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ABSTRACT

The stratocumulus-top mixing process is investigated using direct numerical simulations of a shear-free

cloud-top mixing layer driven by evaporative and radiative cooling. An extension of previous linear formu-

lations allows for quantifying radiative cooling, evaporative cooling, and the diffusive effects that artificially

enhance mixing and evaporative cooling in high-viscosity direct numerical simulations (DNS) and many

atmospheric simulations. The diffusive cooling accounts for 20% of the total evaporative cooling for the

highest resolution (grid spacing;14 cm), but this can be much larger (;100%) for lower resolutions that are

commonly used in large-eddy simulations (grid spacing;5m). This result implies that the k scaling for cloud

cover might be strongly influenced by diffusive effects. Furthermore, the definition of the inversion point as

the point of neutral buoyancy hbi(zi)5 0 allows the derivation of two scaling laws. The in-cloud scaling law

relates the velocity and buoyancy integral scales to a buoyancy flux defined by the inversion point. The

entrainment-zone scaling law provides a relationship between the entrainment velocity and the liquid

evaporation rate. By using this inversion point, it is shown that the radiative-cooling contribution to the

entrainment velocity decouples from the evaporative-cooling contribution and behaves very similarly as in

the smoke cloud. Finally, evaporative and radiative cooling have similar strengths, when this strength is

measured by the integrated buoyancy source. This result partially explains why current entrainment pa-

rameterizations are not accurate enough, given that most of them implicitly assume that only one of the two

mechanisms rules the entrainment.

1. Introduction

Since the seminal work of Lilly (1968), the parame-

terization of the entrainment velocity in stratocumulus

remains a challenge. The uncertainty in the entrainment

velocity remains of order one inmeasurements (Faloona

et al. 2005; Gerber et al. 2013) as well as in numerical

simulations (Stevens 2005). This uncertainty compli-

cates an accurate parameterization of stratocumulus

clouds in climate models and numerical weather pre-

diction models (Stevens 2002).

Most difficulties for accurately resolving entrainment

processes in numerical simulations stem from the large

separation of scales between the large-scale convective

motions of the stratocumulus-topped boundary layer

(STBL) and the length scales that control the entrain-

ment process. The separation of scales originates from

the strong stratification capping the STBL, which

imposes a limitation on the size of the eddies that

directly contribute to the entrainment process. As a re-

sult, the entrainment zone, loosely defined as the region

where the entrainment happens, is much thinner than

the STBL [;10–60m as estimated by Haman (2009) and

Gerber et al. (2013)]. The challenge is to represent at the

same time the effect of the scales that are relevant for

the entrainment and the larger-scale flow that charac-

terizes the STBL.

Large-eddy simulations (LES) of the STBL typically

focus on solving the large-scale processes and cannot

fully resolve entrainment processes, which are partly

accounted for by the subgrid model. To complement

LES by focusing more on the small scales, Mellado et al.

(2009) introduced the cloud-top mixing-layer configu-

ration: two horizontally spread layers that represent the

cloud top and the free atmosphere above. Studies in a

cloud-top mixing layer investigate how different cloud

forcings generate entrainment, while neglecting other

processes and couplings that might be important for the

STBL dynamics on a longer time scale. These studies

aim to resolve the length scales that are directly relevant

for entrainment, which can be accomplished by using

direct numerical simulations (DNS).

Corresponding author address: Alberto de Lozar, Max Plank

Institute for Meteorology, Bundestr. 53, 20146 Hamburg, Germany.

E-mail: adelozar@gmail.com

DECEMBER 2015 DE LOZAR AND MELLADO 4681

DOI: 10.1175/JAS-D-15-0087.1

� 2015 American Meteorological Society

mailto:adelozar@gmail.com


Past studies in a cloud-top mixing layer have shown

that evaporative cooling alone cannot generate signifi-

cant entrainment (Mellado et al. 2009; Mellado 2010),

unless acting in combination with other mechanisms

like a strong enough shear at the cloud top (Mellado

et al. 2014). At the same time, evaporative cooling

produces very weak in-cloud turbulence, even for the

strong shear cases. On the other hand, De Lozar and

Mellado (2013) have shown that radiative cooling alone

in a so-called smoke cloud produces a reasonable in-

tensity of in-cloud turbulence, but the entrainment ve-

locities are 50% below the measured values.

In this paper, we investigate the combined effect of

radiative and evaporative cooling in a cloud-top mixing-

layer configuration using DNS. We aim to develop

generic scaling laws that can help to derive entrainment-

velocity parameterizations. In section 2 we describe the

linearized formulation that we use in this paper and the

consequences of this approximation. Section 3 is dedi-

cated to the description of the simulation setup and

the numerical experiments. In section 4 we investigate

the evaporative-cooling buoyancy source and quantify the

diffusive entrainment that appears as a result of a too-

high viscosity. In section 5, we define an inversion point

that divides the cloud from the entrainment zone and

justify this choice by showing the validity of two scaling

laws that are consistent with this definition. The first

scaling law characterizes the in-cloud flow. The second

scaling law relates the total evaporative cooling to the

entrainment velocity. The turbulent and direct cooling

contributions to the entrainment velocity that stem from

the definition of the inversion point are presented in

section 6. Section 7 describes the implications of this

study for LES and for entrainment parameterizations.

Finally, we present our conclusions in section 8.

2. Formulation

a. The linearized formulation

The formulation is based on the set of equations

presented in Mellado et al. (2010) and De Lozar and

Mellado (2014), which has been extended to retain the

effect of radiative cooling. The formulation is based on

two conserved variables: total water qt and enthalpy h.

Following Albrecht et al. (1985) the total water is ex-

pressed by a mixing fraction x:

q
t
5 qc

t 1 (qd
t 2qc

t )x , (1)

where the superscripts c and d refer to two reference

states in the cloud and dry free atmosphere. The en-

thalpy is expressed as

h5hc 1 (hd 2 hc)x1c , (2)

wherec represents thedeviations from the linearmixing line

due to radiative cooling. The two reference states describe

the two layers that form a cloud-top mixing-layer configu-

ration. The top, dry layer is given by the combination (x5 1

andc5 0) and the cloud, bottom layerby (x5 0 andc5 0).

The evolution equations are written in the Boussinesq

approximation for the case that all diffusion coefficients

are equal to the thermal diffusivity:

du/dt52$p1 n=2u1 bk,

dx/dt5 k
T
=2x, and

dc/dt5 k
T
=2c2 r , (3)

where d/dt5 ›/›t1 u � $ is the material derivative, n is

the kinematic viscosity, and kT is the thermal diffusivity.

In this study we assume that the Prandtl number is equal

to one: Pr5 n/kT 5 1.

The radiative cooling is described by a one-

dimensional radiation scheme:

r5F
0
(lr)21‘ � exp

�
2l21

ðztop
z

‘(z0) dz0
�
, (4)

where ‘5 q1/q
c
1 is the normalized liquid water. The ra-

diation scheme assumes that longwave radiation only

propagates in the vertical direction. The resulting radi-

ative forcing is defined by the total cooling per unit area

F0 and by the extinction length l that defines the region

where the radiative cooling is effective (Larson et al.

2007; De Lozar and Mellado 2013).

The buoyancy and liquid-water equations are simpli-

fied in a procedure similar to Bretherton (1987) and

Pauluis and Schumacher (2010), which is detailed in the

appendix. The main simplifications are the assumption

of infinitely fast thermodynamics and the linearization

of the buoyancy and saturated-vapor content equations.

In our reference case these simplifications introduce

only a small error in the buoyancy b of around 3% with

respect to the full formulation. The resulting forms for

the liquid water and buoyancy read as follows:

‘5 f (j)5 � ln[exp(j/�)1 1] and

b/Db5 x

�
11D

12 x
s

�
1

c

c
b

1 (‘2 1)

�
D1 x

s

12 x
s

�
, (5)

where Db5 bd 2 bc, and the variable

j5 12 x/x
s
2c/c

s
(6)

defines the cloud–dry air boundary by j5 0. The func-

tion f (j) tends to the piecewise linear function defined
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by Bretherton (1987) in the limit �/ 0, but it has a finite

second-order derivative. Mellado et al. (2009) showed

that when �# 1/16 the results become independent of

� and tend to the piecewise linear limit. Consequently,

we use �5 1/16. In the absence of radiative cooling

(r5 0) c/ 0, and the set of equations for the mixing

line formulation is recovered. In this limit, D52bs/Db
is the normalized buoyancy of the just saturated (no

liquid) cloud–dry air mixture, which occurs at the

mixing ratio x5 xs. The parameters D and xs fully

characterize the buoyancy reversal instability (BRI),

which happens for the condition D. 0 (Siems and

Bretherton 1992; Mellado et al. 2009). The parameters

cb and cs scale how the variations in enthalpy, given by

c in Eq. (2), modify the nondimensional buoyancy and

liquid water, respectively. In the appendix the param-

eters D, xs, cs, and cb are given as functions of the in-

version properties.

b. Nondimensionalization

Once the initial conditions are sufficiently forgotten,

dimensional analysis shows that the cloud-top mixing-

layer flow properties depend only on the height z, the

mixing-layer depth z*, and on five nondimensional

numbers. Our choice of nondimensional numbers is

fRi
0
, Re

0
,D,x

s
,bg . (7)

This set is an extended version of the set that we used

in the radiative-cooling-only case (De Lozar and

Mellado 2013). The nondimensionalization is based on

the parameters imposed by the radiative forcing: the

reference buoyancy flux B0 5 (F0g)/(rcp,0Tc) and the

length scale l. These parameters define a reference

velocity and buoyancy scale: U0 5 (B0l)
1/3 and

b0 5B0/U0, which can be used to construct a reference

Richardson number Ri0 5Db/b0 and a reference Rey-

nolds number Re0 5U0l/n. The reference Richardson

number characterizes the strength of the inversion

against eddies of size l, and it is much larger than

typical gradient Richardson numbers observed in

stratocumulus (Katzwinkel et al. 2012). The reference

Reynolds number characterizes the diffusive effects and

the separation of scales in the entrainment zone (which

is typically of order l). The parameters D and xs fully

describe the evaporative cooling in the mixing line for-

mulation (Siems and Bretherton 1992) and have been

introduced in section 2a. Finally, the parameterb (defined

in the appendix) relates the changes of buoyancy to the

variations in enthalpy within saturated layers and plays

the same role as the parameter b in Randall (1980) or as

the parameter asat in van Zanten and Duynkerke

(2002).

c. Isobaric mixing in the linearized formulation

The linear approximations combined with infinitely fast

thermodynamics impose a constraint for isobaric mixing:

net evaporation of droplets is only possible through mix-

ing of saturated and unsaturated parcels, as typically

happens at the cloud top. By net evaporation, we mean a

process in which the volume-integrated liquid-water con-

tent decreases when mixing two parcels of fixed size. This

limitation originates from writing the saturated-water

content at constant pressure qs as a linear combination

of the conserved variables h and qt. This implies that the

saturated-water content also behaves as a conserved var-

iable for isobaric mixing processes. In the infinitely fast

thermodynamics approximation the liquid water content

in saturated parcels is given by ql 5 qt 2 qs, which is also a

linear function of the conserved variables. As a result, the

liquid water behaves as a conserved variable when mixing

two saturated parcels, and the volume-integrated liquid

water content stays constant. This result is used to justify

the entrainment scaling presented in section 5.

A corollary of the previous statement is that it is not

possible to obtain net condensation of droplets through

isobaric mixing in the linear approximation. In un-

saturated parcels the total water content is below the

saturated water content; that is, qt , qs. Since qt and qs

mix linearly as conserved scalars, it is not possible to mix

two unsaturated parcels resulting in a saturated parcel

such that qt . qs.

3. Simulations setup

a. Flow scales in a cloud-top mixing layer

In our simulations we aim to resolve the length scales

that are relevant for the interaction of evaporative and

radiative cooling with the inversion dynamics. The scale

relevant for radiative cooling is the depth of the region

cooled by longwave radiation—that is, the extinction

length l, which has a typical value of ’15m. The evap-

orative cooling is determined by molecular mixing, and

hence it is directly related to the entrainment process.

De Lozar and Mellado (2013) found that the turbulent

flux of buoyancy in the entrainment zone can be related

to eddies between 50 cm and 60m, suggesting that the

relevant scales for entrainment are also around this

interval. This assumption is also supported by mea-

surements of the entrainment mass flux in the POST

campaign, which are related to roughly the same range

of scales (Gerber et al. 2013).We conclude that the set of

the relevant scales that need to be resolved is also ap-

proximately centered around l.

We have to assess the relevance for our problem of the

atmospheric scales that we do not retain in the analysis.
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The smallest resolved scale in DNS is on the order of the

Kolmogorov length, which is estimated by assuming that

buoyancy production balances the dissipation of turbu-

lent kinetic energy: h ’ n3/4B21/4
0 . The separation of

scales between our reference scale l and the Kolmo-

gorov length is then estimated from our definition of the

reference Reynolds number: Re0 ’ (l/h)4/3. In atmo-

spheric flows the Kolmogorov length is around hat ;
1mm, and the corresponding Reynolds number Re0 ;
105 is currently inaccessible for DNS. To resolve length

scales comparable to the radiation scale, the Kolmo-

gorov scale is adjusted by increasing the viscosity of the

fluid to values that are much higher than in air, so

that h ; 10 cm and Re0 ; 103. This procedure effec-

tively neglects all flow scales between the atmospheric

Kolmogorov length and the Kolmogorov length in

the simulation. We assume that flow statistics can be

extrapolated to the atmospheric conditions when

they become independent of the smallest resolved

length scales in the simulations—that is, when they

become independent of Re0 (Monin and Yaglom 1971;

Dimotakis 2005). The Re0 independency is tested by

performing several simulations with different Re0.

This test is important because an enhanced viscosity

might affect the flow in ways that are different to just

the dissipation of the neglected small scales, as it is

shown in section 4.

The largest scale of the flow in a cloud-top mixing

layer is on the order of the integral length scale z* (de-

fined in section 5), which is proportional to the mixing-

layer depth. In our configuration this depth grows

continuously with time so that the dependence on the

largest scales of the flow (or z*) is translated to a time

dependence. When the mixing layer is capped by a

stratification, we can expect that some entrainment-

zone properties become eventually independent of z*

because large eddies cannot directly generate entrain-

ment [see, e.g., Fernando (1991) and references therein].

This expectation is based on the scale separation be-

tween the small-scale entrainment eddies and z*, when

z* is large enough. The condition of being independent

of z* also indicates that other large-scale processes, not

modeled in the cloud-top mixing layer, cannot interact

directly with the entrainment eddies and will not affect

the entrainment directly on a short-time scale. On a

longer time scale, large-scale processes can modify the

entrainment through the variation of the mean proper-

ties of the cloud (like the cloud moistening due to the

surface fluxes or large-scale subsidence) or through the

variation of the input of kinetic energy that receives

the entrainment eddies via the turbulent cascade (like

the enhancement in kinetic energy due to surface fluxes

or cloud-base heating).

Finally, the total separation of scales inside the cloud

[estimated by Re* 5 w*z*/n ’ (z*/h)4/3;104, where the

integral velocity scale w* is defined in section 5] is

sufficiently high to expect Reynolds number indepen-

dency in the second-order statistics we show in this

paper (Monin and Yaglom 1971; Dimotakis 2005).

Consistent with those values of Re*, the Reynolds

number based on the Taylor microscale Rel [as defined

in Pope (2000) for example] is also sufficiently high in

the cloud bulk Rel ; 75–250 and in the inversion layer

Rel ; 50–200.

b. Simulation parameters

Our reference case is based on a nighttime flight RF-

01 in unbroken stratocumulus of the DYCOMS-II

campaign, as described in Stevens et al. (2005). We di-

vide the simulations into three groups in Table 1. In the

first group we include the simulations of the reference

case, together with the cases in which we only vary the

BRI parameter D. This study is the main focus of this

paper, and therefore we have employed most of our

computational time for the simulations of this group,

often using broader domains in order to reach higher

statistical convergence.

In the second group we perform two simulations in

which all evaporative-cooling parameters are equal as in

the reference simulation, but we decrease systematically

the ratio of the stratification to the radiative cooling

defined by Ri0. This is equivalent to increasing the ra-

diative forcing by a factor of 2 and 4 with respect to the

reference case.

In the third group we explore the possibility of varying

xs andD at the same time for a reduced number of cases.

The last case of this group is based on measurements of

Arctic stratocumulus from the reference flight 11 of the

VERDI campaign (Klingebiel et al. 2015). The jump in

humidity in VERDI (Dqt 520:65 gkg21) is consider-

ably lower than in DYCOMS-II (Dqt 527:5 g kg21),

whereas the longwave radiative properties are quite

similar. Therefore, the relative importance of evapora-

tive cooling over radiation in VERDI is expected to be

considerably lower than in DYCOMS-II. The VERDI

simulation is the only one in which we varied the pa-

rameter b in order to match the measured value.

We have explored the dependence on the unresolved

small scales by performing four simulations with different

Re0 for the reference case. Additionally, simulations with

two differentRe0 were performed formany other cases in

the first and third group. The simulations with low Re0
typically cover a wider range of z* and were also used to

explore the dependence on the large scales.

The largest length scale that is reached in each sim-

ulation is comparable to the mixing layer depth at the
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last time step, which is approximately twice the integral

length scale (;2zend* ). When using the dimensionaliza-

tion consistent with the DYCOMS-II radiative-cooling

parameters (l5 15m, F0 5 70Wm22), the simulations

with Re0 5 800 and Re0 5 1600 take ;10min to reach a

mixing layer of depth 2zend* ’ 220m, the simulations with

Re0 5 400 take;15min to reach 2zend* ’ 375m, and the

simulation with Re0 5 200 takes ;20min to reach

2zend* ’ 700m. In this last simulation the integral velocity

scale reachesw*5 0:77ms21 at the last time step,which is

comparable to stratocumulus measurements.

c. Numerics

The numerical algorithm is based on high-order,

spectral-like compact finite differences (Lele 1992)

and a low-storage fourth-order Runge–Kutta scheme

(Carpenter and Kennedy 1994). The time step is set by a

Courant condition. All simulations run for ;3500 time

steps except for Re0 5 1600, which runs for 7200 time

steps. The pressure Poisson equation is solved using a

Fourier decomposition along the periodic horizontal

planes x1Ox2 and a factorization of the resulting set of

equations along the vertical coordinate (Mellado and

Ansorge 2012).

All the simulations discussed on this paper have a

resolution parameter Dx/h on the order of 2.0 or less,

where Dx is the grid spacing and h is the Kolmogorov

length. Using grid convergence studies (not shown),

such a resolution has been proved to be enough for ac-

curacies on the order of 2% or better in the statistics

discussed in this paper, using the numerical algorithm

described above. Further details can be found in

Mellado (2010).

4. The buoyancy source

The strength of the evaporative and radiative cooling

can be evaluated by their associated integrated buoy-

ancy sources. The radiative-cooling integrated buoy-

ancy source is determined by the temperature of the

cloud and by the temperature and composition of the

atmosphere, and it is usually approximately well known

(Bretherton et al. 1999). On the other hand, the

evaporative-cooling integrated buoyancy source is de-

termined by the entrainment dynamics, which are

unknown a priori. This means that the relative strength

of the two main driving forces in stratocumulus models

critically depends on properly resolving the entrain-

ment region, thus producing a large uncertainty in

numerical models. We investigate in this section

whether the total buoyancy source is well captured in

our simulations.

TABLE 1. Parameters in the simulation. The first column contains the label of each simulation, where the group is given by the roman

numbers. We have kept the same label for all simulations that only differ in the Reynolds number. The next columns present the pa-

rameters that define each simulation. The evaporative cooling is defined by the parametersD, xs, and b. The radiative cooling is defined by

a reference Richardson number Ri0, and the viscous forces are characterized by a reference Reynolds number Re0. The seventh column

indicates the vertically averaged buoyancy flux at the last time step B5 (z*)21Ð hw0b0idz, scaled by the radiative forcing. The eighth

column shows the domain size in dimensions of the extinction length (typically l5 15 m), differentiating between the horizontal and the

vertical extension. The ninth column represents the number of points of the numerical grid. The last column indicates the cases that were

motivated by in situ measurements (see text).

No. D xs b Ri0 Re0 BS21
rad Domain size Numerical grid Campaign

Ia 20.045 0.09 0.53 40 400 0.74 (30l)2 3 30l (1024)2 3 1024 —

Ia 20.045 0.09 0.53 40 800 0.79 (36l)2 3 18l (2048)2 3 1024 —

Ib 0.031 0.09 0.53 40 200 1.30 (50l)2 3 50l (1024)2 3 1024 DYCOMS-II

Ib 0.031 0.09 0.53 40 400 1.22 (30l)2 3 30l (1024)2 3 1024 DYCOMS-II

Ib 0.031 0.09 0.53 40 800 1.18 (36l)2 3 18l (2048)2 3 1024 DYCOMS-II

Ib 0.031 0.09 0.53 40 1600 1.16 (27l)2 3 18l (3072)2 3 2048 DYCOMS-II

Ic 0.06 0.09 0.53 40 400 1.61 (30l)2 3 30l (1024)2 3 1024 —

Ic 0.06 0.09 0.53 40 800 1.48 (36l)2 3 18l (2048)2 3 1024 —

Id 0.09 0.09 0.53 40 400 2.13 (30l)2 3 30l (1024)2 3 1024 —

Id 0.09 0.09 0.53 40 800 1.93 (36l)2 3 18l (2048)2 3 1024 —

IIa 0.031 0.09 0.53 20 800 1.10 (18l)2 3 18l (1024)2 3 1024 —

IIb 0.031 0.09 0.53 10 800 1.06 (18l)2 3 18l (1024)2 3 1024 —

IIIa 0.0155 0.045 0.53 40 800 1.09 (18l)2 3 18l (1024)2 3 1024 —

IIIb 0.04 0.12 0.53 40 800 1.22 (18l)2 3 18l (1024)2 3 1024 —

IIIc 0.031 0.2 0.53 40 400 1.15 (30l)2 3 30l (1024)2 3 1024 —

IIIc 0.031 0.2 0.53 40 800 1.12 (18l)2 3 18l (1024)2 3 1024 —

IIId 20.031 0.24 0.53 40 400 0.86 (30l)2 3 30l (1024)2 3 1024 —

IIId 20.031 0.24 0.53 40 800 0.89 (18l)2 3 18l (1024)2 3 1024 —

IIIe 20.11 0.2 0.71 28.5 800 0.80 (18l)2 3 18l (1024)2 3 1024 VERDI
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a. Computation of the buoyancy source

To evaluate the buoyancy sources, a diagnostic

exact equation for the buoyancy is derived from Eqs.

(3) and (5):

db/dt5 k
T
=2b2 s

rad
2 s

eva
,

s
rad

5 g(ccpTc
)21

br, and

s
eva

5 k
T
Db

�
D1 x

s

12 x
s

��
d2f

dj2

�
j$jj2 , (8)

where srad and seva are the buoyancy sources due to ra-

diative and evaporative cooling, respectively. The

radiative-cooling source has the same form as the one

investigated in De Lozar and Mellado (2013), where

radiative cooling was the only process retained in the

analysis. The evaporative-cooling source is nonzero only

at the interface between saturated and unsaturated air,

consistent with the mixing behavior explained in section

2c. This behavior is given by the term d2f /dj2, which is a

function of integral one and width � across the cloud–dry

air interface (j5 0), and tends to a Dirac delta function

in the limit �/ 0.

In Fig. 1, we compare the horizontally averaged pro-

files of the buoyancy sources in our reference case,

which corresponds to the reference flight RF-01 from

the DYCOMS-II campaign. Both cooling sources are

concentrated in a thin region close to the inversion. The

radiative source srad peaks close to the cloud top at

5Kh21 and decays exponentially over a length scale

l5 15m. When comparing with literature results, the

radiative cooling is often given in terms of r/cp }b21srad.

This function peaks at 10Kh21, in agreement with the

calculations of Larson et al. (2007) for the same flight.

The maximum evaporative cooling seva is 5 times higher

(25K h21) than the maximum radiative cooling, but

it also concentrates on a thinner region close to the

cloud top.

The driving strength of radiative and evaporative

cooling can be given by their respective integrated

buoyancy sources:

S
rad

5

ð
hs

rad
i dz5bB

0
and

S
eva

5

ð
hs

eva
i dz , (9)

where the angle brackets symbolize the horizontal av-

erage. This measure can be considered as a generaliza-

tion of previous studies, in which the strength of both

mechanisms is directly evaluated from the linearized

buoyancy function in Eq. (5) (e.g., Yamaguchi and

Randall 2012).

Equation (9) shows that the integrated buoyancy

source due to radiative cooling, Srad, is constant in time

in a cloud-top mixing-layer configuration. The same is

true for stratocumulus under the condition that they are

optically thick (i.e., that the cloud depth is much larger

than the extinction length l). When introducing latent

heat effects, the radiative buoyancy source decreases

because a fraction (12b) of the radiative cooling is used

for the condensation of cloud droplets. In the limit of no

evaporation (b5 1), Srad 5B0 is the total source of

buoyancy as in the smoke cloud (Bretherton et al. 1999).

In general, b ’ 0:5, so that only half of the radiative

FIG. 1. Horizontally averaged buoyancy sources due to evaporative and radiative cooling

for the DYCOMS-II simulation with Re0 5 1600. The profiles correspond to a CBL depth

2z*5 235m.We have assumed l5 15m for the figures shown in this paper, but all the plots can

be rescaled for a different value of l. The buoyancy profile has been added as a reference.

Notice how the evaporative cooling reaches higher values but concentrates on a smaller region

close to the inversion.
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cooling acts directly on the buoyancy, as already noted

by some authors (e.g., van Zanten and Duynkerke

2002). Since Srad quantifies the direct impact of radiation

on the buoyancy, we have found it more natural to use

Srad instead of B0 to scale many of the results presented

in this paper.

Figure 2 shows the evolution of the integrated buoy-

ancy source due to evaporative cooling Seva as a function

of z* for the simulations of the group I in which we vary

the BRI parameter D. Only the simulations of group I

are shown, because these are the ones with better sta-

tistical convergence. We observe that evaporative

cooling increases with viscosity when keeping all other

parameters constant (lines with same color but different

style). The differences are especially large for the BRI

cases (D. 0), in which Seva increases by;10%when the

viscosity is doubled. This viscosity dependence is in line

with previous stratocumulus LES, where entrainment,

and so Seva, are considerably enhanced by diffusion (e.g.,

Stevens et al. 2005). It is usually argued that this problem

arises because of the limited resolution employed in

LES, but we observe that the viscosity dependence does

not disappear even when the Kolmogorov scale of the

resolved flow is below 10 cm.

b. The BRI correction

Mellado (2010) investigated the BRI in a cloud-top

mixing layer driven solely by evaporative cooling. He

found that the inversion thickness is determined by a

balance of diffusion and the negative buoyancy gener-

ated by the BRI. This balance sets a constant diffusive

flux into the cloud that governs the entrainment. The

resulting inversion thickness hdiff, entrainment velocity

wdiff
e , and integrated buoyancy source Sdiff are

h
diff

(n)5
10

f
1
(x

s
1D)2/3

"
n2(11D)2

DDb

#1/3

,

wdiff
e 5 n/h

diff
, and

S
diff

5 (11D/x
s
)wdiff

e Db , (10)

where f1 ’ 1:3 is a numerical constant, whose value was

obtained from the simulations. The quantities defined by

Eq. (10) explicitly depend on viscosity and are called

‘‘diffusive’’ in this paper (note that in our DNS they are

independent of the numerics). For the viscosity of air,

the diffusive entrainment velocity and buoyancy source

are negligible (wdiff
e 5 0:15mms21 and Sdiff ’ 1Wm22)

when compared to measurements (we ’ 2–5mms21),

indicating that evaporative cooling alone cannot control

the stratocumulus-top dynamics. When using an en-

hanced viscosity, the corresponding diffusive source in-

creases by a factor (n/nair)
1/3. This scaling can also be

obtained from dimensional analysis, when considering

the balance between diffusion and the buoyancy per-

turbation introduced by the BRI bs. For our reference

case with the lowest viscosity the diffusive cooling is

Sdiff ’ 8Wm22, approximately 20% of Seva and there-

fore nonnegligible.

Our hypothesis is that this diffusive balance also sets

the local inversion thickness in the simulations with BRI

even if other forcing mechanisms are present, provided

FIG. 2. Ratio of the integrated buoyancy sources: evaporative cooling over the radiative

cooling. The ratio is plotted as a function of the integral scale for the simulations of the first

group. The colors denote D, and the line types show values of Re0: 1600 (circles), 800 (solid),

400 (dashed), and 200 (dotted–dashed).
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that the stratification is strong enough for the cloud in-

terface to remain relatively flat. The underlying as-

sumption is that the aforementioned balance at the

cloud interface decouples from the radiative forcing and

the turbulence in the cloud. To test this hypothesis we

present in Fig. 3a a snapshot of the cloud top in which

the inversion layer is highlighted by the red scale. Notice

that the local thickness of the inversion layer is well

represented by the diffusive inversion thickness hdiff

given by Eq. (10), supporting our hypothesis.

A more quantitative comparison is obtained from es-

timating the local thickness of the inversion dl from the

averaged inversion thickness di. We define the averaged

inversion thickness as the distance in which the hori-

zontally averaged buoyancy profile varies from its cloud

value (bc 5 0) to 95% of the buoyancy jump Db. The
averaged thickness di differs from the local thickness dl
because the averaged one includes a small deformation

of the inversion by the large turbulent eddies dt:

d
i
5 d

l
1 d

t
, (11)

where dt can be inferred from a simple balance of po-

tential and kinetic energy (see, e.g., Haman 2009):

d
t
5C(w*)2/Db , (12)

with w* being the integral velocity defined in Eq. (16)

and C a constant of order unity. Figure 3b shows the

local inversion thickness dl [Eq. (11)] as a function of the

diffusive scale hdiff for all the BRI simulations. We use

C5 2 because this value minimizes the temporal varia-

tions in dl. In general, hdiff provides a very good ap-

proximation for the local thickness, confirming the

visual impression in Fig. 3a.

c. The inviscid contribution

In Fig. 4 we present the integrated evaporative-

cooling buoyancy source, once the diffusive contribu-

tion Sdiff [Eq. (10)] is subtracted. All curves with the

same D but different viscosities collapse. This Re0 in-

dependence indicates that the diffusive flux is captured

by the diffusive instability and that most of the small-

scale turbulent mixing occurs at the resolved scales. As a

result, we identify Seva 2 Sdiff as the inviscid contribution

to the integrated buoyancy source due to evaporative

cooling.

The inviscid integrated buoyancy source due to

evaporative cooling increases with z* in Fig. 4. This in-

crease is related to the direct cooling contribution to the

entrainment as explained in section 6. The rate of

growth of the direct cooling with z* decreases with in-

creasing z*, with the consequence that the evaporative

FIG. 3. (a) Buoyancy at the inversion for the DYCOMS-II case (Re0 5 1600). The color scale

has been chosen to highlight the local inversion thickness together with the flow structures. The

blue scale covers the range 20:08,b/Db, 0; the red scale covers 0, b/Db, 0:95. The black

box represents the diffusive thickness hdiff , and the arrow indicates the radiation extinction

length l. The black line marks the height of the inversion point, and the white contour is the

cloud boundary as given by the isosurface ql 5 1023qc
l . The snapshot represents a region 155m

wide. (b) Local inversion thickness as a function of the diffusive inversion thickness [see Eqs.

(10) and (11)]. Each point corresponds to the local thickness averaged during the second half of

the simulations. The error bar represents 3 times the standard deviation. The colors represent

D, and the symbols give values of Re0: 1600 (triangles), 800 (circles), 400 (squares), and 200

(diamonds).
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cooling seems to saturate for z** 250m. The Re0 in-

dependency together with the z* saturation confirms

that all scales relevant for turbulent mixing are resolved

in our simulations. This gives us confidence to extrapo-

late the results of our DNS to atmospheric conditions

once the diffusive contribution is removed.

5. The inversion point

The inversion point was originally introduced by

Lilly (1968) in order to describe the exchange of energy

and water between the cloud and the free atmosphere

in a zero-order mixed-layer model. In such a simplified

model the flux of water and energy at the inversion

point directly quantifies the aforementioned exchange.

The extension of this concept to more realistic repre-

sentations of the vertical structure of the inversion is

however nontrivial owing to the existence of a finite-

thickness layer, called the entrainment interfacial layer

or entrainment zone, between the cloud and the free

atmosphere. A natural extension of the inversion point

concept is to redefine the inversion point as the in-

terface between the entrainment zone and the cloud

layer and then to investigate the exchange of water and

energy at this point. Two problems arise when ex-

tending the definition of the inversion point. First, the

energy balance becomes more complex than in the

zero-order model owing to new terms that account for

the cooling and deformation of the entrainment zone.

Second, the entrainment zone is not uniquely defined,

and therefore the choice of the inversion point is

not unique.

Any definition of the inversion point zi serves to di-

vide the rate of change of total buoyancy into two

contributions:

d

dt

ðzi
2‘

hbi dz52Q
cbl

and

d

dt

ð‘
zi

hbi dz52Q
inv

, (13)

where Qcbl represents the in-cloud cooling and Qinv

represents the entrainment-zone cooling. The in-cloud

region and entrainment zone are specified by the in-

version point definition. The entrainment-zone cooling

Qinv can be written as

Q
inv

5
dz

i

dt
Db1

d

dt

" ð‘
zi

(Db2 hbi) dz
#
, (14)

where the first term of the right-hand side accounts for

the inversion point motion, where

w
e
5 dz

i
/dt (15)

is the entrainment velocity, and the second term is a

shape term that quantifies the deformation of the cloud

interface.

The challenge is to choose an inversion point that

yields a balance of buoyancy, as given by Eq. (13), that is

useful to understand the cloud dynamics. Following our

previous work in a cloud-top mixing layer driven solely

by radiative cooling (De Lozar and Mellado 2013) we

choose the inversion point as the height of neutral

FIG. 4. Ratio of the integrated buoyancy sources: inviscid evaporative cooling over the ra-

diative cooling. The inviscid evaporative cooling has been calculated by removing the diffusive

contribution Sdiff given by Eq. (10), from the total evaporative cooling. The ratio is plotted as

a function of the integral scale. The colors denoteD, and the line types represent values of Re0:

1600 (circles), 800 (solid), 400 (dashed), and 200 (dotted–dashed).
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buoyancy hbi(zi)5 0. In this section we validate this

choice by presenting scalings that show that, first,

the corresponding in-cloud coolingQcbl characterizes the

convective movements in the cloud, and second, that the

corresponding entrainment-zone cooling Qinv relates to

the evaporative cooling caused by the entrainment.

a. Scaling of the integral quantities inside the cloud

This scaling is based on the observation that the flow

in a cloud-top mixing layer resembles an inverse convec-

tive boundary layer (CBL) that is driven from the top. If

the flow inside the cloud behaves as in a CBL, the buoy-

ancy flux driving the convective flow should then be re-

lated to the in-cloud cooling Qcbl, assuming that the

inversion point is well defined. In De Lozar and Mellado

(2013) we showed that integral properties of the flow in

the in-cloud region follow typical convective scalings

when redefining the reference buoyancy fluxBref such that

B
ref

5

" ðt
t0

Q
cbl
(t0) dt0

#
(t2 t

0
)21,

z*5
1

B
ref

ð
hw0b0i dz,

w*5 (B
ref
z*)1/3, and

b*5B
ref
/w*, (16)

where z*, w*, and b* are the integral length, velocity,

and buoyancy scale as defined by Deardorff (1970), and

t0 is the initial time of the simulations. The integration

time t2 t0 is an estimation for the time that takes for the

CBL to adapt to variations in the buoyancy fluxQcbl, and

it is approximately twice as long as the large-eddy

turnover time t*5 z*/w*. The only difference with the

radiative-cooling-only scaling is that the in-cloud cool-

ing Qcbl now includes a nonnegligible contribution due

to the evaporation of droplets in the in-cloud region.

In the fully developed turbulent regime, averaged

flow properties scale with the convective scales so that

they are independent of time and just depend on the

self-similar variable j5 (z2 zi)/z* (Mellado 2012).

Figure 5 shows the scaled velocity fluctuations andmean

buoyancy as a function of the self-similar variable j for

all our simulations. Each curve represents the average

over several time steps starting from z*/l5 6, which is

our estimate for the beginning of the fully developed

regime where initial conditions are sufficiently forgot-

ten. Together with our simulations, the results of a

cloud-top mixing layer driven solely by evaporative

cooling (Mellado 2010) are also shown in green, where

the shadowed region represents typical variations due to

lack of statistical convergence. All our results show an

excellent collapse indicating that Bref is indeed the rel-

evant buoyancy flux driving the flow in the cloud, thus

justifying our election of the inversion point. Moreover,

since this convective scaling is an inviscid scaling, the

collapse proves that the flow has started to reach the

Reynolds number–independent regime (as given by

Re*) in the in-cloud region.

b. Entrainment scaling

Using the level of vorticity fluctuations, we can dif-

ferentiate between a region with irrotational flow, which

comprises the free atmosphere and part of the inversion

layer, and a region where the flow is rotational, and

hence turbulent, which comprises the in-cloud region

and the turbulent part of the inversion layer. Consis-

tently with the dynamics of a turbulent–nonturbulent

interface, irrotational flow is regularly entrained into the

turbulent region, whereas the turbulent flow cannot mix

into the irrotational region. These entrainment events

provide the dry air necessary for the evaporation of

droplets at the stratocumulus top, even when the details

of how and where the evaporation actually happens

might be complex. In this section we use this observation

in order to find a relationship between the total

evaporative-cooling buoyancy source Seva with the en-

trainment of dry air into the cloud, as quantified byQinv.

We assume quasi-steady mixing dynamics at the cloud

top. Quasi-steady dynamics are defined by the condition

that the volume fraction and composition of unsaturated

air in the turbulent region of the flow (i.e., the un-

saturated air between the free atmosphere and the

cloudy air) varies slowly when compared with the en-

trainment dynamics. In other words, the volume fraction

and composition of unsaturated air in the inversion layer

and in cloud holes is approximately constant. Here we

refer to cloudy air as the condensate-laden air, which is

different to the in-cloud region previously defined.

Quasi-steady mixing dynamics can be expected when

the separation of scales between the entrainment dy-

namics, characterized by l, and the convective dynam-

ics, characterized by z*, is large enough.

The total evaporative-cooling buoyancy source is

calculated by taking the time derivative of the horizon-

tally averaged volume-integrated buoyancy [Eq. (5)] in

the case of no radiation (r5c5 0):

S
eva

52
Db

qc
l

D1 x
s

12 x
s

d

dt

�ð
hq

l
i dz

�
eva

, (17)

where the domain of the integral is the cloud and the

entrainment region (in our simulations it is the whole

domain). The derivative accounts only for changes in

liquid due to evaporation.
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FIG. 5. Self-similar vertical profiles of (a) vertical velocity fluctuations wrms 5
ffiffiffiffiffiffiffiffiffiffiffiffiffihw0w0ip

,

(b) horizontal velocity fluctuations urms 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihu0u0i1 hy0y0ip

, and (c) mean buoyancy. The profiles

are averaged from z*; 6l once the flow reaches the fully developed regime. The thicker lines

correspond to the experiments of the first group and are described in the caption of Fig. 2. The

black crosses correspond to the modified stratification experiments of the second group (where

3 represents IIa with Ri0 5 20, and 1 represents IIb with Ri0 5 10). The thinner lines corre-

spond to the experiments of the third group: IIIa (black), IIIb (blue), IIIc (magenta), IIId (red),

and the VERDI case (cyan). The line types denote Re0: 800 (solid) and 400 (dashed). The

shadowed green area shows the result of a cloud-top mixing layer driven solely by evaporative

cooling from Mellado (2010).
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To evaluate the changes in liquid water due to evap-

oration, let us consider an entrained parcel from the free

atmosphere with volume dyd. After the entrainment

event the dry-air parcel mixes within the turbulent re-

gion, both with unsaturated and cloudy air. When as-

suming quasi-steady dynamics, the volume of entrained

dry air, which is mixed into the unsaturated air, has to be

compensated by an equivalent volume of dry air mixing

out the unsaturated air, because the composition and

volume fraction of the unsaturated air cannot change.

Since no air can return to the free atmosphere, this

volume of dry air has to mix with cloudy air. As a result,

the entrainment event causes that a volume of dry air

dyd (not necessarily the same air) is mixed (directly or

indirectly) with cloudy air.

Let us consider the mixing process of dry with cloudy

air as a sequence of two stages. In a first stage, themixing

process continues until the volume of dry air dyd is at

saturation (x5 xs). From the definition of xs in the lin-

ear formulation, the volume of cloudy air needed to

bring this volume of dry air to saturation is given by

dy
c
5

12 x
s

x
s

dy
d
. (18)

The just-saturated air does not contain any liquid

water, which means that all liquid initially contained by

dyc has evaporated. If q
c
l is the liquid specific humidity in

the cloud, themass of liquid that evaporates is quantified

by r0q
c
l dyc. In a second stage, any further mixing of the

saturated air with cloudy air does not produce any extra

evaporation because the mixing process always involves

fully saturated air (see section 2). Therefore, we can

conclude that r0q
c
l dyc is the induced evaporated water

when a parcel of dry air of volume dyd is entrained into

the cloud.

Integrating Eq. (18) for all entrained parcels and

taking the time derivative, we obtain

d

dt

�ð
hq

l
i dz

�
eva

52
12 x

s

x
s

qc
l

A

d

dt

�ð
dV

�
ent

, (19)

where the last term refers to the rate of entrained dry air

into the cloud andA is the area of the integrated volume

used in the surface averages.

The last step consists in estimating the rate of en-

trainment of dry air d(
Ð
dV)ent/dt. In De Lozar and

Mellado (2013), we showed that the rate of entrainment

of dry air (and of any conserved scalar) is well approx-

imated by (QinvDxA)/Db, where Dx5 1 when the scalar

is the mixing fraction. This condition is necessary for the

synchronized motion of the buoyancy and dry air.

Combining Eqs. (17) and (19) and the approximation for

the entrainment rate of dry air, we reach a simple ex-

pression that relates the entrainment-zone cooling with

the total evaporative cooling (in both the entrainment

zone and the in-cloud region):

S
eva

5Q
inv
(11D/x

s
) . (20)

Figure 6 shows that the balance given by Eq. (20) is

approached asymptotically in all our simulations, sup-

porting the validity of our assumptions. The deviations

at the early stages are mainly due to the time needed to

reach quasi-steady dynamics.

In the case of negligible deformation of the inversion,

the above-described approximation for the entrainment

of dry air reduces to the entrainment condition of the

FIG. 6. Scaling relating the inversion coolingQinv with the total evaporative cooling Seva as given

by Eq. (20). The legend is explained in Fig. 5.
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zero-order model (d(
Ð
dV)ent/dt5weA). This allows us

to rewrite Eq. (19) in a form that provides an approxi-

mated relation between the total evaporated water and

the entrained velocity:

2
d

dt

�ð
hq

l
i dz

�
eva

5
12 x

s

x
s

w
e
qc
l , (21)

which can be directly used to relate the total evaporative

cooling of the cloud to the entrainment velocity by multi-

plication by the latent heat. Equation (21) also recovers the

ratio between the entrainment velocity and cloud cooling

for the evaporative-cooling-only case Sdiff in Eq. (10).

Equation (20) serves as a validation for the choice of

the inversion point because it relates a property that

critically depends on the definition of zi, Qinv, with an

integral quantity Seva which is independent of zi. The

excellent agreement of Eq. (20) with our simulations

further validates our choice for the inversion point and

gives us confidence for the results that follow from this

choice. These results are presented in the next section.

6. The inversion cooling

We quantify the mechanisms that contribute to the

entrainment-zone cooling by integrating Eq. (8) with

our definition for the inversion point:

2Q
inv

5 hw0b0i
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,

(22)

where the turbulent flux Fturb and themolecular flux Fmol

quantify the exchange of buoyancy between the en-

trainment zone and in-cloud layer. The two source

terms, Sinv
rad and S

inv
eva, quantify the decrease of buoyancy at

the entrainment zone due to radiative and evaporative

cooling, respectively. The radiative source Sinv
rad is known

as direct cooling in the literature (see, e.g., Wood 2012).

The name ‘‘direct’’ comes in contraposition to the ra-

diative cooling of the in-cloud region, which contributes

only indirectly to the entrainment through the buoyancy

fluxes F in Eq. (22) by intensifying the in-cloud turbu-

lence. Analogous to the radiative cooling, only part of

the evaporative cooling, defined as direct evaporative

cooling Sinv
eva, occurs in the entrainment zone.

a. The flux between the entrainment zone and the
cloud

The flux of buoyancy between the entrainment zone

and the in-cloud region has a turbulent and a molecular

component: F5Fturb 1Fmol. Despite the high resolution

we employ in our calculations, the molecular flux is

nonnegligible. In the DYCOMS-II simulations the mo-

lecular flux contribution ranges from 40% to 12% of the

total flux, when increasing the Reynolds number from

Re0 5 200 to Re0 5 1600. For the other simulations the

relative contribution of the molecular flux generally in-

creaseswith the buoyancy reversal parameterD, reaching

values comparable to the turbulent flux (up to 45% of the

total flux) for the combinations of high D and low Re0.

Although the molecular contribution can be relatively

large, we do not see any dependence of the total flux F

on Re0. In Fig. 7, the results of all the simulations

FIG. 7. Buoyancy flux at the inversion point. This flux quantifies the buoyancy exchange

between the cloud and the entrainment zone. The shadowed area highlights the region

F5 (0:1756 0:04)Srad. The legend is explained in Fig. 5.
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collapse to F5 (0:1756 0:04)Srad, where the error in-

terval is given by the statistical convergence of our

simulations. This result is identical to that obtained in

the radiative-only case in De Lozar and Mellado (2013).

The only simulation that seems to depart from the sta-

tistically significant region has the lowest Reynolds

number (Re0 5 200), suggesting that low–Reynolds

number effects can appear for Re0 # 200. The collapse

of the other simulations confirms that all flow scales that

are relevant for the inviscid exchange between the cloud

and the entrainment zone are well resolved.

After an initial transient (z*. 4l) the total flux F in

Fig. 7 seems insensitive to the size of the largest scales in

the flow z*. This is in agreement with our proposition

in De Lozar andMellado (2013) that only eddies smaller

than 4l (or 60m) are relevant for the turbulent en-

trainment process and supports the use of a cloud-top

mixing layer to study some aspects of the entrainment

process in the STBL.

b. The radiative direct cooling

In the case of the smoke cloud, De Lozar andMellado

(2013) showed that the direct cooling, Sinv
rad, is a function

of the ratio of the averaged inversion thickness di (de-

fined in section 4b) over the extinction length l. This

scaling is based on the assumption that the smoke is a

conserved scalar and spreads over the whole entrain-

ment zone. This assumption, however, does not apply

for liquid clouds. The liquid field spreads locally only

over a small fraction of the entrainment zone, because

droplets evaporate completely when the mixing fraction

reaches xs.

To estimate the direct cooling in liquid clouds we have

to consider only the fraction of the inversion thickness

that is occupied by liquid. This is estimated by looking at

the decomposition of the inversion-layer thickness into

a local and a turbulent component given in Eq. (11). As a

first approximation, we assume that the liquid occupies a

fraction infinitely thin of the local inversion thickness dl,

which is consistent with the typically small values of xs in

stratocumulus. This assumption is also consistent with

Fig. 3a, where the liquid (white contour) rarely enters

the local inversion (in red). According to this hypothesis,

the fraction of the averaged inversion thickness occu-

pied by the liquid field is determined only by the un-

dulations of the inversion, and this is quantified by the

turbulent inversion thickness dt defined by Eq. (12). As a

consequence, we expect that the scaling for the direct

cooling in the smoke and liquid cloud are similar when

redefining the inversion thickness as dt/l in the case of

the liquid cloud.

Figure 8 shows the direct cooling Sinv
rad as a function of

the ratio of turbulent inversion thickness to the extinc-

tion length dt/l. The gray line shows the scaling pre-

dicted for the only radiative-cooling case (De Lozar and

Mellado 2013) for a similar stratification, when changing

the definition of the inversion thickness as discussed

above. This gray line captures the main tendencies of

our results, supporting our assumptions.

The radiation model employed in the radiative-only

simulations (De Lozar and Mellado 2013) is different

than the one employed in this paper, although both are

still one dimensional. The difference is that in this paper

we use local values of the liquid water content ‘ for the

FIG. 8. Direct cooling due to radiation as a function of the ratio of the turbulent inversion

thickness over the extinction length. The gray line represents Sinv
rad 5 0:39(dt/l)Srad, as motivated

by the smoke-cloud simulations in De Lozar and Mellado (2013). The legend is explained in

Fig. 5.
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calculations of the radiative function r in Eq. (4), while

in the radiative-only case we used the plane-average

value h‘i. The agreement of both experiments shows

that our calculations of the direct cooling are in-

dependent of the details of the radiationmodel. This was

confirmed by extra simulations of the smoke cloud using

the model described in this paper, where the results did

not change beyond the statistical convergence.

Only two cases depart from the general trend im-

posed by the smoke-cloud scaling in Fig. 8. The first

case corresponds to a very large radiative forcing, or

equivalently a low stratification, and it is represented by

the black crosses in the right part of Fig. 8. This means

that the magnitude of the direct cooling decreases for

the low stratifications—a behavior that we also found in

the smoke simulations. We explain this behavior as in

De Lozar andMellado (2013): a low stratification allows

for a fast entrainment that causes the dilution of the

mixture of liquid and dry air in the entrainment zone. A

diluted mixture increases the radiative extinction length

over its reference value l, thus decreasing the direct

cooling for a constant inversion thickness. The second

departing case corresponds to very low evaporative

cooling (DYCOMS-II case but withD520:045), and it

is represented by the black curves on the left of Fig. 8.

We explain the high values of direct cooling found here

using the same argument as the previous case: low en-

trainment and rapid radiative condensation of liquid

(when compared to the other cases) increase the liquid

content close the cloud top, effectively decreasing the

extinction length. Consistent with this explanation, we

have observed that the liquid water content in this case

reaches particularly high values close to the cloud top

when compared to the other cases.

Contrary to our results in the smoke cloud, Fig. 8 shows

that the direct cooling is to a first approximation in-

dependent of the viscosity (as measured by Re0). This

justifies the approximation of a very thin local inversion

to estimate the direct cooling because the thickness of the

local inversion varies considerably when changing the

viscosity. This result implies that the resolution re-

quirements for calculating the direct cooling in stratocu-

mulus are less demanding than in the smoke simulations.

7. Implications for LES and entrainment models

a. Implications for LES: Enhanced we and the k
criterion

The k criterion hypothesizes that stratocumulus

breakup and the resulting cloud fraction can be roughly

predicted by a function of one single parameter

k5DQe/(LDqt), where Qe is the equivalent potential

temperature, and L is the latent heat. Curiously, this

criterion can be motivated in two opposite limits: when

the entrainment velocity diverges for the conditions of

the BRI (Randall 1980; Deardorff 1980) or when the

entrainment flux is independent of the evaporative-

cooling forcing (van der Dussen et al. 2014). Although

many LES (Sandu and Stevens 2011; Lock 2009) show a

clear correlation between k and cloud fraction, there is

still some discussion regarding the validity of the

k criterion because of the low resolution typically used

in LES (e.g., Sandu and Stevens 2011). The analysis of

satellite observations of Yue et al. (2013) hints that the

k criterion might be useful, but it also shows important

discrepancies with LES: observations consistently show

higher cloud fractions and a less clear correlation of

kwith cloud fraction. Here, we examine the implications

of the diffusive instability discussed in section 4 for the

k criterion, as both are closely related to the BRI.

The cloud-breakup time is related to the time that it

takes a cloud to be desiccated only by entrainment

(Yamaguchi and Randall 2008). The desiccation time tde
is calculated by assuming a well-mixed boundary layer

of depth H with a flux weDx at the cloud top. In this

setup, tde is the time it takes for the mean value of

x inside the boundary layer to increase from x5 0 to

x5 xs. When xs is small, the desiccation time is well

approximated by

t
de
5 (Hx

s
)/w

e
. (23)

We consider the limit in which the diffusive entrain-

ment given by the BRI [described by Mellado (2010)

and discussed in section 4] is the only entrainment

mechanism. In this limit, the entrainment velocity is

given by Eq. (10). By using Eqs. (10) and (23), we cal-

culate the desiccation time given by diffusion for a wide

variety of cloud-top thermodynamic conditions. Figure 9

shows that this desiccation time is roughly a function of

k and a reference time t0, which is defined as

t
0
5 5H(nDb

1
)21/3 , (24)

which only depends on viscosity and on the boundary

layer height. The term Db1 5 3:583 1022 m s22 is a ref-

erence buoyancy jump for 1-K stratification.

The reference time t0 provides a measure of the dif-

fusive contribution. UsingH5 800 m in Eq. (24), we get

t0 ’ 125 h for air viscosity, confirming again that this

instability is irrelevant in the atmosphere. For the vis-

cosity in our DNS, t0 ’ 22h is longer though still com-

parable with the time scale of other processes in the

cloud. In LES, the determination of t0 is not obvious

because the effective viscosity is usually unknown. As-

suming that numerical diffusion is the main contributor
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to the viscosity in the inversion, this can be estimated as

nnum ;UDz (Patankar 1980), where U is a typical ve-

locity andDz is the grid spacing. UsingU5 0:1m s21 and

Dz5 5m, Eq. (24) gives t0 ; 3 h, comparable to the

desiccation times found in LES that are driven solely be

evaporative cooling and that use that resolution

(Yamaguchi and Randall 2008). This estimate confirms

that the diffusive contribution can dominate the en-

trainment process for low resolutions, resulting in an

enhanced entrainment velocity.

Figure 9 shows that a high diffusive contribution

introduces a scaling between tde and k for simulations

made with the similar viscosity and cloud-top height

(same t0). If we assume that the desiccation time is com-

mensurable with the cloud-breakup time [like suggested

in, e.g., Yamaguchi and Randall (2008)], this scaling be-

tween tde and k would result in the known scaling of the

cloud fraction versus k for the cases in which the diffusive

contribution dominates the entrainment. This might ex-

plain the good k scaling found in some LES with grid

spacings of the order of several meters.

b. Implication for entrainment models

In this section, we summarize the results that can be

used to improve entrainment-velocity parameteriza-

tions. For this purpose, we use the general formula for

entrainment velocity introduced by Stevens (2002):

w
e
5U

�W
Db

�
1D , (25)

where the parameters U, W, and D are described below.

Webase our analysis on the integrated buoyancy equation

[Eq. (22)], which is written in the form of Eq. (25) by using

Eq. (14) in the limit of negligible deformation.

The parameterW quantifies the effect of the turbulence

intensity on the entrainment. Stevens (2002) identifies W
as the averaged integrated buoyancy flux in the CBL, al-

though this definition might differ for other parameteri-

zations. From Eq. (22) we identifyW as the buoyancy flux

at the inversion pointF, and this term is analyzed in section

6a. Figure 7 shows that F is a constant fraction of the ra-

diative forcing, and it is thus insensitive to the evaporative-

cooling parameters in agreement with Moeng (2000).

Contrary to the behavior of F, Table 1 shows that the av-

eraged integrated buoyancy flux B5 (z*)21Ðhw0b0i dz can

be enhanced by more than a factor of 2 when varying the

evaporative-cooling parameters. We conclude that the

assumption thatW is a fraction of the averaged integrated

buoyancy flux is not always correct. We also see that F

does not scale either with theminimum turbulent flux (not

shown). It remains to be investigated how F and W vary

when other turbulence sources, as a surface buoyancy flux

or shear, are also included.

The parameter D, usually called direct cooling, quan-

tifies the direct effect of the radiative cooling on the en-

trainment (Lilly 1968). It is considered as a nonturbulent

contribution for the entrainment (Stevens 2002), although

there is not a clear consensus in the literature about its

magnitude and relevance (Wood 2012). Different pa-

rameterizations range from neglecting it (Turton and

Nicholls 1987) to considering it the main contribution for

the entrainment velocity (Lock and Mac Vean 1999). In

our analysis, we identify the direct cooling with Sinv
rad, and

this term is analyzed in section 6b. The extrapolation of

Sinv
rad to a 1-km-deep CBL in Fig. 8 indicates that the direct

FIG. 9. Diffusive cloud desiccation time as a function of k, when the BRI parameters are

varied in the intervals: 0,D, 0:3, 0:03,xs , 0:4, and 0:0125,Db/g, 0:025. The likelihood

of a result is color coded, decreasing from red to blue.
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cooling accounts for ;50% of the entrainment velocity.

This quantification is broadly in agreement with the pa-

rameterizations of Lock (1998) and Moeng (2000).

The parameter U captures the entrainment-velocity

dependence on the evaporative cooling. To obtainU from

Eq. (22), it is necessary to make nontrivial assumptions

about Sinv
eva, which do not necessarily lead to the form of

the entrainment velocity proposed in Eq. (25) [as in,

e.g., Lilly (2002)]. Although such a detailed analysis is

beyond the scope of this paper, the sensitivity of U to the

evaporative parameters is tested in an indirect way by

comparing the entrainment velocity in the first set of

experiments. Although the radiative-cooling parameters

are the same in this set of experiments, we find that we

varies by 100% when varying the evaporative-cooling

parameter D. This result provides a rough estimate for

the inaccuracies that can be expected when using a pa-

rameterization that neglects the evaporative cooling such

as those of Lock (1998) and Moeng (2000).

The entrainment velocity is sensitive to both the

radiative properties of the cloud (through D) and the

evaporative-cooling parameters (through U). This dual

dependence is not captured by most of current parame-

terizations, which implicitly assume that only one mech-

anism dominates the entrainment process. It becomes

evident that a parameterization of the entrainment ve-

locity that covers all stratocumulus regimes should con-

sider both evaporative and radiative cooling in detail.

8. Conclusions

In this paper, we present a new formulation that al-

lows us to identify the buoyancy sources due to radiative

and evaporative cooling, while introducing only an error

less than 3% in the buoyancy calculations for typical

atmospheric conditions. The formulation is applied to

investigate a shear-free cloud-topmixing layer driven by

evaporative and radiative cooling with DNS. Our main

findings are as follows:

d Our results do not converge as viscosity and grid spacing

are reduced, even when the resolution is below 14cm.

The reason is that the BRI introduces a diffusive

contribution that increases mixing by 20%. The en-

hancement of themixing can be roughly predicted using

the parameterization introduced byMellado (2010), and

it is much larger than 20% for resolutions commonly

used in atmospheric simulations. This partially explains

the rapid dessication of clouds and the k criterion

observed in LES. When the diffusive contribution is

subtracted, our results for different viscosities collapse

on top of each other. This inviscid scaling confirms that

all small flow scales that are relevant for evaporative and

radiative cooling are captured in our simulations, allow-

ing us to make predictions for the atmospheric scales.
d The definition of the inversion point as the point of

neutral buoyancy [hbi(zi)5 0] allows us to derive two

different scaling relationships in the cloud and entrain-

ment zones. The in-cloud scaling law relates the velocity

and buoyancy integral scales to a buoyancy flux defined

by the inversion point. The entrainment scaling law

provides a relationship between the entrainment veloc-

ity and the rate of evaporation of liquid water.
d The contributions from the buoyancy flux and the direct

radiative cooling to the entrainment-zone cooling (which

relates to the entrainment velocity) behave very similarly

to the smoke case without evaporative cooling (De

Lozar and Mellado 2013). The buoyancy flux is a

constant fraction of the magnitude of the radiative flux

divergence at the cloud top F5 (0:1756 0:04)Srad. This

contribution is independent of the evaporative cooling

and of the vertically averaged buoyancy flux. The

buoyancy flux reaches this value when the CBL depth

is around 4l (;60m), and it does not increase appre-

ciably by the later growth of the CBL. This behavior

strongly suggests that eddies that are larger than this size

do not contribute directly to the entrainment. The direct

radiative cooling accounts for around 50% of the

buoyancy flux, and therefore cannot be neglected.
d The strength of evaporative and radiative cooling is

quantified by their corresponding integrated inviscid

buoyancy sources. Generally the strength of both

mechanisms is of the same order of magnitude, and

its ratio is close to one for the flight RF-01 of the

DYCOMS-II campaign. This result, together with a

detailed analysis of the integrated buoyancy equation,

shows that entrainment-velocity parameterizations

should consider both evaporative and radiative cool-

ing and not just one or the other.
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APPENDIX

Derivation of the Linearized Formulation

The starting point is the exact expression for the en-

thalpy and equation of state:

DECEMBER 2015 DE LOZAR AND MELLADO 4697



h5 [c
p,D

(12 q
t
)1 c

p,V
(q

t
2 q

l
)1 c

l
q
l
]T2 q

l
E and

(A1)

p5 r(12 q
t
)R

D
T1 r(q

t
2 q

l
)R

V
T , (A2)

where E is the extrapolated latent heat to 0K, cp,D and

RD are the specific heat capacity and gas constant of the

dry phase, cp,V and RV are the specific heat capacity and

gas constant of the vapor phase, and cl is the specific heat

of the liquid phase. Using the Taylor expansion around a

reference state given by (hc, qc
t , q

c
l ), where the super-

script c refers to a cloud value, allows us to write the

buoyancy as

b/g52D̂r/r5D̂h/(c
p,0
T
c
)1G

l
D̂q

l
1G

t
D̂q

t
, (A3)

where the D̂ refers to the deviations of a variable from

the reference value and the new constants are given by

G
l
5 (E2 c

l
T
c
)/(c

p,0
T
c
)1 c

p,V
/c

p,0
2R

V
/R

0
,

G
t
52(c

p,V
2 c

p,D
)/c

p,0
1 (R

V
2R

D
)/R

0
,

c
p,0

5 c
p,D

(12 qc
t )1 c

p,V
(qc

t 2 qc
l ), and

R
0
5 (12 qc

t )RD
1 r(qc

t 2 qc
l )RV

. (A4)

For a given (qt, h) the only unknown in Eq. (A3) is the

liquid water ql. This can be calculated in the infinitely

fast thermodynamics approximation, in which the liquid

water is given by

q
l
5q

t
2 q

s
if q

t
. q

s

q
l
5 0 if q

t
, q

s

. (A5)

The saturated vapor content qs is given by

q
s
5 p

s
(T)

(12 q
t
)R

D

[p2 p
s
(T)]R

V

, (A6)

where ps(T) is the water saturation pressure, which is a

function of the temperature only. We calculate ps(T)

using the polynomial expression given by Flatau et al.

(1992). Equation (A6) can be approximated by the first-

order Taylor expansion:

q
s
5 qc

s 1 g
h
D̂h/(c

p,0
T

c
)1 g

qt
D̂q

t
, (A7)

with the derivatives

g
h
5 c

p,0
T

c
(›q

s
/›h)

qt
and

g
qt
5 (›q

s
/›q

t
)
h
, (A8)

which are calculated at the reference state, which we

choose to contain nonzero liquid water. Since the

g derivatives are calculated for saturated conditions, the

linear approximation for qs does not apply for un-

saturated parcels. However, the formulation never

makes use of qs in the unsaturated parcels, thus justify-

ing the linear approximation. Using Eq. (A7) in Eq.

(A5) together with Eqs. (1) and (2), we obtain the

piecewise linear expression for the liquid water and

buoyancy introduced in Eq. (5).

The g derivatives are calculated in its exact form by

using the chain rule. The term gh is given by

g
h
/c

p,0
T
c
5

(›q
s
/›p

s
)
qt ,h

(›p
s
/›T)

qt ,h
(›T/›h)

qt ,qs

12 (›q
s
/›p

s
)
qt ,h

(›p
s
/›T)

qt ,h
(›T/›q

s
)
qt

, (A9)

with

(›q
s
/›p

s
)
qt ,h

5
q
s

(12 p
s
/p)p

s

,

(›T/›h)
qt ,qs

5
1

c
p,0

, and

(›T/›q
s
)
qt ,h

52
E1 (c

p,V
2 c

l
)T

c

c
p,0

, (A10)

and gqt
is given by

g
qt
5

(›q
s
/›q

t
)
ps ,h

1 (›q
s
/›p

s
)
h,qt

(›p
s
/›T)

qt ,h
(›T/›q

t
)
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12 (›q
s
/›p
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)
h,qt

(›p
s
/›T)

qt ,h
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)
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(A11)

with

(›q
s
/›q

t
)
ps ,h

5
2R

D

(p/p
s
2 1)R

V

and (A12)

(›T/›q
t
)
h,qs

5
E1 (c

p,D
2 c

l
)T

c

c
p,0

. (A13)

The derivative (›ps/›T)qt ,h is obtained from the param-

eterization given by Flatau et al. (1992).

Algebraical manipulations allow us to obtain the

nondimensional parameters introduced in Eqs. (5)–(6)

from the parameters presented in this appendix:

x
s
5 qc

l [gh
Dh/(c

p,0
T

c
)2Dq

t
(12 g

qt
)]21,

D5
2x

s
g

Db

(
Dh

c
p,0
T
c

(12G
l
g
h
)1Dq

t
[G

t
1G

l
(12 g

qt
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)
,

b5 12G
l
g
h
,

c
b
5 (c

p,0
T

c
Db)g21, and

c
s
5c

b
(D1 x

s
)(12 x

s
)21(12b)21 ,

(A14)
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where the D symbol represents the difference between

the dry and cloud states that characterize a mixing layer.

The parameters cb and cs scale how the changes in

enthalpy by radiation, given by c in Eq. (2), modify the

nondimensional buoyancy and liquid water, respectively.
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