. We resolve the Kolmogorov scales such that further grid

refinement does not affect the statistics because the results are already converged

(see Appendix B). Since the Kolmogorov scales in the mixed layer are larger than

those in the surface layer, we employ grid stretching at the vertical to spare grid

points in that direction.

Time-stepping algorithm
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Due to the wide range of interacting time scales, turbulent flows are considered stiff

systems (Moin and Mahesh, 1998). This means that time discretization schemes

easily become numerically unstable unless the time step used for numerical inte-

gration is taken to be extremely small. Advancement in time for the numerical

integration may be done either explicitly (next time step is solved from a few terms

of the previous time steps) or implicitly (a coupled system of equations is solved).

We use an explicit, low-storage, fourth-order accurate, Runge-Kutta scheme to dis-

cretize time. Explicit schemes are much easier to implement and have a much lower

cost per step. Since we use an explicit method, a Poisson equation for pressure is

solved at every time step to implement the incompressibility constraint. In our DNS,

the discrete solenoidal constraint is satisfied to machine accuracy using a Fourier

decomposition along the periodic horizontal planes x1Ox2 and a factorization of the

resulting set of equations along the vertical coordinate (Mellado and Ansorge, 2012).

Initial and boundary conditions

Initial velocity field generally has to satisfy the continuity equation. In the CBL

case, we begin with a fluid at rest, therefore v = 0. The buoyancy field is imposed

as

b(x, 0) = bi

[
1− erf

(√
π

2

z

δi

)]
+ bbg(z) , (2.13)

where bbg(z) is the background buoyancy profile, Eq. (2.7), N being the Brunt-

Väisälä frequency. The fields bi(x1, x2) and δi(x1, x2) are the surface buoyancy and

the gradient thickness, respectively, so that the local vertical buoyancy flux at the

surface corresponding to this initial condition is −κ∂b/∂z = κ(bi/δi − N2). A

random fluctuating buoyancy field is superimposed on a prescribed mean buoyancy

profile to hasten the transition to turbulence. Following Mellado (2012), we impose

an initial broadband perturbation ζ(x1, x2) such that bi(x1, x2) = bs(1 + ζ) and

δi(x1, x2) = δs(1 + ζ), where ζ has a Gaussian power spectral density, centered

at a given spatial frequency 1/λ and with a standard deviation equal to 1/(6λ).

The standard deviation is chosen such that spatial frequencies below 1/(2λ) have

practically no energy. The phase of ζ is random. The constant surface buoyancy

flux B0 = κ(bs/δs −N2) is imposed by choosing appropriate values for bs and δs.

No-penetration, no-slip boundary condition is used at the bottom plate and no-

penetration, free-slip boundary conditions at the top. Neumann boundary condi-

tions are used for the buoyancy at the top and the bottom to maintain fixed constant
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fluxes. In addition, the velocity and buoyancy fields are relaxed towards zero and

the background buoyancy profile bbg(z), respectively, inside a sponge layer occupy-

ing the upper region of the computational domain. Preliminary simulations (not

shown) have been used to adjust the height of the top boundary so that it is far

enough from the turbulent region to avoid any significant interaction. Since the

CBL is assumed to be statistically horizontally homogeneous, periodicity is used at

the side boundaries.

Computer implementation and organization

The DNS code is written in Fortran90 and uses hybrid parallelization: MPI using

domain decomposition in the two horizontal directions (pencils), and using OpenMP

to further parallelize within each node the loops where the linear systems are solved

and where the different terms are added to the right-hand-side of the transport

equations. The size of the domain decomposition in each of the two horizontal

directions can be tuned to get the best scaling.

Computations are done on Forschungscentrum Juelich’s JUQUEEN, an IBM Blue-

Gene/Q system based on the IBM POWER architecture hosting 458,752 compute

cores. The system is especially designed for computationally intensive, highly scal-

able applications which can run in parallel on a very high number of compute cores.

2.3.4 Simulation specifics

Simulation Grid Re0 Req Re∗ zenc/L0 zenc/η δ/L0

Re100 5120× 5120× 840 117 2860 5480 18 490 1.3
Re040 2560× 2560× 704 42 1600 3160 26 320 1.6

Table 2.1: Simulation properties. Columns 4-8 provide data at the final time of the
simulations. The convective Reynolds number Re∗ is defined by Eq. (2.10) and the tur-
bulent Reynolds number Req = e2/(εν), where e is the turbulence kinetic energy and ε
its viscous dissipation rate, is the maximum value within the CBL. The Kolmogorov scale
η = (ν3/ε)1/4 is the minimum value within the CBL. The length scale δ is defined by
Eq. (5.2).

The two simulations considered in the study are summarized in Table 2.1. The size

of the computational grid is 5120 × 5120 × 840 for the reference case denoted as

Re100. Stretching is used in the vertical direction to increase the resolution near

the surface and to move the top boundary farther up, so that the domain size is
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215L0 × 215L0 × 56.6L0, where L0 is the reference length scale defined in Eq. (2.3).

The simulation is terminated when the boundary layer thickness is about 18L0. At

the final time, the aspect ratio of the horizontal domain size and the CBL height is

around 12:1. The second simulation Re040 in Table 2.1 with a reference Reynolds

number Re0, defined in Eq. (2.4), roughly a third of that of Re100 has been used to

study the effect of Re0 and to achieve a deeper CBL, up to 26L0. The horizontal

size of the computational domain in Re040 is the same as in Re100.

For reference, the value Re∗ � 2500 from the simulation Re040 closely matches the

value from the experiment of Deardorff et al. (1980) on a 1.14 m × 1.22 m-wide

water tank. However, those tank experiments have quite a low Re0, about 10; they

achieve a comparable Re∗ because zenc/L0 is larger, about 50. To reach a Reynolds

number Re∗ similar to that of simulation Re100, the CBL of the tank experiment

would have to grow from 0.27 m to 0.46 m, and to obtain a similar aspect ratio of

the horizontal dimension to the CBL height as in the simulations, the tank would

need to be 6 m× 6 m wide.

Figure 2.2: Size comparison between the Deardorff (1980a) water tank and the water-
tank equivalent of the Re100 DNS simulation.
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3 Mixed layer statistics

The main goal of this chapter is to show that the scale separation between the large

energy-containing scales, characterized by the CBL thickness, and the small dissi-

pative scales, characterized by the Kolmogorov length, is large enough for statistics

related to the large-scales to be comparable to those from large-eddy simulations

and field observations. These well-known statistics are:

• Convective boundary layer thickness

• Vertical profiles of mean and variance of buoyancy and velocity

• Vertical profiles of higher-order moments of the vertical velocity

• Turbulence kinetic energy budget profiles

We further show that the interval of CBL heights beyond zenc/L0 � 10 that we

consider in this study corresponds to the equilibrium entrainment regime (Fedorovich

et al., 2004b).

3.1 The convective boundary layer thickness

We consider the following definitions of the height of the CBL top, zi,ξ, as introduced

before in the literature (see, e.g., Garratt, 1992; Sullivan et al., 1998):
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1. The zero-crossing height zi,0, where the total buoyancy flux

B = 〈b′w′〉 − κ
∂ 〈b〉
∂z

(3.1)

becomes negative. An apostrophe indicates turbulent fluctuation (deviation

from the horizontal plane average).

2. The integral-based height

zi,i(t) = 2.5
1

B0

∫ z∞

0

〈b′w′〉 dz, (3.2)

where the integral extends far enough into the nonturbulent stably-stratified

region. The factor 2.5 comes from assuming a linearly decreasing buoyancy

flux profile that has a minimum buoyancy flux value of −0.2B0 (see Deardorff,

1970).

3. The flux-based height zi,f , where the total buoyancy flux B is minimum.

4. The variance-based height zi,v, where the buoyancy variance 〈b′b′〉 is maximum

away from the near-wall region.

5. The gradient-based height zi,g, where the mean buoyancy gradient is maximum

away from the near-wall region.

We compare these heights, normalized with the encroachment height zenc (Eq. 2.5),

in Fig. 3.1. When the thickness of the CBL becomes an order of magnitude larger

than L0, all of the normalized heights become statistically steady in time, within

the statistical convergence that we can achieve. Table 3.1 summarizes the values of

the corresponding constant

Cenc,ξ = zi,ξ/zenc . (3.3)

This steadiness implies that zenc already gives the correct evolution in time of the

growth of the dry CBL into a linearly stratified fluid (Driedonks, 1982). The mean

entrainment rate

we,ξ =
dzi,ξ
dt

(3.4)

can then be approximated as

we,ξ � Cenc,ξ
dzenc
dt

= Cenc,ξNL0(zenc/L0)
−1 (3.5)



3.1 The convective boundary layer thickness 31

Figure 3.1: Temporal evolution of the normalized CBL-top heights, defined in section 3.1:
zero-crossing of buoyancy flux zi,0 (black); integral-based zi,i (red); flux-based zi,f (ma-
genta); variance-based zi,v (green); gradient-based zi,g (blue). The corresponding mean
values beyond zenc/L0 � 10 are summarized in Table 3.1. Light colors correspond to
Re040, dark colors to Re100.

for zenc/L0 ≥ 10. Hence, the range of values of Cenc,ξ gives a variability of � 25% in

we depending on the height zi,ξ that is used to define the CBL top. In particular,

the mean entrainment rate differs by roughly 10% between the common CBL-top

height definitions zi,f and zi,g. We will denote dzenc/dt as we.

Heights zi,0 zi,i zi,f zi,v zi,g
Re040 Mean 0.97 1.11 1.15 1.21 1.23

σ(%) 1.0 2.1 1.1 0.36 0.83
Re100 Mean 0.98 1.13 1.15 1.23 1.24

σ(%) 1.0 1.6 0.9 0.29 0.54

Table 3.1: Normalized CBL-top height constants Cenc,ξ, Eq. (3.3), calculated for all the
different height definitions {zi,ξ : ξ = 0, i, f, v, g} introduced in section 3.1 and shown in
Fig. 3.1, using the data for zenc/L0 ≥ 10.
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We emphasize that, according to Fig. 3.1 and Table 3.1, the Reynolds number depen-

dence of the entrainment rate we after the initial transient, beyond zenc/L0 � 5−10,

is already negligibly small for the Reynolds numbers achieved in these simulations,

only about 2% and comparable to the statistical convergence. The analysis done

on the surface layer (Chapter 4) and on the entrainment zone (Chapter 5) focuses

on this fully developed regime that begins when the initial conditions have been

sufficiently forgotten.

The different CBL-top heights are ordered according to

zi,0 ≤ zenc < zi,i ≤ zi,f < zi,v ≤ zi,g , (3.6)

in agreement with previous results (Sullivan et al., 1998; Fedorovich et al., 2004b).

Approximately, there are only three distinct heights since we observe that zi,0 � zenc,

zi,i � zi,f , and zi,v � zi,g. These three heights are depicted as three white bars in

Fig. 3.2, which visualizes a vertical cross-section of the CBL using the magnitude

of the buoyancy gradient. The entrainment zone, whose location is roughly indi-

cated by these three heights, is dominated by both sharp gradients at the crests of

the undulations, or domes, and the entrained fluid regions between those domes,

or troughs. The smallest of the three heights, the zero-crossing height of the buoy-

ancy flux, was used in the original study of Deardorff et al. (1980), and is said to

characterize the top of the well-mixed layer, which is supported by the visualization

in Fig. 3.2 (see also Fig. 5.3d). The largest of those heights, zi,g, seems to mark

the mean vertical extent reached by the penetrating thermals. We will discuss in

Chapter 5 the details of this entrainment region that develops between zi,0 and zi,g.

3.2 The encroachment scales

One of the early attempts to characterize the CBL height was the encroachment

height (Lilly, 1968; Carson and Smith, 1975) that is derived by considering only

the thermodynamics and neglecting turbulent entrainment (see Stull, 1988). This

approximation is equivalent to the ‘minimum entrainment’ condition (Ball, 1960;

Lilly, 1968), where the buoyancy flux at the mixed layer–free troposphere boundary

is set to zero. The corresponding piecewise linear mean buoyancy profile is defined

as

〈b〉enc (z, t) = max{bbg(z), bbg(zenc(t))}. (3.7)
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b/benc

log10(N
−2|∇b|)

Figure 3.2: Vertical cross-section of the CBL showing the normalized buoyancy b/benc
(top) and the logarithms of the magnitude of the buoyancy gradient N−2|∇b| (bottom)
for case Re100 at the final time zenc/L0 = 18. For buoyancy: gray b < benc, white
b = benc, blue b = 1.1benc, green b = 1.2benc, yellow b = 1.3benc, orange b = 1.4benc, red
b = 1.5benc, dark red b = 2.0benc, and black b = 2.5benc. For buoyancy gradient: colors
black, blue, yellow and red correspond, respectively, to values varying between 10−1 and
102 in intervals of 10. The top of the three white vertical bars indicates the location of
the different CBL height definitions, from left to right: the encroachment height zenc, the
flux-based height zi,f , and the gradient-based height zi,g.

In a bulk model sense, the encroachment buoyancy profile is the crudest approxima-

tion to that of the CBL since the expression above only represents a well-mixed layer

with buoyancy bbg(zenc(t)) and an overlying stably stratified layer. The height zenc(t)

is the only unknown and is obtained with the constraint (2.6), wherein 〈b〉 = 〈b〉enc.
This yields the well-known expression in Eq (2.5).

The encroachment approximation to the CBL growth introduces a reference length

zenc for the CBL analysis, as discussed in section 2.2, and a reference buoyancy

benc = bbg(zenc) = N2zenc . (3.8)

The corresponding time scale is
√
zenc/benc = N−1. We refer to these scales as the
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encroachment scales.

When normalized with the encroachment scales, the profiles of buoyancy-related

quantities in Fig. 3.3a,b show self-similarity within the mixed layer, from zenc/L0 �
10 onward. In particular, we observe that benc represents very accurately the magni-

tude of the mixed layer buoyancy. However, since mixing is not instantaneous, the

positive buoyancy flux at the surface and the entrainment of more buoyant air at

the entrainment zone lead to slightly higher mean buoyancy at those regions and a

minimum near the middle of the mixed layer. This minimum mean buoyancy 〈b〉min

is observed to very slightly deviate from benc; Figure 3.4a shows in more detail the

tendency of the mixed layer mean buoyancy towards proportionality with the en-

croachment scale and the slight deviation from this scaling, measured as 〈b〉min /benc,

which is already less than 2% for zenc/L0 � 10. We observe the same increasing be-

havior for both Re040 and Re100, meaning the deviation does not seem to be a

low Reynolds number effect. Since the effect of entrainment is not retained in the

encroachment model of the CBL, the close behavior of the minimum buoyancy with

the encroachment buoyancy could be an indication that the heating due to entrain-

ment is mainly concentrated at the upper regions of the mixed layer and does not

penetrate significantly down to the surface.

3.3 The convective scales

For a given boundary layer height zi, the Deardorff convective scales (Deardorff,

1970)

w∗ = (B0zi)
1/3 (3.9)

b∗ = (zi/B
2
0)

−1/3 (3.10)

have been well-established as the characteristic scales of the turbulent fluctuations

of buoyancy and the velocity. In this study, zi = zenc unless indicated otherwise.

Using zenc promotes transparency in comparing with other data sets since zenc is

analytically derivable and does not suffer from the statistical uncertainty of other

height definitions. The use of other height definitions can easily be taken into

account using the constants found in Table 3.1.
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Figure 3.3: First row from left to right: normalized vertical profiles of the mean buoyancy
〈b〉, the mean buoyancy gradient ∂ 〈b〉 /∂z and the total mean buoyancy flux B = 〈b′w′〉−
κ∂ 〈b〉 /∂z. Second row from left to right: normalized vertical profiles of the variance of
the buoyancy and the vertical and horizontal velocities. The vertical profile of the vertical
velocity variance suggested in Lenschow et al. (1980) using the coefficients used there
(dashed black line) and using the coefficients according to a best fit to the data (dashed
magenta line) are included in panel e. Blue bars indicate the spread of LES data values
at approximately zenc/L0 = 12 from Fedorovich et al. (2004a). Blue indicates Re100 and
brown indicates Re040. Light to dark colors indicate snapshots at zenc/L0 � {10, 18},
respectively, for Re100. For Re040 case, snapshots at zenc/L0 � {10, 26} are included.
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Figure 3.3d-f shows that the normalized vertical profile of the variance of the buoy-

ancy fluctuations 〈b′b′〉 /b2∗, and those of both the vertical 〈w′w′〉 /w2
∗ and the hori-

zontal 〈v′1v′1〉 /w2
∗ velocity components, exhibit the expected shapes of these profiles

(Deardorff et al., 1980; Stull, 1988; Schmidt and Schumann, 1989; Moeng and Sul-

livan, 1994) and that within the mixed layer, the profiles at different times tend to

collapse on top of each other within the achieved statistical convergence.

The spread of values for the turbulent fluctuations from the LES intercomparison

of Fedorovich et al. (2004a), taken at approximately zenc/L0 = 12, is included in

Fig. 3.3d-f. DNS data are comparable to those from LES at the well-mixed region

since subgrid-scale contribution should be small because the large convective scale

dominates there. Therefore LES and DNS results have to agree qualitatively. How-

ever, we note that the LES spread is comparable to the growth from zenc/L0 = 10

to zenc/L0 = 26 of the DNS data, and the variation of DNS data between the Re040

and Re100 cases at zenc/L0 � 10. DNS data at the end of the simulation, when

the Reynolds number is highest, is at the upper limit of the spread of LES values.

It is possible that the spread among instantaneous values from different LES for

the same time interval could be larger since the LES runs could also further vary

in time, although such information is usually lost because LES results are typically

averaged within certain time intervals.

We also compare the DNS vertical velocity variance profile to the vertical profile

suggested in Lenschow et al. (1980)

〈w′w′〉 /w2
∗,f = (k1) (z/zi,f )

2/3 (1− k2z/zi,f )
2 , (3.11)

where k1 = 1.8 and k2 = 0.8 are the coefficients used in Lenschow et al. (1980).

The profile using these coefficients is renormalized such that zi = zenc and w∗ =

wenc (see Fig. 3.3e). DNS data matches the shape, the maximum value and its

location quite well. A best fit to the Re100 data at final time for 0 ≤ z ≤ zenc

yields the coefficients k1 = 1.6 and k2 = 0.69. Since the expression (3.11) is a fit

to atmospheric observations (Kaimal et al., 1976), the relatively good agreement

implies that despite the moderate Reynolds number of our DNS, Reynolds number

independence is already achieved for the vertical velocity fluctuations within the

mixed layer.
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Figure 3.4: a) Temporal evolution of 〈b〉min /benc. b) Temporal evolution of the nor-
malized r.m.s. of vertical (blue) and horizontal (green) velocity fluctuations taken at the
height of maximum wrms. Average values calculated beyond zenc/L0 � 10 are summarized
in Table 3.2. c) Temporal evolution of the normalized r.m.s. of vertical (blue) and hori-
zontal (green) velocity fluctuations taken at z/zenc = 1. Light colors correspond to Re040,
dark colors to Re100. Dashed lines correspond to Re040.R1, simulation with a domain
size that is half as large in each horizontal direction (Table B.1 in Appendix B).

Figure 3.4b and Fig. 3.4c (measured at z/zenc) show in more detail the tendency

of the mixed layer velocity statistics towards proportionality with the convective

scales, which extends up to the top of the mixed layer z/zenc � 1. The deviation

of the vertical velocity fluctuation from scaling with the convective velocity is more

significant at early times, but for the case Re100, the scaling with w∗ is already
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observed at zenc/L0 � 12. In contrast, the deviation of the horizontal velocity fluc-

tuation is most visible, since the scaling with w∗ is observed relatively later, roughly

at zenc/L0 > 16 for Re040 and zenc/L0 > 14 for Re100. This slower development

towards being proportional to w∗ is not a domain size effect, as shown in Fig. 3.4b by

the collapse of the curves from the Re040 case and the Re040.R1 case with the same

Re0 but with a horizontal domain that is half as large in each horizontal direction

(see Table B.1 in Appendix B).

Whereas the encroachment and convective scales are appropriate characteristic

scales within the mixed layer, they are clearly inappropriate scales within the en-

trainment zone for both the mean and the variance of buoyancy, respectively, since

the normalized mean buoyancy gradient and the normalized buoyancy variance are

increasing in time (Fig. 3.3b,d). This behavior occurs for both Re040 and Re100

and has also been observed in LES data (Sorbjan, 2007), which indicates a temporal

evolution of the entrainment zone different from that of the mixed layer, rather than

a low Reynolds number effect. We provide in Chapter 5 more appropriate scalings

for these statistics inside the EZ.

Simulation wrms/w∗ v1,rms/w∗ brms/b∗
Re100 0.71 0.42 1.25
Re040 0.69 0.31 1.26

Table 3.2: Time-averaged values (beyond zenc/L0 � 10) of the root-mean-square (r.m.s.)
of the turbulent fluctuations taken at the height of maximum wrms/w∗.

3.4 Higher-order moments

As the order of the statistical moments increase, both statistical convergence and

Reynolds number independence become poorer. To check the quality of our statistics

and possible Reynolds number dependence, we show in Figure 3.5a,c the vertical

velocity skewness defined as

Sw =
〈w′w′w′〉
〈w′w′〉3/2

. (3.12)

Since the mean is taken over horizontally homogeneous planes, the vertical velocity

skewness serves as an indicator of the structure of convective elements in the CBL;
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its positive value within the entire CBL means that the probability density function

(pdf) of vertical velocity has more ‘extreme’ positive values, which physically means

that the rising thermals (or updrafts) are faster and narrower than the surrounding

downdrafts (Moeng and Rotunno, 1990). This statistic is of interest in dispersion

studies (see Lenschow et al., 2011, and references therein) and is of importance to the

vertical transport of turbulence kinetic energy, which we show in the next section.

Regarding Reynolds number similarity, we see that for an earlier time, the skewness

at z/zenc � 0.8 and farther into the entrainment zone is larger than for later times

(Fig. 3.5a) and values at the surface layer are smaller than those during later times

(Fig. 3.5c). We interpret this as a Reynolds number effect since advancement in

time is equivalent to an increase in the convective Reynolds number (see Chapter 2

section 2.2.3). A similar behavior is observed in Sullivan and Patton (2011) for the

same quantity but instead of varying the Reynolds number, the grid resolution is

refined; Coarse resolution LES overpredicts Sw near and at the entrainment zone

and underpredicts Sw at the surface layer. In contrast, Sw at final times of Re100

and Re040 cases are very similar in terms of magnitude within the mixed layer even

up to the entrainment zone, an indication that Reynolds number independence has

been achieved for this statistic within the mixed layer. The slight vertical offset

may still be some low Reynolds number effect, since the Reynolds number at the

entrainment zone [see Chapter 5 Eq. (5.10)] is smaller than the convective Reynolds

number Re∗ and may also be due to a dependence on the independent variable

zenc/L0. These observations further support the interpretation that low resolution

LES have low Reynolds number effects and that grid refinement, instead of the

addition of a subgrid-scale model, increases the scale separation between the large

and the small scales by adding more small scales.

Figure 3.5b,d also shows the flatness or kurtosis of the vertical velocity, defined as

Kw =
〈w′w′w′w′〉
〈w′w′〉2 , (3.13)

which is a measure of the tails of the pdf. Large values of Kw are indicators of

non-Gaussianity and intermittency, which agrees with the pronounced peak at the

entrainment zone where penetrating domes with pockets of turbulence and relatively

nonturbulent background fluid coexist (see Fig. 5.3 in Chapter 5). Similar to the

skewness, low Reynolds number effects are observed between earlier and later times

of Re100 but the good collapse between final times of Re100 and Re040 seem to
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Figure 3.5: a) Vertical profile of the vertical velocity skewness Sw defined in Eq. (3.12)
b) Vertical profile of the vertical velocity flatness Kw defined in Eq. (3.13), solid black
line corresponds to the flatness value Kw = 3 corresponding to a Gaussian profile c) Semi-
logarithmic plot of the vertical profile of the vertical velocity skewness Sw against the
height in wall units z/z0, where z0 = (κ3/B0)

1/4 d) Semi-logarithmic plot of the vertical
velocity flatness Kw against the height in wall units z/z0; Solid lines in light to dark colors
correspond to Re100 case at zenc/L0 = {10, 18}, respectively. Dashed line corresponds to
Re040 case at final time zenc/L0 = 26.

indicate Reynolds number independence within the well-mixed layer.
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Figure 3.6: a) Vertical profile of turbulence kinetic energy e normalized with w2∗. b)
Vertical profile of TKE budget terms normalized with B0: ∂e/∂t (magenta), 〈b′w′〉 (black),
−ε (red), and −∂T/∂z (green). c) Vertical profile of the components of the transport term
−∂T/∂z defined in Eq. (3.16) (normalized with B0) : transport due to velocity fluctuations
Tu (blue), transport due to pressure fluctuations Tp (red), and molecular transport Tν

(green). d) Vertical profile of the components of the turbulent flux of kinetic energy T
(normalized with B0zenc) corresponding to the flux due to velocity fluctuations (blue),
flux due to pressure fluctuations (red), and flux due to molecular diffusion (green). Solid
lines in light to dark colors correspond to Re100 case at zenc/L0 = {10, 18}, respectively.
Dashed line corresponds to Re040 case at final time zenc/L0 = 26.
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Turbulence kinetic energy (TKE), defined as

e = 〈v′1v′1 + v′2v
′
2 + w′w′〉 /2 , (3.14)

is an important quantity for the CBL because it serves as a measure for turbulence

intensity and a starting point for many closure attempts. The TKE vertical profile,

shown in Fig. 3.6a, is almost constant at the bottom half of the mixed layer but

decreases near the entrainment zone due to the less pronounced peak of horizontal

velocity fluctuations.

The time evolution of TKE is governed by the TKE budget equation

∂e

∂t
= 〈b′w′〉 − ε− ∂T

∂z
, (3.15)

where T = 〈w′v′iv
′
i + w′w′w′〉 /2 + 〈p′w′〉 − 〈u′

iτ
′
iz〉 is the turbulent flux of kinetic

energy in the vertical direction (−∂T/∂z is referred to as transport term), and

ε =
〈
u′
i,jτ

′
ij

〉
is the mean viscous dissipation rate (referred to as dissipation term),

with the viscous stress tensor being τij = ν(ui,j + uj,i) (the symbol ui,j denotes

partial derivative in the direction j for the velocity component ui).

The behavior of the terms of TKE budget equation is of interest for the development

of one-dimensional TKE prognostic models and TKE closure schemes that are used

in mesoscale or single-column boundary-layer models. Better parameterizations of

the TKE terms is one of the main endeavors in boundary layer modeling since the

accuracy of the parameterizations affects the success of higher-order boundary layer

schemes. We therefore evaluate the terms of the budget equation using our DNS

data, which is free from any kind of turbulence models. We then briefly discuss the

behavior of the budget terms and present a few observations that could be interesting

for TKE parameterizations, which can be further looked into as a future extension

of this study.

Evaluation of the TKE budget terms

Figure 3.6b shows how each of the terms in Eq. (3.15) behave as a function of height.

We see that the first term on the right-hand side, the buoyancy flux, is a production

term at the mixed layer but becomes a destruction term at the entrainment zone,

transforming TKE into potential energy by raising the height of the interface be-

tween the mixed layer and the stable free troposphere. As discussed by Winters et al.
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(1995), not all of this potential energy is available for transforming back to kinetic

energy (reversible) because some of the potential energy is converted to background

potential energy by mixing (irreversible). The second term on the right-hand side

is viscous dissipation rate of TKE, an irreversible sink that transforms TKE into

heat. This heat’s magnitude is negligible when the magnitude of the velocity fluc-

tuations is small compared to the speed of sound (Batchelor, 1967) and is therefore

not retained in the Boussinesq approximation. The last term on the right-hand

side, the transport term, neither creates nor destroys TKE within the whole CBL

(since it reduces to zero when integrated, as shown in the next section) and simply

transports TKE vertically. For the dry, shear-free case, the transport term is the

sole TKE production term within the entrainment zone.

Similar to the variance profiles, the TKE-budget profiles clearly exhibit self-similar

behavior at the mixed layer when scaled with w3
∗/zenc = B0 and zenc, and exhibit the

typical structure found in the CBL (Stull, 1988). Reynolds number similarity is also

observed, since the profiles of Re040 and Re100 cases at final times agree quite well.

Particularly for the profile of viscous dissipation rate, its self-similar behavior within

the mixed layer is an indication of the inviscid scaling of viscous dissipation rate.

Near the surface, the viscous dissipation rate is still changing because the near-wall

region does not necessarily scale with the mixed layer scales (see Chapter 4). As

the scale separation between the CBL thickness and the near-wall region thickness

increases, the extent of the near-wall region becomes negligible when normalized by

the CBL thickness and the region where self-similar behavior is observed extends

further down.

On parameterizations of some TKE budget terms

With DNS data at hand, we can study in detail some budget terms that are of

particular interest in modeling, such as the TKE transport term. To guide such

model development, we breakdown the transport term into its components.

The turbulent transport term has three components:

Tu = −1

2

∂ 〈w′v′iv
′
i + w′w′w′〉
∂z

, Tp = −∂ 〈p′w′〉
∂z

, Tν =
∂ 〈u′

iτ
′
iz〉

∂z
, (3.16)

respectively, the transport due to velocity fluctuations, the transport due to pressure

fluctuations and transport due to molecular diffusion that is negligible except near
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the wall (the diffusive layer) [see Fig. 3.6c]. The first component, Tu, which can be

further divided into horizontal and vertical contributions, is the main contributor,

particularly its vertical velocity component. Figure 3.6d shows the parabolic shape

of the triple velocity correlation term which mainly dictates the linear shape of the

transport due to velocity fluctuations Tu.
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Figure 3.7: Vertical profile of the ratio ε/(e3/2/lε), where lε = (0.5zi/w∗)
√
e. Solid

lines in light to dark colors correspond to Re100 case at zenc/L0 = {10, 18}, respectively.
Dashed line corresponds to Re040 case at final time zenc/L0 = 26.

As shown in Witek et al. (2011a), using only an eddy diffusivity approach by mod-

eling the transport term as ∂/∂z(−K∂e/∂z) (where K is the diffusivity coefficient

for TKE), does not work because the vertical profile of the TKE is almost constant

with height within the CBL (see Figure 3.6a). However, improvement is observed

with the addition of a mass flux term that tries to represent the non-local turbulent

transport by the large scale convective plumes. In particular, the mass flux represen-

tation of the transport leads to a parameterization of the triple velocity correlation

as a cubic function of an updraft velocity, which can be roughly thought of as the

velocity of the 10% most energetic updrafts, and is solved from an equation that

includes a buoyancy source term(see Soares et al., 2004; Witek et al., 2011b). The

cubic function of the updraft velocity achieves a similar shape as the triple velocity

correlation term in Fig. 3.6d. The improvement brought in by the mass flux para-

meterization of the turbulent transport term hinges on capturing this general shape

of the triple velocity correlation contribution.
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On the other hand, the transport due to pressure fluctuations 〈p′w′〉 is typically

taken for granted in usual parameterizations by assuming that it can be combined

with– and behaves similarly to Tu. However, we see in Figure 3.6c,d that its behav-

ior is opposite of the turbulent transport in the mixed layer, which slightly shifts

the zero-crossing of the total transport and reduces its peaks. Interestingly, the

pressure fluctuation contribution Tp becomes a positive contribution at the upper

portion of the entrainment zone. The positive contribution is most likely due to the

increase in pressure as the thermals push against the stable stratification since such

a contribution does not exist in the neutrally-stratified case (not shown). We also

point out that the small positive value of the pressure fluctuation flux 〈p′w′〉 above
the entrainment zone (see Fig. 3.6d) is due to the outward radiation of gravity waves

within the stably stratified region.

Another term of interest is the rate of viscous dissipation term. With DNS data, we

can diagnose a typical parameterization

ε = cεe
3/2/lε, (3.17)

where cε is a coefficient that can vary in time and the length scale lε = (0.5zi/w∗)
√
e

is the mixing length formulation proposed by Teixeira and Cheinet (2004). Figure 3.7

shows that the parameterization would only work satisfactorily for the upper half

of the CBL but with cε � 0.4, which is different from the value used in Witek et al.

(2011a) (cε = 0.6). The parameterization, Eq. (3.17), when particularly combined

with the above-mentioned choice of the mixing length, simply implies an assumption

that the normalized viscous dissipation rate ε/(w3
∗/zi) is directly proportional to the

normalized TKE e/w2
∗. We can deduce from Fig. 3.6a,b, and see more clearly in

Fig. 3.7, that this does not necessarily hold even if the proportionality constant cε

is allowed to vary in time.

3.6 The equilibrium entrainment regime

To show that we are analyzing statistics within a quasi-equilibrium state, we follow

Fedorovich et al. (2004b) and perform an integral analysis of the evolution equation

for the turbulence kinetic energy, Eq. (3.15). Integrating this transport equation

from the surface up to a height z∞ located far enough into the nonturbulent stably
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stratified region yields

Ct = Cbw − Cε − CT , (3.18)

where Ct = w−3
∗,i

∫ z∞
0

(∂e/∂t) dz, and the terms at the right-hand side are

Cbw = w−3
∗,i

∫ z∞

0

〈b′w′〉 dz , Cε = w−3
∗,i

∫ z∞

0

ε dz (3.19)

and CT = w−3
∗,i T (z∞). The convective velocity in the expressions above is w∗,i =

(B0zi,i)
1/3 (Deardorff, 1970). By construction, Cbw = 0.4. Unlike in Fedorovich

et al. (2004b) where a zero-order model framework is assumed and Eq. 3.15 is thus

integrated only up to zi, the upper limit of integration is chosen to be z∞ such that

the transport term CT � 0 and no portion of the EZ, which has a finite thickness,

is excluded from the integral analysis.
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Figure 3.8: Temporal evolution of normalized terms of the integral budget equation of
turbulence kinetic energy, Eq. (3.18) showing the dominant balance Cbw � Cε: Cε (red),
Ct (magenta) and CT (green). Cbw = 0.4 (black), by definition. Light colors correspond
to Re040, dark colors to Re100.

The evolution in time of the terms in Eq. (3.18), shown in Fig. 3.8a, has three

main features. First, the collapse of the curves from simulations Re040 and Re100,

particularly that of Cε, indicates the tendency of the production and destruction

rates of turbulence kinetic energy towards an inviscid scaling that depends solely on

the integral scales zi,i and w∗,i, i.e., independent of the viscosity. This behavior is

another manifestation of Reynolds number similarity (Tennekes and Lumley, 1972;

Pope, 2000; Monin and Yaglom, 2007). Second, the negligibly small transport term,
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CT , implies a negligible energy drain due to the upward radiation of inertial gravity

waves, in accord with previous findings in similar CBL configurations (Deardorff

et al., 1980; Carruthers and Hunt, 1986; Fedorovich et al., 2004b). Finally, the de-

creasing tendency term Ct implies that beyond zenc/L0 � 10, the dominant balance

in Eq. (3.18) is between the terms Cbw and Cε, meaning

Cbw � Cε. (3.20)

This balance corresponds to the equilibrium entrainment regime (Fedorovich et al.,

2004b). Within this regime, the CBL is in a quasi-steady state in the sense that the

time zenc/we = N−1(zenc/L0)
2 required for a significant change of the CBL thickness

is much longer than the turn-over time zenc/w∗ = N−1(zenc/L0)
2/3 associated with

the large-scale convective motions inside the CBL. Indeed, the ratio of these two

time scales, w∗/we = (zenc/L0)
4/3, is larger than an order of magnitude for the

interval of the normalized CBL thickness zenc/L0 ≥ 10 considered in this work.



48 3. Mixed layer statistics



4 The surface layer

The surface or inner layer of the atmospheric boundary layer (ABL) is roughly

defined as the region close to the surface that extends up to 10%-20% of the ABL

thickness. This region is characterized by turbulent fluxes and shear stress that are

roughly constant with height, and is expected to be the layer where the effects of the

outer layer drop out. Sandwiched between the surface and the rest of the ABL, the

surface layer essentially links the surface and the atmosphere by regulating fluxes of

quantities, such as heat, momentum, and moisture between them.

Introduction

The surface layer fluxes are usually related to corresponding vertical profiles of

mean quantities by assuming Monin-Obukhov similarity theory (MOST) (Obukhov,

1946). This theory supposes that the nondimensional vertical gradients of mean

quantities are universal functions of the atmospheric stability parameter. For ABLs

with sufficiently strong mean winds, widely used flux calculation techniques based

on MOST such as the Businger-Dyer profiles work satisfactorily, but then break

down for strongly convective cases with vanishingly small winds. For most purposes

of atmospheric modeling and field data analysis, the stability regime covered by

such techniques were generally deemed adequate since ABLs with vanishingly small

winds are extreme cases and the asymptotic limit of pure shear-free ABLs is virtually
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unattainable in the ABL. However, recognition of the importance and considerable

frequency of the strongly convective case in warm pools in the sea (see, e.g., Miller

et al., 1992) has demanded for more generalized models that can handle vanishingly

small winds in a consistent and robust manner.

To accommodate the strongly convective cases, flux parameterizations are generally

extended by incorporating the MOST prediction in the asymptotic limit of vanishing

mean wind (see, e.g., Akylas and Tombrou, 2005; Zhao et al., 2013). This limit,

called the free convection limit, yields the classical similarity scalings, also known

as Priestley scalings, wherein statistics scale as certain power laws with respect to

the height z: the mean buoyancy gradient ∝ z−4/3 , the r.m.s. of (vertical) velocity

fluctuations ∝ z1/3, and the r.m.s. of buoyancy fluctuations ∝ z−1/3 (Prandtl, 1932;

Obukhov, 1946; Priestley, 1954).

For atmospheric data, the validity of classical similarity theory remains questionable

because only a few statistics seem to exhibit the theoretical scalings. For example,

the Kansas field experiments seem to exhibit the 1/3 and -1/3 laws for the fluctuation

of vertical velocity and buoyancy, respectively, even for remarkably small atmosphe-

ric stability values (Wyngaard et al., 1971) but do not support the -4/3 law for

the mean buoyancy gradient and the 1/3 law for the horizontal velocity fluctuation.

Instead, -3/2 power law (Businger et al., 1971) for the mean buoyancy gradient and

a scaling of the horizontal velocity fluctuations with the convective velocity scale

(Panofsky et al., 1977) have been reported. The Minnesota field experiment shows

results similar to the Kansas field experiment except that the Minnesota data do not

strongly support the -1/3 power law for the buoyancy fluctuations (Kaimal et al.,

1976). Support for the classical similarity scalings is then further weakened by the

scatter in the data that is enough to make agreement with other scalings also pos-

sible, and by the extrapolation of sheared convection data to the shear-free limit,

which is unavoidable due to the limited stability range covered by measurements

and the rarity of pure free convection observations.

In laboratory experiments where pure free convection is attainable, support for

the classical similarity scalings is much less convincing. Similar to atmospheric

measurements, the -4/3 law for the mean buoyancy gradient is generally not observed

in the laboratory, instead -2 and -3/2 power laws have been reported (see Adrian

et al., 1986, for a review). Moreover, the 1/3 and -1/3 power laws for the r.m.s. of

vertical velocity and buoyancy fluctuations, respectively, are generally unsupported

in the laboratory. Instead other scalings, such as logarithmic scaling with z for the
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vertical velocity r.m.s. and -1/2 for the buoyancy r.m.s., to name a few, have been

reported (Adrian, 1996). These deviations are clearly observed in the laboratory

because the scatter in data is less; however, findings in the laboratory still cannot

convincingly contradict classical similarity scalings because low Reynolds numbers

effects may be significant.

Kraichnan (1962), regarding deviations in laboratory data, and later Businger

(1973), regarding deviations in atmospheric data, proposed similar mechanisms to

explain why the conditions for free convection scaling at the surface layer are never

completely reached. The general idea is that even in the absence of mean wind,

local shear effects within the convective cells are believed to be produced by ‘con-

vective wind’ gusts caused by the large scale convective motions that penetrate into

the surface. These gusts create a ‘minimum friction velocity’ that is believed to

scale with the convective velocity w∗. Such an idea introduces outer scales like the

CBL thickness into the set of characteristic scales, which then violates the assump-

tions of MOST. Still, the ‘minimum friction velocity’ is usually incorporated into

parameterizations to extend the MOST framework by treating free convection as a

particular case of forced convection (Sykes et al., 1993; Beljaars, 1994). Improve-

ments to surface layer schemes have been claimed with the inclusion of a ‘minimum

friction velocity’. However, the underlying hypothesis and its resulting surface layer

scalings have not been properly confirmed.

Banking on previous indications of outer layer effects on the inner layer, we further

ask whether stratification would affect the inner layer dynamics, an effect that is so

far unstudied. Switching off the presence of the background buoyancy stratification

N2 allows the boundary layer to grow faster and develop large scale motions that are

vertically unhindered, unlike in the CBL. To analyze whether the presence or absence

of stratification would affect the inner layer, we compare the surface layer statistics

of our linearly stratified CBL (N2 > 0) to the surface layer statistics of a neutrally-

stratified free convection ‘heated plate’ case (N2 = 0) also from DNS (Mellado,

2012), which corresponds to the asymptotic limit of the CBL for vanishingly weak

stratification. The heated plate case is comparable to the state of the CBL during

an early regime wherein the turbulent boundary layer is shallow enough to behave

essentially as if it were developing in neutral conditions (e.g. morning transition

when residual layer is broken down by the turbulent convective motions). As the

CBL continues to grow, the CBL state enters a regime where the CBL feels N2 more

significantly, which then diminishes the CBL growth rate with respect to that of the

early regime, and further evolves into its fully-developed state (see Appendix A).
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Comparing the two cases can therefore be interpreted as a study on the effect of the

CBL state on the inner layer statistics.

4.1 Characteristic scales

We will use two different sets of characteristic scales for discussing the results. The

inner scales are constructed with B0 and z0, where z0 indicates either the rough-

ness length or the diffusion length, depending on the surface properties (Garratt,

1992). The corresponding velocity and buoyancy scales are w0 = (B0z0)
1/3 and

b0 = (B2
0/z0)

1/3, respectively. For a smooth wall and in the case Pr = ν/κ = 1 as

considered in this work, the diffusion length is given by

z0 = (κ3/B0)
1/4, (4.1)

and the remaining inner scales (wall diffusion units) are

w0 = (B0κ)
1/4, b0 = (B3

0/κ)
1/4 (4.2)

(Townsend, 1959). Variables normalized with the inner scales will be denoted with

a superscript “+”, e.g.,

z+ = z/z0 . (4.3)

The outer scales are constructed with B0 and h, where h is a measure of the boundary

layer thickness, to be defined later. The corresponding velocity and buoyancy scales

are the convective scales, w∗ = (B0h)
1/3 and b∗ = (B2

0/h)
1/3, respectively (Deardorff,

1970) (see Chapter 3).

As discussed in Chapter 2, the control parameters are {ν, κ, B0, N} and the inde-

pendent variables are {z, t}. For both cases, the Prandtl number ν/κ = 1. The

only difference between the CBL and the heated plate case is in the value of the

parameter N : N �= 0 for the CBL and N = 0 for the heated plate. Choosing κ and

B0 to nondimensionalize the problem, the statistics can be expressed as a function

of the set of nondimensional variables {z+, h+, h/L0}, where the dependence on

the time has been expressed in terms of h+(t+), i.e., the scale separation between

the boundary layer height h(t) and the diffusion length z0. This ratio can alter-

natively be interpreted in terms of the convective Reynolds number (see Eq. 2.10)

particularly in the form Re∗ = hw∗/ν = (h+)4/3.
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Case Grid Domain size h+ Re∗ Ret Ra∗ δ+b

N2 �= 0 51202 × 840 76302 × 2010 623 5320 2860 1.0×109 4.17
N2 = 0 51202 × 1280 76302 × 2666 620 5287 1740 1.0×109 4.20

1034 10320 3656 4.7×109 4.33

Table 4.1: Simulation grid, domain size in wall units and properties at different states
of development as indicated by the boundary layer height h+ = h/z0, where z0 is defined
as z0 = (κ3/B0)

1/4 (Townsend, 1959). The convective Reynolds number Re∗ = hw∗/ν =
(h+)4/3 is defined based on the convective velocity w∗ = (B0h)

1/3. The turbulent Reynolds
number Ret = e2/(εν), where e is the turbulence kinetic energy and ε its viscous dissipation
rate, is the maximum value across the boundary layer.

Both the CBL and heated plate exhibit a quasi-steady regime after a certain interval

of time, in the sense that the integral time scale of the turbulent fluctuations is

much shorter than the characteristic time necessary for the evolution of the vertical

profiles (Fedorovich et al., 2004b; Mellado, 2012). We are interested in this quasi-

steady regime, therefore h+ can be considered as a control parameter instead of an

independent variable. For the CBL, we have shown that the quasi-steady regime

occurs when the boundary layer height h becomes about an order of magnitude

larger than L0 (see Chapter 3 section 3.6). Within this regime, self-similar behavior

of the outer layer statistics is observed regardless of the increasing value of h/L0. We

therefore hypothesize that the particular value of h/L0 is irrelevant in the discussion

that follows, except for the crucial fact that it is non-zero for the CBL (N2 �= 0) and

zero for the heated plate (N2 = 0). This difference leads to a different vertical

structure of the boundary layer, as shown later. In sum, the statistics can be

expressed as a function of {z+, h+} and we analyze how these functions depend

on the conditions N2 �= 0 and N2 = 0.

4.2 Vertical structure in free convection

We roughly follow the vertical structure definition in free convection identified in

Mellado (2012) based on adapting conventions in shear-driven flows to the free

convection case.

The inner layer is usually identified based on the quasi-steady behavior of some

statistics and is estimated to be a certain fraction α of the outer layer thickness h,

namely, αh. As in Mellado (2012), we base the definition of the inner layer and its

sublayers on the total buoyancy flux B = 〈b′w′〉−κ(∂〈b〉/∂z), shown in Fig. 4.1. The
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Figure 4.1: Vertical profile of the molecular (blue) and turbulent (red) contributions to
the total buoyancy flux B = 〈b′w′〉−κ(∂〈b〉/∂z) plotted in wall diffusive units. Solid lines
correspond to h+ � 620, and dashed lines to h+ � 1034 (only available for neutral case).
Dark colors indicate the stably stratified case and light colors the neutrally stratified case.

inner layer includes the diffusive wall region 0 < z+ ≤ 10, where molecular effects

are non-negligible. Sublayers of the diffusive wall region are further defined based

on the relative contributions of the molecular and turbulent buoyancy flux to the

total buoyancy flux B. These sublayers are: the diffusive sublayer z+ ≤ 1, where

the turbulent buoyancy flux contribution is roughly below 10%, and the buffer layer

1 ≤ z+ ≤ 10, where the turbulent buoyancy flux increases rapidly. At a height equal

to the buoyancy gradient thickness

δb = −(Δb)s/∂z〈b〉|z=0 , (4.4)

((Δb)s is the buoyancy difference, to be defined later) both molecular and turbulent

contributions to the total buoyancy flux B are comparable to each other. For the

range of Rayleigh numbers achieved in the simulations, δb is slightly larger than four

wall units (see Table 4.1). The order of one values of the normalized variables in

the diffusive wall region and the independence of the profiles from h+, confirm that

the inner scaling of Townsend is appropriate for the diffusive wall region (see also

Fig. 4.4).

Beyond z+ > 10, the molecular buoyancy flux contribution to the total is less than

4% and is therefore negligible. This region is considered to mark the beginning of the

outer layer, where molecular diffusivity drops out of the analysis and z/h remains

as the only independent variable.

In contrast to the previous definitions, defining the upper limit of the inner layer’s

extent in the CBL is actually less straightforward. In Mellado (2012), the inner
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layer is identified based on the quasi-steady behavior of the total buoyancy flux,

and its thickness is defined as the extent of the region of approximately constant

buoyancy flux, an extent of ∼ 0.4h as identified by Mellado (2012). However, for the

CBL, a region of constant buoyancy flux does not exist because the total buoyancy

flux is linearly decreasing. The inner layer in the CBL is therefore identified as a

region where the fluxes are approximately constant, meaning they are not changing

too rapidly with height. Garratt (1992) defines this region as the extent where

the buoyancy flux is up to ≥ 0.9B0, which we observe in our CBL as equivalent

to ∼ 0.1h, although the choice of 90% of the surface buoyancy flux is somewhat

arbitrary. The resulting region is clearly smaller than in the plate. In this study, we

claim that an inner layer extent of 0.2h for both the CBL and the heated plate is

a fair alternative definition that derives its justification on an interesting property

that we observe in the co-spectra of the buoyancy and the vertical velocity, which

we discuss later. We observe that such a definition corresponds to a region in the

CBL where the turbulent buoyancy flux is at most 0.8B0.

Where the inner- and the outer layer overlap, the statistics presumably depend only

on the parameters that are common to both the inner and outer layer, namely,

{B0, z}. These parameters are used to construct the free convection scales (see

Prandtl, 1932; Obukhov, 1946; Priestley, 1954; Wyngaard et al., 1971) and the

overlap region is where classical similarity theory proposes the power law scalings

that were mentioned in the introduction. We will look into the statistics in this

overlap region later on to see whether classical similarity predictions for the vertical

profiles hold and whether the stratification affects the behavior of these profiles.

4.3 Differences between the outer layer of the

CBL and the ‘heated plate’

One main difference that the presence or absence of stratification brings about is the

presence or absence of the capping action on the rising buoyant thermals. Whether

these vertical motions are hindered or not have effects on the CBL and heated plate

that can already be identified visually from Figure 4.2. Due to the overlying stably

stratified layer in the CBL, sharp gradients can be seen at the top of the boundary

layer as the rising thermals impact on the stable region, whereas in the heated plate

where the thermals are free to rise, the top of the boundary layer ends up being

characterized by largely intermittent regions and by engulfment of nonturbulent
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(a)

(b)

Figure 4.2: Vertical cross-section showing the logarithm of the scalar dissipation rate
log10 ε

+
b at h+ � 620: (a) stably stratified case, (b) neutrally stratified case. The vertical

white bar in the bottom-left corner indicates the boundary layer height h. The horizontal
white bar is located at 0.2h and extends a distance h in the horizontal. Only 1/2 of the
domain is shown.
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fluid. The capping effect of stable stratification further affects the structure of the

large convective motions. In the CBL, the updrafts are more well-defined and tower-

like, whereas those in the heated plate are less-defined, wider, and less clustered

together. Consequently, the downdraft regions are also more distinct in the CBL

and appear as regions of relatively weaker turbulence, whereas in the heated plate

case, downdraft regions are more difficult to identify visually due to the spreading

of updrafts and the large scale engulfment of nonturbulent fluid, which increases the

global intermittency of the flow. The aspect ratio of the large convective motions

are also visibly different: in the CBL the horizontal extent of the large convective

cells are wider than that in the heated plate.

In order to quantitatively compare between the outer layer characteristics of the

CBL and the heated plate, we need definitions of the boundary layer thickness that

render both problems comparable. For the CBL, we saw in Chapter 3 that there are

different possible definitions but all of them basically mark the mean vertical location

of the entrainment zone. But unlike the CBL, the heated plate neither has a clearly

defined entrainment zone nor a region of negative buoyancy flux. We therefore use

the integral definition for the heated plate and the zero-crossing definition zi,0 for

the CBL to exclude the region of negative buoyancy flux,

h =

{
B−1

0

∫∞
0
〈b′w′〉dz , in the neutrally stratified case N2 = 0 ,

{z : B(z) = 0} , in the stably stratified case N2 �= 0 ,
(4.5)

where B is the total buoyancy flux. Note that unlike the CBL, the heated plate

case does not have a factor 2.5 for the integral definition. Such a factor is unnec-

essary since the shape of the vertical profile of the heated plate’s buoyancy flux is

approximately rectangular, in contrast to the triangular shape in the CBL, as shown

in Figure 4.3a. The quasi-steady regime in each configuration is characterized by

corresponding growth rate laws

h �
{

[B0(t/3)
3]

1/2
, in the heated plate N2 = 0 ,

[B0(2t/N
2)]

1/2
, in the CBL N2 �= 0 ,

(4.6)

(see, e.g., Zilitinkevich, 1991; Fedorovich et al., 2004b; Mellado, 2012). Figure 4.3b

shows that the both the CBL and the heated plate are in this quasi-steady regime

beyond h+ � 200.

The aforementioned choice of boundary layer heights makes sense since it yields

comparable vertical profiles of the r.m.s. of the fluctuations of horizontal and ver-
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a) b)

c) d)

Figure 4.3: a) Vertical profiles of the buoyancy flux 〈b′w′〉 (black), turbulent transport
−∂T/∂z (blue) and viscous dissipation rate −ε (red). b) Temporal evolution of boundary
layer heights h, Eq. (4.5). Dashed lines indicate the corresponding scaling laws describing
the quasi-steady regimes, Eq. (4.6). c) Vertical profiles of the r.m.s. of the velocity
fluctuations normalized with outer scales. d) Compensated Nusselt number as a function
of the Rayleigh number. The vertical bars indicate the interval of data measurement
extracted from figure 2 in the review paper Chillà and Schumacher (2012). Solid lines
correspond to h+ � 620, and circles to h+ = 1034 (only available for neutrally stratified
case). Dark colors indicate the stably stratified case and light colors the neutrally stratified
case.
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tical velocity shown in Figure 4.3c. Further differences between the CBL and the

heated plate can now be quantitatively identified. At the top of the CBL, there

are strong horizontal velocity fluctuations due to the deflection of thermals by the

stable stratification, whereas such a peak is absent in the heated plate case. As for

the vertical velocity fluctuation, the magnitude of the peak is smaller in the CBL,

most likely due to hampering pressure effects of the stable stratification. Otherwise,

the bulk profiles of the r.m.s. of velocity fluctuations are similar. Despite this simi-

larity, the turbulent Reynolds number Ret = e2/(νε) is larger in the CBL by about

50% at the same boundary layer height h+ � 620 (equivalently, the Taylor-based

Reynolds number Reλ =
√

(20/3)Ret is different by about a factor of 30%). The

main difference lies in the dissipation rate, which is larger in the heated plate (see

Fig. 4.3a), the underlying reason is mentioned later.

We also show that the CBL and the heated plate case can be compared with

Rayleigh-Benárd convection, when both are interpreted as half a Benárd convec-

tion cell (Mellado, 2012). This interpretation means that h and (Δb)s are, respec-

tively, half the height and half the buoyancy difference between the two plates in

Rayleigh-Benárd convection (Adrian et al., 1986; Mellado, 2012)

(Δb)s =

{
〈b〉(0, t) , in the heated plate N2 = 0 ,

〈b〉(0, t)−N2h , in the CBL N2 �= 0 .
(4.7)

The buoyancy term N2h is the encroachment buoyancy (see Chapter 3 section 3.2).

Such an interpretation introduces a factor of 16 in the equivalent Rayleigh number

defined as Raeq = 16Ra∗, where

Ra∗ =
h3(Δb)s

νκ
= (h+)3(Δb)+s . (4.8)

The Nusselt number (where the condition Pr = 1 has been used)

Nu =
B0

κ(Δb)s/h
=

h+

(Δb)+s
, , (4.9)

is plotted in Figure 4.3d as a function of the equivalent Rayleigh number in the

compensated form NuRa−1/3
eq = [2(Δb)+s ]

−4/3, which shows that data from both the

neutrally and the stably stratified cases agree with the data from Rayleigh-Benárd

convection beyond Raeq � 5 × 108, once both boundary layer systems are in their

corresponding quasi-steady regime (i.e., beyond h+ � 200). This result further
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supports our choice of boundary layer height definitions, Eq. (4.5).

4.4 Effects of the outer layer on the surface layer

statistics

4.4.1 Vertical profiles

For both the CBL and the heated plate, the r.m.s. of horizontal velocity fluctuations

in the inner layer is varying in time (see Fig. 4.4a) and the maximum r.m.s. value

seems to scale with the convective velocity (see Fig. 4.6a). This observation agrees

with the findings of Panofsky et al. (1977) in atmospheric flows at much larger

Rayleigh numbers and also implies that the outer layer indeed penetrates down to

the inner layer. As for the vertical velocity and buoyancy in Figure 4.4b-d, we

see deviations from classical similarity theory and differences between the CBL and

heated plate statistics. Although we cannot strongly propose the observed scalings

as alternatives due to the limited extent of the overlap region 10 < z+ < 0.2h+ and

possible Reynolds number effects, the difference in behavior between the CBL and

the heated plate despite the Reynolds number being similar suggests a dependence

of surface layer statistics on N , and therefore on the outer scales, which proves

the assumptions behind classical similarity theory as wrong. We look into these

differences in detail in the following.

In the CBL, the mean buoyancy gradient ∂〈b〉/∂z seems to be tangential to the

(z+)−2 line for a short extent that slightly goes beyond the diffusive wall region,

but then the exhibited power law changes to (z+)−4/3 slightly further into the

overlap region and even extends into the outer layer. The scaling ∂〈b〉+/∂z+ =

(∂〈b〉/∂z)(z0/b0) ∝ (z+)−4/3 is in agreement with classical similarity theory. This

observation is slightly surprising since the −4/3 power law is never achieved in the

atmosphere, and rarely in the laboratory. On the other hand, the r.m.s. of the

buoyancy fluctuations is clearly better described by b+rms ∝ (z+)−1/2, and that of the

vertical velocity fluctuations by w+
rms ∝ log(z+). The observed scalings for the r.m.s.

of fluctuations seem to support the theoretical scalings proposed by Adrian (1996),

derived from an extension of Castaing et al. (1989) theory, which proposes an alter-

native heat transfer relation, namely, Nu ∝ Ra2/7. However, neither this alternative

relation nor a key assumption of Adrian (1996) are supported by our data. We will
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a) b)

c) d)

Figure 4.4: Vertical profiles of the horizontal (one component), in panel a, and vertical,
in panel b, velocity r.m.s., plotted in wall diffusive units. Vertical profiles of the mean
buoyancy gradient, in panel c, and buoyancy r.m.s, in panel d, plotted in wall diffusive
units. Solid lines correspond to h+ � 620, and dashed lines to h+ = 1034 (only available
for neutral case). Dark colors indicate the stably stratified case and light colors the neutral
case.
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briefly discuss why this key assumption does not hold using the spectral analysis.

In the heated plate case, w+
rms also varies logarithmically with height, w+

rms ∝ log(z+)

but with a different proportionality constant, likely due to the difference in the

level of turbulence intensity of the flows (Adrian, 1996). However, the buoyancy

profiles exhibit differences in the observed power laws from those in the CBL, namely,

∂〈b〉+/∂z+ ∝ (z+)−2 and b+rms ∝ (z+)−3/2. In particular, the mean buoyancy gradient

in the heated plate maintains the −2 power law deeper into the overlap region,

unlike the CBL. We note that the −2 power law for the mean buoyancy gradient

was predicted by Malkus’ theory for turbulent convection (Malkus, 1954). As for the

brms, we observe that it behaves as (z+)−1/2 up to roughly z+ � 102, similar to the

CBL but becomes tangentially close to (z+)−1/3, which then makes b+rms ∝ (z+)−3/2

within the whole overlap region seem more appropriate. To decide which power law

better represents the behavior of the profiles in the overlap region is difficult since one

can argue that the inner layer extent of the heated plate case could actually be larger

(∼ 0.4h) (Mellado, 2012) and it is in this region where we see the variation. A thicker

overlap region is then required for any claims to be conclusive. An implication of the

observed dependence of brms on the presence or absence of stratification of the fluid

aloft is that the observed scatter of the atmospheric measurements of brms between

z−1/2 and z−1/3 could be partly due to the different states of the development of the

CBLs in which the measurements were obtained, and not only due to departures

from free convection conditions caused by mean horizontal winds.

4.4.2 Spectral analysis

By studying the vertical structure of the radial spectra of buoyancy and velocity

components, we support the hypothesis that the effect of the presence or absence

of stratification, which induces differences between the CBL and heated plate inner

layer statistics, manifests mainly as a difference in how organized are the large scale

convective motions.

Figure 4.5a-c shows the co-spectra of the buoyancy and vertical velocity for the CBL

(h+ � 623) and the heated plate case (h+ � 620, 1034). The CBL’s co-spectra shows

that the dominant wavelengths contributing to the turbulent buoyancy flux 〈b′w′〉
grows approximately like λ = 5z (diagonal dashed line Fig. 4.5a). We interpret

the approximately linear growth of the dominant wavelength as a signature of the

coalescence of small active plumes into fewer but larger plumes that are farther apart
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.5: Radial pre-multiplied co-spectra and spectra, φ(r)(λ, z), as a function of
the radial wavelength, λ = 2π/κ, and the distance to the wall, z, in wall diffusive units.

Rows: (a, b, c) buoyancy flux φ
(r)
bw = κE

(r)
bw (κ); (d, e, f) buoyancy φ

(r)
bb = κE

(r)
bb (κ); (g, h, i)

vertical (wall-normal) velocity φ
(r)
ww = κEww(κ); (j, k, l) horizontal (wall-parallel) velocity

component φ
(r)
uu = κE

(r)
uu(κ). Columns: (a, d, g, j), stably stratified case at h+ = 623;

(b, e, h, k), neutrally stratified case at h+ = 620; (c, f, i, l), neutrally stratified case at
h+ = 1034. The vertical and horizontal lines correspond to a wavelength and a height
equal to the boundary layer height h+; the diagonal line corresponds to λ = 5z.
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in the horizontal directions. This coalescence process is stronger between z+ � 10

and the height z where the dominant wavelength λ = 5z becomes comparable to

the boundary layer height h, i.e., z = 0.2h. This observation seems to favor a

definition of the inner layer extent as ∼ 0.2h. Beyond this height, the plumes seem

to continue their ascent without further merging, and simply continue to rise in

the form of towers that are separated a distance proportional to h (see Fig. 4.2a).

As already pointed out, these towers are more well defined in the CBL than in the

heated plate, which is most likely due to the capping effect of the stable stratification.

The capping effect and the deflection of vertical motions to the horizontal support

the formation of a strong coherent large-scale circulations that push the plumes

to organize themselves into well-defined towers. The small negative contribution

observed in Fig. 4.5a corresponds to the entrainment zone that develops in the

strongly stratified case. This region is discussed in Chapter 5.

The heated plate’s co-spectra differs from that of the CBL due to the additional

strong and spectrally-broader signal with a wavelength of about 0.7h that extends

from the boundary top at z = h down to a small fraction of the boundary layer

height, � 0.03h 1. This additional contribution leads to the difference between the

mean buoyancy flux profile of a heated plate and that of a CBL, as seen in Fig. 4.3a.

Such a signal exists in the heated plate because in the absence of a capping layer,

the thermals are free to rise, and are then breaking up and spreading as they do so.

This phenomenon is corroborated by the larger dissipation rate found in the heated

plate (see Fig. 4.3a). And since deflections of vertical motions to the horizontal

direction are absent, there is also no strong driver for organization into coherent

large-scale circulation.

Figure 4.5d-f shows the buoyancy spectra, where we see that most of the contribution

to the buoyancy fluctuation is in the near-wall region and scales with inner scales,

in agreement to the brms profile in Fig. 4.4d. The difference between the CBL and

the heated plate case mainly lies within the diffusive wall region. In particular, a

small modulation in the larger wavelengths is visible in the heated plate, but not

in the CBL. We associate the absence of this signal in the CBL to the possibility

that the large and more organized convective motions in the CBL mix buoyancy

more efficiently in the near-wall region. In the heated plate, this signal in the larger

wavelengths further penetrates into the overlap region, which is why the r.m.s. of

the buoyancy fluctuation decays slower than in the CBL.

1For the scale separation achieved in these simulations, � 0.03h is relatively close to the wall
diffusive region (about 20 and 30 wall units for the states h+ = 620 and h+ = 1034, respectively).
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Figure 4.5g-i shows the vertical velocity spectra and figure 4.5j-l, the horizontal

velocity spectra. The CBL and heated plate vertical velocity spectra are quite

different roughly beyond the buoyancy gradient thickness δ+b � 4. Consistent with

the picture that the CBL has convective cells that have larger aspect ratio, both the

vertical and horizontal velocity spectra have a signal in larger wavelengths in the

CBL. The vertical velocity spectra does not support the key assumption of Adrian

(1996) that the velocity scale near the wall region is comparable to that in the

outer layer. Instead, the characteristic scale keeps increasing in magnitude with

height, and it is displaced towards larger wavelengths as the boundary layer grows.

Therefore, the theory of Adrian (1996) is not supported by our data even though

the scalings that follow from this theory, b+rms ∝ (z+)−1/2 and w+
rms ∝ log(z+), seem

to be observed in the corresponding DNS vertical profiles (see Fig. 4.4).

4.5 Discussion

The results in the previous sections support the propositions of Kraichnan (1962)

and Businger (1973) that large scale convective motions produce ‘convective wind

gusts’ that are affected by the outer scales, which is in contrast to the picture of

classical similarity theory of spreading turbulent buoyant plumes that only depend

on z. These convective wind gusts produce surface shears, although the mean of the

vertical flux of horizontal momentum

τxiz/ρ0 = viw − ν (∂zvi + ∂xi
w) , (4.10)

is zero for both horizontal directions (i = 1, 2) due to the symmetry of the flow (the

convective wind gusts do not have a preferred horizontal direction). Consequently,

the usual atmospheric definition of friction velocity u∗ =
[〈v′1w′〉2 + 〈v′2w′〉2]1/4 is

zero. On the other hand, the r.m.s. of the fluctuations of the turbulent (first term

on r.h.s.) and molecular (second term) contributions to Eq. (4.10) are non-zero,

as can be seen in Fig. 4.6b. The r.m.s. of the turbulent contribution is used in

the definition of the minimum friction velocity (Businger, 1973; Zilitinkevich et al.,

2006), U∗ = [
〈
(v′1w

′)2
〉
+

〈
(v′2w

′)2
〉
]1/4. But since DNS allows for the measurement

of viscous shear stress at the wall [corresponding to the molecular contribution to

Eq. (4.10)], the wall friction velocity can be measured as it is defined in wall-bounded

shear flows,

uτ =
√
τw/ρ0 , (4.11)
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Figure 4.6: a)Temporal evolution of the maximum r.m.s. of the horizontal velocity
fluctuation umax normalized with the convective velocity w∗ (black) and the resistance
coefficient uτ/w∗ (blue). b) Vertical profile of the r.m.s. of the molecular (blue) and
turbulent (red) contributions to vertical flux of horizontal momentum (one component).
c) Temporal evolution of the wall friction velocity uτ defined in Eq. (4.11) in wall diffusive
units. d) Temporal evolution of the buoyancy gradient thickness, Eq. (4.4). Solid lines
correspond to h+ � 620, and dashed lines to h+ � 1034 (only available for neutral case).
Dark colors indicate the stably stratified case and light colors the neutral case.
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where τw is the wall shear stress defined as τw =
√〈

τ 2x1z

〉
+
〈
τ 2x2z

〉
calculated at

the wall z = 0. As seen in Figure 4.6b, the turbulent contribution to the flux of

horizontal momentum within the surface layer is roughly an order of magnitude

larger than the molecular contribution at the wall. This translates to U∗ being

roughly a factor of three (∼ 101/2) larger than uτ . The advantage of using the wall

friction velocity uτ is its straightforward evaluation, unlike U∗ which depends on z

and the definition of the overlap region’s extent. Figure 4.6c shows that the friction

velocity in wall units u+
τ is of order one, which indicates that diffusive and viscous

units are comparable, at least for the range of Rayleigh numbers considered in this

work.

The ratio of the friction velocity uτ and the convective velocity w∗, also called the re-

sistance coefficient, is hypothesized by Businger (1973) to be a decreasing function of

h+ = h/z0, in particular as (h+)−1/6 (see, e.g., Schumann, 1988; Zilitinkevich et al.,

2006). For our aerodynamically smooth case, this means that the friction velocity

should evolve as (h+)1/6, which seems to describe well the slight growth of u+
τ in

Figure 4.6a (not explicitly shown). The values that we get for uτ/w∗ decrease from

roughly 0.3 to 0.2 for scale separation h/z0 of order 10
2 to 103, as shown in Fig. 4.6a.

These values are comparable to the values presented in Zilitinkevich et al. (2006),

which are values found in atmosphere and in LES, although the scale separation we

achieve with our aerodynamically smooth case falls within the range of scale separa-

tion h/z0 achieved with rough surfaces in Zilitinkevich et al. (2006). The decreasing

behavior of the resistance coefficient is in contrast to the assumption of Beljaars

(1994)’s that the friction velocity in the limit of free convection is proportional to

the convective velocity w∗, which follows from Beljaars’ treatment of the convective

velocity as an extra wind component in the bulk transfer laws for the surface layer.

Similar to Beljaar’s idea of using the convective velocity as an extra wind component,

an alternative bulk buoyancy transfer law (equivalent to heat in the dry case) in the

absence of a mean wind

B0 = Cb(Δb)sw∗ , (4.12)

uses the convective velocity w∗ as a proxy for the friction velocity, where Cb is the

heat transfer coefficient. Rewriting Eq. (4.12) as a ratio of buoyancies

(Δb)s
b∗

= C−1
b =

[
(Δb)+s

]
(h/z0)

1/3 , (4.13)

shows that the relation takes into account the roughness length z0 and depends
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on the boundary layer height. In particular, Schumann (1988) highlights how the

nondimensional buoyancy difference (Δb)s/b∗ is a function of the nondimensional

height (h/z0), namely (h/z0)
1/3. Schumann (1988) and Zilitinkevich et al. (2006)

prefer this alternative buoyancy transfer law over the traditional buoyancy transfer

law for free convection (Townsend, 1964)

B0 = Cs(κ
2/ν)1/3(Δb)4/3s , (4.14)

because the traditional one only applies for smooth surfaces and does not consider

the boundary layer thickness as a parameter. Notice however that the h1/3 de-

pendence of the Eq. (4.13) simply follows from the definition of 1/b∗ = w∗/B0 =

B
−2/3
0 h1/3. Rewriting Eq. (4.12) in the form

B0 = Cz
1/2
0 (Δb)3/2s , (4.15)

eliminates the dependence on h that comes from w∗ and reveals that the relevant part

is actually the proportionality coefficient C that is affected by (Δb)s and the surface

roughness z0. The coefficient C is assumed in Schumann (1988) and Zilitinkevich

et al. (2006) to be a constant. The value quoted in Schumann (1988) is C �
2.15−3/2 � 0.32 and those quoted in Zilitinkevich et al. (2006) are C � 3.3−3/2 �
0.17, from previous work and C � 0.63/2 � 0.46, from their own work where they

considered a wide range of surface roughness values.

Although there is clearly no consensus over the value of this coefficient, assuming

this coefficient is constant implies for the aerodynamically smooth case that the

relation Eq. (4.15) still assumes a constant (Δb)+s and is therefore not different from

the assumption of the traditional heat transfer law, Eq. (4.14). In this work where

we only have a smooth wall, (Δb)+s = δ+b and we observe that δ+b is slightly varying

in time, or scale separation h+, as shown in Fig. 4.6d. The normalized buoyancy

gradient thickness δ+b is only slightly affected by stratification and therefore by

outer scale effects. The transfer coefficient of the traditional transfer law Cs is

then estimated in our case (Pr=1) by (δ+b )
−4/3, which is actually the compensated

Nusselt number shown in Figure 4.3d multiplied by 24/3 � 2.5. Values of the order

of Cs � 0.14 at the latest time of the neutral case, as derived from Figure 4.3d,

agrees relatively well with the value Cs � 0.10 proposed by Beljaars (1994). For the

alternative transfer law, Eq. (4.15), C = (δ+b )
−3/2, and at the latest time, we obtain

C � 0.11, which is small compared to the aforementioned values, most likely due to

absence of roughness effects.
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We have shown that although our data and other studies (see, e.g., van Reeuwijk

et al., 2008; du Puits et al., 2014) increasingly support the existence of convectively-

driven shear flows near the wall, how to incorporate the convective winds into pa-

rameterizations is not as straightforward as using the convective velocity w∗ as a

proxy for the friction velocity, since we have also shown in the spectral analysis that

w∗ does not characterize the vertical velocities at the near wall region. Moreover, it

is also unclear whether a simple application of MOST to these ‘convective winds’ is

indeed appropriate. The applicability of MOST hinges on the quasi-steady behavior

of the mean wind. But far from being quasi-steady, these ‘convective winds’ are

actually largely perturbed and strongly affected by heterogeneity in the pressure

gradients near the surface. Thus properly describing this mechanism might not be

as simple as treating the convective winds in the sense of a quasi-steady wind-driven

boundary layers at the surface, in which the smaller-scale turbulence is in local equi-

librium or treating these near-surface flows as similar to stagnation-point boundary

layers, both of which are suggested in Zilitinkevich et al. (2006). Moreover, there

is no guarantee nor supporting evidence that the local mean wind profiles would

exhibit logarithmic profiles, as assumed in Sykes et al. (1993). Further analysis of

the internal boundary layer that is possibly developing near the wall due to these

wind gusts is clearly required in the future.
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5 The entrainment zone

The entrainment zone is the region where turbulence and stratification directly in-

teract. This interaction affects the properties of the entrainment zone (e.g. EZ

thickness and characteristics scales), such that the scaling for the entrainment zone

statistics are different from the scaling in the convective well-mixed layer; as shown

in Fig. 3.3 and Fig. 5.1, statistics at the EZ do not collapse when normalized with

the encroachment and convective scales. Hence, unlike the mixed layer, the EZ

does not have established scales that characterize the statistics there. Our aim

is to investigate the characteristic scales of the entrainment zone, and the possi-

ble self-similar behavior of the buoyancy profiles inside the entrainment zone (Fe-

dorovich and Mironov, 1995; Sorbjan, 1999; Fedorovich et al., 2004b) associated

with these characteristic scales. We also assess the effect of this vertical structure

on the entrainment-rate parameters (Betts, 1974; Sullivan et al., 1998) and the rela-

tion between the entrainment rate and a Richardson number (Deardorff et al., 1980;

Fedorovich et al., 2004b; Träumner et al., 2011).

5.1 Vertical structure of the entrainment zone

In light of the common assumption that the EZ thickness is proportional to the

CBL thickness (Sullivan et al., 1998), we define a first sublayer in the entrainment

zone with a thickness zi,g − zi,0 that is proportional to the CBL thickness, based on
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Figure 5.1: a) Vertical profiles inside the entrainment zone normalized by zenc:
(∂ 〈b〉 /∂z)/N2 (solid), brms/b∗ (dash-dotted line), and B/B0 multiplied by a factor of
5 for emphasis (dashed line). b) Vertical profiles inside the entrainment zone centered
at zi,g and normalized by δ: (∂ 〈b〉 /∂z − N2)/(bδ/δ − N2) (solid), brms/bδ (dash-dotted
line), and B/(bδwrms(zi,g)) multiplied by a factor of 5 for emphasis (dashed line). Light
gray, gray, and black indicate snapshots from simulation Re100 at zenc/L0 � {10, 14, 18},
respectively.
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the observed proportionality among the different definitions of the CBL-top height

discussed in Chapter 3 (Fig. 3.1). Using the coefficients from Table 3.1, we can write

zi,g − zi,0 = (Cenc,g −Cenc,0)zenc � 0.25zenc. Notice that roughly from zi,0 to zi,f , the

mean buoyancy gradient is smaller than the original background buoyancy gradient

N2, while the r.m.s. of the buoyancy fluctuations at the most part of this lower

sublayer still seems to be scaling with b∗ (Fig. 5.1a).

However, as we approach the height of maximum mean buoyancy gradient zi,g, the

vertical profiles of the mean buoyancy gradient and of the r.m.s. of the buoyancy

fluctuations, brms = 〈b′b′〉1/2, do not scale with either the encroachment scales nor

with the convective scales; as shown in Fig. 5.1a. Around the height zi,g, the magni-

tude of these normalized quantities keep increasing in time. This behavior suggests

that we consider an upper EZ sublayer centered at zi,g whose thickness is not a

constant fraction of the CBL thickness, but instead is proportional to a local length

scale. One possible definition of this characteristic length scale is based on the

relation

〈b〉 (zi,g) + ∂ 〈b〉
∂z

(zi,g)δ = bbg(zi,g) +N2δ , (5.1)

sketched in Fig. 5.2. This expression can be written as

δ = −〈b〉 (zi,g)− bbg(zi,g)
∂〈b〉
∂z

(zi,g)−N2
. (5.2)

This is a gradient thickness definition that is often employed in the characterization

of turbulent mixing layers that separate two regions where the flow is statistically

homogeneous in the two directions perpendicular to the mean gradient (see, e.g.,

Pope, 2000). Hence, the definition (5.2) supports the interpretation of the upper EZ

sublayer as a transition region, based on the buoyancy field, between the nonturbu-

lent, stably stratified fluid above and the turbulent layer below.

The corresponding buoyancy scale within the upper EZ sublayer is

bδ =
∂ 〈b〉
∂z

(zi,g)δ , (5.3)

which is similar to the scaling proposed by Sorbjan (1999).

When normalized with δ and bδ, the profiles of mean buoyancy gradient and buoy-

ancy r.m.s. at different times approximately collapse on top of each other (Fig. 5.1b).

This self-similar behavior of the buoyancy profiles resembles the self-similarity hy-

pothesis that underlies the general structure models of the EZ (Fedorovich and
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Figure 5.2: Sketch illustrating the definition of the local thickness δ, Eq. (5.2), charac-
terizing the upper EZ sublayer. The mean buoyancy profile (solid black) corresponds to
the final time of simulation Re040 (zenc/L0 � 26); tangent line at the point of maximum
buoyancy gradient (marked with a +) is shown in red; the background buoyancy profile is
shown in magenta.

Mironov, 1995; Fedorovich et al., 2004b), though we find that it applies only within

the upper EZ sublayer, namely, in a region zi,g ± δ, and not across the entire en-

trainment zone, as originally postulated in those models.

For the rest of this section, we discuss the physical mechanism that causes this

mixing region zi,g ± δ and the interpretation of the characteristic scales δ and bδ. In

addition, we also provide explicit parameterizations for these scales as a function of

the independent variable zenc/L0, so that the buoyancy profiles inside the EZ can

be reconstructed at any time, if desired.
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5.1.1 The length scale δ

δ as the mean penetration depth of thermals

Figure 3.2 and, with more detail, Fig. 5.3a,b illustrate that the upper EZ sublayer

is a region characterized by turbulent thermals penetrating into a smoothly varying

environment. Qualitatively, we can interpret the height zi,g and the thickness δ,

respectively, as a rough estimate of the mean and standard deviation of the vertical

location of the top of the interface undulations, or domes, that are created by the

overshooting thermals (Fig. 5.4). On the other hand, the lower EZ sublayer is

characterized by the updrafts, acting as pillars that support the domes in the upper

EZ sublayer, and by the turbulent troughs in between the domes (Fig. 5.3c,d).

Within this lower EZ sublayer, we find strong fluctuations in buoyancy field all

across the horizontal extent.

The interpretation of δ as the mean penetration depth above zi,g that the ther-

mals reach is supported by parcel theory. This theory states that given a parcel of

fluid with a vertical velocity w′ at its neutral buoyancy level, the vertical displace-

ment reached by this parcel of fluid inside a linearly stratified region with buoyancy

frequency N is proportional to w′/N (Zeman and Tennekes, 1977; Xuequan and

Hopfinger, 1986; Hopfinger, 1987; Smyth and Moum, 2000).

For the fluid parcels at zi,g, we can propose that w′ ∼ wrms(zi,g). At the same time,

we observe in our simulation that the integral velocity scale of the turbulence inside

the upper EZ sublayer is a constant fraction of the convective velocity,

wrms(zi,g) � cw2w∗ (5.4)

(Fig. 5.5a) beyond zenc/L0 � 10, where cw2 � 0.2 (Table 5.1). Therefore, we can

write

δ � cδ(w∗/N) . (5.5)

Indeed, Fig. 5.5b demonstrates that δ follows this scaling within the equilibrium

entrainment regime, beyond zenc/L0 � 10, and that cδ � 0.55. The Reynolds number

dependence of this constant is already negligibly small for the Reynolds numbers

Re0 � 100 achieved in our simulations (about 2%, less than the uncertainty � 5%

associated with the statistical convergence, see Table 5.1).

From Eq. (5.5) and the definition of w∗, we see that δ is actually increasing in time
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log10(N
−2|∇b|)

Figure 5.3: Horizontal cross-sections showing the logarithm of the magnitude of the
buoyancy gradient N−2|∇b| inside the entrainment zone for the case Re100 at the final
time zenc/L0 = 18 (only 1/9 of the domain is shown). Colors black, blue, yellow and red
correspond, respectively, to values varying between 10−1 and 102 in intervals of 10. The
heights are: a) z = zi,1 = zi,g + δ; b) z = zi,g; c) z = zi,f ; d) z = zi,0. The long horizontal
white bar at the top-left corner of each panel indicates a length equal to zenc, Eq. (2.5);
the short one indicates a length equal to δ, Eq. (5.2).
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zi,g
zi,0

zi,1

Figure 5.4: Extracted region from Fig. 3.2 (there highlighted) emphasizing the entrain-
ment zone. The upper EZ sublayer, zi,g ± δ, (enclosed by two horizontal lines, where
zi,1 = zi,g + δ) features the overshooting thermals, and corresponds to the region directly
affected by the stably stratified overlying fluid. The lower EZ sublayer, zi,g − zi,0, fea-
tures the troughs of the undulations there. The layer below zi,0 (masked region) is the
well-mixed layer.

according to

δ/L0 = cδ(zenc/L0)
1/3 , (5.6)

but, with respect to zenc, it continuously decreases as

δ/zenc = cδ (zenc/L0)
−2/3 . (5.7)

This scaling of δ highlights the effect of the stratification on the geometry of the

turbulent structures inside the entrainment zone. If there were no stratification

(N2 = 0), the size of the undulations due to the thermals would scale with the

boundary-layer thickness and entrainment would be dominated by large-scale engulf-

ment (Mellado, 2012) [see also Fig. 4.2b]. With stratification, an interval zi,g−zi,0 of

the entrainment zone retains the scaling proportional to the CBL thickness zenc, but

a second sublayer develops within the region of the EZ that is closer to the stably

stratified layer. This upper EZ sublayer can be interpreted as a transition region

between the convectively mixed layer, characterized to leading order by zenc and w∗,

and the stably stratified layer above, characterized by w∗ and N . The properties of

this upper EZ sublayer depend directly on N , in contrast to those inside the lower

EZ sublayer, where N enters only indirectly through the dependence of the CBL

thickness zenc on the buoyancy frequency N as in Eq. (2.5).

Finally, the scaling above also means that, as the CBL grows, the upper EZ sublayer,

with extent zi,g, ± δ, becomes a smaller fraction of the lower EZ sublayer, with an

extent (zi,g − zi,0) � 0.25zenc. Notice, however, that for a significant range of typical

atmospheric conditions (zenc/L0 � 10− 50, see section 2.2), the upper EZ sublayer



78 5. The entrainment zone

still occupies a significant fraction of the entrainment zone, since 2δ/(zi,g − zi,0)

varies between 0.95 and 0.46 within this range.

δ as the integral length scale of turbulence

Simple models of the CBL usually assume that the turbulence within the CBL

is characterized by a single length scale, that is, the CBL thickness zi. Such an

assumption corresponds to the loss of TKE to viscous dissipation as a fixed fraction

of the total TKE production because ε ∝ w3
∗/zi = B0. However, the existence of

a turbulence integral length inside the EZ that is different from the CBL thickness

zenc (or a constant fraction thereof) has previously been considered due to increasing

evidence that the viscous dissipation rate ε inside the EZ is not a fixed fraction of the

rate of energy input into the system (Linden, 1975; Tennekes, 1975; Guillemet et al.,

1983). The reason for this behavior was attributed to the influence of stratification

on the turbulence near the stratified interface (Zeman and Tennekes, 1977; Mahrt,

1979). The scaling

ε(zi,g) � cε[wrms(zi,g)]
3/δ (5.8)

observed in Fig. 5.5c for roughly zenc/L0 ≥ 10− 15, where cε � 0.5, supports those

hypotheses. In particular, this inviscid scaling of the viscous dissipation rate implies

that δ is not only the mean penetration depth of thermals, but also represents the

integral length scale of the turbulence inside the crests or domes of the overshooting

thermals (Pope, 2000). Note that although Eq. (5.8) implies that the dissipation

rate at the upper EZ sublayer is increasing, the integrated or bulk dissipation rate

within that region does not blow up in time since the ratio δ/zenc is concurrently

decreasing (Eq. 5.7).

Consistent with the scalings Eq. (5.5) and Eq. (5.8), the Ozmidov scale within these

turbulence regions or turbulence pockets inside the upper EZ sublayer (Fig. 5.3a,b)

is proportional to δ according to

[
ε(zi,g)

N3

]1/2
= (cεc

3
w2/c

3
δ)

1/2 δ , (5.9)

with (cεc
3
w2/c

3
δ)

1/2 � 0.2 (Table 5.1). The Ozmidov scale characterizes the size of

the largest eddies in fully developed turbulence under a homogeneous stratification

(Ozmidov, 1965; Smyth and Moum, 2000) and thus the local integral scale, δ in

our case. Interestingly, the reference Ozmidov scale L0 is actually comparable in
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magnitude to δ within the interval zenc/L0 � 10 − 26 (see Table 2.1). Therefore,

L0 provides a first estimate of the characteristic length δ for this range of typical

atmospheric conditions. This also implies that the reference Reynolds number Re0 is

not only a control parameter of the problem, but also approximates well the Reynolds

number Reδ that characterizes the turbulence inside part of the entrainment zone,

since

Reδ =
δ wrms(zi,g)

ν
= (cw2/cδ)Re0 (δ/L0)

2 , (5.10)

where cw2/cδ � 0.44 (Table 5.1) and δ/L0 varies between 1.1 and 1.9 (Eq. 5.6) for

zenc/L0 varying between 10 and 50. As expected, the Reynolds number within this

region is smaller (around ∼ 102) than the convective one due to the impeded vertical

motions of turbulence. The scale separation between δ and η is still moderate, a

possible explanation for the Reynolds number effects (slight difference of some EZ

scalings between Re040 and Re100) that we observe for some EZ statistics.

In sum, our results confirm the previous hypothesis (Zeman and Tennekes, 1977;

Mahrt, 1979) that the integral length scale of the turbulence locally within the

entrainment zone is modified by the stable stratification, more specifically, within

the upper EZ sublayer. In addition, we have provided an explicit parameterization

of this integral length scale in terms of the independent variable zenc/L0 in Eq. (5.6).

cw2 cδ cε cb1 cb2 cb3
Re040 Mean 0.19 0.53 0.68 0.39 0.47 0.43

σ(%) 5.1 5.0 7.5 4.2 4.8 16
Re100 Mean 0.23 0.52 0.51 0.39 0.55 0.44

σ(%) 3.8 6.5 6.3 5.3 5.2 11

Table 5.1: Constants defining the vertical structure of the entrainment zone, calculated
within the equilibrium entrainment regime (zenc/L0 ≥ 10).

5.1.2 The buoyancy scale bδ

From Eq. (5.2) and Eq. (5.3), the buoyancy scale bδ can be equivalently defined as

bδ = N2δ + [bbg(zi,g)− 〈b〉 (zi,g)] . (5.11)

This expression allows us to interpret bδ, and therefore the maximum buoyancy

r.m.s. (Fig. 5.1b), as a combination of two buoyancy increments.
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Figure 5.5: Temporal evolution of the characteristic scales inside the upper EZ sub-
layer: a) velocity, wrms(zi,g)/w∗; b) length, δ/(w∗/N); c) local inviscid scaling of
the viscous dissipation rate, δε(zi,g)/[wrms(zi,g)]

3; d) buoyancy, brms(zi,g)/bδ (blue) and
bδ/

[
N2δ +N2(zi,g − zenc)

]
(red). Panel e) corresponds to the buoyancy scale inside the

lower EZ sublayer, [〈b〉 (zi,f ) − benc]/[〈b〉 (zi,g) − benc]. Panel f) shows (z10%mbf − zi,g)/δ
(blue) and (z5%mbf − zi,g)/δ (magenta), comparing the upper EZ limit definitions z10%mbf ,
the height where the buoyancy flux is 10% of the minimum, and z5%mbf , corresponding to
5%, to the definition zi,1 = zi,g + δ. Quasi-steady behavior beginning at zenc/L0 � 10 is
observed for all quantities and the corresponding mean values are summarized in Table 5.1.
Light colors correspond to Re040, dark colors to Re100.
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The first contribution in Eq. (5.11), N2δ, can be interpreted, according to parcel

theory, as the buoyancy force experienced by a parcel of fluid after a displacement

δ from its neutral level across a region with a buoyancy stratification N2. Our

numerical results show that the corresponding Richardson number

Riδ =
δ(N2δ)

w2∗
= c2δ (5.12)

is constant (c2δ � 0.3). This constant behavior represents a continuous balance

of potential and kinetic energy in the entrainment zone: on the one hand, if the

buoyancy difference between the thermals and the environment is much stronger

than N2δ such that the thermals cannot penetrate into the stably stratified region

anymore, then continuous buoyancy input from below will decrease this buoyancy

difference until the thermals can overshoot again; on the other hand, if the buoyancy

difference is much weaker than N2δ, the unhindered thermals will overshoot to a

level of higher buoyancy, consequently steepening the mean buoyancy gradient across

the upper portion of the EZ.

The second contribution in Eq. (5.11), the buoyancy difference bbg(zi,g) − 〈b〉(zi,g),
can be interpreted as the effective buoyancy increment with respect to 〈b〉(zi,g),
that is felt by the non-thermal regions, whose buoyancy is better characterized by

the background buoyancy profile bbg. The existence of two contributions to bδ is

consistent with the visualization (Fig. 5.3a,b and Fig. 5.4), because only a fraction

of the upper EZ sublayer is occupied by penetrating thermals.

In order to predict bδ, Eq. (5.11), and thereby the mean buoyancy gradient and

the r.m.s. of the buoyancy fluctuations inside the EZ, we still need an explicit

parameterization of 〈b〉 (zi,g). From the previous observation that the mean state of

the upper EZ sublayer seems to represent an average of thermal- and non-thermal

regions, we propose the relation

bδ = cb1
[
N2δ +N2(zi,g − zenc)

]
. (5.13)

This parameterization is validated in Fig. 5.5d. The constant is cb1 � 0.4 (see

Table 5.1).

With this last step, we have obtained a complete parameterization of the buoyancy-

related quantities within the upper EZ sublayer, given the controlling parameters
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B0 and N2: The buoyancy scale is parameterized as

bδ = cb1benc [Cenc,g − 1 + (δ/zenc)] , (5.14)

where δ/zenc is given by Eq. (5.7) and benc = N2zenc (see Chapter 3 section 3.2).

The mean buoyancy at zi,g, using Eq. (5.11), is parameterized as

〈b〉 (zi,g) = benc + [(1− cb1)/cb1]bδ , (5.15)

the mean buoyancy gradient at zi,g, from Eq. (5.3), is parameterized as

bδ/δ = cb1N
2
[
1 + (Cenc,g − 1)(δ/zenc)

−1
]
, (5.16)

and the maximum r.m.s. of the buoyancy fluctuations is parameterized as

brms(zi,g) = cb2bδ (5.17)

where cb2 � 0.55 (Fig. 5.5d and Table 5.1).

We note that despite the relatively low Reynolds numbers Reδ = O(102) inside the

EZ that we achieve in the simulations (Eq. 5.10), the coefficients that are relevant for

the discussion that follows, namely, {cδ, cb1, cb2} and cb3 in section 5.2, already show

a relatively low Reynolds number dependence (Table 5.1). The largest variation

between the two cases Re040 and Re100 occurs in cb2 and it is less than 15%,

and for the other coefficients, is about 2%. More importantly, we can differentiate

between the variation of the mean and variance profiles of the buoyancy field that

is caused by the temporal evolution of the EZ, and the variation due to Reynolds

number effects. In particular, the r.m.s. of buoyancy fluctuation varies by a factor

of 3 between zenc/L0 = 10 and zenc/L0 = 26, whereas the change due to an increase

by almost a factor of three in the Reynolds number between case Re040 and case

Re100 is less than 15% (coefficient cb2).

5.1.3 Discussion on the multiplicity of scales

Although the length scale δ characterizes the thickness of the upper EZ sublayer and

the integral length scale inside the turbulence pockets that exist in this sublayer, δ

is not the only characteristic length scale within the entrainment zone. For example,

the wavelength of the undulations along the horizontal directions are characterized
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by the CBL thickness, as observed from spectral and correlation analysis (not shown)

and as documented previously (see, e.g., de Roode et al., 2004). However, in this

work we focus solely on δ because of its relevance for the buoyancy profiles, for the

two-layer structure of the entrainment zone, and for the entrainment-rate parameters

(section 5.2).

We also point out that Eq. (5.13) can be written as

bδ = cb1δbi , (5.18)

where
δbi = bbg(zi,1)− benc = N2δzi ,

δzi = zi,g + δ − zenc = zenc [Cenc,g − 1 + (δ/zenc)] ,
(5.19)

and that we can interpret δbi and δzi as the buoyancy difference and EZ thickness

definitions proposed and used in Fedorovich et al. (2004b) to parameterize the ver-

tical profiles inside the entrainment zone according to the general structure model.

However, there are notable differences. First, due to the clear definition of δ, the

definition of the EZ upper extent as zi,1 = zi,g + δ is equivalent to but more robust

than the definition used by Fedorovich et al. (2004b) based on the zero-crossing (not

shown due to large scatter in data), or based on a given fraction of the turbulent

buoyancy flux, (see Fig. 5.5f for a comparison). Second, we have shown that each

of these two parameters δbi and δzi are composed of two characteristic scales that

evolve differently in time as the CBL grows. Third, the self-similar behavior of the

vertical profiles normalized using δ and bδ is restricted to the upper EZ sublayer,

and is not observed for the entire region of negative mean buoyancy flux.

This multi-layer structure and the multiplicity of scales inside the EZ help to ex-

plain why difficulties were encountered in finding the appropriate scaling of the

thickness for general structure models (Fedorovich and Mironov, 1995; Fedorovich

et al., 2004b), since these models rely on a single scale. This explanation seems to

be more satisfactory than one based on gravity-wave radiation, whose effect in the

analysis of the EZ vertical structure has often been reported to be small (Deardorff

et al., 1980; Zilitinkevich, 1991; Fedorovich et al., 2004b). Our findings could then

be used to guide the development of a blending length scale that transitions from

the convective length scale to the local gradient thickness that could be used to

extend the general structure model of Fedorovich and Mironov (1995).

It is worth emphasizing that bδ, or δbi as defined above, quantifies the variation of the
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mean buoyancy and buoyancy r.m.s. that results from an average between the crest

regions with relatively large mean buoyancy gradient, and the regions in between

with relatively small mean buoyancy gradient (Fig. 5.3a,b). The buoyancy scales

bδ and δbi should not be interpreted as the buoyancy increment that the thermals

feel or work against, which is better represented by N2δ only. In other words, the

CBL grows continuously against a constant stratification N2, and not against an

increasing buoyancy increment δbi. (The decrease in time of the growth rate is due

to the increasing CBL thickness over which the constant surface energy flux needs

to be distributed, as quantified by the encroachment height, and not due to the

increasing stratification δbi.)

Last, the ratio between the EZ thickness, defined as δzi, and the CBL thickness,

zenc, evolves according to

δzi
zenc

= Cenc,g − 1 + (δ/zenc) . (5.20)

The corresponding decrease in time towards the asymptotic value Cenc,g−1 � 0.24 as

δ/zenc decreases was already found by Deardorff et al. (1980). However, as explained

by those authors, the corresponding scaling was not well understood because neither

the penetration depth δ nor the CBL thickness zenc, separately, could explain the

evolution of the ratio δzi/zenc. Here we show that the combination of both length

scales, δ and zenc, a consequence of the two-layer structure of the EZ, explains the

observed behavior.

Based on our knowledge of the literature, δ and bδ have neither been properly iden-

tified from, nor strongly supported by data from previous work, in contrast to our

findings here. We speculate that this is due to the difficulty in achieving the res-

olution and accuracy needed to identify these two scales. Although the point of

maximum buoyancy gradient is commonly taken as the height of the CBL top by

studies using LES, identifying and measuring δ from LES data is possibly obscured

by the significant effects of subgrid-scale fluxes in that region (Sullivan and Patton,

2011). For laboratory and atmospheric measurements, high vertical resolution is

necessary to measure δ and bδ. The low Reynolds numbers in the tank experiments

by Deardorff et al. (1980), where Re0 � 10, may also be a reason why both scales

were not identified in those experiments, since the diffusion of both momentum and

buoyancy tend to reduce the penetration depth derived from the parcel theory.
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5.2 The entrainment-rate parameters

Parameterizations of the entrainment rate are usually developed from the transport

equation of the mean buoyancy. Often the shape of the profiles of the mean buoy-

ancy and the buoyancy flux is imposed, depending on the type of bulk model used

(zero-order model, first-order models, general structure models) (see, e.g., Betts,

1974; Fedorovich and Mironov, 1995; Sullivan et al., 1998; Fedorovich et al., 2004b,

and references therein). However, the relation between the mean entrainment rate

we, Eq. (3.4), and the parameters that affect the mean entrainment rate (which we

call ‘entrainment-rate parameters ’), such as the minimum turbulent buoyancy flux

and the buoyancy increment across the entrainment zone, are bulk-model depen-

dent (Fedorovich et al., 2004b), and are thus dependent on the assumptions made

about the shapes of the profiles. This dependence can be seen clearly when the en-

trainment rate and entrainment-rate parameters are formulated as an entrainment

rate - Richardson number relation. As a case in point, the well-known −1 power

law relation between the entrainment rate and convective Richardson number comes

out directly from the equations when a ZOM framework is assumed although the

ZOM unrealistically represents the EZ as infinitesimally thin. But for slightly more

realistic representations of the EZ (first-order models and general structure models),

deviations to this power law are observed (see Fedorovich et al., 2004b).

To gain an understanding of the relation between the entrainment rate and its pa-

rameters that is free from uncertainties induced by bulk model assumptions, we

perform an analysis directly on the mean entrainment rate equation that is derived

from the mean buoyancy transport equation, without imposing any bulk model as-

sumption on the vertical profiles of mean buoyancy and mean buoyancy flux. An

analysis based on the actual profiles can help to eliminate part of the uncertainty

and arbitrariness in those definitions. In particular, we show that the two-layer

structure found in the entrainment zone explains part of the disagreement among

previous works. The purpose is to understand better the behavior in time of those

entrainment-rate parameters, in particular, to understand how the two-layer struc-

ture discussed in the previous section affects this behavior, and thereby to provide

reference data for model development.

For the particular case of the CBL growing against a linearly stratified fluid, the

derivation is as follows. Integrating in space the transport equation of the mean
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buoyancy deviation 〈b〉 − bbg,

∂ (〈b〉 − bbg)

∂t
= − ∂

∂z

(
〈b′w′〉 − κ

∂ 〈b〉
∂z

)
, (5.21)

from a given height zi(t) upwards and applying the Leibniz rule yields

d

dt

∫ z∞

zi

(〈b〉 − bbg) dz + [〈b〉 (zi, t)− bbg(zi)]
dzi
dt

=

∫ z∞

zi

∂

∂z

[
κ
∂ 〈b〉
∂z

− 〈b′w′〉
]
dz .

(5.22)

The analysis of the mean buoyancy as a deviation from the reference background

profile bbg, instead of just 〈b〉, has the advantage that the result is independent of

the upper limit of integration z∞ when it is located far enough into the nonturbulent

stably stratified region. Dividing by B0, we obtain the entrainment rate equation

1

B0

Δbi
dzi
dt

= A , (5.23)

where

Δbi(t) = bbg(zi)− 〈b〉 (zi, t) , (5.24)

and

A(t) = At(t) + Am(t) + Ad(t). (5.25)

The term Δbi is the buoyancy deviation of the current mean buoyancy from the

background reference buoyancy bbg(z) at the height zi(t). The normalized entrain-

ment flux, A, also known as entrainment ratio, is composed of three terms,

At(t) = −〈b′w′〉 (zi)
B0

,

Ad(t) = − 1

B0

d

dt

∫ z∞

zi

(bbg − 〈b〉) dz,

Am(t) =
κ

B0

∂ 〈b〉
∂z

(zi)− Re−1
0 ,

(5.26)

corresponding, respectively, to the turbulent contribution, the distortion or shape

contribution due to the EZ’s finite thickness, and the molecular contribution (which

includes the molecular contribution of the background stratification as Re−1
0 ).

The previous equation and definitions can be applied at any CBL-top height zi.

For the rest of this section, we particularize them at zi = Cenc,fzenc, the height of

minimum buoyancy flux, to be consistent with the usual definition of the entrainment
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ratio A. We use the smooth approximation Cenc,fzenc to the instantaneous value zi,f ,

valid for zenc/L0 � 10 (see Chapter 3 section 3.1), in order to reduce the variability

in the calculation of the time derivative in the distortion or shape contribution, Ad;

the corresponding effect on the calculated values of A and Δbi,f is less than 5%.

5 10 15 20 25
−0.1

0

0.1

0.2

zenc/L0

Figure 5.6: Temporal evolution of the contributions to the entrainment ratio A mea-
sured at zi,f , Eq. (5.26): At (blue), Ad (green), and Am (magenta). The gray line is the
parameterization of At in Eq. (5.31). Light colors correspond to Re040, dark colors to
Re100.

5.2.1 Contributions to the entrainment ratio A

The largest contribution to the entrainment ratio A is the turbulent term At

(Fig. 5.6). On the one hand, the growth of At by about a factor of two as the

CBL develops in time between zenc/L0 < 10 and zenc/L0 > 20 is consistent with

the factor of two variation observed by Fedorovich et al. (2004b) in their LES data

when the strength of the stratification is increased from the weak stratification, cor-

responding to the CBL state zenc/L0 � 7, to the strong stratification, corresponding

to the CBL state zenc/L0 � 23 (see section 2.2). However, the DNS values At � 0.1

at zenc/L0 � 20 are systematically smaller than the interval 0.1 − 0.15 reported by
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those authors. Since the Reynolds number effect on At is less than 15% (Fig. 5.6)

and both cases consider a CBL growing into a linearly stratified atmosphere, this

difference is likely due to subgrid-scale model effects inside the entrainment zone. On

the other hand, values of At smaller than DNS values were observed in the convective

tank experiments by Deardorff et al. (1980), despite the larger zenc/L0, about 50.

This apparent discrepancy is possibly due to the relatively small reference Reynolds

number in those tank experiments, Re0 � 10 instead of Re0 � 100 here, which in

turn implies a relatively small Reynolds number inside the entrainment zone in the

tank experiments and a tendency to have a thicker EZ and a less pronounced mini-

mum in the profile of the turbulent buoyancy flux. Differences in Prandtl numbers

by an order of magnitude could also explain the apparent discrepancy, since Prandtl

number effects can be substantial at low Reynolds numbers (Jonker et al., 2012).

The second contribution to the entrainment ratio is the distortion or shape term Ad.

Its value is relatively small compared to the contribution of the turbulent buoyancy

flux At. On average, we observe

Ad � −0.02 , (5.27)

whereas At � 0.1. This result is in contrast with the conclusion of Sullivan et al.

(1998), which states that both terms are comparable to each other for CBLs with rel-

atively thick EZ. We take note, however, that the buoyancy term Δbi,f in Eq. (5.23)

when particularized at zi,f , and thereby Ad, are defined here differently, namely, as

a local deviation with respect to the background profile bbg(z), and not as a global

buoyancy δbi increment across the whole entrainment zone (Fig. 5.7).

Another difference of Ad from At is that the distortion or shape term Ad is approx-

imately constant in time (Fig. 5.6). This steady behavior can be understood from

the two-layer vertical structure of the EZ that is described in the previous section.

The integral in Eq. (5.26) can be split into two integrals: one integral from zi,f to

zi,g and another integral from zi,g to z∞. It is then easy to show from the scalings

derived in the previous section that this second contribution from the upper EZ

sublayer continuously decreases, whereas the first contribution from the lower EZ

sublayer is indeed constant in time. This latter contribution, according to Fig. 5.6,

seems to dominate the evolution of Ad.

Last, the molecular contribution to the entrainment ratio, Am, is already negligibly

small for the Reynolds numbers achieved in this work (Fig. 5.6).
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5.2.2 The local buoyancy increment Δbi,f

We have learned before that the contribution to the entrainment ratio A from the

finite EZ thickness through the distortion term Ad is relatively small, about 20% or

less. However the finite EZ thickness still remains important because the smooth

variation of the mean buoyancy inside the entrainment zone over a finite EZ thickness

determines a local buoyancy increment Δbi,f in Eq. (5.23) that is significantly smaller

than the global buoyancy increment δbi across the whole entrainment zone (see

Fig. 5.7). We can quantify this difference as follows.
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Figure 5.7: Sketch illustrating the difference between the local buoyancy increment Δbi,f ,
Eq. (5.24) evaluated at zi = zi,f , and the global buoyancy difference δbi across the whole
entrainment zone, Eq. (5.19).

As a first approximation, we can assume that the mean buoyancy inside the lower EZ

sublayer, in particular 〈b〉 (z)− benc, tends towards a steady profile when normalized

with 〈b〉 (zi,g) − benc. The reason is that the lower EZ sublayer is relatively well

mixed and approximately quasi-steady in the equilibrium entrainment regime (see

Chapter 3 section 3.6): the top and bottom values 〈b〉 (zi,g) and 〈b〉 (zi,0) � benc (see

Chapter 3 section 3.2) vary in time, but turbulence mixes the buoyancy across that
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region relatively fast. Hence, we can hypothesize that

〈b〉 (zi,f )− benc = cb3[〈b〉 (zi,g)− benc] , (5.28)

since the height of minimum buoyancy flux zi,f is approximately in the middle of the

lower EZ sublayer (see Fig. 5.1b and Fig. 5.4). Figure 5.5e supports this relation for

zenc/L0 > 10− 15, the constant of proportionality being cb3 � 0.45 (see Table 5.1).

Combining this result with Eq. (5.14) and Eq. (5.15) yields

Δbi,f/benc = β0 − β1(δ/zenc) , (5.29)

where
β0 = Cenc,f − 1− cb3(1− cb1)(Cenc,g − 1) ,

β1 = cb3(1− cb1) ,
(5.30)

and δ/zenc is given by Eq. (5.7). Based on the constants in Table 3.1 and Table 5.1,

β0 � 0.086 and β1 � 0.27. Comparing with δbi, Eq. (5.19), we observe that Δbi,f

tends asymptotically towards a constant fraction � 0.26 of δbi. However, the ratio

Δbi,f/δbi increases in time by a factor of two during the intermediate states zenc/L0 �
10− 26, when the contribution of δ to the EZ structure is not negligible.

5.2.3 Asymptotic behavior of A

Substituting Eq. (5.29) in Eq. (5.23) and using Eq. (3.5), we obtain an explicit

expression for the entrainment ratio in the form

At = γ0 − γ1(δ/zenc) , (5.31)

where
γ0 = Cenc,fβ0 − Ad ,

γ1 = Cenc,fβ1 .
(5.32)

From the previous section, we obtain the estimates γ0 � 0.12 and γ1 � 0.31. The

good agreement of this parameterization with the DNS data (Fig. 5.6) is mainly a

consequence of the good prediction of the local buoyancy increment by Eq. (5.29),

since Eq. (5.31) follows from the exact relation, Eq. (5.23). Hence, the evolution of

A in time is a consequence of the evolution of the two-layer structure of the EZ. We

can also infer that, for a CBL penetrating into a linearly stratified atmosphere, At
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tends towards an asymptotic value � 0.12, within an accuracy of � 15% (Table 5.1).

This value is significantly below the entrainment ratio value � 0.2 that works well

for predicting the mean entrainment rate using the zero-order bulk model. However,

as stated in the introduction and emphasized by Fedorovich et al. (2004b), there is

no inconsistency between both results because the zero-order model is not designed

to capture the effects of the EZ’s finite thickness.
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Figure 5.8: Temporal evolution of the normalized terms of the local budget equation of
turbulence kinetic energy, Eq. (3.15), ε/ (−∂T/∂z) (red) and −〈b′w′〉 / (−∂T/∂z) (blue)
evaluated at the height of minimum buoyancy flux zi,f . Light colors correspond to Re040,
dark colors to Re100.

The evolution of At according to Eq. (5.31) can be interpreted in terms of the dom-

inant balance in the turbulence kinetic energy equation Eq. (3.15), particularized at

zi,f , between the turbulent transport, and the turbulent buoyancy flux and the vis-

cous dissipation (Fig. 5.8). The three terms are expected to follow an inviscid scaling

in terms of the local integral length and velocity scales of the turbulence. Since zi,f

is still relatively close to the upper EZ sublayer for the interval zenc/L0 � 10 − 26

(see Fig. 5.1b), we can also anticipate that the integral length and velocity scales

that are observed at zi,f are a combination of the corresponding scales within each

of the two EZ sublayers within that interval of time. Although the velocity scales

in both EZ sublayers are proportional to the convective velocity, the length scales

are different: a constant fraction of zenc in the lower EZ sublayer and δ in the upper
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EZ sublayer. If we propose

− 〈b′w′〉(zi,f ) = γ0
w3

∗
zenc + (γ1/γ0)δ

, (5.33)

and expand the fraction in terms of the small number (γ1/γ0)(δ/zenc), we recover

Eq. (5.31) as a first approximation. Hence, the combined effect of the two-layer

structure on the local energetics inside the entrainment zone, Eq. (3.15), including

the turbulent buoyancy flux, can be interpreted in terms of an average length scale

proportional to zenc + (γ1/γ0)δ, where γ1/γ0 � 1.3. As the CBL develops in time

and the ratio δ/zenc decreases, the upper EZ sublayer recedes towards zi,g and the

length scale that remains effective at zi,f is that of the lower EZ sublayer, namely,

zenc.

5.2.4 The entrainment rate - Richardson number power law

The entrainment rate equation, Eq. (5.23), is sometimes expressed as a relation

between a nondimensional or normalized mean entrainment rate E = we/w∗ and

a Richardson number Ri. Different power laws E ∝ Ri−n have been proposed in

the literature, although scatter in the data and uncertainty in the exponent n still

prevent us from reaching a definitive conclusion, in particular for intermediate values

of Ri (see, e.g., Zilitinkevich, 1991; Fedorovich et al., 2004b; Jonker et al., 2012, and

references therein). For the case of a CBL growing into a linearly stratified fluid, the

different choices for the CBL-top height zi,ξ that is used in the definition of we and w∗
can only explain a relatively small variation in the proportionality coefficient of this

relation, since all of these heights become commensurate with each other beyond

zenc/L0 � 5 − 10 (Chapter 3 section 3.1). In contrast, the particular buoyancy

scale that is used to define the Richardson number can affect the functional relation

between E and Ri more significantly. This section is devoted to this issue.

Conventionally, a convective Richardson number is defined as

Ri∗ =
zencδbi
w2∗

, (5.34)

where δbi, Eq. (5.19), is a measure of the buoyancy variation across the whole

entrainment zone (Deardorff et al., 1980; Sullivan et al., 1998; Fedorovich et al.,
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2004b). Combining this definition with Eq. (3.5), we obtain the relation

E = αRi−1
∗ , (5.35)

where

α = Cenc,f [Cenc,g − 1 + (δ/zenc)] . (5.36)

[The prefactor Cenc,f in the expression above results from calculating the entrainment

velocity at zi,f and computing w∗ according to Eq. (2.11) – as already mentioned,

other choices vary this prefactor merely by a constant of order one and its particular

value is irrelevant for the discussion that follows.] This analytic result has two

important implications.

First, asymptotically, the proportionality coefficient α(t) approaches α0 =

Cenc,f (Cenc,g−1) � 0.28 and hence E ∝ Ri−1
∗ . This is one of the power laws proposed

in the literature based on the estimate 〈b′w′〉(zi) ∝ w3
∗/zi � B0 for the turbulent

flux within the entrainment zone and the approximation weδbi � −〈b′w′〉(zi) (see,

e.g., Fernando, 1991, for more details). However, for the interval Ri∗ � 8 − 23

(zenc/L0 � 10− 26) considered in this study, which is representative of atmospheric

conditions (see Chapter 2 section 2.2), the evolution of the normalized mean en-

trainment rate E deviates from that asymptotic limit: a steeper curve is observed

in Fig. 5.9, in agreement with previous results that suggested exponents n larger

than 1 (Turner, 1973; Deardorff et al., 1980; Fedorovich et al., 2004b). Our results

indicate that these deviations stem from the effect that the upper EZ sublayer has on

the entrainment-rate parameters, specifically, the term δ/zenc in Eq. (5.36). When

we express δ/zenc as a function of Ri∗ using Eq. (5.19),

δ/zenc =
c2δ

2Ri∗

{
1 +

[
4c−2

δ (Cenc,g − 1)Ri∗ + 1
]1/2}

, (5.37)

we obtain the approximation

E � (α0 + α1Ri
−1/2
∗ + α2Ri

−1
∗ )Ri−1

∗ , (5.38)

valid for Ri∗ � c2δ/[4(Cenc,g − 1)] � 0.28, where

α0 = Cenc,f (Cenc,g − 1) ,

α1 = Cenc,f (Cenc,g − 1)1/2cδ ,

α2 = Cenc,fc
2
δ/2 .

(5.39)
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From the constants in Table 3.1 and Table 5.1, we obtain α0 � 0.28, α1 � 0.29 and

α2 � 0.16. Equation (5.38) helps to explain the different scalings E ∝ Ri−n
∗ , 1 ≤

n < 2, found in the literature for intermediate values of the convective Richardson

number Ri∗. Equation (5.38) also allows us to estimate the error in predicting

E according to E � α0Ri
−1
∗ : even at the strong stratification limit zenc/L0 � 50

(Ri∗ � 50), this error is still larger than 10%. The question still remains, though,

whether we could interpret Eq. (5.38) and the effect of the upper EZ sublayer on

α in terms of some of the mixing mechanisms that have been proposed to play a

role at the entrainment zone, in particular those associated with the interaction of

turbulence and gravity waves (Carruthers and Hunt, 1986; Fernando, 1991).

It is worth noting that an alternative definition of a Richardson number as

RiN,ξ = N2z2i,ξ/w
2
∗,ξ, where w∗,ξ = (B0zi,ξ)

1/3, leads to the exact relation we,ξ/w∗,ξ =

C2
enc,ξRi

−1
N,ξ once zi,ξ becomes proportional to zenc, which occurs at about zenc/L0 � 10

(see Chapter 3 section 3.1). The range zenc/L0 � 10 − 26 considered in our study

corresponds to N2z2enc/w
2
∗ � 21− 77. Hence, a very clear relation E ∝ Ri−1 appears

much earlier than when using the convection Richardson number Ri∗. However,

RiN,ξ does not reflect the evolution of the local dynamics inside the EZ during the

intermediate range of atmospheric Richardson numbers considered in this study but

just the CBL thickness.

Last, by comparing cases Re040 and Re100 we also observe in Fig. 5.9 that Reynolds

number effects in the functional relation E = f(Ri∗) are negligibly small beyond

Re∗ � 103, which is the value attained in simulation Re040 at zenc/L0 � 10. This

result agrees with previous data (see, e.g., Fernando and Little, 1990; Jonker and

Jimnez, 2014). [Prandtl numbers greater than 1, not considered in this study, might

affect this mixing transition into an inviscid behavior (see, e.g., Jonker et al., 2012)].

The second implication of Eq. (5.36) is that the proportionality coefficient α is

different from the entrainment ratio A. It is not only different by a proportionality

constant of order one, but it also evolves differently in time, since A(t) increases

(Fig. 5.6) and α(t) decreases (since δ/zenc decreases). If desired, a functional relation

in which the proportionality coefficient is the entrainment ratio A(t) can be obtained

by rewriting Eq. (5.23) as

E = ARi−1
i,f . (5.40)

Similar to the previous observation, a strong deviation during the interval zenc/L0 �
10 − 26 from the asymptotic behavior E ∝ Ri−1

i,f is exhibited in Fig. 5.9. This

deviation is again due to the upper EZ sublayer, in this case, due to its effect on the
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Figure 5.9: Scatter plot of the normalized entrainment rate E = we/w∗ against the
Richardson numbers Ri∗ = zencδbi/w

2∗ and Rii,f = zencΔbi,f/w
2∗. Gray denotes data from

earlier time zenc/L0 < 10. For zenc/L0 ≥ 10, blue corresponds to Ri∗ and red to Rii,f .
The solid black line is 0.28Ri−1

∗ , based on the asymptotic behavior of α(t) towards 0.28.
The dashed black line is 0.10Ri−1

i,f , based on the asymptotic behavior of A(t) towards 0.10.
Light colors correspond to Re040, dark colors to Re100.

evolution of A towards its asymptotic value, Eq. (5.31). However, the Richardson

number

Rii,f =
zencΔbi,f

w2∗
(5.41)

is now based on the local buoyancy increment Δbi,f characterizing the entrainment

rate equation at zi,f , and not on the buoyancy increment δbi as used in the definition

of the convective Richardson number Ri∗. Hence, Eq. (5.23), which is derived from

first principles, reduces the degree of freedom to choose the proportionality coeffi-

cient and the Richardson number in the entrainment rate equation E ∝ Ri−n: if we

choose the proportionality coefficient to be the usual entrainment ratio A defined

as Eq. (5.25), then the exact equation imposes a corresponding Richardson number

defined with a local buoyancy increment Δbi,f . On the other hand, if we simply re-

late the normalized mean entrainment rate E to the convective Richardson number

Ri∗, then the exact equation imposes a corresponding proportionality coefficient α

that is different from the entrainment ratio A.
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On the convective Richardson number

In the previous section, we showed how different Richardson numbers can be defined

and be related to the entrainment rate. However, none of them quantifies the balance

of kinetic and potential energy at the EZ predicted by parcel theory, which we

have shown to be quantified by Riδ (Eq. 5.12), a Richardson number that is quasi-

steady and of order one. Because of how Ri∗ is defined, interpreting it as a balance

of potential and kinetic energy is problematic, especially in the context of local

entrainment. This reflects on the seemingly paradoxical behavior of the CBL being

able to continue on growing (although slower) and still maintain an entrainment

rate similar to the encroachment rate, even when the convective Richardson number

increases in time beyond 10. We therefore try to understand the relevance of the

convective Richardson number with respect to entrainment at the EZ.

Recall that the basic ingredients for entrainment at a density interface are a char-

acteristic velocity scale, a characteristic length scale, and a characterization of the

opposing buoyancy force. At the entrainment zone of the CBL, we have shown that

the characteristic velocity is proportional to the convective velocity. However, due

to the multiplicity of length and buoyancy scales, it is unclear which length scale

and buoyancy scale are appropriate. The convective Richardson number has the

CBL thickness as the length scale. Indeed, for the case we considered in this study,

zi is the relevant length scale for the mean CBL growth since the growth rate of

the encroachment scale already characterizes the growth rate of the CBL and the

details of entrainment do not seem to affect the entrainment rate. However, neither

the entire length scale zi nor a constant fraction of it characterizes the length scale

of penetration depth of the thermals at the entrainment zone (see section 5.1.1).

Another questionable aspect of the convective Richardson number definition is the

use of δbi to characterize the opposing buoyant force. As already mentioned before,

the increase of the buoyancy increment δbi in time is not the reason why we is

decreasing; the deceleration of entrainment rate is simply due to the farther distance

that the thermals have to travel while the input of energy remains constant. Besides,

the buoyancy increment δbi cannot become too strong since the CBL we consider has

a continuous buoyancy input at the surface that regulates this buoyancy difference

at the EZ. Therefore, the increase of Ri∗ in time is mainly due to the increase in

zi and not due to an increasingly steeper δbi. Consequently, Ri∗ can be thought of

as a proxy for the independent variable time tN , similar to zenc/L0. In contrast,

the situation would be different if turbulence is only mechanically driven: as the
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entrainment zone moves farther away from the momentum source (e.g. an oscillating

grid) the buoyancy difference between the turbulent and the nonturbulent region can

become steep because buoyancy flux is solely coming from entrainment (see Perera

et al., 1994). In this case, the convective Richardson number mainly increases due

to the steepening of δbi.

To reconcile the over-all picture given by an increasing Ri∗ to the quasi-steady

Richardson number Riδ, we point out that δ is not directly dictated by zi and is

thus unaware of the increasing distance the penetrating thermals have to travel and

the increasing time for these penetrations to occur. The quasi-steady behavior of

Riδ only reflects the local balance of potential energy and kinetic energy for the

penetrating thermals. As for Ri∗, it seems appropriate to interpret it as the over-all

Richardson number as it takes into account the development of the large circulation

in time, which we expound on by writing it as

Ri∗ =
δbi
b∗

=
t∗
tδbi

, (5.42)

where t∗ = zenc/w∗ and tδbi = w∗/δbi. The first ratio in Eq. (5.42) is comparing the

mean buoyancy increment over the EZ to the convective buoyancy that characterizes

the buoyancy fluctuations in the mixed layer. In time, δbi is slowly increasing while

b∗ is decreasing relatively faster in time. The latter implies that the buoyancy surplus

of the more buoyant thermals decreases with respect to the mean due to convective

mixing. However, this does not mean that the thermals will overshoot less since the

velocity of the thermals, which is proportional to w∗, is increasing. The second ratio

simply compares the time scale of undulations at the EZ tδbi and the convective time

scale t∗. As the CBL grows, the undulation time scale is slowly decreasing while t∗ is

increasing relatively faster. We picture this as the large eddies taking a longer time

to overturn and in contrast, the undulations at the entrainment zone occurring fast

enough such that the entrainment zone can return to equilibrium. The convective

Richardson number therefore compares the scales of convection to the scales of the

undulations at the entrainment zone and is different from the basic definition of the

Richardson number that compares the potential energy and kinetic energy at the

entrainment zone.
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6 Summary and Conclusions

We used direct numerical simulation to investigate the fully-developed regime of a

convective boundary layer with constant surface buoyancy flux B0 growing into a

linearly stratified fluid characterized by a positive and constant buoyancy gradient

N2. The ratio between the CBL height zi and the reference Ozmidov scale L0 =

(B0/N
3)1/2 considered in the simulations covers an interval 5 − 26 and therefore

includes typical atmospheric values, for which L0 � 40 − 130 m according to the

typical estimates N � 0.6 − 1.8 × 10−2 s−1 and B0 � 0.3 − 1.0 × 10−2 m2 s−3.

The only difference with real conditions is the reference buoyancy Reynolds number

B0/(νN
2), which is 102 in the DNS as compared to 106 in the atmosphere. In terms

of the convective Reynolds number Re∗ = w∗zi/ν, we achieved values nearing 104,

whereas the atmospheric values are approximately 108.

We have shown in Chapter 3 that, in spite of this moderate Reynolds number, the

scale separation we attain is sufficient for the CBL to exhibit Reynolds number

similarity in the statistics of interest. In particular, the following CBL features are

reproduced:

• The CBL thickness scales with the encroachment height.

• Vertical profiles of mean and variance of buoyancy and velocity exhibit self-

similar behavior in time within the well-mixed layer when normalized by the

convective scales, and are comparable to profiles from measurements and LES

results.

• Vertical profiles of higher-order moments of the vertical velocity exhibit

Reynolds number similarity within the well-mixed layer.

• Turbulence kinetic energy budget profiles exhibit the expected shapes and

show self-similar behavior within the well-mixed layer.

• The CBL has developed into the equilibrium entrainment regime, wherein the

convective motions are faster than the growth of the CBL.
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The aforementioned results validate the use of DNS for studying the surface layer

and the entrainment zone, where LES is limited. Using DNS data, we addressed

some questions regarding the surface layer and the entrainment zone. Concerning

the surface layer, we addressed the questions:

• Do statistics at the surface layer for flows in pure free convection obey classical

similarity scaling?

• Does stratification, and therefore the outer scale, affect the surface layer statis-

tics? If so, how?

The answer to the first question depends on the statistic. In particular, we observe

agreement with the classical similarity scaling for the mean buoyancy profile 〈b〉(z) of
the CBL since it varies as 〈b〉+ = 〈b〉/b0 ∝ (z+)−4/3 beyond 10 wall diffusive units z0,

where b0 = (B2
0/z0)

1/3. However, the root-mean-square of the buoyancy fluctuations

is better described by b+rms ∝ (z+)−1/2, and that of the vertical velocity fluctuations

by w+
rms ∝ log(z+), instead of the −1/3 and 1/3 power laws, respectively, that

are predicted by classical similarity theory. These deviations are clearly observed

in the absence of mean wind, which contradicts the typical explanation for the

deviations of atmospheric observations from the predictions of classical similarity

theory. Although for the DNS data, the effects of moderate Reynolds numbers

cannot be completely ruled out.

We check whether these deviations are due to penetration of outer layer scales

into the inner layer by switching off stratification and comparing the CBL to the

neutrally-stratified case (the second question). The answer to the second question

is yes. In particular, we observe that although the neutral stratification vertical

velocity r.m.s. w+
rms also varies logarithmically with height, w+

rms ∝ log(z+), the

coefficients are different. Moreover, the buoyancy-related profiles are different to

those of the stably stratified case, namely, 〈b〉+ ∝ (z+)−2 and b+rms ∝ (z+)−3/2.

By doing a spectral analysis, we observe that the vertical structure of the radial

spectra of velocity components and buoyancy are dependent on the presence or

absence of stratification even within the inner layer. This dependence is interpreted

as a direct influence of outer layer large-scale motions on the inner layer, which

then confirms previous suggestions and proves that the assumptions behind classical

similarity theory are wrong. An implication of this is that the observed dependence

on the outer stratification strength, or, equivalently, on the state of development
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of the convective boundary layer, contribute to the scatter of the atmospheric data

that is often attributed to other effects like horizontal wind.

Concerning the entrainment zone, we addressed the questions:

• Does stratification impose a characteristic length scale inside the EZ that is

different from the CBL thickness?

• Does the EZ vertical structure affect the functional relationship between the

mean entrainment rate E = (1/w∗)dzi/dt and a convective Richardson num-

ber?

The answer to the first question is yes. In particular, we find that

• The entrainment zone is better described by two overlapping sublayers (an

upper and a lower), each with a different characteristic vertical length scale.

• The upper EZ sublayer is the one directly affected by the stratification N2,

which reflects on the characteristic length scale δ that is observed to vary

proportionally to the penetration depth of thermals, w∗/N , that is predicted

by parcel theory.

• δ is also the length scale of turbulence in the upper EZ sublayer, meaning the

dissipation rate at the upper EZ sublayer ε ∝ w3
∗/δ.

• The lower EZ sublayer is only indirectly affected by the stratification, and is

better characterized by the CBL thickness zi.

Correspondingly, different buoyancy scales are found, which reflects on the buoyancy

fluctuations being a combination of the buoyancy increment associated with the

penetrating thermal, and the buoyancy increment associated with the non-thermal

regions that mainly retain the original stratification N2. We provide parameteriza-

tions for the characteristic scales, which allows for the reconstruction of the vertical

profiles of the mean and variance of the buoyancy within the EZ at any time within

the equilibrium entrainment regime.

These findings imply a justification for considering a second turbulence length scale

at the EZ for turbulence models, one that is different from zi and behaves according

to the parcel theory prediction. This multiplicity of scales inside the EZ also explains
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difficulties found in previous analyses that considered the entrainment zone as a

single layer with vertical profiles characterized by a single set of characteristic scales.

Regarding the second EZ question, the answer is yes. By analyzing the terms of an

exact equation for the entrainment rate using DNS data, we found that

• The direct contribution of the EZ finite thickness to the entrainment ratio A

through the distortion term is small.

• The indirect contribution of the finite thickness is to decrease the local buoy-

ancy increment associated with the exact equation, which then compensates

for the small entrainment ratio A.

• Deviation from the power-law with exponent −1 under typical atmospheric

conditions is explained by the effect of the upper EZ sublayer on the buoy-

ancy increment across the whole EZ and on the corresponding proportionality

coefficient α.

• As the upper EZ sublayer becomes thinner relative to the CBL, α asymp-

totes to a constant and the functional relation between the normalized mean

entrainment rate E and the convective Richardson number Ri∗ approaches a

power law behavior with exponent −1.

This finding shows that deviations from the −1 power law are normal for typical

atmospheric values of the convective Richardson number and the −1 power law

may not be relevant as it requires very large values of the convective Richardson

number that are atypical in the atmosphere. Moreover, this finding shows that

the deviation is apparently not due to the radiation of gravity waves, confirming

previous indications. We noted also that the proportionality coefficient α evolves

in time differently from the entrainment ratio A, implying that an inappropriate

{A,Ri} pair could partially explain the failure of previous attempts to relate E to

a certain Richardson number, Ri, through a power law.

In sum, we showed in this work that DNS is emerging as a feasible and sensible

alternative tool for understanding the details of the problematically thin regions,

such as the surface layer and the entrainment zone, and will increasingly be so as

computing power continues to increase.
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A The minimum convective

boundary layer thickness

The length scale L0 = (B0/N
3)1/2 can also be related to the minimum CBL thickness

at which stratification affects the evolution and the morphology of the turbulent

boundary layer, and at which the system changes regimes. We can identify three

different regimes. First, there is an early regime in which the turbulent boundary

layer is shallow enough to behave essentially as if it were developing in neutral

conditions: the boundary layer height varies proportionally to (B0t
3)1/2 and the

kinetic energy profiles behave self-similarly when normalized by the convection scales

(Mellado, 2012). Second, there is an intermediate regime in which N2 becomes

relevant, turbulence kinetic energy is increasingly transferred from the vertical to the

horizontal direction, and the growth rate diminishes with respect to that of the early

regime. Eventually, the equilibrium (quasi-steady) entrainment regime is achieved,

in which the CBL thickness varies proportionally to (B0t/N
2)1/2 and the kinetic

energy profiles become again self-similar when normalized with the convection scales

(see Chapter 3 sections 3.3 and 3.5). The physical interpretation of L0 within this

context of regime transition is explained as follows.

For the neutral case N2 = 0, the mean buoyancy profile tends towards α1bs as

the distance to the surface increases (Fig. A.1), a constant fraction of the surface

buoyancy bs = α2(B
2
0/z0)

1/3, where z0 indicates either the roughness length or the

diffusion length, depending on the surface properties. The height at which this

buoyancy level α1bs becomes comparable with that of the background reference

profile bbg = N2z yields the crossover height α1bs/N
2 = α1α2N

−2(B2
0/z0)

1/3. When

the depth of the turbulent boundary layer is much smaller than this crossover height,

the turbulent boundary layer is not affected by the stratification above. Hence,

this crossover height can be considered as the minimum CBL thickness introduced

in the previous paragraph, and it can be expressed explicitly in terms of L0 as

[α1α2(L0/z0)
1/3]L0.

For a smooth surface and in the case of Pr = ν/κ = 1, as considered in this

work, the diffusion length is z0 = (κ3/B0)
1/4 and thus L0/z0 = Re

3/4
0 , where Re0 =

B0/(νN
2). Moreover, α1 � 0.1 and α2 � 4 (Mellado, 2012). Hence, in terms of the

controlling parameters of the problem, the minimum CBL thickness is � 0.4L0Re
1/4
0 ,
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Figure A.1: Sketch illustrating the crossover height [0.4(L0/z0)
1/3]L0 = [0.4(L0/z0)

4/3]z0
at which the background buoyancy profile bbg = N2z (dashed line) is felt by the growing
boundary layer (solid lines). The solid black line is 〈b〉/bs � 0.10 + 0.17(z/z0)

−1/3, as
obtained from DNS of a neutral CBL (Mellado, 2012, gray profiles). bs is the surface
mean buoyancy. The background stratification shown in this figure corresponds to the
case of a smooth wall, ν/κ = 1 and Re0 = 105, z0 being then equal to the diffusion length
(κ3/B0)

1/4.

i.e., basically proportional to L0 because of the weak dependence, Re
1/4
0 , on the

Reynolds number.



B Grid resolution study

We have quantified the dependence of the statistics on the grid resolution by com-

paring simulations Re040.R1 and Re040.R2 (see Table B.1). The grid spacing in

case Re040.R2 is half the size of the grid spacing in case Re040.R1, and the corre-

sponding initial conditions have been obtained by interpolating the initial fields from

case Re040.R1 into the grid from case Re040.R2. The rest of the parameters in both

simulations are exactly the same. We have measured the resolution in Kolmogorov

units, Δz/η, as it is customary in DNS (Moin and Mahesh, 1998; Pope, 2000).

For the resolution (Δz/η)max � 1 considered in this work, the average difference

in the relevant statistics between cases Re040.R1 and Re040.R2, both in the near-

wall region and in the entrainment zone, remains less than 3% (Fig. B.1), which

is comparable to the statistical convergence that we achieve with the domain size

considered in this work. This result, along with the scalings of the diffusive layer

next to the wall and the Kolmogorov scale in terms of the kinematic viscosity ν and

surface buoyancy flux B0, allows us to estimate, for a given grid size, the maximum

reference Reynolds number Re0 that still guarantees a good enough resolution of the

small scales, when using the numerical scheme described in Chapter 2 section 2.3.3.

Further discussion can be found in Mellado (2012).

Simulation Re0 Grid (Δz/η)max

Re040.R1 42 1280× 1280× 576 0.82
Re040.R2 42 2560× 2560× 1152 0.41

Table B.1: Simulations used in the study of the sensitivity of the results to the finite
domain size and the grid resolution. Case Re040.R1 is equal to Case Re040 in Table 2.1
but with half the horizontal extension, i.e., 107L0 × 107L0 × 56.6L0. Case Re040.R2 is
equal to Case040.R1 but with twice the grid resolution (half the grid spacing in each of
the three directions). The last column provides the resolution (in Kolmogorov units) at
zenc/L0 � 13.
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Figure B.1: Comparison between simulation Re040.R1 (light colors) and simulation
Re040.R2 with double the spatial resolution (dark colors) used in the grid resolution study
(Table B.1). Statistics at the wall are as follow: a) normalized TKE budget: dissipation
term −εwall/B0 (blue); transport term (−∂T/∂z)wall/B0 (brown) b) normalized mean
buoyancy difference (〈b〉wall − benc)/(B

3
0/κ)

1/4 (blue); normalized r.m.s. of the buoyancy
fluctuation brms/(B

3
0/κ)

1/4 (brown), where (B3
0/κ)

1/4 is the diffusion buoyancy scale (see
Chapter 4 and Mellado, 2012). Within the entrainment zone are as follow: c) maximum
of transport term max(−∂T/∂z)/B0 (brown); turbulent contribution to the entrainment
ratio At (blue) d) maximum of the normalized r.m.s. of the buoyancy fluctuation brms/b∗.
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