INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

An Integrated SDN Architecture for Applications
Relying on Huge, Geographically Dispersed Datasets

Andy Georgi
Technische Universitit Dresden
E-Mail: Andy.Georgi@tu-dresden.de

Rolf Sperber
Embrace HPC-Network Consulting
E-Mail: Rolf.Sperber @embrace-net.de

Abstract—The target of our effort is the definition of a
dynamic network architecture meeting the requirements of ap-
plications competing for reliable high performance network re-
sources. These applications have different requirements regarding
reliability, bandwidth, latency, predictability, quality, reliable lead
time and allocatability. At a designated instance in time a virtual
network has to be defined automatically for a limited period of
time, based on an existing physical network infrastructure, which
implements the requirements of an application. We suggest an
integrated Software Defined Network (SDN) architecture providing
highly customizable functionalities required for efficient data
transfer. It consists of a service interface towards the application
and an open network interface towards the physical infrastruc-
ture. Control and forwarding plane are separated for better
scalability. This type of architecture allows to negotiate the reser-
vation of network resources involving multiple applications with
different requirement profiles within multi-domain environments.

Keywords — Software Defined Networking, Huge Data, Network
Architecture

I. INTRODUCTION

In fields like climate research, astronomy and high energy
physics, international collaboration is standard today. Conse-
quently, mass data have to be transported between compute and
storage sites. Federation techniques consolidate the view on
dispersed datasets, however they do not transport them. Mass
data applications relying on multi-site datasets require net-
works with highest possible bandwidth and additional features,
such as low latency and low latency variation at a dedicated
instance of time for a period of time.

Applications taking advantage of distributed computing
rely on highest possible bandwidth and lowest possible delay
and delay variation for short periods of time. Both types of
applications should be able to utilize the same network without
mutual interference. Current developments like the Open Flow
standard [17] and the Network Service Interface (NSI) [21]
suite are a step towards fully automated virtual network provi-
sioning. The NSI activities bridge the gap between application
and network while OpenFlow standardizes the communication
between controller and network element.

In this paper, we introduce an integrated multi-domain
SDN architecture, in which network control is decoupled from
forwarding and directly programmable by open interfaces be-
tween different layers. In Section II some approaches targeting
similar objectives are evaluated. Our architecture as well as an

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

Reinhard G. Budich
Max Planck Institute for Meteorology
E-Mail: Reinhard.Budich@zmaw.de

Yvonne Meeres
Max Planck Institute for Meteorology
E-Mail: Yvonne.Meeres@zmaw.de

Hubert Hérenger
T-Systems Solutions for Research GmbH
E-Mail: Hubert.Herenger @t-systems-sfr.com

automated network configuration process arbitrating between
the concurrent applications competing for network resources is
described in Section III. Finally, we summarize our approach
in Section IV.

II. RELATED WORK
Approaches to provide application-oriented sustained net-
work services on demand already exist. Also, protocols for
traffic engineering and optimization were specified. For both,
some examples are given in this section, together with the
reason they don’t gain acceptance.

A. Network service architectures

ITU-T G. 805 03/2000 [1] describes a technology indepen-
dent functional architecture of a transport network. At the time
the standard was written it provided a set of functional archi-
tecture recommendations for the prevailing network transport
technologies. However, because of the agnostic character of
G.805 it is valid for all types of current transport technology
and future implementations to come. Multi layer networking
and multi layer control plane interworking are not considered.

GMPLS [16] is a generalization of IP/MPLS for layer 1
transport services. It was initially defined to enable dynamic
restoration in transport networks. In the course of the VIOLA
project [14] UNI-Client and UNI-Server interworking was
implemented between the transport layer and an IP/MPLS
layer. This way bandwidth requirement from the IP/MPLS
layer could be communicated to the transport layer.

The common Network Information Service Schema Spec-
ification (cNIS) activities [15] by Geant2 community are
targeted at supplying domain related network information to
the application layer regardless of the network layers present in
the respective domains. Inter domain exchange of information
is part of the service. The cNIS activities are vital for the NSI
definition.

G.805 abstracts from hardware related description of trans-
port networks, GMPLS defines cross network layer interwork-
ing and cNIS finally makes the networking layer transparent
for the application layer. The missing link is a control interface
between the application and the network.

B. SDN architectures

We also evaluated other SDN approaches like e.g. [5], [6],
[7], [8] or [20]. Thereby we recognized three main deficiencies:
1) Single-domain solutions only ([5], [8])

129

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Application
Application
Layer

Data Management Tool

s Service ——
T
Interface

NOS n

NOSn-1
Co Control
= NOS 2 Layer

O

Inter-Domain (_), Come
Open

L NOS 1
Communication Uﬂ
Controller Controller
A A Network -

Interface
— — Infrastructure

NE NE Layer

(e
-

Fig. 1: Integrated SDN architecture overview

2) Based on a specific protocol like OpenFlow ([6], [8])

3) Missing consideration of the application layer ([7], [20]).
Hence, our architecture described in the following section
will support end-to-end negotiation of network resources,
depending on the requirements of the application. Thereby,
applications are implemented by the end user and not equatable
to network functions. Communication partners can be located
within different domains and the infrastructure is not limited
to a single protocol.

III. INTEGRATED SDN ARCHITECTURE

To provide application-oriented network services, we sug-
gest an architecture consisting of three layers, depicted in
Figure 1. The infrastructure layer defined by the network
providers and hardware vendors is usually characterized by
a vast heterogeneity. It lays at the bottom of our architecture.
The control layer in the middle abstracts from the infrastructure
layer and prevents direct user access to the hardware. At the
top level sits the application layer representing the users view
on this network architecture.

Interoperability between these layers enables an
application- and user-oriented network infrastructure. To
achieve this, additional communication protocols have to
be specified providing the required functionality. Therefore,
we introduce an Open Network Interface (ONI) between
infrastructure and control layer as well as a Service Interface
(SI) with an appropriate connection service protocol between
control and application layer.

In the following, we describe the layers and the inter-
mediate communication protocols in more detail and give an
example of a communication process within this architecture.

A. Layer description

In the following sections we describe the three layers of
the introduced architecture. The application layer representing
the users view, the control layer as intermediary between
application and network hardware, and the infrastructure layer,
consisting of the network elements and their interconnects.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

TABLE I. TIME TO TRANSPORT 1 TB AND 1 PB OF DATA FROM ONE
CLIMATE CENTER TO ANOTHER [9]

Transfer Time to Transport Data of Size
Rate 1TB 1PB
10 Mbps 9.7 days 27.20 years
50 Mbps 1.94 days 5.44 years
100 Mbps 23.3 hours 2.72 years
1 Gbps 2.28 hours 97.1 days
10 Gbps 13.65 minutes 9.7 days
100 Gbps 81.9 seconds 23.3 hours

1) Application Layer: The activities in data management
rely on fast, broadband, reliable networks. At the moment,
intercontinental network speeds are limited to 40 Gb/s [4]. The
project Advanced North Atlantic 100G Pilot (ANA100G) tries
to reach the 100 Gb/s barrier [10] On the other hand, practical
experience shows, that the opportunistic networks (WANs)
available today do not offer enough reliability, predictability
and speed per cost necessary for the applications from the
“Data Tsunami”.

The international Coupled Model Inter-comparison Project
(CMIP) [3] conducts sets of co-ordinated experiments with
numerical climate models to compare them against each other.
This comparison of climate models serves as the basis for
the Assessment Reports, on which the Nobel Laureate Inter-
national Panel on Climate Change (IPCC) bases its recom-
mendations for policy makers.

Numerical Climate Models regularly utilise to a high
percentage high performance computers like those to be found
in the TOP500 list [22]. They also swamp these computers with
data volumes at the bleeding edge of the most current technolo-
gies available (for an overview of some of the problems see
e.g. [13]). As the name of the project suggests (Coupled Model
Inter-comparison Project), these data need to be compared.
Since the models and their data are situated at different places,
they have to be transported. Or the applications that compare
the data have to be available near to the data — unfortunately
practical experience shows that it is much easier to organise
data near to applications than applications near to data, see
e.g. the results of the German C3-Grid initiative [11].

The climate modeling community agreed upon sub-setting
the data to a volume of about 1,5 PB, containing only those
data most relevant for the comparison, and to make these
data available in five centers world-wide for easier access and
replication [3]. ESnet says: “The fastest we could hope to
move only 1 PB of data from PCMDI to one of the RCA data
centers is essentially one day at 100 Gbps, whereas with a peak
of 10 Gbps, it would take almost 1.5 weeks. An estimation
of the speeds following the ESnet can be found in Table I,
whereas the last row — the 100 Gbps — are not reached yet,
but only addressed in the ANA100OG project [10]. The fact
that many network lines outward bound from centers seem
rather underutilised does not contradict this observation: Burst-
wise utilisation is common-place, people try to get their job
done, but the unreliability of the connections and the fact that
the slowest part of the complete connection limits the transfer
speed, make life of the users difficult: Maintaining constantly
high data transfer speeds is near to impossible today.

If we interpret current negotiations about CMIP6, the future

130

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

edition of CMIP, correctly, it can be expected that the data
volumes will be 1 to 2 orders of magnitude higher than in
CMIPS5, with the intercontinental network speeds staying about
the same. With respect to the architecture of the application
layer it can be expected that the available system (ESGF) will
be stabilized and possibly extended by a federated file system.
The situation for the CMIPS5 data: Until now the scientists
have to search through a data jungle by clicking through web
portals, looking at folders on different servers or using scripts.
With neither of these methods all data can be accessed. E.g.
the scriptbundle called synchro-data [19] can access only the
data available with the new ESGF login method, not with the
old one, and requires a special port which is then locked. Two
users at one time can’t download from the same machine at the
same time. Again: many networks seem to be underutilised,
but not because the scientists don’t need their data, but because
retrieving them is intransparent. The scientists want to know
how to get the data and how long the transfer takes.

A data management tool hides this data access complexity.
It informs about the expected time constraints and offers
reserving mechanisms. In contrast to the current tools it offers
a feedback about the transfer — a very essential but missing
feature. This new functionality is offered by lower SDN layers
to the application layer.

A totally different, but also very demanding application
for the network is state-of-the-art turbine development as it is
performed at DLR (German Aerospace Centre). It requires a
multitude of different process chains to be completed. Such
process chains typically consist of different simulation tools
such as CFD and CSM solvers, which are executed in a specific
collaborative order. The data is needed “just in time”: At
DLR different clusters of different sizes and configurations
are available at geographically distributed locations. Optimal
resource usage implies high flexibility in where to run jobs. In
order to avoid necessity of moving data to a selected resource
in order to be able to run a job it is desirable to provide reliable
and fast access to all data from all different resources and
locations. This is not “Big Data” application but it urges the
network to be prioritized.

Thus we have the climate application which needs high
bandwidth for a long time and can manage interruptions, and
the turbine application which needs prioritization to receive the
data as fast as possible. These two applications do not cumber
each other and are a good example for challenging our SDN
architecture.

2) Control Layer: Our control layer, depicted in Figure 2,
consists of two main components — the Network Operating
System (NOS) on the application side and one or more
Controllers on the side of the infrastructure. The communi-
cation between the upper and lower layer is realized by a
north- and southbound API. Additionally the NOS module
within the control layer needs an interface for inter-domain
communication to enable multi-domain interoperability.

The NOS we introduce operates similar to typical operating
systems. Within its domain it interacts as an intermediary
between applications and network hardware, to avoid direct
access to the network hardware and to hide unnecessary
information. This increases the security on the one hand
and enables the possibility to virtualize the network on the
other hand. Therefore, the integrated Broker compares the
requirements — transmitted through the northbound API — with

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

>

Broker L 4

<>
Topology . Congestion Application-
. REwiHa Avoidance specific QoS

Fig. 2: Single domain control layer overview

the available network resources — which can be requested
through the southbound API — and instructs the reservation
if available resources meet the requirements. Negotiation be-
tween application layer and network layer should be possible.
The requesting application receives only a partial graph, which
can be a direct link with the corresponding characteristics
between ingress and egress at the end.

Besides the virtualization our approach also takes traffic en-
gineering into account. Link state information can be updated
periodically or requested on demand via the southbound API.
This way, weighted graphs are composed for the entire domain,
in which the weights can represent any link parameter — like
bandwidth, latency, utilization or costs — or any combination
of them. Based on these graphs the route is optimized w.r.t. the
requirements of the applications. Link parameters should not
change during transmission. However, if a change is inevitable,
the network resources dedicated to a certain application should
be adapted within feasible bounds.

Real time communication is another feature which can be
implemented within this network architecture. Especially with
respect to large data volumes the transfer completion time is
often more important than the entire transfer time. Knowing
this point in time allows more efficient resource planning
which can result in reduction of costs. This functionality is
enabled by allowing reservations of network resources for
specific periods of time. The reservations for specific flows
are managed by the Broker, which has a global view on the
entire domain. Thereby, overcommitment can be avoided and
start and end points of the data transfer can be guaranteed.

All described features are necessary to transfer the amounts
of data described in Section III-A1 efficiently through a shared
multi-user network. Many different algorithms and other fea-
tures exist, which can be realized by this architecture. So, we
encapsulate these functionalities in different modules, which
can be added, replaced or removed during runtime without
interruption, similar to loadable kernel modules. Thereby,
every domain can optimize its control layer for its requirements
as long as the interoperability is still guaranteed.

To enable the described functionality between multiple
domains, an inter-domain communication is required. Those
incoming and outgoing requests are also handled by the
Broker and will be processed similar to intra-domain requests.
Therefore, external and internal request messages may only
differ in the source tag which determines the security group
classification and the consequential permissions of the service
requestor.

Beside the loadable kernel modules and the Broker we

131

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

Data-Manager

=

Data-Manager

.

Deterministic
ODU-k, Lambda

Ultimate Providing Agent Ultimate Providing Agent

NSA / \

Requesting Agent Requesting Agent
= Virtual =
Broker Tra nsport Broker
— Network —
Providing Agent \ / Ultimate Providing Agent
NSA

Statistical

Ultimate Requesting Agent Ultimate Requesting Agent

Routed, Switched

= =
gy @ @@ @

Fig. 3: Deterministic and statistically multiplexed transport

suggest to encapsulate the Controller as executive unit. Con-
trollers implement the interface to the network infrastructure
and perform requests or reservations, instructed by the Broker.
Since this can result in a bottleneck depending on the number
of requests and the domain size, we recommend to use
more than one Controller. Thereby the separation from the
NOS enables scalability by varying the number of Controllers
depending on the network size and work load. An additional
aspect which motivates for separation of NOS and Controller
are the heterogeneous interfaces we expect to be provided by
the network hardware vendors. To enable compatibility, at least
one Controller for every network interface implementation
has to be provided. The integration is mainly realized by the
hardware vendors, similar to hardware drivers in conventional
operating systems. Hence the encapsulation of the Controllers
guarantees scalability and interoperability in our proposed
architecture.

In summary the control layer we introduce provides re-
quired functionalities — like network virtualization, adaptive
routing or real time communication — for the application layer,
to enable an efficient transfer of big data volumes. The layer
is highly customizable by integrating the functionality within
loadable kernel modules which can be added, substituted
or removed on demand. Additionally we took into account
scalability and compatibility of an heterogenous infrastructure
by encapsulating the Controllers as executive units.

3) Network Layer: In data networks there is a hierarchy of
deterministic transport and statistical multiplexing. Determinis-
tic transport can be utilized for client-to-client communication
and as a transport layer for, e.g., routed services. The Broker
instance shown in Figure 3 arbitrates between the requirements
of multiple applications and available network services. Based
on requirements communicated by the Network Service Agent
(NSA), it will decide if the requested capacity will be provided
on a deterministic or routed path.

Multi domain networks suffer from a lack of homogene-
ity. This in turn requires abstraction that allows for a uni-
fied network description language. The Network Description
Language (NDL), introduced in [12], is a modular set of
schemata. The topology schema describes devices and inter-
actions between them on a single layer. The layer schema
takes into account the existence of multiple layers and inter-

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

TABLE II: SERVICE INTERFACE PRIMITIVES

Primitive Description

RESERVE The requesting agent (RA) requests the providing agent (PA) to
reserve network resources

PROVISION The RA requests the PA to provision network resources according to
the previous reserve request. Depending on actually available
resources the provision request may differ from the reserve request.

RELEASE The RA requests the PA to de-provision resources without removing
the reservation

ACTIVATE The RA requests the PA to activate provisioned resources

TERMINATE The RA request the PA to release provisioned resources and terminate
the reservation

FORCED END PA notifies RA that a reservation has been terminated

QUERY Can be used as a status polling mechanism between RA and PA

actions between these layers. Capabilities of network devices
are described in the capability schema and domain schemata
have to deal with different domains and in consequence with
administrative entities and services linked to these entities.
Finally the physical schema describes the physical aspects of
network elements. This set of schemata defines the ontology
of network functionality.

Since most applications rely on resources from different
domains, information about services and capabilities of these
domains will have to be interpreted and coordinated. An
application and its related data management is attached to a
single domain. All information from external domains should
be gathered here and communicated to the data manager to
enable negotiation.

B. Communication Interfaces

Interoperability between the layers introduced in Sec-
tion III-A requires information exchange. Therefore, interfaces
have to be defined, which enable communication in both
directions. To achieve compatibility, open interface standards
are preferred. The following sections describe general require-
ments for service and network interfaces.

1) Open Service Interface (OSI): The northbound interface
of the control layer communicates with the application layer,
the southbound interface with the network layer. Since there
is a multitude of network domains, horizontal communication
is mandatory to enable federated network services based on a
virtual multi domain network. Therefore both, application and
control layer, implement embedded Network Service Agents
(NSA) which are connected by a service interface. The ap-
plication NSA is called requesting, the control layer NSA
providing agent. Multiple services can be handled by a single
NSA, in fact, as many as there are available on the end to
end infrastructure. The requesting agent communicates only
with the local NOS, information from other network domains
is gathered and provided by the remote home domain NOS.

Because the NSA has no authority about local or remote
resources, any kind of resource management is realized by the
NOS in conjunction with the controller. Flexibility regarding
to the introduction of new network services is enabled by the
modularity of the OSI and NSA concept.

The OSI connection protocol communicates requirements
to the providing agent and consists of 6 primitives, listed
in Table II. These requirements have to be mapped on the
corresponding QoS properties — sustained bandwidth, latency

132

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

------------------------------------- \ ™

K ___
I 1
: D —
i
._. e . i g S g ———— e ——— -
1. Request Data 4. Data Transfer . Data Transfer 14. Data Transfer
Transfer Failed Falled Completed Application Layer
i et bl L L L L b L L LR L LR EL R LR LI L LI LR LR EEEL L] EELE LTI \
]
! Service Service Service 8. Wk Service Service Data Manage- |
H Agent Agent Agent Agent Agent ment Tool |
L Y Y S S Y !
2. Service 3.a. NotAu- d.a. Insufficient 8. Service 10. Initialize Data
Reguest thorized Resources Response Transfer
(e — S— ———— S S —— E—)
3. Privil
' Check. e Hetwork |
! Broker ~————3 Broker Broker Operating :
I System -
L] -
""" Control Layer
4.b. Reservation
Request
v
\ Controller Controller)
(T \
5.b. Reservation 7. Reservation 11. Begin Data 13. Finish Data
Execution Completion Transfer Transfer
W v
Netwark 6. Reservation Network o 12. Data Transfer o Infrastructure Layer
Element Element Element Element

J

Fig. 4 Communication process within an integrated SDN architecture

and maximum latency variation. Furthermore the dedicated
instance of time a certain transmission should start is commu-
nicated. The providing agent either answers with a complete
confirmation or starts negotiating with the requesting agent.
Once a service is confirmed there will be no further negotia-
tions or limitations.

2) Open Network Interface (ONI): Current network ele-
ments implement control and forwarding plane on the same
closed platform. Decoupling this control functionalities from
the infrastructure, requires a protocol to exchange information
between these two layers. This section describes the functions,
required to implement the features described in Section ITI-A2.

An efficient placement of data flows requires a global view
on the underlaying infrastructure. Therefore the position of
all network elements within a domain and their connection
between themselves has to be announced to the control layer.
This can be implemented by an initialization message during
the startup of a network element and a link discovery protocol
like LLDP [2]. Once a network element and its connections
is known, state changes are noticed implicitly as soon as a
data flow can not be routed anymore. In this case the link is
removed from the topology graph until the node is back and
sends the initialization message.

Once the underlaying network topology is identified, link
characteristics like bandwidth, latency or cost have to be
communicated to the control layer during the initialization
phase. These mostly static properties are stored together with
source and destination of a link and are used to build a
weighted graph for data transfers if requested.

Next to these properties, there are more varying link
state informations like utilization, message rate or number
of flows. Updating these values on every change would
cause an immense overhead. Therefore these informations are
requested periodically by the Controller and only reported
to the NOS as soon as values exceed predefined thresholds.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

The controller can request these informations explicitly by
a message, or implicitly as soon as a data transfer is completed.

Additionally to the upward directed information flow the
ONI has to implement the reservation requests from the Con-
trol Layer to the network elements. These reservation requests
can be combined with a period of time during which they
are valid. If the reservation observance can be handled by the
network elements only, the requests have to be transmitted. If
not, the control layer has to add the reservation at the beginning
and remove it at the end. This causes more overhead, but leaves
the control function within the dedicated layer.

As described, the main objective of the ONI is to provide
information about the infrastructure for the control layer to en-
able efficient traffic engineering. To reduce the emerging over-
head, information should be updated implicitly on occurring
events which already require a communication. Additionally
the executive commands instructed by the control layer have
to be transmitted to the network elements by the ONIL.

C. Communication process

Specified requirements for data transfers can not be satis-
fied in any case, e.g., if the request exceeds available capacities.
To ensure a data transfer anyway and independent from the
current utilization, we recommend to partition the available
capacity. One part for best-effort transfers, the other one for
optimized SDN communications. This way, rejected data trans-
fer requests can use conventional communication protocols.
Also for small data sets the best-effort transfer might be the
better path. Since the conventional best-effort communication
is known, we confine the description in this section to the
optimized SDN communication.

Figure 4 depicts the chronological sequence of a demand-
oriented communication within the introduced SDN architec-
ture. Thereby the application communicates its requirements

133

INFOCOMP 2013 : The Third International Conference on Advanced Communications and Computation

to the data management tool first. The integrated service agent
determines the network services which are required to satisfy
the request. Subsequently the agent can apply for these services
by forwarding the request to the Broker of the Control Layer.

As described in section III-A2 the Broker verifies incoming
requests. If the requestor is not authorized to use these services
or if there are not enough resources to fulfill the request, the
transfer fails and the application is informed by the service
agent. At this point, a new request with different requirements
can be initiated. This process can be repeated until both
sides accept the conditions. The negotiation phase can also
be implemented transparent to applications within the data
management tool. This way the application defines tolerable
ranges for the requested network parameters instead of single
values. If both sides can not agree on a parameter set, the
application has to transfer the data by using the conventional
best-effort path.

If the request is valid the Broker initializes the reservation
process and instructs all required Controllers to distribute the
reservation to all participating network elements. Once all
reservation confirmations arrived at the Controller, the Service
Agent can be informed about the conditions of the requested
transfer. At the communicated start point the data transfer can
be initialized and accomplished. From the application’s point
of view, the following transfer does not differ from the con-
ventional communication process, except that the infrastructure
behaves like negotiated in the initialization phase.

As Figure 4 and the description of the communication
process show, the overhead increases due to the initialization
phase. Therefore the optimized data path is only recommended
for elephant flows, where the transfer time is much higher
than the startup time. In this case the overhead to define an
optimized environment is worthwhile. However, small flows
may still use the conventional data path.

IV. CONCLUSION

Our integrated SDN architecture enables concurrent ap-
plications competing for network resources, to define virtual
networks that satisfy their respective requirements providing
efficient network usage and reliable data transfers. We intro-
duced the elements necessary for an end-to-end negotiation
of network resources between multiple domains and without
any limitation to specific protocols. The authors of this paper
already introduced a first SDN prototype on the ISC*13 [18],
based on a 400 Gbits demonstrator between the Center for
Information Services and High Performance Computing (ZIH)
in Dresden and the Rechenzentrum Garching (RZG).

REFERENCES

[1] ITU-T Recommendation G.805: Generic functional architecture of
transport networks. Technical report, International Telecommunication
Union, Mar. 2000.

[2] IEEE Standard for Local and Metropolitan Area Networks— Station and
Media Access Control Connectivity Discovery. IEEE Std 802.1AB-2009
(Revision of IEEE Std 802.1AB-2005), pages 1-204, 2005.

[3] CLIVAR Exchanges - Special Issue: WCRP Coupled Model Intercom-
parison Project - Phase 5 - CMIPS5. Project report, May 2011.

[4] Alcatel-Lucent. Alcatel-lucent upgrades cable system linking japan and
california, January 21 2013. Retrieved April 26th, 2013, from http:
/Iwww3.alcatel-lucent.com.

[5] Big Switch Networks. The Open SDN Architecture. Technical report,
Big Switch Networks, Inc., 2012.

Copyright (c) IARIA, 2013. ISBN: 978-1-61208-310-0

(6]

(7]

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

N. Blefari-Melazzi, A. Detti, G. Morabito, S. Salsano, and L. Veltri.
Information centric networking over sdn and openflow: Architectural
aspects and experiments on the ofelia testbed. CoRR, abs/1301.5933,
2013.

M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: a
retrospective on evolving sdn. In Proceedings of the first workshop on
Hot topics in software defined networks, HotSDN 12, pages 85-90,
New York, NY, USA, 2012. ACM.

O. M. E. Committee. Software-Defined Networking: The New Norm
for Networks. Technical report, Open Networking Foundation, April
2012.

Energy Sciences Network ESnet. BER Science Network Requirements;
Report of the Biological and Environmental Research. LBNL report
LBNL-4089E, Network Requirements Workshop, April 29-30 2010.

Energy Sciences Network ESnet. ESnet Partners with North American,
European Research Networks in Pilot to Create First 100 Gbps Research
Link Across Atlantic, April 24 2013. Retrieved April 26th, 2013, from
http://esnetupdates.wordpress.com.

C. Grimme and A. Papaspyrou. Cooperative negotiation and scheduling
of scientific workflows in the collaborative climate community data and
processing grid. Future Generation Computer Systems, 25:301-307,
2009. Publication status: Published.

P. Grosso, A. Brown, A. Cedeyn, F. Dijkstra, J. van der Ham, A. Patil,
P. Primet, M. Swany, and J. Zurawski. Network topology descriptions
in hybrid networks, March 2010.

N. Hemsoth. 20 lessons enterprise cios can learn from supercomputing.
datanami, November 2012. http://www.datanami.com/datanami/
2012-11-12/20_lessons_enterprise_big_data_buffs_can_learn_from_
supercomputing.html.

P. Kaufmann. Gesamtdarstellung des VIOLA-Projektes (Vertically
integrated optical testbed for large applications in DFN). DFN-Verein,
2007.

M. Labedzki, C. Mazurek, A. Patil, and M. Wolski. common network
information service - modelling and interacting with a real life network,
2009.

E. Mannie. Generalized Multi-Protocol Label Switching (GMPLS)
Architecture. RFC 3945 (Proposed Standard), October 2004.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69-74,
Mar. 2008.

R. Budich, A. Georgi, J. Miiller and R. Sperber. International Super-
computing Conference 2013, June 2013.
J. Raciazek. synchro-data script bundle. Technical documentation.
http://dods.ipsl.jussieu.fr/jripsl/synchro_data.

B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker. Software-defined internet architecture: decoupling
architecture from infrastructure. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, HotNets-XI, pages 43-48, New
York, NY, USA, 2012. ACM.

G. Roberts, T. Kudoh, I. Monga, J. Sobieski, and J. MacAuley. NSI
Connection Service Protocol v1.1, 2012.

Top500. Top 500 Supercomputer Sites. http://www.top500.org/, 2013.

134

http://www3.alcatel-lucent.com
http://www3.alcatel-lucent.com
http://esnetupdates.wordpress.com
http://www.datanami.com/datanami/2012-11-12/20_lessons_enterprise_big_data_buffs_can_learn_from_supercomputing.html
http://www.datanami.com/datanami/2012-11-12/20_lessons_enterprise_big_data_buffs_can_learn_from_supercomputing.html
http://www.datanami.com/datanami/2012-11-12/20_lessons_enterprise_big_data_buffs_can_learn_from_supercomputing.html

	Introduction
	Related work
	Network service architectures
	SDN architectures

	Integrated SDN Architecture
	Layer description
	Application Layer
	Control Layer
	Network Layer

	Communication Interfaces
	Open Service Interface (OSI)
	Open Network Interface (ONI)

	Communication process

	Conclusion
	References

