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Abstract—The target of our effort is the definition of a dynamic
network architecture meeting the requirements of applications
competing for reliable high performance network resources.
These applications have different requirements regarding reli-
ability, bandwidth, latency, predictability, quality, reliable lead
time and allocatability. At a designated instance in time a virtual
network has to be defined automatically for a limited period of
time, based on an existing physical network infrastructure, which
implements the requirements of an application. We suggest an
integrated Software Defined Network (SDN) architecture providing
highly customizable functionalities required for efficient data
transfer. It consists of a service interface towards the application
and an open network interface towards the physical infrastruc-
ture. Control and forwarding plane are separated for better
scalability. This type of architecture allows to negotiate the reser-
vation of network resources involving multiple applications with
different requirement profiles within multi-domain environments.
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I. INTRODUCTION

The amount of data to be handled by networks and asso-
ciated resources across industry, universities and supercom-
puting centers for research, education, commerce and the
internet business at large, grew significantly over the past
few years. Furthermore, international collaboration became
standard. Federation techniques implement a consolidated
view on distributed data for end users. On the other hand,
hybrid network architectures, multi-vendor environments and
heterogeneous infrastructures steadily increase the complexity
of data mining, computing and networking. Software Defined
Networking (SDN) is a promising solution for the reduction
of complexity: It opens the control layer allowing for direct
programmability. Our target — first introduced in 2013 for
geographically, dispersed datasets [1] — is to provide an auto-
mated arbitration layer between applications and network, thus
reducing the operational complexity within heterogeneous en-
vironments. Furthermore, network resources can be distributed
in a more efficient way by offering an open network interface
for the application layer, which can be used to specify user
requirements even beyond mere networking. Additionally, a
central management provides a global view on the underlying
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infrastructure and enables the optimization of demands and
available resources.

In this extended journal paper, we introduce an integrated
multi-domain SDN architecture, in which network control is
decoupled from forwarding and directly programmable by
open interfaces between different layers. Therefore, Section
Il gives an introduction into SDN, followed by SDN use
cases in Section III. In Section IV some approaches providing
automated configuration of network services are discussed and
differentiated from our approach. Our architecture as well
as an automated network configuration process arbitrating
between the concurrent applications competing for network
resources is described in Section V. Section VI describes a
feasible migration process from existing network architectures
to an application driven network architecture step by step.
Finally, we present our results from a first prototype in a 400-
Gigabit/s-Testbed in Section VII and summarize our approach
in Section VIII.

II. SOFTWARE DEFINED NETWORKING

Today, network intelligence and state are inherent part of
network devices and distributed among the entire infrastruc-
ture. Decisions can only be made based on local information,
which often results in an inefficient distribution of global
resources. Implementing network-wide policies can increase
the efficiency of resource distribution, but therefore, all par-
ticipating devices have to be configured. This results in long
delays and implies additional expenditure and can also lead
to inconsistencies, security breaches or non-compliance to
regulations. In addition, large discrete sets of protocols are
used to connect hosts over arbitrary distances, link speeds
and topologies. Most of these protocols tend to be defined
in isolation, without any abstraction layer. This leads to a
more and more increasing complexity and as a result, to static
networks in a dynamic IT environment.

Based on this heterogeneous, complex and static infrastruc-
ture, applications and network services with different require-
ments try to utilize the network at the same time. In most
cases these resources are offered as a best effort service, which
means they are distributed between the streams, depending
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Figure 1: Conventional vs. SDN driven network, full separation of forwarding and control plane

on the current load. Because of missing information at the
application layer, users do not know about the optimal point
in time to start a data transfer. On the other hand, there is
also no mechanism available which allows users to announce
their requirements, so that the infrastructure can plan the
upcoming traffic in advance. To enable an efficient resource
management and reduce the complexity within networks, an
open and programmable control layer is necessary, which
interacts with users to manage their requirements, and with
the underlying infrastructure, to map incoming requests to the
available network devices.

Software Defined Networking (SDN) is an upcoming trend,
promising the reduction of complexity: it opens the control
layer and makes it directly programmable. SDN enabled net-
works provide an automated arbitration layer between applica-
tions and network and in consequence reduce the operational
complexity within heterogeneous environments. Furthermore,
network resources can be distributed in a more efficient way by
offering an Open Network Interface for the Application Layer
which can be used to specify user requirements. Additionally, a
central management provides a global view on the underlying
infrastructure and enables the optimization of demands and
available resources. A comparison between the traditional
network architecture and an SDN-enabled network is depicted
in Figure 1.

III. USE CASES FOR SDN

In this section we introduce two applications, one from the
climate community and one from high energy physics, both
of which provide a use case for our architecture. So far if
viewed separately. These two applications using the same SDN
network simultaneously form a third use case.

Common buzz words of today’s IT landscape are “Data
Tsunami” or “Big Data”. Whether countless small data pack-
ages have to be moved with minimal latency and highest
safety, or humongous volumes of data have to be reliably
moved from one place to another: The activities in data

management rely on fast, broadband, reliable networks. At
the moment, intercontinental network speeds are limited to
40 Gb/s [2]. The project Advanced North Atlantic 100G Pilot
(ANA100G) tries to reach the 100 Gb/s barrier [3]. But practi-
cal experiences show, that the opportunistic networks (WAN’s)
available today do not offer enough reliability, predictability
and speed per cost necessary for the applications from the
“Data Tsunami”. Consequently, every “Big Data” application
is a use case.

A practical example for these facts is the international
Coupled Model Inter-comparison Project (CMIP) [4], which
conducts sets of co-ordinated experiments with numerical
climate models to compare them against each other. The
project recently completed its Sth edition (CMIPS) [5S], Such
comparisons of climate models serve as basis for the As-
sessment Reports, on which the Nobel Laureate International
Panel on Climate Change (IPCC) bases its recommendations
for policy makers.

Numerical Climate Models are complex numerical realisa-
tions of the physical, chemical, biological and other processes
that play a role in the climate system. They regularly utilise
to a high percentage high performance computers like those
to be found in the TOP500 list [6]. They also swamp these
computers with data volumes at the bleeding edge of the most
current technologies available (for an overview of some of
the problems see, e.g. [7]). CMIP5 produced a sum of about
100 PB world-wide [8], produced in about 30 centres [9].
As the name of the project suggests (Coupled Model Inter-
comparison Project), these data need to be compared. Since the
models and their data are situated at different places, they have
to be transported. Or the applications that compare the data
have to be available near to the data — unfortunately practical
experience shows that it is much easier to organise data near to
applications than applications near to data, e.g., see the results
of the German C3-Grid initiative [10].

The climate modelling community agreed upon sub-setting
the data to a volume of about 1.5 PB, containing only those
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‘lable 1: TIME TO TRANSPORT 1 TB AND 1 PB OF DATA FROM ONE
CLIMATE CENTER TO ANOTHER [11]

Transfer Time to Transport Data of Size
Rate 1TB 1PB
10 Mbps 9.7 days 27.20 years
50 Mbps 1.94 days 5.44 years
100 Mbps 23.3 hours 2.72 years
1 Gbps 2.28 hours 97.1 days
10 Gbps 13.65 minutes 9.7 days
100 Gbps 81.9 seconds 23.3 hours

Table II: CMIP6 CENTRES

Type EU America  Asia  Australia
PRODUCING 10 6 6 1
PROVIDING 2 3 3 1
DOWNLOADING  100s 10s 100s 10s

data most relevant for the comparison, and to make these
data available in five centers world-wide for easier access and
replication [4]. But, as experience shows, the process to do so
took much more effort and time than expected, and stressed the
scientific community considerably, leaving less time to creative
scientific work that potentially would benefit the scientific
value of the assessment report. Apart from a lot of hassle in
the upper layers (co-ordination, federation, meta-data-systems,
applications, formats) it was obvious that the network posed a
crucial problem here. Not only is it error prone and unreliable,
but just simply much too slow in many instances. ESnet says:
”The fastest we could hope to move only 1 PB of data from
PCMDI to one of the RCA data centers is essentially one
day at 100 Gbps, whereas with a peak of 10 Gbps, it would
take almost 1.5 weeks.” An estimation of the speeds following
the ESnet can be found in Table I, whereas the last row —
the 100 Gbps — are not reached yet, but only addressed in
the ANA100G project [3]. The fact that many network lines
outward bound from centers seem rather underutilised does not
contradict this observation: Burst-wise utilisation is common-
place, people try to get their job done, but the unreliability
of the connections and the fact that the slowest part of the
complete connection limits the transfer speed, make life of
the users difficult: Maintaining constantly high data transfer
speeds is near to impossible today.

If we interpret current negotiations about CMIP6, the future
edition of CMIP, correctly, it can be expected that the data
volumes will be 1 to 2 orders of magnitude higher than in
CMIP5, with the intercontinental network speeds staying about
the same (see Table II). More participating centres in Asia
and South America will put higher demands on the network
architecture in terms of geographical coverage and network
quality. With respect to the architecture of the application
layer it can be expected that the available system (ESGF)
will be stabilized and possibly extended by a federated file
system. The situation for the CMIPS5 data: Until now the
scientists have to search through a data jungle by clicking

International Journal on Advances in Systems and Measurements, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/systems_and_measurements/

through web portals, looking at folders on different server
or using scripts. With neither of these methods all data can
be accessed. E.g., the script bundle called synchro-data [12]
can access only the data available with the new ESGF login
method, not with the old one, and requires a special port which
is then locked. Two users at one time cannot download from
the same machine at the same time. Again: many networks
seem to be underutilised, but not because the scientists do not
need their data, but because retrieving them is intransparent.
The scientists want to know how to get the data and how long
the transfer takes.

A totally different, but also very demanding application for
the network is state-of-the-art turbine development as it is
performed at DLR (German Aerospace Centre). It requires
a multitude of different process chains to be completed. Such
process chains typically consist of different simulation tools
such as Computational Fluid Dynamics (CFD) and Com-
putational Structural Mechanics (CSM) solvers, which are
executed in a specific collaborative order. The data is needed
“just in time”: At DLR different clusters of different sizes
and configurations are available at geographically distributed
locations. Optimal resource usage implies high flexibility in
where to run jobs. In order to avoid necessity of moving data
to a selected resource in order to be able to run a job it is
desirable to provide reliable and fast access to all data from
all different resources and locations. This is not “Big Data”
application but it urges the network to be prioritized.

A recurrent task here is the simulation of flow response to
different Eigenmodes and phase angle combinations. An initial
steady state CFD simulation of, e.g., a turbine runner blade
passage is done to obtain boundary conditions for a subsequent
CSM simulation, which results in the m Eigenmodes of the
respective blade. Now for each Eigenmode a specific set
of n relevant phase angles is identified. In the next step
corresponding displacements are applied to the blade mesh
resulting in n x m different CFD simulation setups that have
to be solved. These simulations run for a fixed iteration count
after which convergence analysis is performed. Based on the
result of this analysis for each job a decision is made whether
they need to run for further iterations or not.

Single simulation jobs hereby typically run on 32-64 cores
and produce result files in the range of 100 MB written at
the end of the simulation. Considering a real world setup with
n x m = 300 leads to a relatively moderate data volume of 30
GB. Ideally all jobs can be run at the same time, thus requiring
300 x 64 = 19.200 cores.

Therefore, the data replication mechanisms of the General
Parallel File System (GPES) are applied, to simultaneously
replicate data to all clustered resources whenever write access
to the filesystem occurs.

Now, looking at the ideal but none the less likely situation
where 300 simulation jobs start at the same time and all writing
their results within a time frame off 15 minutes quickly leads
to peak bandwidth requirements up to 400 GB. In the case of
less regularity in the workflow, where potentially all jobs are
started at different points in time, write access might occur

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

105



over a time frame that corresponds to the duration of the
overall workflow. In this case a much lower but sustained
bandwidth can be observed.

To enable an application adapted virtual network config-
uration the respective applications need to have an interface
communicating their requirements with regard to the available
network resources.

Thus, we have the climate application which needs high
bandwidth for a long time and can manage interruptions, and
the turbine application which needs prioritization to receive
the data as fast as possible. These two applications do not
cumber each other and are a good example for challenging
our SDN architecture.

IV. RELATED WORK

Approaches to provide automated configuration of network
services already exist for some time. Protocols for traffic engi-
neering were specified to enable dedicated resource allocation
to different applications. Most of these solutions were limited
to a single carrier domain, in many cases to a single equipment
vendor. Vertical interaction was achieved, i.e., communica-
tion between different layers, is well defined. Automation of
configuration across domain borders was not considered. All
control interaction had its origin in operator actions. The appli-
cations itself did not have any direct influence. In this section,
we give an overview over the development starting with an
information model and first attempts of implementation.

Within the ITU-T recommendation G.805 03/2000 [13]
the authors abstract from the actual network elements. The
recommendation describes a set of functional elements instead
and the relationship between these elements. It is a generic
multi layer information model, which is open to any kind
of implementation. The notion of a layer in G.805 does
not necessarily coincide with one layer of the OSI model.
A layer can best be described as a set of all connection
points of the same type, i.e., sources and sinks of data that
can communicate without adaptation. Adaptation allows for
communication between the layers. The information model
developed in G.805 is the basis for any multi-layer interaction
model of the future, the actual communication processes, both
vertical and horizontal can be described based on this agnostic
approach. Networks described in G.805 are connection ori-
ented whereas the follow-up, ITU-T recommendation G.809
03/2003 [14], describes connectionless networks. However,
both have in common an implementation agnostic information
model. Communication between layers in both recommenda-
tions is enabled by adaptation functions.

Generalized Multi-Protocol Label Switching (GMPLS) [15]
is a generalization of IP/MPLS for the connection oriented
transport layer. It was originally defined to provide a con-
trol plane for Synchronous Digital Hierarchy (SDH), Optical
Transport Hierarchy (OTH) and Wavelength-Division Multi-
plexing (WDM). The network elements are equipped with
a GMPLS Routing Engine (GMRE) which made dynamic
configuration and automated restoration possible. In a first
iteration there was no interaction with layers above transport.
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With the definition of a northbound User Network Interfac 06
(UNI), communication with higher layers was enabled. In
consequence, there were means to adapt transport bandwidth
to the requirements of upper layers. Requirements from ap-
plications are not automatically considered. They still rely
on operator intervention. Generalized MPLS is a method to
do multi layer provisioning and traffic engineering, but it is
normally restricted to one carrier and often to a single-vendor
domain. Hence, it is sufficient for vertical integration but not
for horizontal configuration purposes. Furthermore, flapping
due to changing IP address spaces can be a problem. In the
course of the VIOLA project [16] UNI-Client and UNI-Server
interworking was implemented between the transport layer and
an IP/MPLS layer. This way bandwidth requirement from the
IP/MPLS layer could be communicated to the transport layer.

In 2008 a Multi-layer Network Model based on the ITU-
T recommendation G.805 was published by Freek Dijkstra et
al. [17], containing a proposal for a multiple layer control
interaction model. Making use of the functional elements
defined in G.805 it is possible to implement a multi layer data
model. From GMPLS the technique of label switching was
taken. The translation of client or application requirements
still remains with the operator.

The common Network Information Service Schema Spec-
ification (cNIS) activities [18] by Geant2 community are
targeted at supplying domain related network information to
the application layer regardless of the network layers present in
the respective domains. Inter domain exchange of information
is part of the service. The cNIS activities are vital for the NSI
definition.

The ITU-T recommendations G.805 and G.809 as well as
the multi-layer network model from Dijkstra abstract from
hardware related description of transport networks. GMPLS
defines cross network layer interworking and cNIS finally
makes the networking layer transparent for the application
layer. The missing link is a control interface between the
application and the network, enabling fully automated network
resource management. Furthermore, this interface should not
only address network resources but should take into account
other virtualized functions. Our integrated approach will ad-
dress both, network and other resources as building blocks of
a final functional graph.

V. INTEGRATED SDN ARCHITECTURE

To provide application-oriented network services, we sug-
gest an architecture consisting of three layers, depicted in
Figure 2. The infrastructure layer defined by the network
providers and hardware vendors is usually characterized by
a vast heterogeneity. It lays at the bottom of our architecture.
The control layer in the middle abstracts from the infrastruc-
ture layer and prevents direct user access to the hardware. At
the top level sits the application layer representing the users
view on this network architecture.

Interoperability between these layers enables an application-
and user-oriented network infrastructure. To achieve this, addi-
tional communication protocols have to be specified providing
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Figure 2: Integrated multi layer, multi domain SDN architecture

the required functionality. Therefore, we introduce an Open
Network Interface (ONI) between infrastructure and control
layer as well as a Service Interface (SI) with an appropriate
connection service protocol between control and application
layer.

In the following, we describe the layers and the intermediate
communication protocols in more detail and give an example
of a communication process within this architecture.

A. Layer description

In the following sections we describe the three layers of
the introduced architecture. The application layer representing
the users view, the control layer as intermediary between
application and network hardware, and the infrastructure layer,
consisting of the network elements and their interconnects.

1) Application Layer: The requirements of both applica-
tions and predefined services are not just network resources.
We can think of storage, compute capacity and additional
functionality related to the network. This of course makes
the general model more complex to construct, but it takes
strain from both, user and carrier. The main feature of this
fully integrated model will be access to a building block
repository [19]. Here we have infrastructure building blocks
and functional building blocks. Infrastructure building blocks
on the one hand, are network segments, covering different

layers and different domains. Functional building blocks on
the other hand, represent network services, e.g., encryption,
compression or acceleration. An application link between
Lawrence Livermore National Laboratory and German Data
Centre for Climate Research involves for example multiple
layers and multiple network domains. The application queries
for the link and the extended SDN-enabled network protocol
combines the required infrastructure building blocks to form
a virtual network. Furthermore, the application requires ad-
ditional services, like WAN acceleration, storage and a tool
for ensuring data integrity. Depending on availability, the
appropriate building blocks are added to the network graph.
A real-time multi-site application like TV production involves
multiple layers and possibly multiple domains. It requires a
highly elastic network configuration, extremely low latency
and high peak bandwidth. Data integrity must be guaranteed
and synchronization must be provided. WAN acceleration
would impose too much latency for a real time life production.
Selected building blocks would again be network segments
to form a virtual network as required, plus a tool to guaran-
tee data integrity and synchronization functionality. Genome
Sequencing to support surgeons requires high bandwidth for
medium periods on short notice. While handling medical data
a high level of privacy must be maintained. Again we have
infrastructure building blocks in form of network segments
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plus functions to guarantee privacy, e.g., encryption and a
Public-Key Infrastructure (PKI). The public Internet today
is a major medium of social interaction and it is of utmost
importance for an open society to guarantee equal rights and
secure access to its resources. The provider would have to
select suitable network segments to commission an Internet
platform plus additional building blocks to guarantee privacy
and security for the individual user.

Figure 3 shows our functional building block model to
realize the work flow for the described application scenarios.
Applications communicate their certain requirements towards
the network-building stack. This in turn checks, if available
resources satisfy these requirements and answers with a
proposal of a combined graph.

2) Control Layer: Our control layer, depicted in Figure 4,
consists of two main components — the Network Operating
System (NOS) on the application side and one or more
Controllers on the side of the infrastructure. The communi-
cation between the upper and lower layer is realized by a
north- and southbound API. Additionally, the NOS module
within the control layer needs an interface for inter-domain
communication to enable multi-domain interoperability.

The NOS we introduce operates similar to typical operating
systems. Within its domain it interacts as an intermediary
between applications and network hardware, to avoid direct
access to the network hardware and to hide unnecessary
information. This increases the security on the one hand
and enables the possibility to virtualize the network on the
other hand. Therefore, the integrated Broker compares the

requirements — transmitted through the northbound API — with
the available network resources — which can be requested
through the southbound API — and instructs the reservation
if available resources meet the requirements. Negotiation be-
tween application layer and network layer should be possible.
The requesting application receives only a partial graph, which
can be a direct link with the corresponding characteristics
between ingress and egress at the end.

Besides the virtualization our approach also takes traffic
engineering into account. Link state information can be up-
dated periodically or requested on demand via the southbound
API. This way, weighted graphs are composed for the entire
domain, in which the weights can represent any link parameter
— like bandwidth, latency, utilization or costs — or any combi-
nation of them. Based on these graphs the route is optimized
w.r.t. the requirements of the applications. Link parameters
should not change during transmission. However, if a change
is inevitable, the network resources dedicated to a certain
application should be adapted within feasible bounds.

Real time communication is another feature which can be
implemented within this network architecture. Especially with
respect to large data volumes the transfer completion time is
often more important than the entire transfer time. Knowing
this point in time allows more efficient resource planning
which can result in reduction of costs. This functionality is
enabled by allowing reservations of network resources for
specific periods of time. The reservations for specific flows
are managed by the Broker, which has a global view on the
entire domain. Thereby, overcommitment can be avoided and
start and end points of the data transfer can be guaranteed.
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All described features are necessary to transfer the amounts
of data described in Section V-Al efficiently through a shared
multi-user network. Many different algorithms and other fea-
tures exist, which can be realized by this architecture. So, we
encapsulate these functionalities in different modules, which
can be added, replaced or removed during runtime without in-
terruption, similar to loadable kernel modules. Thereby, every
domain can optimize its control layer for its requirements as
long as the interoperability is still guaranteed.

To enable the described functionality between multiple
domains, an inter-domain communication is required. Those
incoming and outgoing requests are also handled by the
Broker and will be processed similar to intra-domain requests.
Therefore, external and internal request messages may only
differ in the source tag which determines the security group
classification and the consequential permissions of the service
requestor.

Beside the loadable kernel modules and the Broker we
suggest to encapsulate the Controller as executive unit. Con-
trollers implement the interface to the network infrastructure
and perform requests or reservations, instructed by the Broker.
Since this can result in a bottleneck depending on the number
of requests and the domain size, we recommend to use
more than one Controller. Thereby, the separation from the
NOS enables scalability by varying the number of Controllers
depending on the network size and work load. An additional
aspect which motivates for separation of NOS and Controller
are the heterogeneous interfaces we expect to be provided by
the network hardware vendors. To enable compatibility, at least
one Controller for every network interface implementation
has to be provided. The integration is mainly realized by the
hardware vendors, similar to hardware drivers in conventional
operating systems. Hence, the encapsulation of the Controllers
guarantees scalability and interoperability in our proposed
architecture.

In summary, the control layer we introduce provides re-
quired functionalities — like network virtualization, adaptive
routing or real time communication — for the application layer,
to enable an efficient transfer of big data volumes. The layer

is highly customizable by integrating the functionality within
loadable kernel modules which can be added, substituted
or removed on demand. Additionally, we took into account
scalability and compatibility of an heterogenous infrastructure
by encapsulating the Controllers as executive units.

3) Network Layer: In data networks there is a hierarchy

of deterministic transport and statistical multiplexing. Deter-
ministic transport can be utilized for client-to-client commu-
nication and as a transport layer for, e.g., routed services.
The Broker instance shown in Figure 5 arbitrates between
the requirements of multiple applications and available net-
work services. Based on requirements communicated by the
Network Service Agent (NSA), it will decide if the requested
capacity will be provided on a deterministic or routed path.
Multi domain networks suffer from a lack of homogeneity.
This in turn requires abstraction that allows for a unified
network description language. The Network Description Lan-
guage (NDL), introduced in [20], is a modular set of schemata.
The topology schema describes devices and interactions be-
tween them on a single layer. The layer schema takes into ac-
count the existence of multiple layers and interactions between
these layers. Capabilities of network devices are described
in the capability schema and domain schemata have to deal
with different domains and in consequence with administrative
entities and services linked to these entities. Finally, the
physical schema describes the physical aspects of network
elements. This set of schemata defines the ontology of network
functionality.
Since most applications rely on resources from different do-
mains, information about services and capabilities of these
domains will have to be interpreted and coordinated. An
application and its related data management is attached to a
single domain. All information from external domains should
be gathered here and communicated to the data manager to
enable negotiation.

B. Communication Interfaces

Interoperability between the layers introduced in Sec-
tion V-A requires information exchange. Therefore, interfaces
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Table III: SERVICE INTERFACE PRIMITIVES

Primitive Description

RESERVE The requesting agent (RA) requests the providing agent
(PA) to reserve network resources

PROVISION The RA requests the PA to provision network resources
according to the previous reserve request. Depending on
actually available resources the provision request may
differ from the reserve request.

RELEASE The RA requests the PA to de-provision resources without
removing the reservation

ACTIVATE The RA requests the PA to activate provisioned resources

TERMINATE The RA request the PA to release provisioned resources
and terminate the reservation

FORCED END  PA notifies RA that a reservation has been terminated

QUERY Can be used as a status polling mechanism between RA

and PA

have to be defined, which enable communication in both
directions. To achieve compatibility, open interface standards
are preferred. The following sections describe general require-
ments for service and network interfaces.

1) Open Service Interface (OSI): The northbound interface
of the control layer communicates with the application layer,
the southbound interface with the network layer. Since there
is a multitude of network domains, horizontal communication
is mandatory to enable federated network services based on
a virtual multi domain network. Therefore, both application
and control layer, implement embedded Network Service
Agents (NSA) which are connected by a service interface.
The application NSA is called requesting, the control layer

NSA providing agent. Multiple services can be handled by a
single NSA, in fact, as many as there are available on the end
to end infrastructure. The requesting agent communicates only
with the local NOS, information from other network domains
is gathered and provided by the remote home domain NOS.

Because the NSA has no authority about local or remote
resources, any kind of resource management is realized by the
NOS in conjunction with the controller. Flexibility regarding
to the introduction of new network services is enabled by the
modularity of the OSI and NSA concept.

The OSI connection protocol communicates requirements
to the providing agent and consists of 6 primitives, listed
in Table III. These requirements have to be mapped on
the corresponding QoS properties — sustained bandwidth,
latency and maximum latency variation. Furthermore, the
dedicated instance of time a certain transmission should
start is communicated. The providing agent either answers
with a complete confirmation or starts negotiating with the
requesting agent. Once a service is confirmed there will be
no further negotiations or limitations.

2) Open Network Interface (ONI): Current network ele-
ments implement control and forwarding plane on the same
closed platform. Decoupling this control functionalities from
the infrastructure, requires a protocol to exchange information
between these two layers. This section describes the functions,
required to implement the features described in Section V-A2.

An efficient placement of data flows requires a global view
on the underlaying infrastructure. Therefore, the position of
all network elements within a domain and their connection
between themselves has to be announced to the control layer.
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Figure 6: Integrated SDN communication process negotiating for network resources

This can be implemented by an initialization message during
the startup of a network element and a link discovery protocol
like LLDP [21]. Once a network element and its connections
is known, state changes are noticed implicitly as soon as a
data flow can not be routed anymore. In this case, the link is
removed from the topology graph until the node is back and
sends the initialization message.

Once the underlaying network topology is identified, link
characteristics like bandwidth, latency or cost have to be
communicated to the control layer during the initialization
phase. These mostly static properties are stored together with
source and destination of a link and are used to build a
weighted graph for data transfers if requested.

Next to these properties, there are more varying link state
informations like utilization, message rate or number of flows.
Updating these values on every change would cause an im-
mense overhead. Therefore, these informations are requested
periodically by the Controller and only reported to the NOS
as soon as values exceed predefined thresholds. The controller
can request these informations explicitly by a message, or
implicitly as soon as a data transfer is completed.

Additionally, to the upward directed information flow the
ONI has to implement the reservation requests from the
Control Layer to the network elements. These reservation
requests can be combined with a period of time during
which they are valid. If the reservation observance can be
handled by the network elements only, the requests have to be
transmitted. If not, the control layer has to add the reservation
at the beginning and remove it at the end. This causes more
overhead, but leaves the control function within the dedicated
layer.

As described, the main objective of the ONI is to provide
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information about the infrastructure for the control layer to en-
able efficient traffic engineering. To reduce the emerging over-
head, information should be updated implicitly on occurring
events which already require a communication. Additionally,
the executive commands instructed by the control layer have
to be transmitted to the network elements by the ONI.

C. Communication process

Specified requirements for data transfers can not be satisfied
in any case, e.g., if the request exceeds available capacities.
To ensure a data transfer anyway and independent from the
current utilization, we recommend to partition the available
capacity. One part for best-effort transfers, the other one for
optimized SDN communications. This way, rejected data trans-
fer requests can use conventional communication protocols.
Also for small data sets the best-effort transfer might be the
better path. Since the conventional best-effort communication
is known, we confine the description in this section to the
optimized SDN communication.

Figure 6 depicts the chronological sequence of a demand-
oriented communication within the introduced SDN architec-
ture. Thereby, the application communicates its requirements
to the data management tool first. The integrated service
agent determines the network services which are required to
satisfy the request. Subsequently, the agent can apply for these
services by forwarding the request to the Broker of the Control
Layer.

As described in Section V-A2, the Broker verifies incoming
requests. If the requestor is not authorized to use these services
or if there are not enough resources to fulfill the request, the
transfer fails and the application is informed by the service
agent. At this point, a new request with different requirements

nder agreement with IARIA - www.iaria.org



can be initiated. This process can be repeated until both
sides accept the conditions. The negotiation phase can also
be implemented transparent to applications within the data
management tool. This way the application defines tolerable
ranges for the requested network parameters instead of single
values. If both sides can not agree on a parameter set, the
application has to transfer the data by using the conventional
best-effort path.

If the request is valid the Broker initializes the reservation
process and instructs all required Controllers to distribute the
reservation to all participating network elements. Once all
reservation confirmations arrived at the Controller, the Service
Agent can be informed about the conditions of the requested
transfer. At the communicated start point the data transfer can
be initialized and accomplished. From the application’s point
of view, the following transfer does not differ from the conven-
tional communication process, except that the infrastructure
behaves like negotiated in the initialization phase.

As Figure 6 and the description of the communication
process show, the overhead increases due to the initialization
phase. Therefore, the optimized data path is only recom-
mended for elephant flows, where the transfer time is much
higher than the startup time. In this case, the overhead to define
an optimized environment is worthwhile. However, small flows
may still use the conventional data path.

VI. MIGRATION FROM EXISTING ARCHITECTURES

Migration towards an application driven network configura-
tion has to be done in a stepwise approach. In a first step, the
network elements have to be enabled to support a common
controller language. For network elements in use today, there
will have to be a translation overlay. Controller-input at that
stage will not be automated and it will be per domain or even
per network element group.

In a second step, the Network Operating System (NOS) has
to be defined for providing input to the controllers. First, only
single domain interworking and bidirectional communication
between domain NOS and domain controller will be supported.
Based this horizontal integration of involved NOS can be
implemented for ensuring interoperability between multiple
domains.

The next milestone is to enable applications to communicate
with the respective NOS. Thereby, the user has to know about
the requirements and communicates them directly to the NOS.
Later, a fully automated negotiation process can be initiated
by the application.

In the final step, the NOS will be enabled to request and
integrate required functional building blocks, additional to the
requested network resources.

VII. BANDWIDTH-ON-DEMAND PROTOTYPE

Global data traffic increases steadily by developments in
Cloud Computing, Social Media and Big Data applications.
According to projections, 2015 the core infrastructure of the
Internet has to handle four times as much data than 2010
[22]. Therefore, extremely high bandwidth data networks
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are required, which was the reason for the two testbeds 11112
Germany, described in the following.

That federated applications and services can profit from
increasing the bandwidth was already proven within the 100-
Gigabit-Testbed on a 60 km Wide Area Network between
the Center for Information Services and High Performance
Computing (ZIH) of the Technical University Dresden and the
computing center of the Technical University Bergakademie
Freiberg, started in 2010 [23].

A follow-up testbed which also introduced our first SDN
prototype was presented on the ISC’13 [24], based on a 400-
Gigabit/s-Demonstrator between the Center for Information
Services and High Performance Computing (ZIH) in Dresden
and the Rechenzentrum Garching (RZG). For the next genera-
tion 400-Gigabit/s-Ethernet technology not only the bandwidth
but also the distance was increased. Therefore, the HPC centers
in Dresden and Garching (Munich) were connected by a
640 km dark fiber, provided by Deutsche Telekom, combined
with access and transport technology from Alcatel-Lucent.
Cluster systems from Bull in Dresden and IBM in Garching
were used to set up a General Parallel File System (GPES)
to give applications a consolidated view on distributed data.
To achieve the necessary I/O throughput the cluster nodes
contained high-speed PCle RealSSD flash cards from EMC?
with 3.2 GByte/s sequential read and 1.9 GByte/s sequen-
tial write performance. With three of these cards per server
we achieved a theoretical peak read/write performance of
921.6/547.2 Gbit/s in total, which was sufficient to saturate the
400-Gigabit/s-link. The bandwidth to the WAN was ensured
by 40-Gigabit/s-Ethernet cards from Mellanox, which were
directly connected to the service router from Alcatel-Lucent.
Additionally, the HPC clusters in Dresden and Garching had
to be integrated into the testbed. Therefore, FDR InfiniBand
cards from Mellanox were deployed. So the clusters on both
sides were only used to direct the traffic from the location
where the data was stored, to the computing nodes in the HPC
centers. The entire architecture of the 400-Gigabit/s-Testbed is
also shown in Figure 7.

Within the 400-Gbit/s-Testbed we have demonstrated the
impact of different applications utilizing the same infrastruc-
ture, with and without interoperability between application and
network infrastructure. On one hand, the turbine simulation,
described in Section III, requires a parallel file system and
distributed calculation. Therefore, low latency and high band-
width elasticity are required to achieve a high performance
application layer. On the other hand, the climate application
scenario, also described in Section III, requires the transfer of
huge geographically dispersed datasets for intercomparison.
Consequently, a very high sustained bandwidth is required, to
guarantee a reliable and predictable data transfer. To specify
the different demands of these applications, we implemented a
web-frontend, which forwarded incoming reservation requests
to a centralized management system. This system evaluated
incoming requests and instructed the controllers in Dresden
and Garching to configure all participating network elements.
Because there was no mechanism available to remove the
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reservations automatically after expiration, the centralized
management system also included a time table and scheduler
for all reservations. Based on the entries in this time table,
reservations were declined if conflicts occurred and removed
after expiration. Figure 8 shows the entire setup of the
Bandwidth-on-Demand demonstrator.

In this testbed, we were able to demonstrate that all applica-
tions can benefit from this new control layer, providing an in-
terface between application and infrastructure layer. Especially
the predictability of long term data transfers was increased
tremendously, independent of the concurrent traffic on the link.
Also, providing dedicated bandwidth for the turbine simulation
increased the performance. Unfortunately, the latency could

not be influenced, due to topology limitations. So, there is
still potential for more optimization.

VIII. CONCLUSION

Our integrated SDN architecture enables concurrent appli-
cations competing for network resources, to define virtual
networks that satisfy their respective requirements providing
efficient network usage and reliable data transfers. We intro-
duced the elements necessary for an end-to-end negotiation of
network resources between multiple domains and without any
limitation to specific protocols.

On the top the application layer represents the users view
on this network architecture. A southbound Network Service

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

113



Agent (NSA) requesting resources from the underlying control
layer. Communication between the NSAs is realized by the
Open Service Interface (OSI). The providing NSA in turn is
handing over the request to the Network Operating System
(NOS), which links the network layer of its own domain with
NOS’s of other domains. The NOS has a centralized view
on the network resources available and outstanding requests
from applications, so it is able to arbitrate between them.
Scalability and compatibility is enabled by using different
Controllers, depending on the work load and the underlaying
infrastructure. Thereby, our architecture supports end-to-end
negotiation of network resources between multiple domains
and without limitation to a specific protocol.

Additional to the architecture description we show up a
feasible approach to migrate from existing traditional network
architectures to an application driven network architecture.
Furthermore, we were able to demonstrate the benefits of our
approach for applications within a 400-Gigabit/s-demonstrator,
connecting two High Performance Computing centers in Ger-
many, by a prototypical implementation.
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