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ABSTRACT

Using a concurrent simulation of the ocean general circulation and tides with the 1/108Max Planck Institute

Ocean Model (MPI-OM), known as STORMTIDE, this study provides a near-global quantification of the

low-mode M2 internal tides. The quantification is based on wavelengths and their near-global distributions

obtained by applying spectral analysis to STORMTIDE velocities and on comparisons of the distributions

with those derived by solving the Sturm–Liouville eigenvalue problem. The simulated wavelengths, with

respect to both their magnitudes and their geographical distributions, compare well with those obtained by

solving the eigenvalue problem, suggesting that the STORMTIDE internal waves are, to a first approxima-

tion, linear internal waves satisfying local dispersion relations. The simulated wavelengths of modes 1 and 2

range within 100–160 and 45–80 km, respectively. Their distributions reveal, to different degrees for both

modes, a zonal asymmetry and a tendency of a poleward increase with stratification N and the Coriolis

parameter f being responsible for these two features, respectively. Distributions of mode 1 wavelengths are

found to be determined by bothN and f, but those of mode 2 are mainly controlled by variations inN. Larger

differences between the STORMTIDE wavelengths and those of the eigenvalue problem occur, particularly

for mode 2, primarily in high-latitude oceans and the Kuroshio and Gulf Stream and their extensions.

1. Introduction

Internal tides are internal waves at tidal frequencies

that are generated by barotropic tides flowing over

rough topographic features in the stratified ocean. Al-

though some uncertainty still exists in the exact amount

of the power available for the mixing in the ocean’s in-

terior from internal tides, theoretical and numerical

models give estimates for the deep ocean in the range of

0.5–0.8 TW for the M2 internal tide and of 0.9–1.4 TW

when considering the largest tidal constituents (Egbert

andRay 2000; Simmons et al. 2004a;Müller 2013; Green

and Nycander 2013). The state-of-the-art parame-

terization of mixing as a result of internal tides (e.g.,

St. Laurent et al. 2002; Simmons et al. 2004b; Saenko and

Merryfield 2005; Montenegro et al. 2007; Exarchou et al.

2014) considers only 30% of this power, the part related

to high-mode internal tides that dissipate locally at the

generation sites, whereby leaving the remaining 70%,

the part related to low-mode internal tides, unspecified.

The dissipation of the low-mode internal tides can

provide a substantial amount of mixing energy, in which

not only does the energy input matter, but also where

the dissipations occur in the vertical (Melet et al. 2013),

and thus it is important for maintaining the meridional

overturning circulation (Munk and Wunsch 1998). So

far, our knowledge about the fate of these waves is still

limited. Particularly limited is our knowledge about

their spatial distributions and to what extent they are

affected by the realistic stratification and eddying ocean

circulation. This limitation is partly caused by the sparse

direct observations in the ocean’s interior (e.g., Polzin
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and Lvov 2011). Satellite altimeters are now frequently

used to study internal tides on the global scale, but they

provide only integrated wave properties in which modes

are superposed (Ray and Mitchum 1997). To advance

our understanding, concurrent simulation of the ocean

circulation and tides is crucial for studying these low-

mode internal tides.

Until recently, tidal and nontidal motions in the global

ocean have been studied separately. Predicting ocean

tides is largely based on two-dimensional shallow-water

equations forced by the tidal forcing only, while simulat-

ing the ocean circulation is based on three-dimensional

primitive equations forced by momentum and buoyancy

fluxes at the sea surface without including the tidal forc-

ing. The first attempts to jointly simulate tides and circu-

lations were made with coarse-resolution ocean-only or

climate models (Thomas et al. 2001; Schiller and Fiedler

2007;Müller et al. 2010). Hence, these studies emphasized

the effects of barotropic tides on the ocean circulation

without resolving mesoscale eddies and internal tides.

With increasing computer power, eddy-permitting and

eddy-resolving simulations have advanced (Masumoto

et al. 2004; Maltrud andMcClean 2005; von Storch et al.

2012). The HYCOM group (Arbic et al. 2010, 2012) was

the first to report on global concurrent simulations of

the eddying general circulation and tides. Soon after

another concurrent simulation was carried out using the
1/108 Max Planck Institute Ocean Model (MPI-OM),

known as the STORMTIDE model (Müller et al. 2012).
In both the HYCOM and STORMTIDE models, baro-

tropic tides are reasonably well simulated (Arbic et al.

2010; Shriver et al. 2012; Müller et al. 2012, 2014). The
simulated internal tides’ signatures in the sea surface

height compare well with those obtained from the altime-

try data (Arbic et al. 2010, 2012; Müller et al. 2012), sug-
gesting that both the HYCOMand STORMTIDEmodels

have skill in simulating the low-mode internal tides.

In the present study, we aim to gain more under-

standing of the M2 internal tide simulated by the 1/108
STORMTIDE model using the signatures of the low-

mode internal tides in baroclinic velocities. The wave-

lengths are used as a diagnostic tool to quantify the

waves and to answer the following questions:

1) Which modes of theM2 internal tide are simulated in

the STORMTIDE model and how consistent are

they with the dispersion relation of linear internal

waves? What are the properties of the simulated

internal tides, for instance, their wavelengths and the

respective geographical distributions?

2) What are the relative roles of local stratification N

and the Coriolis parameter f in determining these

geographical distributions?

To answer the first question, we use the wavenumber

spectra to diagnose the wavelengths from baroclinic

velocities simulated by the STORMTIDE simulation

and compare the result with wavelengths obtained by

solving the Sturm–Liouville eigenvalue problem. To

answer the second question, we compare the simulated

wavelengths with those obtained by keeping either N

or f fixed in the eigenvalue problem.

In section 2, the STORMTIDE model is introduced,

including a further evaluation of the simulated M2 in-

ternal tide using sea surface height. Section 3 describes

methods used to diagnose the wavelengths of the M2

internal tide, including a discussion of the significances

and limits of these methods. Results are discussed in

sections 4–6: The kinetic energy of the internal tides

simulated by the STORMTIDE model is briefly dis-

cussed in section 4. In section 5, we describe the char-

acteristics of the two-dimensional wavenumber spectra

and the geographical distributions of the wavelengths

deduced from these spectra and compare the result with

those obtained by solving the Sturm–Liouville eigenvalue

problem. The relative roles of stratification and the

Coriolis parameter are examined in section 6. Section 7

presents the concluding remarks.

2. The STORMTIDE model

The STORMTIDEmodel (Müller et al. 2012) is based
on the high-resolution MPI-OM formulated on a tripo-

lar grid and concurrently resolves the ocean circulation

and tides. It was developed in the framework of the

German consortium project STORM, with an aim

towards a coupled high-resolution climate model simu-

lation (von Storch et al. 2012) in which a multidecadal

simulation with the NCEP atmospheric forcing has been

obtained. Our branch with tides implemented is hence

named the STORMTIDE model.

The tripolar MPI-OM uses basically the same physics

as its bipolar predecessor (Marsland et al. 2003; Jungclaus

et al. 2006). The horizontal resolution is around 1/108,
about 10km near the equator and about 5km and less

south of 608S. In the vertical, it uses the ‘‘z coordinate’’

system; 40 unevenly spaced vertical layers are used with

nine concentrating in the first 100m. The layer thickness

varies gradually from 10m in the upper ocean to 500m in

the deep ocean.

In our study, the STORMTIDEmodel is forced by the

complete lunisolar tidal potential, as calculated from the

instantaneous positions of the sun and moon (Müller
et al. 2012). This forcing takes implicitly hundreds of tidal

constituents into consideration (Thomas et al. 2001). The

self-attraction and loading (SAL) effect is parameterized

in the same way as in Thomas et al. (2001). The model is
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forced at the sea surface by daily climatological wind

stresses with a 365-day cycle and a SST and SSS resto-

ration toward the monthly climatological values (Steele

et al. 2001), and is integrated over 10 years.

The ability of the STORMTIDE model to simulate

realistic barotropic and internal tides was evaluated in

Müller et al. (2012). Comparing the simulated barotropic

tideswith 102pelagic tidal observations, theSTORMTIDE

model was able to capture 92.8% of the variance of

the barotropic-tide-induced sea surface height for the

eight dominant constituents (Müller et al. 2012). In ad-

dition, in a model intercomparison (Stammer et al. 2014),

the model-simulated barotropic tidal currents of the

STORMTIDE model were evaluated. No internal wave

drag is implemented in our model approach and instead

about 1.1 TW of tidal energy is converted from baro-

tropic to baroclinic tides (Müller 2013), consistent with
observational estimates (e.g., Egbert and Ray 2000).

In the following, we further extend the evaluation of

the sea surface signatures of the M2 internal tide in

Müller et al. (2012) by incorporating an observational

product obtained from 19-yr along-track satellite altimetry

[TOPEX, Poseidon, Jason-1, and Jason-2 (TPJ)] data

(Cherniawsky et al. 2001; Foreman et al. 2009). Both the

M2 along-track tidal signals obtained from the TPJ data

and themodel-simulated sea surface height are obtained

using a high-pass filter, with a cutoff wavelength of about

350 km, for a removal of the long-wave barotropic tidal

signals. The signals are binned, where ocean depths are

larger than 1000m, into 18 3 18 boxes and their root-

mean-square (RMS) amplitudes are computed (Fig. 1).

Note that since we considered the hourly model-

simulated output (1 January–1 February of the ninth

simulation year; for details see section 3a), no tidal ali-

asing (e.g., Zhao et al. 2012) is involved in the simulated

data processing, which occurs only in the altimetry data

FIG. 1. RMS amplitudes (m) of theM2 internal tide obtained from (a) the 19-yr satellite altimetry data and (b) the

2-yr hourly sea surface height simulated by the STORMTIDEmodel. TheM2 tidal signals are high-pass filtered and

then binned into 18 3 18 boxes. The black boxes mark the regions of hot spots used in Table 1.
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as a result of their poor temporal resolutions. To evaluate

the RMS amplitudes in specific hot spots, we choose re-

gions as in Shriver et al. (2012) and indicate them in

Fig. 1b. The RMS amplitudes of the model and obser-

vations are given in Table 1, along with the RMS ratios of

the observations to model results. A large model un-

derestimation is presented in the Hawaii region. In the

other regions, themismatch is less than 20%and reflects a

similar quality in simulating the magnitude of internal

tides in hot spots regions as in Shriver et al. (2012). Be-

cause of the mesoscale contamination (e.g., Shriver et al.

2012) induced by the tidal aliasing in the altimetry data,

we can observe large spurious signals in the Gulf Stream

and Kuroshio Extensions and the Southern Ocean in the

altimetry data. The internal tide beam from theAleutians

is significantly reduced in the model. In general, we

conclude that the STORMTIDE model gives us a rea-

sonably goodmodel simulation of internal tides, in regard

to what is currently possible in a global model approach.

3. Methods

a. Details in deriving the baroclinic M2 tidal velocities

For the quantification of the kinetic energy and also

for the wavelength analysis of the STORMTIDE data

throughout this paper, we use the three-dimensional

horizontal M2 tidal velocities [see Müller et al. (2014)

for a detailed description]. They are publicly available

(Müller 2012). Because of the huge amount of three-

dimensional hourly data used, we limit the data length to

be 32 days, which is the minimum requirement for the

spectral analysis in order to resolve certain tidal con-

stituents. Using the 32-day model-simulated full zonal

and meridional velocities from 1 January to 1 February

of the ninth simulation year, we perform the harmonic

analysis to derive the amplitudesAM2
and phases fM2

of

the full M2 tidal velocities. Taking the zonal velocities as

an example, we describe the full M2 tidal velocities as

u
M2
(i, j, k, t)5A

M2
(i, j, k)e

i[2pvt2fM2
(i,j,k)]

, (1)

in which i, j, and k are the grid indices in the zonal,

meridional, and vertical directions; v is the M2 tidal

frequency; and t is time. The vertical integration of

Eq. (1) gives the barotropic M2 tidal velocities

u
bt
(i, j, t)5

�
1

H
�
k

A
M2
(i, j, k)e

2ifM2
(i,j,k)

DH
k

�
ei2pvt , (2)

in whichH is the water depth andDHk is the thickness of

the kth layer. The complex baroclinic M2 velocities are

obtained by subtracting the complex barotropic veloci-

ties in Eq. (2) from the full velocities in Eq. (1). De-

noting the amplitudes and phases of the resulting

baroclinic M2 velocities as Aubc (i, j, k) and fubc
(i, j, k),

the baroclinic M2 tidal velocities are given by

u
bc
(i, j,k, t)5u

M2
(i, j, k, t)2 u

bt
(i, j, t)

5A
ubc
(i, j,k)e

i[2pvt2fubc
(i,j,k)]

. (3)

The amplitudes (Aubc andAybc ) and phases (fubc
andfybc

)

of the zonal and meridional baroclinic M2 tidal velocities

are all interpolated onto 0.18 3 0.18 regular longitude–
latitude grids. The interpolated amplitudes Aubc and Aybc

are used to estimate the kinetic energy of the M2 internal

tides in section 4, since this energy is related to wave

motions satisfying the dispersion relation of internal

tides, as will be shown in section 5.

b. Two-dimensional wavenumber spectral analysis

A two-dimensional wavenumber spectral analysis is

used to diagnose the wavelengths of theM2 internal tide.

The analysis is based on the standard two-dimensional

complex discrete Fourier transform. We reconstruct the

complex velocities with the in-phase and quadrature

baroclinic velocities being the real and imaginary com-

ponents, respectively. The in-phase and quadrature ve-

locities are a quarter of a period apart, and are expressed,

taking ubc as an example, as Aubc cosfubc
and Aubc sinfubc

.

The spectral analysis is applied to these complex velocities

in boxes of the size 158/cosu (in longitude) 3 158 (in lat-

itude) with u being the latitude. For each 158/cosu 3 158
box, they are further converted to velocities on an equi-

distant grid (with an approximate 11-km resolution). Prior

to the spectral analysis, a Tukey window is used to reduce

spectral leakage, which tapers the signal at the endpoints,

thereby emphasizing the data in the center of a box. For a

given level, ubc and ybc inside a 158/cosu 3 158 box are

decomposed into two-dimensional plane waves with

Fourier coefficientsU(k, l) andV(k, l) as wave amplitudes,

where k and l are the zonal andmeridional wavenumbers,

respectively. To obtain a near-global map overlapping

boxes are analyzed, each shifted by 58. Wavenumber

spectra Subc (k, l) and Sybc (k, l) are then given by

TABLE 1. The surface signals (cm) of the M2 internal tide aver-

aged as quantities by RMS over various hot spots regions indicated

in Fig. 1. TPJ and STORMTIDE refer to the observations and

model simulation, respectively. The last column shows the RMS

ratios of the observations to model results.

Region TPJ STORMTIDE Ratio

East of Philippines 0.79 0.74 1.06

Hawaii 0.87 0.60 1.44

Tropical South Pacific 0.97 1.10 0.88

Tropical southwest Pacific 0.86 0.72 1.19

Madagascar 0.85 0.91 0.94
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S
ubc
(k, l)5 jU(k, l)j2, and (4a)

S
ybc
(k, l)5 jV(k, l)j2 . (4b)

The average of Subc (k, l) and Sybc (k, l) results in the

spectrum of the kinetic energy, denoted by SKE(k, l), in

which velocities in both horizontal directions are taken

into account for a robust result. The corresponding

wavenumber spectra in the (k, l) wavenumber plane are

then converted into SKE(K), which are functions of the

horizontal wavenumber K5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
. By moving the

box horizontally, wavenumber spectra at different lo-

cations can be obtained. The horizontal wavelength is

identified from the wavenumber where SKE(K) has a

local maximum. Obviously, this diagnostic will work

well when there is a distinct spectral peak, but it will

produce an ambiguous result when the spectrum is flat.

Note that we make no interpolations for land points

inside a box. Instead, U(k, l) and V(k, l) are calculated

from available water points in a box. Only boxes in

which land points are less than 15% are considered.

Generally, stratification and the bathymetry (and

consequently the water depth) vary from grid point to

grid point so that different wavelengths are expected

from the dispersion relation. The wavelength derived

from the spectral analysis cannot capture such variations

and has to be considered as an averaged wavelength

within the considered box. Here, ’’average’’ does not

refer to an ’’arithmetic mean,’’ but rather the fact that

the spectral analysis provides only one estimate of the

wavelength corresponding to each local maximum from

SKE(K) in a given box. This has to be kept in mind when

comparing the wavelengths derived from wavenumber

spectra of the STORMTIDE products with those ob-

tained from the linear internal wave theory using a

prescribed stratification and water depth. Wavelengths

derived from the STORMTIDE model simulation will

be denoted by LST.

In the present paper the goal is to estimate the

wavelengths of internal tides simulated by an ocean

circulation model and compare them with the wave-

lengths derived from the linear wave theory. Thus, a

(vertical) modal decomposition of the baroclinic tidal

velocities, as usually performed for point observation, is

not adequate, since it would implicitly constrain the

results by assumptions given by the mode computations.

Thus, the horizontal spectral analysis seems to be ben-

eficial to derive the quantity of simulated internal tide

wavelengths and further, with the windowing of the

velocities prior to the spectral analysis and the shifting

of the boxes by 58, a near-global map with a resolution of

58 can be obtained. To divide into mode1 and mode 2

internal tides, we will analyze the three-dimensional

fields of baroclinic tidal velocities on different model

levels, as further detailed in section 5a.

It is noted that the size of the box is a compromise

between the demand to obtain a more reliable estimate

of the spectral peaks on the one hand and amore detailed

map of the geographical variations of the wave environ-

ment on the other hand. The former requires a larger

box size but the latter a smaller box size. We found a

158/cosu 3 158 box size to be a reasonable compromise.

c. The Sturm–Liouville eigenvalue problem

To confirm that the dominant length scales identified

using wavenumber spectra represent the wavelengths of

the low-mode M2 internal tides, the local dispersion

relation of internal waves is derived by solving the

Sturm–Liouville eigenvalue problem (e.g., Olbers et al.

2012) for stratification profiles that are simulated by the

STORMTIDE model. We assume a flat bottom inside a

158/cosu 3 158 box and no background current in this

eigenvalue problem. The water depth inside a box cor-

responds to the box-averaged depth. Topographic fea-

tures and background currents are only considered in

the STORMTIDE simulation. The Sturm–Liouville ei-

genvalue problem is defined by

1

N2(z)

d2

dz2
w

m
(z)52n

m
w

m
(z), m5 1, 2, . . . (5)

together with boundary conditions of the flat bottom

and rigid lid, in which z refers to the vertical axis,N(z) is

the buoyancy frequency, and w(z) is the vertical struc-

ture of the waves. The vertical mode numberm refers to

the mth eigenvector wm(z) with the corresponding ei-

genvalue nm. The eigenvalue nm defines the dispersion

relation,

n
m
5

K2
m

v2 2 f 2
, (6)

in which v and f are the M2 tidal frequency and the

Coriolis parameter, respectively. Given a box-averaged

stratification profile, wm(z) and nm are obtained by nu-

merically solving the Sturm–Liouville eigenvalue prob-

lem. The horizontal wavelength, denoted by LSL,m and

defined as

L
SL,m

5
1

K
m

5
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
m
(v2 2 f 2)

p , (7)

corresponds to the mth vertical mode. Thus, LSL,m is

determined solely by the local stratification profile and

the Coriolis parameter.

To be consistent with the wavenumber spectral anal-

ysis, we solve the Sturm–Liouville eigenvalue problem
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for the same 158/cosu3 158 boxes using the box-averaged
stratification and water depth. The box-averaged monthly

mean temperature and salinity are used to calculate the

corresponding box-averaged N. The resulting N is always

well defined (i.e., real). When N , 10210 s21, it is inter-

polated with the neighboring points in solving the eigen-

value problem. Note that the horizontal variations of

stratification within each box are neglected, whereas box-

averaged vertical variations are taken into account. The

stratification available on the model levels is then inter-

polated onto a vertical gridwith a resolution of 10m that is

used to numerically solve the eigenvalue problem.

Since the Sturm–Liouville eigenvalue problem is de-

rived from the linear internal wave theory, the question

of whether the STORMTIDE model is capable of sim-

ulating internal tides is answered by a comparison of the

wavelengths obtained from the Sturm–Liouville eigen-

value problem with those obtained by applying spectral

analysis to the STORMTIDE simulation.

4. Kinetic energy of the M2 internal tide

Since it is difficult to diagnose the kinetic energy re-

lated to internal tides from the observations, we present

here a quantification of this energy based on the

STORMTIDE simulation. Figures 2a and 2b show the

horizontal distributions of the kinetic energy of the M2

internal tide at 100 and 1085m, respectively. As will be

discussed in section 5a, 100 and 1085m are depths at

which two different modes dominate, respectively. The

kinetic energy at 100m is much stronger than that at

1085m. The overall structures resemble those of the

satellite-observed internal tide surface signatures, and

are characterized by hot spots at both depths, for ex-

ample, near Madagascar, Hawaii, east of the Philip-

pines, and the tropical South and southwest Pacific. The

maxima of the kinetic energy correspond to a current

speed of about 5–6.5 cm s21 at 100m and 1.5–2 cm s21 at

1085m for the M2 internal tide. For comparison, the

typical speed of maximum transient eddying currents is

about 30 cm s21 at 100m (von Storch et al. 2012). The

globally integrated kinetic energy of theM2 internal tide

is about 0.08 EJ (1 EJ5 1018 J). This is about 20% of the

internal wave energy (von Storch et al. 2012) that results

presumably from wind-induced near-inertial waves.

Figure 2c shows the vertical integral of the kinetic

energy with a spatial pattern comparable to those at 100

and 1085m. The amplitude and the structure compare

also well with the M2 internal tide energy obtained by

solving two coupled equations describing integrated

versions of the radiative transfer equations for the M2

internal tide and a wave continuum (Eden and Olbers

2014, their Fig. 5b). One of the main differences is the

beamlike structures that are absent in the figure by Eden

and Olbers (2014). This difference results from the fact

that Eden and Olbers (2014) assumed for simplicity a

uniform distribution of the wave propagation angle in

the forcing term. Consequently, the equations consid-

ered do not distinguish waves with different wavevector

angles. If the wave sources are not homogeneously dis-

tributed, then waves propagating from the individual

generation sites, characterized by beamlike structures,

would stand out more clearly, as in case of Fig. 2c.

5. Wavelengths of the model-simulatedM2 internal
tide

a. Characteristics of wavenumber spectra

Before considering the wavelengths, we first study the

characteristics of the two-dimensional wavenumber spec-

tra. Figure 3 shows spectra SKE(k, l) in the left column,

with both positive and negative wavenumbers (Figs. 3a

and 3c), at both 100 and 1085m in the 158/cosu3 158 box
centered at 22.558N, 1708W.At 100m (Fig. 3a), a distinct

spectral peak of SKE(k, l) is shown in the form of a near-

circle band on the (k, l) plane. This most energetic band

is located within the range of K of about 0.005–

0.01 km21, corresponding to a horizontal wavelength of

100–200 km. A less pronounced band is located at

relatively larger wavenumbers, with K being around

0.015 km21, corresponding to a wavelength of about

65 km. In the ocean’s interior at 1085m, two spectral

peaks are also located at the same wavenumber bands.

In contrast to the spectrum at 100 m, the high-

wavenumber peak, with a broader bandwidth, is stron-

ger than the low-wavenumber peak. Some spectral

energy much weaker than the two spectral peaks is also

found at still higher wavenumbers at both depths.

The two spectral peaks remain well defined when

converting SKE(k, l) into SKE(K) in Figs. 3b and 3d. The

blue dots show SKE(K) obtained from each wavenumber

vector (k, l). The red lines represent the bin averages of

SKE(K) that are averaged over all values of SKE(K) with

K inside the respective intervals. For each wavenumber,

the variability indicated by the blue dots results from

variations of SKE(k, l) along a circle centered at the or-

igin of the (k, l) plane. These variations indicate prop-

erties of wave propagation. For waves generated at a few

selected source sites, maxima of the respective two-

dimensional wavenumber spectra will not have the same

strength in all directions. For instance, in Fig. 3a, the

low-wavenumber peak has the largest values in the

southwest and northeast directions. Thus, waves asso-

ciated with the low-wavenumber peak in the box con-

sidered in Fig. 3 propagate preferably along a line

orientated in the southwest–northeast direction.
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FIG. 2. Kinetic energy (cm2 s22) of the M2 internal tide in logarithmic scales at (a) 100 and

(b) 1085m. (c) The vertical integral of the kinetic energy (J m22) in logarithmic scales , which is

prepared in the same scales as used in Eden andOlbers (2014, their Fig. 5b). The kinetic energy

at a single depth is derived using (A2
ubc

1A2
ybc
)/2, withAubc andAybc being amplitudes of the M2

baroclinic zonal and meridional velocities, respectively. The vertical integral is then derived byÐ 0
2H

rw(A
2
ubc

1A2
ybc
)/2dz, with rw being the density of seawater.
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We now consider the vertical dependence of SKE(K)

in terms of the example shown in Fig. 4. Overall, the

spectral energy decreases with increasing depth. The low-

wavenumber peak is strongest in the upper ocean, fol-

lowed by a reduction until the energy drops to aminimum

at 1220m (red dotted line). The spectral peak reemerges

farther downward. The high-wavenumber spectral en-

ergy undergoes more complicated variations. The spec-

tral peak is detectable in the top 100m and diminishes

downward, and disappears to different degrees in the

depth range 122–485m. It becomes evident again farther

below and clearly stand out in the depth range 560–

1700m. Below 1700m, it is strongly weakened.

To understand the depth dependence of the low- and

high-wavenumber peaks of SKE(K), we introduce the

vertical modal structures of the kinetic energy of modes

1 and 2 (the right panel of Fig. 4b). These vertical

structures are derived by solving the Sturm–Liouville

eigenvalue problem [see Eq. (5), for m 5 1 and 2] using

the box-averaged stratification profile shown in the left

panel of Fig. 4b. They show a zero crossing at around

1220m for mode 1 and an interior maximum at about

750m between two zero crossings at about 350 and

2200m for mode 2. The variations with depth of both

low- and high-wavenumber spectral peaks shown in

Fig. 4a correspond, in general, to the vertical structures

of the first twomodes of the Sturm–Liouville eigenvalue

problem. In particular, we observe a loss of the low-

wavenumber peak and find only the high-wavenumber

peak at 1220m. This is consistent with the fact that the

amplitude of mode 1 undergoes its zero crossing at this

depth, while the amplitude of mode 2 remains strong.

FIG. 3. Wavenumber spectra SKE(k, l) of the kinetic energy of the M2 internal tide at (a) 100 and (c) 1085m in

logarithmic scales in the 158/cosu 3 158 box centered at (22.558N, 1708W). The resolved range of the zonal and

meridional wavenumbers is within 20.045–0.044 km21. To enhance the readability, we show only the range of

20.025–0.025 km21 that involves the most energetic motions and leave out wavenumber regions with very weak

energy. In the right column, wavenumber spectra SKE(K) of the M2 internal tide are shown at (b) 100 and

(d) 1085m, converted from SKE(k, l) using K5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
in the same box. The scattered blue dots are converted

directly from each value of SKE(k, l). The red lines represent the bin averages of SKE(K), in which SKE(Ki) at the ith

interval is obtained by averaging all values of SKE(K) withK inside the interval (Ki,Ki1D). We consider a total of

100 consecutive intervals. Term D is obtained by dividing the total resolved wavenumber range by 100.

3126 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



FIG. 4. (a) Bin-averaged spectra SKE(K) of the horizontal kinetic energy of the M2 internal

tide derived for the 158/cosu 3 158 box centered at (22.558N, 1708W). (b) Shown are (right)

the vertical modal structures of mode 1 (solid) and mode 2 (dashed) of the kinetic energy in

the considered box, which are proportional to [dwm(z)/dz]
2 with wm(z) being the ei-

genfunction of Eq. (5). These structures are derived by solving the Sturm–Liouville eigen-

value problem with (left) the box-averaged stratification profile simulated by the

STORMTIDE model.
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Hence, the low- and high-wavenumber peaks are proved

to be actually modes 1 and 2, respectively.

As for the box considered in Fig. 4a, both mode 1 and

mode 2 have the same wavenumber throughout the

water column in all considered boxes. This result reflects

the fact that the horizontal wavelength of a mode is in-

dependent of depth, indicating that certain layers with

energetic internal tides can be selected to efficiently

identify the wavenumbers of each mode. For this pur-

pose, we have examined the zero-crossing depths of

modes 1 and 2. The mode 1 zero crossings, in regions

with less than 15% land points—that is, in the open

ocean—are located at depths deeper than 700m.Mode 2

undergoes its first zero crossings at levels shallower than

900m, while its second zero crossing is located at depths

deeper than 1400m, both in the open ocean. Thus,

performing spectral analysis on velocities at 100 and

around 1000m, which depart from the depths of the zero

crossings of modes 1 and 2, respectively, one should be

able to identify the wavelengths of modes 1 and 2. In the

following, the near-global map of the mode 1 wave-

lengths LST,1 is hence derived from SKE(K) at 100m in

section 5b. In the deeper ocean (e.g., around 1000m),

mode 2 is energetic, while mode 1 possesses normally

only weak energy. Hence, the near-global map of the

mode 2 wavelengths LST,2 is derived from SKE(K) at

1085m.

In the process of performing spectral analysis for the

kinetic energy of internal tides in boxes covering the

near-global ocean, we realize that the spectral peaks are

difficult to detect in regions with strong mesoscale

eddies. The normalized spectral width of mode 1 is

shown in Fig. 5. We can see that larger spectral widths

mainly occur in strong current regions, for instance, the

Kuroshio and the Gulf Stream as well as their exten-

sions, and the Antarctic Circumpolar Current regions in

the southern high latitudes. In these regions, the peaks

are broadened. When the peaks get too broad or even

turn to flat spectra, identification of the associated

wavenumber will be hardly possible. Thus, we neglect

the regions poleward of 52.558N/52.458S in the following

near-global analysis.

b. Geographical distribution of wavelengths

The map of LST,1 (Fig. 6a) shows that the scales of

mode 1 are around 100–160 km in most regions, with

the wavelengths shorter than 100km existing only in the

very eastern equatorial region in the Pacific, in the

southern Indian Ocean, and in the eastern equatorial

Atlantic. The wavelengths longer than 170km emerge

mainly in the mid- and high latitudes, for instance, east of

Japan and in the southwestern Pacific and south of Aus-

tralia. This distribution reflects both a general poleward

increase in LST,1 and a zonal asymmetry that is more

pronounced in the Pacific than in the other two ocean

basins.

The mode 2 wavelengths (Fig. 7a) are around 45–

80 km. The LST,2 in the Atlantic are generally in the

FIG. 5. Normalized spectral width (310) derived from themode 1 wavenumber spectra. The width is defined by the

wavenumber interval between half of the peak energy, and is then normalized by the wavenumber related to the

spectral peak. Nine-point smoothing has been performed after deriving the raw near-global map.
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range of 45–65 km and have the lowest values

among the three ocean basins. The length scales of

mode 2 in the Indian Ocean are around 50–80 km,

with the longest wavelengths appearing in the

northeastern part. Waves in the Pacific show a clear

zonal asymmetry with wavelengths longer than

75 km mainly in the northwestern Pacific and in the

western tropical Pacific, and with wavelengths

FIG. 6. Distributions of the mode 1 wavelengths (km) for the M2 internal tide as derived (a) by applying two-

dimensional wavenumber spectral analysis to the M2 baroclinic velocities at 100m simulated by the STORMTIDE

model for overlapping 158/cosu 3 158 boxes, and (b) by numerically solving the Sturm–Liouville eigenvalue problem.

The eigenvalue problem uses the stratification profiles averaged over the same boxes as used in the spectral analysis.
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shorter than 60 km in the southeastern South Pa-

cific. The mode 2 wavelengths reveal a strong zonal

asymmetry that outweighs the meridional variation

and is much more pronounced than the zonal

asymmetry of LST,1.

c. Comparison with the distribution obtained by
solving the eigenvalue problem

The geographical distribution of LST,1 is compara-

ble with that of LSL,1. Figure 8a shows that the

FIG. 7. Distributions of the mode 2 wavelengths (km) for the M2 internal tide. The same methods are used as in

Fig. 6, except that the spectral analysis is performed for the STORMTIDE M2 baroclinic velocities at 1085m for

deriving LST,2.
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relative differences are primarily under 10% of the

local wavelengths in around 90.6% of the global

ocean considered, and under 5% of the local wave-

lengths in two-thirds of the global ocean. The small

differences lead to good agreement between the

zonal-mean LST,1 and LSL,1 in Fig. 9a. In high lati-

tudes, mainly in the Indian Ocean and Atlantic, larger

discrepancies also arise, but with only 3% of the

FIG. 8. Differences (%) betweenLST,m andLSL,m (m5 1, 2) for (a) mode 1 and (b) mode 2 normalized by values

ofLST,m. Red shading indicate that the values ofLST,m are larger than those ofLSL,m, whereas blue shading suggest

the opposite.
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global ocean considered having a relative difference

larger than 15%. The result indicates that in most of

the global ocean, particularly in the Pacific, the mode

1M2 internal tide simulated by the STORMTIDE

model is well explained by linear waves that satisfy

the local dispersion relation, diagnosed locally, with

other effects accounting for less than 10% in terms of

relative differences.

Figure 8b shows mainly negative relative discrep-

ancies of mode 2, indicating that the simulated mode 2

wavelengths are in general shorter than those predicted

by the Sturm–Liouville eigenvalue problem. The rela-

tive differences are under 10% in about 73% of the

global ocean considered. Larger discrepancies occur

mainly in high latitudes. With respect to zonal means,

themeridional profile ofLST,2 is comparable with that of

LSL,2 (Fig. 9b). Overall, mode 2 shows larger relative

discrepancies than mode 1, which makes sense since

shorter waves are more easily affected by the varying

oceanic medium, introducing a stronger nonlinear

effect.

6. Relative roles of N and f in determining the
wavelengths

Themode1wavelengths simulatedby theSTORMTIDE

model (Fig. 6a) reveal a zonal asymmetry and a general

poleward increase. The same features are observed in

the results of the Sturm–Liouville eigenvalue problem

(Fig. 6b), whose solutions solely depend on the local

stratificationN and on the Coriolis parameter f. We now

explore the relative roles of N and f in determining the

distribution of the wavelengths. Along a latitude circle,

since f is constant, the zonal asymmetry must result from

the effect of N.

To further separate the roles ofN and f in determining

the wavelengths, we design another two near-global

maps of the mode 1 wavelengths using the linear the-

ory. One is derived by using constant f in Eq. (7) with the

eigenvalues directly from the eigensolutions [Eq. (5)],

whereas the other is acquired by setting constant strat-

ification, hence constant nm in Eq. (7), in the near-global

ocean in which f varies realistically with latitudes. Their

normalized zonal-mean values, shown in Fig. 10a, are

independent of the values of N and f that have been

chosen. We find a poleward increase of the wavelengths

with constant stratification (blue line), a tendency in-

troduced by the dependence of f on latitudes. The

wavelengths will further proceed infinity at the critical

latitude of about 74.58N/S, where f approaches the M2

tidal frequency. The wavelengths determined by N only

(black line) decrease equatorward in the low latitudes

between 288N and 188S, and decrease poleward beyond

this latitude range, a feature introduced by the varia-

tions of nm with latitudes.

The normalized zonal-mean LST,1 is also displayed in

Fig. 10a (red line). Between 288N and 188S (region A in

Fig. 10a), the LST,1 goes up sharper than both theo-

retical wavelengths, indicating the combined positive

contributions from both N and f in determining the

wavelengths. In the latitudes between 288 and 338N and

188 and 428S (region B), the LST,1 continues rising al-

though N imposes here a negative contribution to the

wavelengths. Hence, in these two regions, the role of

f dominates over that of N. However, poleward beyond

428S/338N (region C), the role of N outweighs that of

f as a result of a poleward decrease ofLST,1. This explains

FIG. 9. Zonal-mean wavelengths of (a) mode 1 and (b) mode 2.

The solid line represents LST,m, which is obtained from the

STORMTIDE simulation, and the dashed line represents LSL,m,

which is derived by solving the Sturm–Liouville eigenvalue

problem.
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the differences of our results, specifically for high lati-

tudes, to that of a two-layer model with a horizontally

uniform stratification but a latitudinal dependence of

f in Simmons et al. (2004a, their Fig. 11). Hence, we

conclude that N and f play a combined role in de-

termining the geographical distribution of LST,1.

For the mode 2 wavelengths (Fig. 7a), we find that the

tendency of a poleward increase in wavelengths almost

no longer exists and even reverses in the southern At-

lantic and part of the Indian Ocean. Hence, the role of

f is significantly weakened in determining LST,2

compared to its role in determining LST,1, consistent

with the fact derived fromEq. (7) that the same amount of

changes in f will lead to smaller changes in mode 2 than

in mode 1 as a result of the larger eigenvalues of mode 2.

The zonal asymmetry on the other hand is more pro-

nounced for LST,2 than for LST,1, in particular in the

Pacific. This feature is also captured in LSL,2 (Fig. 7b). It

seems that stratification has a stronger influence onLST,2

than onLST,1, consistent with the description that higher

modes are more sensitive to the ocean environment

(Ray and Zaron 2011), and thus controls the global

characteristics of LST,2.

The normalized zonal mean of the simulated mode 2

wavelengths are shown in Fig. 10b in comparison with

those derived with either N or f fixed. The simulated

mode 2 wavelengths (red line) are generally well cap-

tured by those derived with constant f (black line) be-

tween about 288S and 238N (region A in Fig. 10b), and

they depart outside this latitude range. There is only a

slight increasing tendency of LST,2 with increasing lati-

tudes. Hence, f seems not to play a significant role in

determining mode 2 wavelengths. In conclusion, the

effect of N outweighs that of f in determining the sim-

ulated mode 2 wavelengths.

7. Concluding remarks

With a spectral analysis of the near-global three-

dimensional field of model-simulated baroclinic tidal

velocities, we examined the horizontal wavelength

properties of mode 1 and mode 2 internal tides. The

model is a 1/108 primitive equation model that concur-

rently simulates the ocean circulation and tides. The

near-global distributions of the simulated internal tide

wavelengths are compared to those obtained by solving

the Sturm–Liouville eigenvalue problem. The analysis

aims not only to identify the wavelengths of the low-

mode M2 internal tides and their large-scale character-

istics but also to quantify various factors that affect the

wavelengths and hence the M2 internal tide. The fol-

lowing conclusions are drawn.

1) Two modes of the M2 internal tide are captured by

the STORMTIDE model. The mode 1 wavelengths

(LST,1) are in the range of 100–160km. The largest

values are above 170 km and exist in strong current

regions, for instance, in the Kuroshio and Antarctic

Circumpolar Current regions. The geographical dis-

tribution reveals a zonal asymmetry and a general

tendency of increasing LST,1 with increasing latitude.

Themodel-simulated internal tidemode 2wavelengths

(LST,2) are primarily in the range of 45–80km. Values

larger than 75km are mainly concentrated in the

FIG. 10. Zonal-mean wavelengths of (a) mode 1 and (b) mode 2

derived by the spectral analysis with the simulated M2 baroclinic ve-

locities (red); by setting constant N, hence constant nm in Eq. (7)

(blue); and by setting constant f in Eq. (7) by nm directly from solving

the eigenvalue problem Eq. (5) (black). These wavelengths are nor-

malized by their respective maximum. The latitude space is further

divided into characteristic regions, denoted by A–C for mode 1 and

denoted by A for mode 2, which are further described in the text.
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equatorial regions of the Pacific and in the northeast

region of the Indian Ocean. The dominant feature of

LST,2 is the zonal asymmetry, whereas the latitudinal

variations are not as pronounced as that of LST,1. This

characteristic is explained by the dispersion relation

derived directly from the Sturm–Liouville eigenvalue

problem, which depends primarily on the local strati-

ficationN and the Coriolis parameter f.Obviously, the

zonal asymmetry of the wavelengths is a result of var-

iation inN only, whereas the meridional variations are

caused by a combination of changes in N and f. Our

analysis shows that for the mode 1 internal tide, the

wavelengths are controlled by both N and f. Instead,

for the mode 2 internal tide, the variations of N dom-

inate their spatial characteristics.

2) The STORMTIDE model simulated, to a first ap-

proximation, mainly linear internal waves that satisfy

the local dispersion relation. The small differences

between LST,1 and LSL,1 are systematic, with LST,1

being smaller thanLSL,1 over most of the near-global

regions. In high latitudes, larger differences between

LST,m and LSL,m are observed, suggesting the impor-

tant role of nonlinear wave–current interactions there.

In general, we find that the spectral peaks are broad-

ened considerably in eddy-active regions, for instance,

within the Antarctic Circumpolar Current region. In-

teractions between mean flows, mesoscale eddies, and

internal waves might play a role in determining the

wavelengths in these regions. The broadening of the

peaks could be a sign of current-induced frequency shifts

(Kunze 1985), and thus it implies that frequencies of

internal waves are shifted toward or away from the M2

tidal frequency. With strong frequency shifts, the center

of the peaks could also be shifted toward different

wavenumbers.

In general we conclude from this study that the

characteristics of internal tides are well described by the

global model approach and are consistent with linear

waves obtained by solving the local Sturm–Liouville

eigenvalue problem. Deviations from linear waves lead

to wavelength differences of about 5%–10%. Since

these interactions are nonstationary processes, it will be

important to further understand these complex mecha-

nisms in order to accurately map the time-dependent

characteristics for an advanced processing of future

high-resolution satellite altimeter data.
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