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Abstract A two Turbulence Kinetic Energy (2TKE) model is developed to address the boundary layer
‘‘grey zone’’ problem. The model combines ideas from local and nonlocal models into a single energetically
consistent framework. By applying the Reynolds averaging to the large eddy simulation (LES) equations that
employ Deardorff’s subgrid TKE, we arrive at a system of equations for the boundary layer quantities and
two turbulence kinetic energies: one which encapsulates the TKE of large boundary-layer-scale eddies and
another which represents the energy of eddies subgrid to the vertical grid size of a typical large-scale
model. These two energies are linked via the turbulent cascade of energy from larger to smaller scales and
are used to model the mixing in the boundary layer. The model is evaluated for three dry test cases and
found to compare favorably to large eddy simulations. The usage of two TKEs for mixing helps reduce the
dependency of the model on the vertical grid scale as well as on the free tropospheric stability and facili-
tates a smoother transition from convective to stable regimes. The usage of two TKEs representing two
ranges of scales satisfies the prerequisite for modeling the boundary layer in the ‘‘grey zone’’: an idea that is
explored further in a companion paper.

1. Introduction

Boundary layer parameterizations in large-scale models have usually been designed on the basis of the
assumption that the entirety of boundary layer processes is subgrid, although the vertical structure of the
boundary layer mean profiles might be resolved, at least away from the entrainment and the surface layers.
Large eddy simulations (LESs), on the other hand, are designed to resolve much of the energy-containing
boundary-layer-scale eddies and model the locally homogeneous isotropic turbulence that remains unre-
solved, via the LES-subgrid schemes. With increasing computational power, the grid size of global and
regional models in which boundary layers are traditionally parameterized is becoming smaller. For instance,
the German weather service runs a convection-resolving model, with a horizontal grid spacing of 2.8 km to
perform short-term forecasts [Baldauf et al., 2011]. Hence, they are beginning to resolve some of the
boundary-layer-scale processes but not yet to the degree of LES models.

Wyngaard [2004] referred to this intermediate scale, wherein boundary layer turbulence is not well resolved,
but nor is the grid scale so large that it allows one to use Reynolds-averaged approximations, as ‘‘Terra
incognita,’’ others refer to this as the ‘‘grey zone.’’ Modeling of partially resolved boundary layer circulations
at these grid scales requires parameterizations that are aware of the size of the scales they resolve, as well
as the depth of the boundary layer as a whole. This allows the parameterization to ‘‘know’’ which part of the
processes are resolved and which parts are subgrid for a given grid size. The present paper presents the der-
ivation and initial tests of a model designed to work both at the large-scale limit of contemporary global
models as well as the LES limit of grid sizes. The idea is that such a model should also behave reasonably on
intermediate scales, i.e., within the ‘‘grey zone.’’ To work in both the LES and the large-scale limits described
above, our model is designed to be aware of two scales: the boundary layer depth and the size of the verti-
cal mesh. In this paper, the derivation of the model and tests of the model in the large-scale limit are pre-
sented. In the companion paper (R. Bhattacharya and B. Stevens, Modeling the planetary boundary layer in
the ‘‘grey zone’’ using a two Turbulence Kinetic Energy model, submitted to Journal of Advances in Modeling
Earth Systems, 2015), we present results from the model imbedded in an anelastic flow-solver run at differ-
ent horizontal resolutions so as to demonstrate the adequacy of the model across the ‘‘grey zone.’’
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The basic idea we explore is the usage of two turbulence kinetic energies (and corresponding length scales)
each representing a range of scales of subgrid mixing within the boundary layer. Usually, models of the
planetary boundary layer (PBL) explicitly adopt a single, or master, length scale, which is assumed to play
the dominant role inside the boundary layer. For example, many PBL models represent the vertical heat
fluxes inside the boundary layer as

H
0
w 0

52Kh
@ �H
@z

� �
: (1)

Here H and w are the potential temperature and the vertical wind velocity, respectively (overbar and prime
notation denote Reynolds averaging and fluctuations therefrom). Kh on the right-hand side (RHS) thus rep-
resents an eddy diffusivity, which can be described as the product of a turbulence velocity and a length
scale. Different approaches have been developed to model these two constituent quantities. In some
approaches, the velocity scale is derived from the local turbulence kinetic energy within a grid box and the
local stability [Bretherton and Park, 2009; Brinkop and Roeckner, 1995]. Length scales can also be defined
locally [Blackadar, 1962; Grenier and Bretherton, 2001] or may take the height within the boundary layer, or
the boundary layer depth itself into account [Troen and Mahrt, 1986]. In other models, a nonlocal approach
uses gross boundary layer properties like its depth and the surface buoyancy flux [Troen and Mahrt, 1986];
see also Large et al. [1994]. In general, the local description for the velocity and the length scale works well
for stable to near-neutral boundary layers which have smaller turbulent structures that are more influenced
by the local stability, whereas the nonlocal schemes often performs better in convective conditions with
larger boundary-layer-scale turbulent structures.

Attempts have been made to combine these two descriptions: either using switching between these two
descriptions depending on scenarios [Lock et al., 2000] or by a hybrid approach which uses two different
modes of mixing within a single scheme. An important and influential example of the hybrid approach is
the eddy diffusivity mass flux (EDMF) model as introduced by Siebesma et al. [2007]. The EDMF model uses
eddy diffusivity to model the local mixing and introduces a mass flux (like the type clouds are modeled
with, for example by Tiedke [1989]) to model the nonlocal buoyancy driven plumes. However, it does not
formally relate the eddies that carry on the nonlocal transport to those that perform the local mixing, which
is the case in reality since the former drive the later through the turbulence cascade [Kolmogorov, 1991].
The present work draws inspiration from the EDMF model and seeks to fill this gap in the simplest possible
framework.

The key focus of this 2TKE model development has been to address the scale awareness of the boundary
layer schemes and to utilize the current understanding of boundary layer dynamics to guide our effort. In
the past years, a main focus has been in the development of better models of boundary layer turbulence.
Examples include second-moment closures [Mellor and Yamada, 1974; Bougeault, 1981a, 1981b] that solve
for the second moments prognostically and thus can better represent the interplay between the turbulence
and the mean profile. More recently a different approach, assumed PDF models [Lappen and Randall, 2001a,
2001b, 2001c; Golaz et al., 2002a, 2002b], has been adopted. These models aim to physically link boundary
layer models which solve for means and variances, and cloud models that use probability density functions
to determine cloudiness, updraft area fraction, etc. These models assume joint PDFs of moist-conserved var-
iables like liquid water potential temperature and total water content as well as of the vertical velocity. They
then solve for evolution equations for the means, variances and covariances of these variables to describe
the evolution of these PDFs in space and time. Our ideas are not meant to supplant these approaches, nor
do they claim to more accurately represent the boundary layer for any particular implementation. Rather
our focus is on the development of a framework for modeling boundary layer turbulence flexibly and
dynamically on grids with different resolution.

Our aim in developing the 2TKE model is to create a model that can reproduce LES results in the limit of
LES grid sizes while at the same time represent the boundary layer physically in large-scale model applica-
tions. To do so, we start with the LES equations and apply boundary layer approximations that are common
place in the derivation of parameterizations of Reynolds-averaged models [Mellor and Yamada, 1974]. Such
an approach introduces two turbulence energies: one (called the large TKE) representing the energy of
eddies ranging from the horizontal grid size to the vertical grid size and the other (called the small TKE) rep-
resenting the energy of eddies subgrid to the vertical grid size. We endeavor to link these to one another,
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and the mean flow, in a physical manner. In doing so, we use to our advantage both the local and the non-
local approaches for modeling turbulence. As we demonstrate in the companion paper (Bhattacharya and
Stevens, submitted manuscript, 2015) (where we implement this scheme in a large eddy simulation model),
the resulting model working in these two limits can be physically tuned to also work reasonably in the
range of grid sizes in between. This is aided by the fact that in this intermediate range of grid sizes, the
small TKE continues to operate fully while the large TKE needs to be blended to account for the fact that
some of the large eddies are being gradually resolved by the horizontal grid.

The paper is organized as follows: section 2 presents the major steps in the derivation of the 2TKE model
and provides a rationalization for the assumptions necessary to close the system of equations we derive.
Comparison with two currently used PBL schemes: a rather crude TKE scheme (an example of local parame-
terization) as used in ECHAM [Brinkop and Roeckner, 1995] and the K-profile parameterization (a nonlocal
scheme) found in many other models [Troen and Mahrt, 1986] is presented in section 3. Finally, perspectives
and conclusions are presented in section 4.

2. 2TKE Model Description

Before presenting a formal derivation of our model, we first give an overview of the main approach. Conven-
tions for the notation are presented section 2.1 and the formal derivation of the 2TKE model is presented
thereafter. As discussed in section 1, it is desired that the model reduces to a traditional LES representation in
the limit that the grid spacing is much smaller than the depth, h, of the PBL. Hence, we begin with the LES
equation set for which the subgrid-scale fluxes are modeled using a small-scale turbulence kinetic energy
[Deardorff, 1980]. The LES equations are then averaged analogous to what is done when deriving the
Reynolds-averaged Navier Stokes (RANS) models, i.e., assuming that the energy-containing eddies, whose
scale is of order h, are much smaller than the horizontal grid spacing [e.g., see Mellor and Yamada, 1974].
The vertical grid is initially assumed to be of the order of what one finds in LES, but this assumption will later
be relaxed. For this presentation, only a dry incompressible fluid is considered. The PBL equations derived in
this manner differ from typical PBL equations in one key aspect: instead of a single TKE, two energies emerge:
a large-scale TKE that accounts for eddy sizes from the boundary layer scale to the vertical grid size and a
small-scale TKE which accounts for eddies which are subgrid to the vertical grid size.

These equations require a closure assumption for the large-scale average of the LES-subgrid stresses (that
occur in the original LES equations) as well as the Reynolds stresses arising from larger, but still subgrid,
eddies. A down-gradient approximation is made in both cases, using the small-scale TKE and the large-scale
TKE, respectively. The former is restricted to work on a length scale proportional to the vertical grid size as
well as in regions of strong stratification, as for instance within the entrainment zone capping convective
boundary layers. Within such an entrainment zone, small eddies entrain warmer air from free troposphere
into the boundary layer. The latter on the other hand, works on the scale of the boundary layer height and
hence is modeled in a nonlocal fashion with a K-profile, taking into account the free tropospheric stability as
well as the fact that the small-scale energy contributes to the mixing especially at the surface and the
entrainment zones. The sum of the large-scale and the small-scale energies is independent of the vertical
grid size, and at the same time dissipation of large energy acts as a source of the small-scale energy
(through the energy cascade) [Kolmogorov, 1991]. These two constraints relate the dissipation scale of the
large-scale energy to that of the small-scale energy (which is tied to the vertical grid size) and help the
model deal more flexibly and consistently with insufficient vertical resolution with regards to the mean
structure of the entrainment layer.

Thus, in this manuscript, we derive the 2TKE model and use its implementation in a single-column setup to
explore its properties in the limit of large horizontal grid sizes. In the companion paper (Bhattacharya and
Stevens, submitted manuscript, 2015), we implement the 2TKE model in a large eddy simulation setup
which allows us to extend it and explore its properties in the horizontal ‘‘grey zone.’’

2.1. Derivation of New Set of PBL Equations
To simplify the subsequent presentation, a few notational conventions as applicable to a generic variable
/ of an unfiltered fluid field are first introduced. Solving for the fluid field in an LES model with grid size
D� h yields
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/5F1/�; (2)

where F is the LES resolved field (i.e., scales greater than D) and /� represents the fluctuations smaller than D.
The LES volume average, from which the LES resolved field is derived, is assumed to satisfy the properties of a
Reynolds average. Now F can be decomposed into an average over a large horizontal grid box typical of a
current global NWP or climate model (this average is equivalent to the Reynolds average and will be referred
to as the large-scale average or the Reynolds average henceforth) and a Reynolds-subgrid fluctuation:

F5F1F0: (3)

The Reynolds average of the LES resolved field should, in theory, be identical to the Reynolds average of
the unfiltered fluid field from which the LES resolved fields have been derived. Thus,

F5/: (4)

The subgrid fluctuations differ however as they do not include fluctuations on scales smaller than D.
2.1.1. Equations for LES-Filtered Variables
The LES equations for the velocity vectors can be written as

@Ui

@t
52Uk

@Ui

@xk
2cpH0

@P
@xi

1
gH00

H0
di31fjðUk2Ug;kÞ�ikj2

@sik

@xk
: (5)

Here tensor notation is used, so that Ui denotes the three components of the LES-filtered velocity
vector field, ðU1;U2;U3Þ, alternatively (U, V, W). The subscript g refers to the geostrophic compo-
nent. The independent spatial coordinates are given by xi5ðx1; x2; x3Þ, alternatively (x, y, z).
Repeated indices represent Einstein summation. The left-hand side represents the rate of change
of LES velocity field. The terms on the RHS represent advection of specific momentum, the gradi-
ent of the ageostrophic pressure, P, a buoyancy term, the Coriolis acceleration (f being the Coriolis
parameter) and the divergence of LES-subgrid stresses (sik5hui

�uk
�i), respectively. In the above, the

double prime is used in the definition of the buoyancy term to denote deviations from the hori-
zontal averages, and angle brackets, for notational clarity, denote averaging over the LES grid, so
that F5h/i:

For potential temperature (H), in the absence of diabatic forcings, the evolution equation reads

@H
@t

52Uk
@H
@xk

2
@ck

@xk
: (6)

ck represents the LES-subgrid flux of potential temperature, ck5hH�uk
�i.

For the LES (Deardorff) subgrid TKE, here denoted by e, we write the evolution equation as

@e
@t

52
@ðeUkÞ
@xk

1
@

@xk
Ke
@e
@xk

� �
2sik

@Ui

@xk
1b2

Ce

l
e3=2 : (7)

The terms on the right-hand side represent transport by advection; a diffusion term (with a diffusivity, Ke)
that combines the effect of both the subgrid turbulence and the pressure-velocity covariances as a diffusion
process of e; subgrid dissipation; buoyant production/destruction (b); and viscous dissipation (standard
model following Kolmogorov [1991], with l being the dissipation length scale for e and Ce being a flow-
dependent constant), respectively.
2.1.2. Derivation of Reynolds-Averaged Fields
Reynolds averaging of equation (5) (equation (4) implies �U5�u; �P5�p, etc.) yields

@ui

@t
52uk

@ui

@xk
2
@Tik

@xk
2cpH0

@�p
@xi

1
gH00

H0
di31fjðuk 2Ug;kÞ�ikj2

@sik

@xk
; (8)

where Tij represents the Reynolds-subgrid stress

Tij5U0i U0j : (9)

Because the double prime denotes differences from a horizontal average:
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H0050: (10)

The Reynolds average of P as well as the advective (convective) tendency is resolved by the large-scale
model. Also in a PBL model for large-scale applications, the vertical fluxes and gradients can be considered
to be an order of magnitude larger than the horizontal ones [Mellor and Yamada, 1974]. This allows us to
neglect the horizontal fluxes in the derivation of the 2TKE model, although formally they should be retained
to preserve the correct LES limit, which implies that the Lagrangian acceleration of the Reynolds-averaged
velocity can be described as follows:

DUi

Dt
5
@ui

@t
1uk

@ui

@xk
52

@Ti3

@z
1fjðuk 2Ug;kÞ�ikj2

@si3

@z
; (11)

where D/Dt is defined implicitly as the advective derivative which follows the Reynolds-averaged flow. Simi-
larly for Reynolds-averaged potential temperature field, we solve for

D �H
Dt

52
@C3

@z
2
@c3

@z
; (12)

where C3 represents the Reynolds-subgrid-vertical potential temperature flux.

C35H0W 0 : (13)

The difference between equations (5) and (8), again considering only the vertical fluxes describes the devia-
tions from the Reynolds-averaged quantities, such that for the acceleration:
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: (14)

Taking the Reynolds average of the inner product of the acceleration fluctuations with the velocity fluctua-
tions and further assuming the Coriolis terms can be neglected within the boundary layer since hf=u� is
small (u� is the surface friction velocity), yields an expression for E, the turbulence kinetic energy of eddies
whose scales range from the vertical grid to the boundary layer depth (henceforth called the large-scale
TKE):
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W 0H00
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:

(15)

Note that the pressure-velocity covariances redistribute the energy among the components but do not con-
tribute to the total energy [Rotta, 1951], and so play no explicit role in equation (15).

The evolution equation for LES-subgrid TKE, e, has been given by equation (7). Partitioning the LES-subgrid
TKE (e), the subgrid stress (sij), and the buoyant production (b) into a Reynolds-averaged and a Reynolds-
subgrid part (e5�e1e0; sij5sij 1s

0
ij; b5�b1b0) yields
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(16)

Expansion of the dissipation term in the RHS leads to

ð�e1e0Þ3=2
5�e3=2 1

3
2

�e1=2e01
3
8

�e21=2e021hot � �e3=21
3
8

�e21=2e02; (17)

wherein the approximation arises through the neglect of the higher order terms, denoted by hot. Substitut-
ing equation (17) into equation (16) and neglecting the horizontal terms as part of the boundary layer
approximation yield an equation for the evolution of the Reynolds-averaged small-scale TKE:
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Only flat surfaces are considered, i.e., �w50 at the surface. This combined with incompressibility implies that �w
does not enter our set of PBL equations. Equations (11), (12), (15), and (18) thus represent the evolution equa-
tions for the horizontal wind components, the potential temperature, the large-scale TKE, and the Reynolds-
averaged LES-subgrid TKE. These equations with the closures defined below define our 2TKE model.
2.1.3. Closure for the Subgrid Variances
The equations for E and �e (i.e., equations (15) and (18)) contain multiple terms involving LES and/or
Reynolds-subgrid fluxes. Closure of these LES-/Reynolds-subgrid fluxes implies approximating them using
the LES-/Reynolds-resolved variables, respectively. For the most part, this can be accomplished using stand-
ard approaches as described below.

Like the diffusion of �e, the LES-subgrid stresses are related to the mean using a down-gradient model thus
defining the diffusivity, Ke. Thus for example,

s1352Ke
@U
@z
: (19)

Ke is assumed proportional to
ffiffiffi
�e
p

whose horizontal variations over the LES domain are neglected. The latter
assumption also implies that e02 can be neglected in equation (18), since the horizontal variation of the e
field has been neglected. Thus,

s013
@U0

@z
52Ke

@U0

@z
@U0

@z
; (20)

which, being the product of a negative and a squared term, is always negative semidefinite. This means it
always acts as a sink of E and a source for �e. Assuming, as the simplest case, that the Reynolds filter size is
within the inertial subrange (though, for example, Wyngaard [2004] assume otherwise), this dissipation of E
to �e can be parameterized in the same manner as the dissipation of �e itself, i.e.,

Ke
@U0i
@z

@U0i
@z
� CE

L
E3=2: (21)

From Kolgomorov theory, the constant of proportionality in the energy spectrum is the same throughout
the inertial range:

Ce5CE : (22)

The length scale L (the dissipation length scale for E) may be parameterized as the Blackadar length [Blacka-
dar, 1962]. As will be discussed later, this assumption can be relaxed based on the fact that the dissipation
of E is a source of �e according to the cascade of turbulence kinetic energy, but for now it is assumed that

L5
jz

11 jz
k

; (23)

with k denoting an asymptotic mixing length (taken as 150 m in some models) and j being the Von K�arm�an
constant. The dissipation length scale, l, of �e is taken to be proportional to the vertical grid size, Dz of the
model.

l5L
Dz
h
: (24)

The other term that needs to be parameterized in equation (15) is
@s0i3 U0i
@z . Using equation (19)
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� �
; (25)

the factor of 2/3 being absorbed in the definition of Ke.
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Similarly, the vertical transport of Reynolds-averaged quantities by the Reynolds-averaged vertical velocity
is modeled as

F0W 052KE
@ �F
@z

; (26)

with KE denoting the eddy viscosity of large (boundary layer scale) eddies. Thus, the equation for the
Reynolds-averaged acceleration required by the large-scale model is
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� �
: (27)

It differs from the traditional form of this equation in that the vertical mixing is performed using two ener-
gies, represented in KE and Ke, respectively. Closures require the additional assumption that fluctuations in
Ke do not correlate with fluctuations in @ui=@z across the grid scale of the large-scale model. With this final
assumption, we arrive at a closed set of PBL equations which are presented below.

2.2. New Set of PBL Equations
Based on the above arguments, the 2TKE model can be written as
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E3=21�b2

Ce

l
�e3=2
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: (31)

In these equations, the Prandtl number (Pr), i.e., the ratio of the eddy diffusivity to the eddy viscosity, has
been introduced. It is assumed to be similar for mixing via the boundary layer scale and the LES-subgrid
eddies. In summary, the system consists of five governing equations instead of the usual four. The addi-
tional one is for Reynolds-averaged LES-subgrid TKE (�e). The governing equations for wind velocity and
potential temperature require two separate eddy viscosities (diffusivities), one for boundary-layer-scale
eddies (KE) and the other for smaller isotropic eddies (Ke). This differs from the normal approach to PBL
modeling wherein only a single eddy viscosity (diffusivity), which encapsulates the entire range of eddies
within the boundary layer, is acknowledged.

When this new set of PBL equations is taken to the limit that the Reynolds average tends to an LES filter
(the large-scale energy-containing eddies getting resolved meaning also that KE tending to zero), this set
reduces to the LES equation set we started with, with one key difference: the original set modeled small-
scale subgrid horizontal fluxes alongside the vertical fluxes while this new derived set models only the verti-
cal fluxes (this difference comes due to the boundary layer approximations we applied early on in our deri-
vation of the PBL equations). This difference could and should be addressed in a more general formulation
of the approach, but because our focus is on the ‘‘grey zone,’’ wherein we continue to assume that these
terms play a more minor role, we continue to neglect them here. In the companion paper (Bhattacharya
and Stevens, submitted manuscript, 2015), we explore the region of grid sizes where this three dimensional-
ity of fluxes begin to become essential.

We can note that to solve for these equations require modeling of the diffusivities (KE and Ke) as well as the
dissipation of E and �e. Next we present our methodology for accomplishing that.
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2.3. Modeling of the Diffusion and the Dissipation
2.3.1. Modeling Ke, the Small-Eddy Diffusivity
Mixing by small-scale eddies is represented by Ke in the 2TKE model. It is modeled such that it plays a
substantial part in mixing near the surface as well as in the entrainment zone. In the entrainment zone,
it is designed to mix the warmer air from above the boundary layer into the layer, following for instance,
the theoretical arguments of Mellado et al. [2014]. The diffusivity also physically incorporates the vertical
grid size, and in so doing can help minimize some of the deleterious effects of insufficient vertical
resolution.

Ke is defined (similar to current large-scale models) as

Ke5lmix

ffiffiffi
�e
p

; (32)

where lmix represents the length scale of mixing via the smaller eddies. With lmix proportional solely to the
vertical grid size, E causes most of the mixing throughout the boundary layer, i.e., the role of �e insignificant.
To make this scheme more grid independent, we introduce another length scale: the depth of the inversion
layer, to account for the fact that this layer is often unresolved, and thus to allow �e to account, as it should,
for the mixing in this region. The idea is that the mixing which causes entrainment at the top of the bound-
ary layer is carried out by the smaller eddies which includes some influence of the stability of the region
(since the formulation of �e involves local grid point variables). This is somewhat different from the EDMF for-
mulation by Siebesma et al. [2007], wherein the local scheme acts predominantly in the surface layer,
whereas the nonlocal scheme has the major contribution within the mixed layer and within the entrainment
zone (entrainment, in this view point, is carried out by larger eddies originating at the surface and penetrat-
ing the stable region above the mixed layer). In our model, these large eddies provide one source term for
�e which actualize the mixing.

Taking the above into consideration, lmix is formulated as

lmix5
jðh2zÞ

11
jðh2zÞ

K

" #
A

Dz1=2
: (33)

The term in the square brackets on the right-hand side represents the influence of the entrainment zone in
mixing (similar to what Blackadar [1962] does for the surface scales). Here K is the depth of entrainment
zone. K is calculated per time step as the difference between the boundary layer depth and the mixed layer
depth. The mixed layer depth is approximated as the model level height through which the gradient of the
potential temperature remains small. Outside the entrainment zone (i.e., when h2z > K), the denominator
of the term in square bracket is set at a constant value of ð11jÞ to ensure that the mixing contribution
from �e does not go below a certain limit.

For just this first term in the formulation, above experiments at very coarse grids show that Ke performs
excessive mixing at the top of the boundary layer, leading to unrealistic growth of the boundary layer.
Hence, the second term in the RHS is used as a numerical correction factor (A is a constant with dimensions
of m21=2: this is set by the finest-grid solutions, that is considered to be the ‘‘true solution’’). This is justified
because from the inertial range theory [Kolmogorov, 1991], �e scales with Dz2=3 and so the length scale
should decrease such that the product does not increase unrealistically for coarse grids. In summary, our
formulation for lmix includes a contribution from the entrainment zone as well as the vertical grid size of the
model.
2.3.2. Modeling KE, the Large Eddy Diffusivity
The large eddy diffusivity is modeled such that the large-scale fluxes and profiles are reasonably repre-
sented, especially for the simple case of a convective boundary layer with constant surface fluxes.

By definition, E depends on the large-scale features of the boundary layer, rather than the specific thermo-
dynamic and dynamic state at each model level. Hence, E1 is introduced as the vertical average of E (details
of the calculation of the PBL depth, h, are given in section 2.4):

E1ðtÞ5
1

hðtÞ

ðhðtÞ

0
Eðz; tÞdz: (34)

The evolution equation for E1 can be derived by integrating the evolution equation for E (section 2.2):
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dðhE1ðtÞÞ
dt

5

ðhðtÞ

0

@Eðz; tÞ
@t

dz1Eðh; tÞdhðtÞ
dt

: (35)

The integral in equation (35) can be estimated from the bulk properties of the boundary layer (assuming
logarithmic and linear profiles for velocity and flux profiles, respectively). The discretized equation thus
becomes

ðhE1Þn11
2ðhE1Þn

Dt
5

0:4gðhn11Þw0h0 0
H0

1ðE0w0 02E0w0hÞ

1
wc u�2

j
ðln k2ln z0Þ1

k22z0
2

2h2
2

2ðk2z0Þ
h

� �

2CE E1
3=2 ln ðhn11Þ2ln ðz0Þ

j
1

hn112z0

k

� �
1Eðhn11Þ hn112hn

Dt
;

(36)

where the superscript denotes the time level, z0 represents the surface roughness length, and u� represents
the surface friction velocity. The terms on the RHS represent the contributions from the integrated buoy-
ancy flux profile (the surface flux generates E, while E mixes the warm air from the entrainment zone into
the mixed layer), the fluxes of E at the surface and the top of the boundary layer, the integrated momentum
profile, the dissipation of E to �e and the growth of the layer height.

The introduction of the large-scale energy, E1, facilitates the definition of a convective velocity scale as

wc5
ffiffiffiffiffiffiffi
2E1

p
: (37)

Upon defining wc, a profile is used to diagnose KE, following the general approach of Troen and Mahrt
[1986]:

KE5jwch
z
h

� �
12

z
h

� �m
: (38)

In the present implementation of the 2TKE model, this exponent is made to factor in two considerations:
one is the free tropospheric stability and the other, the contribution of Ke to mixing.

To explore the dependence of KE on the free tropospheric stability (G), cases with constant surface flux and
no shear as well as no Ke have been considered with different values of G. For the boundary layer height to
be correctly predicted, for instance as compared to LES, the flux at the point of minimum buoyancy must
be correctly predicted. This is because, in the absence of mass flux coming out of the boundary layer (by
convection or large-scale convergences), the boundary layer growth depends on the fluxes according to

dh
dt

5
w0h0 02w0h0min

Gh
; (39)

shown, for example, by Deardorff [1974]. The height of the boundary layer is inversely proportional to the
square root of the stability the boundary layer grows into provided the surface flux is constant [Deardorff,
1974]. Thus, to achieve the correct boundary layer growth, the flux at the height of minimum buoyancy
should be independent of the stability above. This is achieved by equating the value of KE at the height of
minimum buoyancy (which LES studies suggest to be at similar nondimensional height for all convective
boundary layers) for two different values of lower free tropospheric stability, G1 and G2. Here we take this
nondimensional height to be d. Thus, we want to solve for the exponent m2 to be used for free tropospheric
stability of G2 whence we know the exponent m1 being used for free tropospheric stability of G1. Thus,

jðQ0h1Þ1=3h1ðdÞð12dÞm2 5jðQ0h2Þ1=3h2ðdÞð12dÞm1 ; (40)

where Q0 is the surface buoyancy flux and h1 and h2 are the boundary layer heights for initial stability of G1

and G2, respectively. To simplify the calculation, we approximate the convective velocity scale in this
instance to be the standard Deardorff convective velocity [Deardorff, 1970]. That is

wc � ðhQ0Þ1=3: (41)

Equation (40) implies
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ðh1Þ4=3ð12dÞm2 5ðh2Þ4=3ð12dÞm1 : (42)

Now since the ideal height of a convective boundary layer driven by constant surface flux is inversely pro-
portional to the square root of the stability equation (42) implies

m25m11
2
3

log 12d
G1

G2

� �
: (43)

This revised exponent helps ensure that KE accounts for the mixing responsible for the correct growth of
the convective boundary layer, irrespective of the degree of stratification of the layer into which the bound-
ary layer is growing.

The second factor taken into consideration in devising the exponent m is the fact that Ke accounts for much
of the mixing within the surface and the entrainment layers. Our approach is to find an exponent such that
the total diffusivity due to both the energies matches the diffusivity if only E was contributing to the mixing.
We do this matching at one third the boundary layer depth, a depth where the standard K [Troen and Mahrt,
1986] maximizes and where Deardorff [1980] suggests the maximum vertical subgrid-vertical velocity var-
iance within a convective boundary layer. Hence,

lmix jh=3

ffiffiffi
�e
p

1jwsh
1
3

2
3

� �m1

5jwsh
1
3

2
3

� �m

: (44)

At a height of h=3, lmix from equation (33) (the denominator within the square bracket being 11j as noted
above) becomes

lmix5
2hj

3ð11jÞ

� �
A

Dz1=2
: (45)

We consider solutions employing a grid spacing of 10 m as the ‘‘true’’ solutions (setting the constant A
to

ffiffiffiffiffi
10
p

) and to keep the correction due to �e to the length scale of E minimal, we consider a large value of
Dz5256 m. This implies

lmix5
2hj

3ð11jÞ

� � ffiffiffiffiffi
10
p

16
: (46)

Now since Oð�eÞ is approximately OðE=10Þ or

ffiffiffi
�e
p
� wsffiffiffiffiffi

10
p ; (47)

it follows that
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logð2
3
Þ

:

(48)

The consequences of these choices (with E performing most of the mixing in the mixed layer and �e near
the interfaces) are seen in the solutions for different test cases (section 3).
2.3.3. Modeling Dissipation to Get Consistent Energetics
Equation (20) shows that the dissipation of E leads to a production of �e. This can be conceptualized in terms
of the energy cascade in which large-scale turbulent eddies cascades into smaller scales eddies, which
eventually dissipate. Not only are the two energies connected by the cascade, the sum of E and �e should be
constant irrespective of vertical grid size of the host single-column model (Dz partitions the inertial range
without changing its size or shape). Using these two constraints leads to a relation between the dissipation
length scales of these two energies, which aids in a consistent treatment of the turbulence energy as a
whole and improves the convergence of the model solutions at coarser grids.

Writing the evolution equations for the two energies in a symbolic form (Pg and P l representing global and
local production terms, respectively), we get
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dE
dt

5Pgðwc; u�Þ2CE
E3=2

L
(49)

and

d�e
dt

5P l
@�u
@z
;
@ �H
@z

� �
1CE

E3=2

L
2Ce

�e3=2

l
: (50)

Assuming steady solutions allows one to neglect the time derivatives. Given that the vertical grid size is sub-
stantially smaller than the boundary layer height implies that the local production of �e in equation (50) (P l)
may be neglected. This leads us to a dominant balance between the transfer of energy from E to �e and the
dissipation of e by viscosity:

CE
E3=2

L
� Ce

�e3=2

l
: (51)

Now because CE and Ce are dependent on the flow and by similarity [Kolmogorov, 1991], the same, that
implies

E3=2

L
5

�e3=2

l
: (52)

Now for all Dz, the sum of E and �e should be constant, since Dz is essentially partitioning the inertial sub-
range into two parts. This implies

�e1E5E: (53)

Equations (52) and (53) imply that

�e 11
L2=3

l2=3

� �
5E; (54)

E being a constant. Thus, the length scale of dissipation of E to �e (i.e., L) is related to the length scale of dissi-
pation of �e (i.e., l) which is proportional to Dz, as follows:

L5l E�eð Þ3=2 12
�e
E

� �3=2

: (55)

If the dz dependence of �e is neglected, then L becomes proportional to l, which makes it proportional to Dz.
This, however, is unphysical since the dissipation scales of L are well removed from Dz. Therefore, approxi-
mating that �e is proportional to ðDzÞ2=3 while E is proportional to h2=3 (again taking inertial subrange into
account), three different approximations to L can be formulated. The first one neglects the magnitude of e
with respect to E, the second takes a simple two term expansion of equation (55), while the third one takes
four consecutive terms of the binomial expansion of the same:

L � hl
Dz
; (56)

L � hl
Dz

2l; (57)

L � l
h
Dz

2
3h1=3

2Dz1=3
1

3Dz1=3

8h1=3
2

Dz
16h

� �
: (58)

Equation (56) leads to independence of L from Dz, which was originally the case. Equation (57) leads to

L � l
h
Dz

21

� �
: (59)

Equation (58) can be simplified to

L � hl
Dz

12c
Dz4=3

h

� �
: (60)

The constant c is a dimensional quantity which is necessary to make the second term inside the
bracket nondimensional. Equation (58), that is, reduction of the length scale of dissipation of E by a
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term which has a slight superlinear exponent in Dz, leads to a significant reduction of vertical grid
dependency of the solutions and as is shown in section 3, consistent energetics across a range of grid
sizes.

Figure 1 summarizes the mixing and the energetic equations schematically. Figure 1a visualizes the mixing
equations and shows how they incorporate the different aspects of the convective boundary layer as well
as the vertical grid size into their formulations. Figure 1b rehashes the key aspects of the two turbulent
kinetic energies for a NWP grid box with horizontal spacing of Dx and a vertical spacing of Dz. An LES grid
box (of scale Dz in all three directions) is overlaid on this NWP grid box at the bottom left. Thus, �e represents
the NWP-grid-box-averaged LES-subgrid energy, while E represents the ‘‘remaining’’ turbulent kinetic
energy within the NWP grid box. Note that for a finite horizontal grid size (Dx), the large TKE, E is a function
of both the boundary layer depth as well as the horizontal grid size. This function (of Dx) has a value 1 for
large-enough horizontal grid size (none of the large eddies resolved) and a value 0 for grid sizes tending to
the LES grid size (entirety of the large eddies resolved). Since the current manuscript deals only with a
single-column model (assumed infinite horizontal grid size), the function of horizontal grid size is not dis-
cussed. Designing this function is the key theme of the companion paper (Bhattacharya and Stevens, sub-
mitted manuscript, 2015).

2.4. Depth Diagnosis of the PBL
Two boundary layer depth diagnosis procedures have been employed. The first one, called the gradient
method [Sullivan and Patton, 2011], is used when a purely convective boundary layer without shear has
been studied. This method calculates the depth of the boundary layer at the height where the vertical slope
of the potential temperature profile is maximum. However, in the presence of shear, another method, called
the parcel method, has been used [following Troen and Mahrt, 1986]. This method starts by calculating an
initial estimate of the boundary layer height, such that a parcel of air having the same properties as the sur-
face exceeds a certain critical Richardson number (Ricr) at that height. This initial estimate allows the calcula-
tion of a convective velocity scale, which along with the surface friction velocity gives an estimate of the
velocity scale at the surface, ws (similar to equation (37)). This velocity scale allows the introduction of the
temperature excess (Dh), such that

Dh5
Dw0h0 ð0Þ

ws
: (61)

The (new)boundary layer height is then calculated as the height where a parcel with temperature of
the first model level plus Dh exceeds Ricr. This method has been used in all the cases with a mean
wind. In a pure dry convective boundary layer case with no wind, the gradient scheme has been
used.

Figure 1. Schematic diagram outlining (a) the mixing formulations and (b) the energetics of the 2TKE model. The boundary layer
depth is h.
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3. Solutions of the 2TKE Model for Idealized Test Cases

3.1. Case Description
The initial temperature profile consists of a stably stratified column from surface to 3 km height. The poten-
tial temperature near the surface is 299 K and the initial lapse rate is 6 K km21, unless otherwise specified.
We present results from our model for two different boundary conditions. The first is a convective boundary
layer case called CBL1. In this, we specify a constant surface heat flux of .05 K m s21. The initial horizontal
wind profile is set at a constant value of 10 m s21 over the entire domain and assumed to be the same in
magnitude and direction as the geostrophic wind. A constant value of surface friction velocity is prescribed
and since the case is highly convective the simulations remain insensitive to this prescription provided it is
within certain bounds. This remains the case when the friction velocity is calculated using a surface scheme
(Appendix A) assuming a no slip condition. The other case is a stable boundary layer scenario (case: SBL).
Here the surface shear (same wind profile as CBL1) drives the turbulence while the surface temperature
which is set at 293 K cools and put a cap on the boundary layer growth. The fluxes in this case are com-
puted using the surface scheme as described in Appendix A. Finally, to bring out the properties of the two
energies in a pure CBL case, a case similar to CBL1 but with zero mean wind, i.e., a free convective case is
employed. In this case, the boundary layer height is calculated using the gradient method (case: CBL2). The
cases are summarized in Table 1. No case specific adjustment to the 2TKE model has been made for these
different cases. This allows us to understand the capability of the model to adapt these different scenarios.

The simulations are run with a Coriolis parameter of 3:464331024 s21, which is consistent with the Coriolis
parameter at 158. The surface roughness length for momentum and for heat is taken to be the same at
531024 m. It is seen that the solutions approach a self-similar state within a large eddy turnover time (of
the order of 10 min). The vertical grid size is varied in the range of fine (uniform) grid of size 3 m to coarse
grids of size 100 m so as to study the behavior of the solutions as well as that of the different parameters of
the model over a range of grid sizes.

Table 1. Case Description

Case
Boundary
Condition

Initial
Condition

Boundary Layer
Height Diagnosis

CBL1 1. Surface heat flux 5 0.05 K m s21

2. Full slip condition
1. Lapse rate 5 6 K km21 starting at 299 K near surface
2. Wind speed 5 10 m s21 5 geostrophic wind

Parcel method

CBL Surface heat flux 5 0.05 K m s21 1. Lapse rate 5 6 K km21 starting at 299 K near surface
2. No wind

Gradient method

SBL 1. Surf. temp 5 293 K
2. No slip condition
3. Fluxes computed

1. Lapse rate 5 6 K km21 starting at 299 K near surface
2. Wind speed 5 10 m s21 5 geostrophic wind

Parcel method

Figure 2. (a) Potential temperature profiles for different models after 10 h and (b) corresponding flux profiles.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000548

BHATTACHARYA AND STEVENS TWO TKE FOR PBL MODELING 236



3.2. Physical Properties
To understand the general properties
of the 2TKE model, it has been com-
pared to a simple TKE scheme [Brinkop
and Roeckner, 1995] implemented
in ECHAM6 [Stevens et al., 2013], as
well as the K-profile parameterization
[Troen and Mahrt, 1986] for the CBL1
case (Figure 2). In addition, the case
simulated in an LES model, the UCLA-
LES [Stevens, 2010], at very fine resolu-
tion (20 m grid size and 3 km domain
size in each direction) provides a
benchmark solution for the CBL (with
solutions presented in the form of
statistics averaged over 30 min).

The 2TKE scheme simulates a more
realistic representation of the tempera-
ture and the flux profiles within the
convective boundary layer as com-
pared to the ECHAM scheme and
preforms similar to the K-profile
parameterization (KPP). Its main fea-
tures are the presence of an unstable
surface layer of roughly 15% of the
boundary layer height, a well-mixed
layer (approximately 60% height) and
a stable entrainment zone atop the
mixed layer. The ratio of the entrain-
ment flux to the surface flux is gov-
erned, among other factors, by the
boundary layer height diagnosis
method (equation (39)). As has been
discussed in previous studies like Bel-
jaars and Viterbo [1998], in our model
too, it is seen that increasing the criti-
cal Richardson number Ricr and/or the
convective excess in the parcel height

diagnosis scheme leads to an increase in the entrainment flux vis-a-vis the surface flux. The optimal value
for the case of the convective boundary layer for Ricr is found to be 0.3 and that for the coefficient D used in
the excess parcel temperature excess (equation (61)) is found to be 2. Thus (as also shown in Stevens
[2000]), the structure of the convective boundary layer is well represented and is determined by the shape
of the K-profile.

Attention should be given to the fact that since all of our used boundary layer schemes are down gradient
(refer equation (1)), positive fluxes imply an unstable potential temperature profile. This means that we can-
not reproduce counter-gradient fluxes like those we examine in the LES simulations; see Thomas and Mas-
son [2006] for example. As an instance, in the LES profiles, from �600 to 800 m, the potential temperature
profiles are slightly stable even as we note a positive potential temperature flux. Boundary layer models
sometimes include a counter-gradient (or a mass flux) component to represent these kinds of counter-
gradient fluxes. It is reasoned that the small eddies perform the down-gradient component of the mixing
while the large eddies accomplish the counter-gradient mixing. This is usually done ad hoc in models that
explicitly recognize just a single scale. Our 2TKE model, recognizing two scales, thus seems like a natural fit
to this end. For example, �e, representing the smaller scale of eddies, could be utilized to perform down-

Figure 3. (a) Potential temperature flux profiles for different tropospheric stabil-
ities (formulation not accounting for KE dependence on the lower tropospheric
stability), (b) same as Figure 3a but now taking into account the KE dependence
on lower tropospheric stability.
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gradient mixing while E, representing
the larger eddies, could be incorpo-
rated into the counter-gradient part of
the mixing. However, since the present
focus is on ‘‘scale-adaptivity,’’ we focus
on a simple implementation in which
both terms are modeled as down
gradient.

The shape function (or K-profile)
used in the present implementation
of the 2TKE model is however dif-
ferent from that used in the stand-
ard KPP approach, in that instead
of a constant shape function, in our
model the shape function depends
on the free tropospheric lapse rate
(section 2.3.2). This helps maintain
the correct entrainment ratio (and
thus the boundary layer height) irre-
spective of the stability of the free
atmosphere into which the bound-
ary layer deepens. The difference

between the standard KPP approach and the approach adopted here can be seen in Figure 3. This
figure shows the flux profiles for case CBL2 after 10 h of simulation time for different tropospheric
stabilities. Figure 3 shows the case where the exponent m in equation (38) is fixed at the value of
2 as in Troen and Mahrt [1986]. For this case, it is seen that as the stability of the free troposphere
increases the boundary layer growth is not reduced to the appropriate extent. Rather the entrain-
ment rate increases. The increased entrainment rate is consistent with the progressively larger
entrainment buoyancy flux. Taking into account the stability of the profiles (as discussed in section
2.3.2) gives a better prediction of the entrainment to surface buoyancy flux ratio (Figure 3b) and

consequently the growth of the
boundary layer irrespective of the
stability above the boundary layer.

Another novel aspect of the present
implementation of the 2TKE model is
its representation of mixing in the
entrainment zone via two processes.
One process is the local mixing of
warmer air from the free troposphere
into the entrainment zone, and sub-
sequently into the bulk of the bound-
ary layer; and the other is associated
with the mixing by warm thermals
from the surface penetrating the
inversion layer. Figures 4 and 5 show
the profile of �e and the diffusivities
through the boundary layer after 3 h
for the case CBL2 and a vertical grid
size of 40 m. Mixing inside the mixed
layer is primarily carried out by E. On
the other hand in the surface and
the entrainment zone, �e plays a sub-
stantial role compared to E, and this

Figure 4. Vertical profile of �e . The dashed line shows the boundary layer height.

Figure 5. Diffusivity profiles. The inset zooms in near the top of the profiles.
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trend increases as either the top, or
the base, of the boundary layer is
approached.

3.3. Numerical Properties
As discussed in section 2.4, the devel-
opment of the 2TKE model has been
guided by the desire to maintain a
consistent representation of the en-
ergetics irrespective of the vertical
resolution. This means that E must
decrease as the vertical grid spacing
becomes larger leading to a compen-
satory increase in e such that the ver-
tical average (over h) of the sum of
the two is approximately constant.
Figure 6 shows the vertically aver-
aged sum of the two TKEs as well as
the vertically averaged �e across a
range of grid sizes. Up until a certain
grid size, the sum is very nearly con-
stant, beyond which numerical effects
reduce the sum of the two energies

as a whole (nonetheless the ratio of the averaged �e to the total is seen to increase with increasing
grid sizes).

Through the consistent representation of the distribution of energy between E and �e and the employing of
�e to represent the entrainment process, we compensate for the numerical artifacts arising from poor vertical
resolution. Figure 7 which compares the simulated boundary layer depths after 3 h of simulation time from
KPP and 2TKE model upon the usage of different vertical grid sizes helps illustrate this. Even with relatively
coarse vertical grid spacing, the 2TKE simulated boundary layer depth stays closer to the value when finer
grids are employed: a property distinctly different from the KPP scheme.

3.4. Behavior Across Regimes
Next we explore the behavior of the
2TKE model in the stable boundary
layer limit. A vertical grid spacing of
10 m has been employed for these
simulations. In the stable boundary
layer, the turbulence that sustains the
boundary layer is generated by the
balance of production (via local shear)
and destruction (via buoyancy). Here
the TKE model performs reasonably
well as compared to the KPP which
has been designed more specifically
for convective scenarios (not shown).
The 2TKE model also performs accord-
ing to theory (Figure 8a, case SBL; the
theory of idealized stable boundary
layers is discussed in the Appendix A).
This is identified by the presence of
inversions at the surface and the
boundary layer top as well as an
approximately correct growth rate and

Figure 6. Relative contribution of the large and the small energies across a range
of grid sizes.

Figure 7. Boundary layer height predicted by the KPP and the 2TKE model for a
range of grid sizes.
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the equilibrium height of the layer. The major property of the 2TKE scheme that we want to highlight
in this section is its ability to emphasize the mixing contributions of E or �e depending on the type of eddies
that perform the mixing in a given scenario. Thus in a convective case (CBL2) where the boundary layer
develops as a result of convective thermals driven by surface buoyancy, the large-scale fluxes (represented
by E) dominate the mixed layer and the small-scale fluxes play a significant role only at the surface and the
entrainment zone (Figure 8b). On the other hand, in the stable boundary layer case, the small-grid-scale
fluxes, associated with the small-scale energy, �e play a more important role throughout the boundary layer
(Figure 8c).

4. Conclusions

A new boundary layer scheme called the 2TKE model has been presented. Its distinguishing feature is to
solve for two turbulence kinetic energies linked via the turbulence energy cascade. Our approach is the divi-
sion of scales in PBL turbulence into two parts: eddies or circulations that range from the scale of the model
vertical grid to the depth of the boundary layer and eddies that are subgrid relative to the vertical grid scale.
The model is derived from the full set of LES equations (which set the limit for the smaller scales) formulated
in terms of a subgrid (or Deardorff) TKE and is shown to reduce (modulo the treatment of the horizontal
fluxes) to these equations in the limit of the grid spacing, Dx, being much less than the depth of the bound-
ary layer. In the large-scale limit (i.e., Dx > h), we have tested the model for idealized cases in a single-
column setup and it is seen that it represents the boundary layer as well as the parameterizations, that are
widely used, and much better than the current parameterization used in ECHAM. A key reason for the devel-
opment of the model is the rationalization that a model working in these two limits of horizontal grid sizes
can be tuned to work in the ‘‘grey zone’’: an idea we explore in the companion paper (Bhattacharya and Ste-
vens, submitted manuscript, 2015).

Figure 8. (a) Boundary layer growth for case: SBL. (b) The flux contribution from the large and small scales for case CBL1. (c) The same
for SBL.

Journal of Advances in Modeling Earth Systems 10.1002/2015MS000548

BHATTACHARYA AND STEVENS TWO TKE FOR PBL MODELING 240



An advantage of the 2TKE model is
the combination of the local and the
nonlocal approaches to boundary
layer modeling through the use of
two turbulence kinetic energies: one
representing the energy on scales
smaller than Dz, called the small-scale
energy, �e and the other over scales
that range from min ðh;DxÞ to Dz
(assuming of course that Dz � Dx),
called the large-scale energy, E. We
therefore formulate length scales
over which these two energies mix
and dissipate. The mixing length of
the small-scale energy has been
defined in such a way that the small-
scale energy contributes substantially
to the mixing inside the entrainment
zone of the CBL. The mixing length
of the large-scale energy takes into
account the boundary layer height,
the free tropospheric stability (both
included in a shape function that
roughly indicates the size of the larg-
est eddy contributing to mixing at a

given height) and the fact that in the entrainment zone, the small-scale energy is responsible for
much of the mixing. The dissipation length scale of small energy is proportional to the vertical grid
size of the model while that for the large energy is defined in such a way that the total energy is con-
sistently represented irrespective of the grid size of the host model. These choices lead to a model of
the boundary layer that behaves reasonably well across a range of vertical grid sizes. An extra advant-
age of the usage of two energies is the smooth transition of the representation of the boundary layer
from convective to stable scenarios, with the small-scale energy contributing more in the stable
scenario.

Because we initially sought to identify the key issues in modeling the boundary layer and utilizes them to
design the 2TKE model aiming at scale-adaptivity, the simple case of a dry boundary layer has been
explored. In the climate system, however, cloud-topped boundary layers are of paramount importance. The
2TKE model provides the two scales necessary to better couple the scales present in the subcloud layer to
the ones present in the cloud layer and should be explored as the next step.

Appendix A: Single-Column Model

This section describes the off-line implementation (or single-column model) that has been developed to
test the 2TKE model. The different types of boundary condition used to explore its properties are explained.

A1. Grid
The implementation of the 2TKE model is on a one-dimensional vertical grid which discretizes the vertical
height coordinate, z (Figure 9). M is the number of model levels. In this, the first level is always assumed
to lie within the surface layer and hence a logarithmic distribution of the model variables, following
Monin-Obukhov theory, is adopted. Above the first level, a linear profile is assumed as an initial condition.
The solid horizontal lines are the model full-levels, where the model variable values, �u; �v ; �h , are specified,
while the dashed horizontal lines represent the half-levels, where the fluxes and hence the diffusivities as
well as the two TKEs, �e and E, are defined. Specifying the variables in this manner simplifies the spatial
discretization.

The nonlinear diffusion equation, describes the evolution of the potential temperature, can be written as

Figure 9. Single-column grid.
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Kh includes the contribution from both scale of eddies (the distinction makes no difference for the numeri-
cal scheme). This is solved using second-order central differencing in space and semiimplicit time differenc-
ing (F being a generic mean variable).
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Here the superscript n denotes the time level and subscript i denotes the height level.

A2. Boundary Conditions
The surface fluxes of buoyancy and momentum are the boundary conditions to the model (the fluxes at the
top of the domain are assumed to be zero). Two types of surface flux formulations have been employed to
bring out the properties of our scheme. In the first, a constant surface flux is specified. This helps in compar-
ing the model solutions to the theoretical solutions as well as in tuning model parameters. The other is the
specification of constant surface temperature at the surface (velocity being zero there) and calculating the
fluxes from the difference between values at the surface and values at the first model level. This is a more
realistic boundary condition since it limits the heat uptake by the boundary layer and helps in quantifying
the interaction between the surface scheme and the boundary layer scheme. The fluxes are calculated fol-
lowing a bulk approach, such that

w0F0 ð0Þ52CFjvð1Þjð�Fð1Þ2�Fð0ÞÞ: (A3)

Here V(1) is the wind speed at the first model level and C/ is the transfer coefficient which is calculated
from Monin-Obukhov similarity theory.

The transfer coefficient (C/) in the surface layer is obtained from the Monin-Obukhov similarity theory by inte-
grating the flux profile over the lowest model level, following the analytical expressions derived by Louis
[1979] for momentum and heat (and other scalars). The process involves computing a ‘‘neutral’’ transfer coeffi-
cient as a function of the surface properties and then modifying it based on the stability of the surface layer.

A3. Theoretical Growth of the Boundary Layer Depth
We briefly discuss the theoretical growth of the boundary layer provided it grows into an atmosphere with
fixed lapse rate. Details can be found in Garratt [1992]. For a convective boundary layer (assuming the flux
at the top is a constant fraction of the surface flux):

h2ðt1Þ / 2

Ð t1

0 w0h0 0dt

G
; (A4)

where G is the stability of the layer into which the boundary layer grows.

For a stable boundary layer, a steady state height is governed mainly by the shear-generated growth of the
turbulent structures, so that

he5cc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�L=jf j

p
: (A5)

cc is a constant which is obtained from the balance of shear production of turbulence and the buoyant
destruction of turbulence in steady state. For horizontal terrain, cc is taken to be 0.4 and u� is the surface
friction velocity, L is the Monin-Obukhov length, and f is the Coriolis frequency. Since the surface friction
velocity and hence the Monin-Obukhov length scale varies as the profile changes in time, an average value
is taken to provide a rough estimate of he. The evolution of the boundary layer height with respect to time
is governed by

@h
@t

5
ðhe2hÞ

Trelax
; (A6)

with h being the instantaneous boundary layer height and Trelax is the relaxation time which is given by the
difference between the potential temperature of the surface and the top of the stable layer divided by the
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surface cooling rate. The solution to the relaxation equation is a logarithmic growth of h with time, eventu-
ally reaching he on the timescale of Trelax.
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