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Abstract we present patterns of covariability between low-level cloudiness and the trade-wind bound-
ary layer structure using long-term measurements at a site representative of dynamical regimes with mod-
erate subsidence or weak ascent. We compare these with ECMWF’s Integrated Forecast System and 10
CMIP5 models. By using single-time step output at a single location, we find that models can produce a
fairly realistic trade-wind layer structure in long-term means, but with unrealistic variability at shorter-time
scales. The unrealistic variability in modeled cloudiness near the lifting condensation level (LCL) is due to
stronger than observed relationships with mixed-layer relative humidity (RH) and temperature stratification
at the mixed-layer top. Those relationships are weak in observations, or even of opposite sign, which can be
explained by a negative feedback of convection on cloudiness. Cloudiness near cumulus tops at the trade-
wind inversion instead varies more pronouncedly in observations on monthly time scales, whereby larger
cloudiness relates to larger surface winds and stronger trade-wind inversions. However, these parameters
appear to be a prerequisite, rather than strong controlling factors on cloudiness, because they do not
explain submonthly variations in cloudiness. Models underestimate the strength of these relationships and
diverge in particular in their responses to large-scale vertical motion. No model stands out by reproducing
the observed behavior in all respects. These findings suggest that climate models do not realistically repre-
sent the physical processes that underlie the coupling between trade-wind clouds and their environments
in present-day climate, which is relevant for how we interpret modeled cloud feedbacks.

1. Introduction

Steady winds and abundant fields of shallow trade-wind cumuli over the open ocean characterize the
trades and give these regions in the subtropics an important role in climate. Surface evaporation under
strong winds supplies the moisture that is needed for trade-wind cumuli to form. Trade-wind cumuli them-
selves transport moisture away from the surface throughout the lower troposphere, thereby setting its verti-
cal structure and further increasing surface evaporation. By reflecting solar radiation trade-wind cumuli also
increase the albedo, providing a modest (but persistent) cooling influence.

Although the trades are a relatively steady weather regime compared to other regions on Earth, the
strength and direction of the trade-winds, sea surface temperatures, and large-scale vertical motion do
show marked variability on daily, seasonal, and interannual time scales [Brueck et al., 2015]. There is no
doubt that changes in any of these parameters can induce changes in trade-wind clouds and the structure
of the lower atmosphere, but their combined effects and resulting patterns of covariability are not suffi-
ciently understood. Our objective is to expose relationships between trade-wind cloudiness and the struc-
ture of the trade-wind layer in observations and to provide insight into the overall sensitivity of trade-wind
cloudiness to changes in the large-scale flow. Furthermore, we evaluate whether patterns of covariability
between cloudiness and the trade-wind layer structure in global models are consistent with those
observed.

In previous work, we showed that the amount of variance in trade-wind cloudiness in global (climate) mod-
els diverges from observations. Specifically, a common bias of climate models is to vary the amount of cloud
near the lifting condensation level (LCL) more than is observed [Nuijens et al., 2015]. Several models also
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produce a trade-wind boundary layer that is too shallow, which leads to an underestimation of the variance
in cloud amount in the cloud layer and near the trade-wind inversion. This study follows up on our previous
work by relating the variability in cloudiness to variability in the structure of humidity, temperature, winds,
and large-scale vertical motion. We will expose the ways in which models produce clouds, which may differ
from nature, thereby providing insight into whether models capture the physical processes that underlie
the coupling between clouds and their environment.

If global models can reproduce patterns of covariability in our current climate, we may have more confi-
dence in their responses to future forcing scenarios, even though present-day variability is not necessarily a
good proxy for future climate change. Climate models currently have different responses to future forcing
scenarios due, in part, to different changes in trade-wind cloudiness. In some models trade-wind cloudiness
decreases as climate warms, which amplifies the warming and leads to a high climate sensitivity. In other
models trade-wind cloudiness increases, which leads to a low climate sensitivity [Bony and Dufresne, 2005;
Medeiros and Stevens, 2011; Vial et al., 2013]. Brient et al. [2015] show that the profile of cloud fraction in the
trades in present-day climate is a good predictor for whether a climate model has a high or a low climate
sensitivity. A high climate sensitivity model tends to have large values of cloudiness only near the LCL,
much like stratocumulus, whereas a low-climate sensitivity model distributes cloudiness more evenly across
a deeper trade-wind layer. Sherwood et al. [2014] further propose a link between the different responses of
models and the different ways models mix moisture across the lower troposphere. For instance, they sug-
gest that when a model efficiently transports moisture away from the surface it tends to have a high climate
sensitivity. Such a model could efficiently dry the lower atmosphere as climate warms, which would lead to
a reduction of low-level cloudiness.

Observations are crucial for evaluating whether changes in cloudiness with vertical moisture mixing in
climate models are realistic, but over the open ocean measurements are mostly limited to space-borne
remote sensing. However, observing the humidity and temperature structure in the lower atmosphere
is challenging from space, especially in cloudy conditions. Space-borne instruments often lack the resolu-
tion to reveal vertical gradients that might be crucial for cloudiness. Shallow cumuli also have dimensions
typically much smaller than satellite footprints. Furthermore, polar orbiting satellites view the same location
on Earth only every couple of days, so that variability can only be studied on time scales of a month and
longer. For climate models, a similar (practical) issue is true: conventional model output includes only
monthly averages, which may hide variability on shorter-time scales that are critical to the mean behavior
of clouds.

Ongoing approaches strategically address the need for evaluating global models against observations by
making use of permanent ground-based meteorological sites that measure clouds and the structure of the
atmosphere at a high temporal and vertical resolution. For instance, the Cloud-Associated Parameterizations
Testbed (CAPT) applies weather forecast techniques to climate models to evaluate model parameterizations
at measurement sites of the Atmospheric Radiation Measurement Program (ARM) of the U.S. Department of
Energy [Phillips et al., 2004]. Similarly, the KNMI Parameterization testbed (KPT) runs Large-Eddy Simulation
(LES) and Single-Column Models (SCM) at ARM and European CloudNet sites [Neggers et al., 2012]. Because
these approaches sample and model clouds across a wide range of conditions, they have successfully led to
the identification of systematic biases in modeled physics, such as a compensating error between cloud
structure and radiative transfer due to cloud overlap assumptions [Neggers and Siebesma, 2013]. A few years
ago, the Cloud Feedback Model Intercomparison Project (CFMIP) also initiated the so-called cfSites output,
which includes single-time step output from many climate models at 120 strategically located sites [Webb
etal, 2015].

Unfortunately, the number of such sites is limited in the trades. To fill this gap in observational data, the
Max-Planck Institute for Meteorology, jointly with the Caribbean Institute for Meteorology and Hydrology,
installed a long-term measurement site in 2010: the Barbados Cloud Observatory (BCO, 13°N 59°W). The
Island of Barbados is the most eastward located island in the West Indies facing the North Atlantic ocean.
The airmasses and clouds advected to the site are therefore little influenced by land or the island itself
(Stevens et al., 2015). The location experiences moderate large-scale subsidence during boreal winter and
weak ascent during boreal summer [Brueck et al., 2015], which are exactly those regimes in which climate
models differ the most in their structure of low-level clouds and response to warming. Under these large-
scale conditions, the majority of trade-wind clouds found at Barbados are located well below 3 km,
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Figure 1. Lidar observations of the vertical distribution of cloud layer bases in the trades as viewed from ground (in black), respectively,
from space (in blue). The distribution is made using 250 m bins and normalized by the total number of lidar profiles. It represents the fre-
quency (fraction) of finding a cloud layer base at a given height. The distribution in black is derived from a laser ceilometer deployed at
the BCO whose resolution corresponds to about 500 m. The distribution from the CALIOP lidar in blue is determined overa 5 X 10° area
just upstream of Barbados at a 333 m footprint. We also show CALIOP distributions for the broader subtropics, including all oceans
between 15 and 30° in the Northern and Southern Hemisphere. These distributions illustrate that the cloud profile below 5 km is marked
by two important height levels where cloud layers tend to occur: near 700 m where cumuli have their base and near 1.5-2.5 km, where
the inversion limits cumulus tops and stratiform layers can be found.

although deep convection and cirrus form an important contribution to high-level cloud cover and there-
fore to total cloud cover Medeiros and Nuijens [2015].

At Barbados, cloudy layers near the LCL at 700 m and near the trade-wind inversion at 1.5-2.5 km contribute
most to low-level cloud cover [Nuijens et al., 2014]. Cloud amount near the LCL is of interest because it is the
dominant contribution to cloud cover and is relatively invariant in time. Moreover, cloud amount near the LCL
at Barbados is remarkably similar to the cloud amount near the LCL over all subtropical oceans. This is illustrated
in Figure 1, which is adapted from earlier papers [Nuijens et al., 2014; Medeiros et al., 2010]. The black line repre-
sents the distribution of cloud layer bases as viewed by a laser ceilometer with a footprint of ~500 m deployed
at the BCO between 2010 and 2014. The blue solid line represents the distribution of cloud layer bases as
viewed by CALIOP (the lidar aboard the CALIPSO satellite), when it overpassed a region close to the BCO
between 2010 and 2014. CALIOP has a comparable footprint of ~333 m. The instruments give a sense of the
height levels at which cloud layers are frequent and contribute to low-level cloud cover. Both instruments show
that at Barbados cloud layers are most frequent near the LCL, although CALIOP underestimates the frequency.
Likely this underestimation is caused by the attenuation of the lidar beam due to the longer path travelled and
due to overlying high cloud. Notwithstanding, the frequency of CALIOP detecting a cloud layer near the LCL is
remarkably similar for the BCO area and the subtropical oceans in the Northern Hemisphere and Southern
Hemisphere, where the latter are shown by solid, respectively, dashed light blue profiles.

Cloud layers further aloft, near the trade-wind inversion, are of interest for another reason: the cloud
amount at this level is much more variable in time and in space [Nuijens et al., 2014]. At Barbados, the most
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important contribution to cloud amount near the inversion is from stratiform layers near cumulus tops, fol-
lowed by slanted tops of cumuli and short-lived patches of decaying cloud [Nuijens et al., 2014]. The strati-
form layers develop when trade-wind cumuli grow into a cloud layer that is capped by a relatively strong
inversion [Stevens et al., 2001; Lock, 2009], often typified as the intermediate or transition regime: between
regions of stratocumulus underneath strong inversions at eastern ocean boundaries and regions of trade-
wind cumuli in deeper boundary layers at western boundaries. Apparently this regime can be observed
even this far west over the Atlantic. At the BCO, both the ceilometer at the BCO and CALIOP show a similar
frequency of occurrence of cloud layers at the inversion. Over all NH and SH subtropical oceans, because
larger areas of the intermediate and stratocumulus regimes are included, CALIOP detects a larger frequency
of cloud near the inversion.

In the remainder of this manuscript, we will focus on these two height levels (the LCL and near the trade-
wind inversion) to explain variability (or lack thereof) in cloudiness near the BCO. We perform similar exer-
cises for the models, which include 10 climate models that have supplied the cfSites single-time step output
for Barbados (or a nearby location), as well as the Integrated Forecast System (IFS) from the European
Centre for Medium-Range Weather Forecasts (ECMWF), which has been run in a climate-model-like (year-
long) integration mode. We will draw out similarities and differences from the observations, as well as how
models diverge. Finally, we discuss how these results relate to climate change studies that hint at the
importance of the shallowness of the cloud layer and vertical moisture mixing.

2. Data, Model Output and Methods

We use ground-based radar, lidar, and ceilometer data from the BCO combined with the ERA-Interim reanal-
ysis product to derive relationships between cloudiness and the thermodynamic and kinetic structure of
the trade-wind layer. We do the same for model output, which includes single-time step output from long
integrations with the Integrated Forecast System (IFS) from the European Centre for Medium-Range
Weather Forecasts (ECMWF) model and single-time step output from nine CMIP5 models. The following sec-
tions 2.1-2.4 describe the data and model output in more detail. We explain how we compare cloudiness in
the models with that in the observations in section 2.5.

2.1. Barbados Cloud Observatory Data

The BCO is located on an eastward promontory of the island of Barbados (13.15°N, 59.4°W) and has a suite
of instrumentation similar to the Department of Energy (DOE) ARM sites. The period April 2010 to April
2012 is used to derive statistics. Cloud cover (CC) is defined as the fraction of time (here either daily or
monthly) that a ceilometer with a temporal resolution of 30 s measures a cloud base height overhead. We
distinguish between the contribution of cloud at heights near the LCL to cloud cover (hereafter referred to
as CCi ) and the contribution of cloud at heights further aloft (CCa ofr) by separating cloud bases that are
detected below or above 1 km. Because the ceilometer measured almost continuously, these data provide
some of our most important statistics.

When rainfall is strong enough, the ceilometer cannot detect a cloud base height. This is true for 60% of the
rain events, which cover 7% of the data [Nuijens et al., 2014]. Hence, for 4.2% of the observed profiles we
cannot meaningfully separate the two components of CC ¢ and CCx ofr. For these 4.2%, we also cannot
assess whether hydrometeors measured by the radar represent rain that falls through a detectable cloud
base or rain that falls through the cloud layer out of slanted clouds. In our derivation of CC (as well as of
cloud fraction (CF), see next paragraph) we exclude these 4.2% of data. This means that we underestimate
total cloudiness in the observations by excluding heavily raining cloud, a bias we are willing to accept given
our focus on qualitative behavior. Because these cases comprise only 4.2% of the record, they also do not
substantially bias our results.

Cloud fraction (CF) profiles are derived from the Ka band (36 GHz) Doppler radar (KATRIN) when in a verti-
cally pointing mode from January 2011 to mid-May 2011, October 2011 and from January 2012 to March
2012. Data include profiles every 10 s with a resolution of 30 m from 300 m up to 15 km. Radar returns with
an equivalent radar reflectivity Z, larger than —40 dBZ are defined as true hydrometeor returns. We exclude
profiles for which no ceilometer cloud base height is available (strong rainfall, see above) and mask all
returns below the lowest detected cloud base height that are likely drizzle.
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Humidity and temperature profiles are measured with a multichannel Raman lidar, from 1 April 2011 to 1
April 2012. By measuring backscattered energy at the shifted Raman frequency, in the UV spectral range at
355 nm, the concentration of water vapor is derived. The pure rotational Raman spectra (PRRS) technique is
used to derive air temperature [Serikov and Bobrovnikov, 2010]. The profiles of humidity and temperature
are only available during nighttime when there is no interference of background solar light, between 0 and
8 UTC (20 —04 h local time). The lidar hatch also closes when the MRR detects rain-rates >0.05 mm h~ ' at
any height below 3 km. The raw data are averaged into 2 min profiles for water vapor and 1 hourly profiles
for temperature, available at a 60 m resolution up to 15 km.

For more details on the sensitivity of CC and CF to our subjective thresholds of defining cloud, we refer the
reader to Nuijens et al. [2014].

2.2, ERA-Interim

The ERA-Interim reanalysis product is used for daily and monthly profiles of the zonal and meridional wind
components (u, v), and the vertical velocity (). It is based on the Cy31r2 version of the IFS [Simmons et al.,
2007]. The horizontal resolution (N128) of the quasiregular Gaussian grid is approximately 0.7° at 10°N. The
vertical resolution is 61 model levels, with a pressure difference that increases from 4 hPa in the lowest lev-
els to 40 hPa at a pressure of 440 hPa. The profiles are averaged over a 5° x 5° region upstream of Barbados.

2.3. ECMWF IFS

Long climate-model-like integrations are produced with the ECMWF IFS (ECMWF-LI). Unlike short integra-
tions, which start every day from a state that is corrected by data assimilation procedures, these climate-
model-like integrations are forecasts initialized only once a year, on the 1 August. They are performed at a
T255 spectral resolution which corresponds roughly to a grid box of (75 X 75) km? at the Equator. The out-
put is therefore comparable to the CMIP5 model output. We performed four of these long integrations for
the years 2009-2012 with an IFS version that was operational between June 2013 and November 2013 (IFS
Cycle 38r2). Single-time step (30 min) output was extracted from all these runs for a single grid point near
Barbados, centered at 13.68°N, 59.06°W. The integrations are performed on 91 vertical levels, of which only
the output for the lowest 31 levels is used, reaching from 10 to 7600 m with a spacing of 20 m at level 1
and 500 m at level 31. We found that qualitatively, the cloud fields in these long integrations are similar, or
even closer to observations, than output from short (24 h) integrations [Nuijens et al., 2015].

2.4. cfSites Output From CMIP5 Models

Single-time step output of nine climate models for a single grid point near Barbados is available through
the cfSites initiative from the Cloud Feedback Model Intercomparison Project (CFMIP) [Webb et al., 2015].
The output is produced from Atmospheric Model Intercomparison Project (AMIP) runs from 1976 to 2006,
constrained by observed sea surface temperatures and sea ice. Although 30 years of data are available,
5 years (2001-2006) suffices for most of our analysis. The CMIP5 models and their acronyms are listed in
Table 1. For all models, the location closest to Barbados at which cfSites output is produced is the BOMEX
location (15°N 56.5°W). For the MPIM-E62 and MPIM-E63 models, we also produced output at a grid point
near the BCO (13.2°N 59.4°W). Although the BOMEX location experiences fewer periods with mean rising
motion, we believe it largely suffices for exploring models’ behavior of trade-wind cloudiness. For most
models, these grid points correspond to an area of about (100 X 100) km?.

The MPIM-E62 and MPIM-E63 output is not obtained from the CMIP5 archive, but we have rerun the model
with the newer ECHAM versions 6.2 and 6.3, wherein errors in the way statistics are accumulated have been
fixed. For most models, single-time step output means 30 min output, except for the BCC model, which
comes every 20 min. Two out of three time steps of the BCC model have zero cloud fractions everywhere,
which seem an issue with the way the output has been produced. Therefore we only use every third time
step. We do the same for the NCAR-C4 model, which has zero cloud fractions every other time step.

2.5. Cloud Fraction and Cloud Cover in Observations and Models

Cloudiness in models and in observations is inherently different. An often used technique to overcome
these differences and compare models with observations is to use forward operators or cloud simulators
implemented in models. These simulate how cloud predicted by the model would be measured by a given
instrument. However, our analysis focuses on qualitative rather than quantitative behavior of cloudiness.
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Table 1. List of Models Used in the Analysis, Including the Number of Model Levels up to 600 hPa (Lsoonpa), and Between 950 and 900
hPa (Lgoonpa), and References to Their Cloud and Convection Schemes®

No Abbreviation Model Modeling Center Leoohpasooohpa Cloud/Convection Scheme
1 ECWMF-LI IFS long integration European Centre for Medium 24/3 Tiedtke [1993]/
Range Weather Forecasts Tiedtke [1989]
2 MPIM-E63 MPI-ESM-LR Max-Planck Institute for 11/2 Tiedtke [1989]/
ECHAM 6.3 Meteorology Sundgqvist et al. [1989]
3 MPIM-E62 MPI-ESM-LR Max-Planck Institute for 11/2 Tiedtke [1989]/
ECHAM 6.2 Meteorology Sundgqvist et al. [1989]
4 BCC BCC-CSM1.1 Beijing Climate Center 71 Wu et al. [2010)/
Slingo [1987]
5 CCCma CanESM2 Canadian Centre for Climate 14/2 von Salzen et al. [2005]/
Modelling and Analysis /McFarlane et al. [2005]
6 IPSL IPSL-CM5A-LR Institut Pierre-Simon Laplace 1N Bony and Emanuel [2001]/
Emanuel [1993]
7 CNRM CNRM-CM5 Centre National de Recherches 11/2 Gregory and Rowntree [1990]/
Meteorologiques Ricard and Royer [1993]
8 MOHC HadGEM2-A Met Office Hadley Centre 14/2 Gregory and Rowntree [1990]/
Lock [2009]
9 MRI MRI-CGSM3 Meteorological Research Institute 1211 Yukimoto et al. [2012]/
Tiedtke [1993]
10 NCAR-C4 CAM4 National Center of Atmospheric 71 Rasch and Kristjansson [1998]/
Research Zhang and McFarlane [1995]
1 NCAR-C5 CAM5 National Center of Atmospheric 1172 Gettelman et al. [2010]/
Research Zhang and McFarlane [1995]

2All models use the BOMEX location, except the ECMWF-LI, MPIM-E63, and MPIM-E62, which use a grid point just upstream of Barba-
dos. All models have output every 30 min. For the BCC and NCAR-C4 model, only every second output step is used in the analysis, see
section 2.4.

For instance, we study the shape of the cloud fraction profile or the variability of cloud fraction in time. To
identify differences in such qualitative aspects between models and observations, it is not necessary to
apply a forward operating technique. For a similar reason, we also do not interpolate the observations onto
a coarser vertical grid that is representative of the models’ grids.

We do account for the difference in temporal or horizontal resolution: the observations have a footprint of
just a few tens of meters, whereas a single model grid point is equivalent to an area of about (100 X 100)
km?. The BCO time series is first averaged to a period that represents the time needed for an air mass to
travel across a 100 km distance. Wind speeds are observed to be about 7 ms™' on average, which equals
4 h of BCO measurements. In all figures and analysis where time scales are mentioned the averaging of the
BCO data is implicit, unless we explicitly state otherwise.

CF refers to the amount of cloud that is present at a given height or pressure level, whereas CC is the total
amount of cloud projected onto the surface, only from cloud that is present at heights below 5 km (550
hPa). As discussed in the introduction, we focus on cloudiness at two levels: near the LCL and near the tops
of the deepest cumuli, just below the

trade-wind inversion [see also Nuijens

Table 2. The Approximate Level of Cloud Base or the LCL, Taken as the Level et al, 2014 and the continuing discus-
at Which the Mean RH Profile Maximizes, Restricted to Levels With p > 850 sion on in section 3]. We define CF ¢ in

hPa. Also Tabulated is the Ratio of the Variance in CFa oft to CF ¢ (for the

Models) and of the Variance in CCp ofr to CC ¢ (for the Observations) observations and in models as the

cloud amount at the LCL, which we

Abbreviation LCL 02CFpLort/0°CFLcL
take as the level at which the RH profile
BCO 925 1.8 . . ,
ECMWF-LI 967 10 maximizes. A list of LCL's for the obser-
MPIM-E63 941 0.2 vations and models is given in Table 2.
QACP(I:M_EQ gj; ?‘2 Furthermore, we define CFa ot as the
CCCrma 011 003 average cloud fraction between 850
IPSL 978 0.2 and 800 hPa.
CNRM 904 05
MOHC 930 08 In the observations, CF is intermittent
MRI 929 2.1 due to frequent downtimes of the cloud
NCAR-C4 930 1.0 dar (section 2.1). F rtai |
NEARCD e a5 radar (section 2.1). For certain analyses,
we therefore use the more continuous
NULJENS ET AL. PATTERNS OF COVARIABILITY 1746
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time series of CC instead, which we separate into two contributions: from cloud bases detected below 1 km
(CCLcry and above 1 km (CCaLofm, Which qualitatively capture variations in CF . and CFaorr [Nuijens et al.,
2014]. Because we contrast environments in which cloudiness is abundant or not, focusing on cloudiness
more qualitatively than quantitatively, we freely use observed CCi ¢ or CCaofr alongside modeled CF ¢ and
CFaLorr. Because many models just have one or two vertical levels between 950 and 900 hPa, corresponding
to the mean LCL and 1 km, their CC . would principally be equal or very close to CF .. When we use
observed CC instead of observed CF, we indicate this in the figure caption. For simplicity we just refer to CF
throughout the text, but flagged with a star (CF*_c;, CF*a_oF7).

3. Vertical Structure of Clouds and Their Environment

This section provides a general overview of the most important features of the trade-wind layer including
the cloud profile. First, we describe the observed and modeled long-term mean profiles for periods of mod-
erate subsidence and of weak ascent. Second, we discuss the variability in cloudiness and the structure of
the trade-wind layer on shorter daily time scales.

3.1. Long-Term Means

In the dry season from December through May, Barbados experiences large-scale flow that is typical of the
fair-weather trade-wind regime. The region is in the subsiding branch of the Hadley circulation and strong
winds with a northerly component advect relatively colder and drier air from higher latitudes toward Barba-
dos. As the InterTropical Convergence Zone (ITCZ) migrates northward in the wet season from June to
November, the region experiences moderate rising motion instead (o < 0). Sea surface temperatures are
about 2 K higher and smaller pressure gradients between the subtropics and Equator drive weaker winds
[Brueck et al., 2015]. Deep convective events and even an occasional hurricane are not uncommon.

Despite these differences in large-scale flow and free tropospheric temperature and humidity, the dry and
the wet season have similar cloud structures. Mean profiles of cloud fraction (CF), the relative humidity (RH),
virtual potential temperature (0,), and the frequency distribution of inversion levels (p;.y are shown in Fig-
ure 2. The black line corresponds to January to March (the dry season) and the grey line to September to
November (the wet season). The lower atmosphere is both drier and colder during the dry season. Cloud
base height (LCL) is located near 925 hPa, which coincides with a maximum in RH. The layer near the LCL at
the top of the well-mixed layer is often called the transition layer, because RH more sharply decreases than
in the (upper) cloud layer. In the dry season, the LCL is somewhat higher, the transition layer is more pro-
nounced and a separation between the cloud layer and the inversion layer is distinct. However, even during
the dry season, the location of the inversion (p;,,, which is the pressure level of the maximum 6, gradient at
p > 600 hPa) can range anywhere between 825 and 600 hPa on a daily basis. Such variability smooths the
inversion structure when profiles are averaged; individual profiles are likely to have much more pronounced
inversions than the mean.

In both seasons, CF throughout the cloud layer is about 0.08, but there are some important differences. The
wet season gets more deep convection, which increases CF and RH above 800 hPa, but reduces CF near
825 hPa due to less stratiform cloud layers near cumulus tops [Nuijens et al., 2014]. Also note that there is a
hint of more frequent stable layers near 950 hPa from the distribution of p;., in Figure 2, which could be a
result from compensating downward motion from deep convection, which stabilizes the environment, or
from evaporation of rain below cloud base.

The smaller CF near 825 hPa in the wet season is responsible for a modest reduction in low-level cloud
cover (CQ) [Nuijens et al., 2014]. This modest seasonality in CC is not just apparent in the BCO measure-
ments, but also in data from active and passive satellite sensors for a region upstream of Barbados [Medeiros
and Nuijens, 2015; Brueck et al., 2015].

Most models have a maximum in CF near the top of the well-mixed layer with values less than 0.3 (Figure 2,
remaining plots). They thus capture the basic feature of trade-wind cloudiness: a partially cloudy layer with
clouds that are produced most frequently near the LCL. Many models place the trade-wind inversion near
and above 825 hPa and therefore produce cloud layer depths similar to observations. Moreover, several
models reproduce the layered structure of the trade-wind layer, including the increase in RH in the well-
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Figure 2. Mean cloud and thermodynamic profiles are plotted, representative for the period January—March (dry season) and September-November (wet season), from Barbados Cloud
Observatory (BCO) data and from model output for a location nearby Barbados (EMCWF-LI, MPIM-E63, MPIM-E62) or the BOMEX location (all other models). January—March is depicted
by solid lines, whereas September-November is depicted by lighter-toned transparent lines. Variables shown from left to right: cloud fraction (CF), the relative humidity (RH), the virtual
potential temperature 0,, and the frequency (fraction) of finding inversion layers at a given pressure level: p;,,. Abbreviations for the five layers that are identified in the BCO profiles refer

to: ML = well-mixed layer, TL = transition layer, CL = cloud (cumulus) layer, IL = inversion layer, and FT = free troposphere.
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mixed layer up to the LCL and a decrease in RH in the cloud layer. Some models even show a hint of a tran-
sition layer in their RH profiles and distribution of pjny.

Many models are systematically too dry in the upper part of the cloud layer (850-825 hPa), but most of
them predict the warming and moistening toward the wet season. The associated changes in the CF profile
at levels below 850 hPa are small, consistent with the observations. Models thus reproduce the robustness
of the trade-wind layer. Nevertheless, no model stands out as performing particularly well at capturing the
finer details, including the difference in LCL between the seasons, the invariance of CF near the LCL and
most importantly, the decrease in CF near 825 hPa.

These points will be discussed in more detail when we relate cloudiness to the structure of the trade-wind
layer (section 4.2). First, we will take a closer look at how models vary the structure of cloud and humidity
on shorter-time scales.

3.2. Short-Term Variability

How a model arrives at its mean CF profile can be very different from the observations. In the observations,
individual days experience clouds that are fairly evenly distributed over a layer from the LCL to the mean
inversion height, whereas in the models the vertical distribution of clouds can differ substantially from one
day to the next.

The shape of the CF profile can be measured by a parameter y = CF ¢ (CF_c. + CFaLorr), Which represents
how bottom-heavy (large y) or top-heavy (small y) the CF profile is Brient et al. [2015]. Distributions of y
from daily CF profiles are shown in black in Figures 3a (dry season) and 3d (wet season). Values for y are
always less than 0.6, which implies that CF is distributed across the cloud layer and tends to be emphasized
near the top of the cloud layer especially in the dry season.

Compared to observations, models differ greatly in their distributions of ). Several models shift between
very bottom-heavy (y > 0.9) and top-heavy profiles (y < 0.1). This behavior of y is related to frequent occur-
rences of CF ¢, = 0 or CFa ot = 0 (square markers on the left outset of Figures 3b, 3¢, 3e, and 3f). However,
in the observations, there are very few days on which CF at either level is completely absent. This is even
more true for CC . (in black solid lines) because it represents a cloud amount integrated over many
observed heights within one model layer.

In observations, the total variance in CF ofr is about twice that of CF - (see Table 2, whose values were
previously shown in Nuijens et al. [2015]). Hence, variability in cloudiness near the inversion is the dominant
contributor to variability in low-level CC. In contrast, six out of nine models have in total more variance in
CFic than in CFa ofr (Table 2), which is caused by their frequent dissipation of CF near the LCL.

Periods with zero CF ¢, can in some models last for days or weeks at a time [Nuijens et al., 2015], which sug-
gests that the behavior is not random. In the following sections, we analyze if such behavior can be linked
to the modeled trade-wind structure and large-scale flow.

4, Patterns of Covariability of Cloud and Environment

The results presented in previous sections hint that patterns of covariability between cloudiness and the
environment are systematically different in the models compared to observations. For CF ¢, and CFa o,
respectively, section 4.1 and 4.2 reveal the anomalous profiles of RH, absolute humidity g, potential temper-
ature 0, vertical velocity o, and the wind components u, v for months with large and small CF—in observa-
tions and models. The anomalies are taken with respect to a yearly running mean centered on each month.

Furthermore, we perform regressions between CF and parameters that one may call large-scale predictors,
which have been found important for explaining variations in cloudiness in previous studies [Brueck et al.,
2015]. These parameters include the RH averaged over the well-mixed layer ((RH),, ), the vertical difference
in RH between 850 hPa and the LCL (A¢, RH = RHgso — RH ) and the vertical difference in RH across the
inversion layer (AL RH = RH;oo — RHgso). Furthermore, the potential temperature lapse rate across the transi-
tion layer or mixed-layer top is considered, df/dzy, which for the observations is derived between 1000
and 900 hPa and for the models between one model level above and below the LCL (which are not always
separated by 100 hPa, hence we take the actual gradient here instead). The free tropospheric 0 lapse rate is
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Figure 3. A parameter that measures the shape of the profile of CF and CF at selected levels are shown for the period January-March (top row) and September-November (bottom
row). The three plots are frequency distributions of: (a,d) 7%, which represents how bottom-heavy (large y) or top-heavy (small y) the CF profile is, modified after Brient et al. [2015]; (b,e)
CFicL (Table 2); and (c,f) CFa of. For definitions, see section 2.5 and 3.2. The observed CF ¢, and CF o are shown in dashed black lines and the observed CC, ¢, and CCp ot are shown
separately in solid black lines. All parameters are derived from daily mean profiles. The minor tick marks indicate the binning that is used. In Figures 3¢, 3d, 3f, and 3g, the bin 0-0.1
excludes the frequency of finding CF = 0, these are shown separately by the square markers at the left outset of each plot.

also considered, whereby Ay 0 is determined between 750 and 600 hPa. Last, the vertical velocity at 825
hPa (wgys) and the near-surface wind speed U, are included.

4.1. Cloudiness Near the LCL

4.1.1. Observed Versus Modeled Seasonal Patterns

In observations, the differences in CF* , from one month to the next are generally modest, but there are a
few notable differences. Months with larger CF* ¢ (thick black lines, Figure 4) have a drier well-mixed layer,
a relatively moist cumulus layer and a very dry and warm layer near and above the inversion between 825
and 600 hPa compared to months with smaller CF* ¢ (thin black lines). The dry and warm air between 825
and 600 hPa is likely associated with the intrusion of Saharan Dry Air layers, which occurs throughout late
spring and early summer [Carlson and Prospero, 1972].

Relatively cold cloud layers over warm well-mixed layers destabilize the cloud layer to convection and trig-
gers abundant cloudiness within the first 1.5 km above the LCL. The cloudiest months also have stronger
winds, with a more pronounced northerly component, which is consistent with the air masses being rela-
tively cold (in 6) and dry (in g). A separation in the vertical wind component, , is only visible above 825
hPa, which suggests that months with large-scale subsidence generally have larger CF* ¢, but that w is not
a decisive factor.

We have already seen that models tend to have more variance in CF ¢ than is observed, with frequent
occurrences of CF . =0 (Table 2 and Figure 3c). Therefore it might not come as a surprise that models
covary CF ¢ with the environment in a number of ways. As the anomaly profiles for a subset of models
illustrate, increases in humidity and temperature, winds, and subsidence can either increase or decrease
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Figure 4. The anomalies in thermodynamic and kinetic profiles for months with large values of CF ¢ (thick lines) and small values of CF ¢, (thin lines). The anomalies are taken with
respect to a yearly running mean centered on each month. (top row) The BCO data are shown, whereby the lines correspond to the lower and upper quartile of ordered anomalies in
CCcy instead of CF ¢, The following rows show the same, but for the models using CF .. We show only those models in which the variance in monthly CF ¢, is better explained by
parameters that represent the large-scale state than in observations (Table 3).

CF . (Figure 4). Some models are close to the observed behavior (BCC, NCAR-C4), but have weaker and
more southerly winds at times of large cloudiness instead. Other models show very little separation in pro-
files (MPIM-E62) or produce more CF ¢, during months with mean rising motion (» < 0) that have a moister
and warmer trade-wind layer (ECMWF-LI, MOHC, and NCAR-C5).
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Table 3. From Left to Right: the Total Fraction of Variance in Daily CF ¢, (Models) and CC, ¢, (Observations) Explained Using Six Parame-
ters (see below); the Parameter X, That Best Explains Variance in Daily CF ¢, Using a Single Regression; r?, the Fraction of Variance
Explained by X;; the Parameter X, That Best Explains Variance in Daily CF ¢, Using a Multivariate Regression (in Which Other Parameters
are Held Constant)?. The Following Four Columns Show the Same Information for Monthly CF ¢,

Abbreviation R® (1d) X, (1d) r% (1d) X (1d) R? (30d) X, (30d) r% (30d) X (30d)
BCO 024 g5 0.10 (RH) 0.56 do/dzy, 0.30 Uhg
ECMWEF-LI 028 (RH) L 0.21 (RH) L 0.72 g5 0.62 (RH) L
MPIM-E63 0.28 (RH) . 0.25 (RHY 0. 0.62 (RHY 0. 0.50 (RHY .
MPIM-E62 0.66 (RH) L 0.61 (RH) L 0.80 (RH) L 0.61 (RH) L
BCC 0.56 (RH) 0.42 (RH) 0.72 do/dzy, 0.63 do/dzy,
CCCma 0.27 (RH) L 0.13 (RH) L 0.52 (RH) L 0.31 (RH) L
IPSL 0.02 0.12

CNRM 0.44 d0/dzr, 0.28 do/dzr, 0.67 do/dzr, 0.23 d0/dzn,
MOHC 048 g5 038 do/dzy, 0.83 do/dzy, 0.69 do/dzy,
MRI 030 AcL RH 0.15 do/dzy, 0.49 A RH 0.10 (RH) L
NCAR-C4 0.66 do/dzy, 0.53 do/dzy, 0.75 do/dzy, 0.53 do/dzy,
NCAR-C5 0.50 (RH) L 0.46 (RH) L 0.67 (RH) L 0.58 d0/dzn,

“The parameters used are: (1) the average RH in the well-mixed layer (RH),, , (2) the difference in RH across the cloud layer A ¢ RH,
(3) the difference in RH across the inversion layer A ;. RH, (4) the 0 lapse rate across the transition layer or mixed-layer top d6/dzy, (5)
the vertical velocity at 825hPa wg,s, and (6) the near surface wind speed U, o.

In the following section, we discuss the relationships of cloudiness with the environment in more detail by
looking at daily and monthly time scales. To simplify the discussion, we perform single and multi-variate
regressions of cloudiness with the large-scale predictors defined above.

4.1.2. Predictors of Cloudiness

To facilitate the comparison between models and observations, which differ in their magnitudes and in
their variances of CF, a standardized regression is used whereby the regression coefficients are scaled by
the ratio of the standard deviation of a parameter to the standard deviation of CF. Table 3 lists the parame-
ter that explains most of the variance, using a single regression for each parameter, as well as using a multi-
variate regression, which basically removes the effect of covarying parameters that may strengthen or
weaken individual relationships. The single regression coefficients are also plotted in Figure 5 for the differ-
ent time scales. The regressions for different time scales are created by first removing the long-term mean
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Figure 5. The linear regression coefficient between CF ¢, (models) or CC ¢ (observations) with different parameters X, determined on different time scales. The parameters include
(RH) > ActRH, A L RH, d0/dzy, wgzs and Uy, which are introduced in the text (section 4.1.2) and the caption of Table 3). The time scales range from daily anomalies (from monthly
means) to monthly anomalies (from yearly means). The observations are denoted by black circles. Models are denoted by squared markers, whose size is scaled by the amount of var-

iance explained.
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before performing the regression. For instance, monthly means are subtracted from daily means and yearly
means are subtracted from monthly means.

The observed regressions for CFx ¢ turn out to be overall small and negligible for most parameters—
including RH. Altogether the selected set of parameters explains 24% of the observed total variance on daily
time scales and 56% of the observed total variance on monthly time scales. U;o and d0/dzy_ are the parame-
ters that best explain monthly variations in CF* ¢ (30% each).

All models run counter to the observations by producing excessive CF . when the well-mixed layer is rela-
tively humid and topped by a more stable transition layer. (RH),, and d0/dzy_explain at least half of the
variance in monthly CF ¢ (last column, Table 3). In addition, the models lack the observed relationships
between CF ¢ and Uy, or that relationship has the opposite sign.

The time series in Figure 6 illustrate the relationship between CF ¢, and RH in observations (Figure 6, top
two plots) and a few models for which the regression coefficients between CF ¢, and (RH),, are larger than
0.7 at monthly time scales. The observations show that CC ¢, has day-to-day variations, but stays close to
20% on longer-time scales. Although covariations between daily RH ¢, and CF ¢ can be observed, CF ¢
does not exhibit the multiday (i.e., synoptic) fluctuations that RH does. The models’ single-time step behav-
ior shows that their variances in CF ¢, are much larger than observed, which in some models (e.g., MPIM-
E62) are tightly linked to RH variations (cf. Figure 5).

Behind the behavior, we derive from the models appears to linger well-established relationships between
low-level cloudiness, relative humidity, the stability of the lower atmosphere, and the large-scale vertical
velocity, which in climatologies separate patterns of cloudiness along latitude and inspired cloud parame-
terizations decades ago. For example, many climate models use a diagnostic cloud scheme whereby CF is
some function of the RH, assuming that condensation on subgrid scales is related to a larger-scale synoptic
regime that makes an imprint on the mean relative humidity [Slingo, 1980; Sundqvist et al., 1989; Qu et al.,
2014]. Larger cloud amounts, such as belonging to stratocumulus decks, have also been linked to regions
with enhanced lower tropospheric stability [Klein and Hartmann, 1993]. Therefore, vertical temperature gra-
dients, as well as vertical velocity o, have likely made their way into parameterizations of cloudiness. How-
ever, because these parameters do not reflect the dominant mechanisms that control CF on shorter-time
scales, they might lead to overly strong dependencies.

In the following section, we explain why relationships between CFx ¢ and the large-scale environment are
small on short-time scales in the observations. We hypothesize about the underlying processes that lead to
the observed relationships with Uy and d6/dz;_ and discuss reasons for the somewhat counterintuitive
result that (RH),,_ plays only a minor role.

4.1.3. Constraints on Cloudiness Near the LCL in Nature

In the observations, there is little evidence for strong controlling factors on CFx ¢ . One of the explanations
for this is that CFx ., when averaged over a day or longer has relatively little variance (compared to
CFxaLofT, See also Table 2). Nuijens et al. [2015] show that 60% of the total variance in CFx ¢ is contained on
time scales less than a day. This suggests that processes that have relatively short-time scales are important
in regulating cloudiness, which in turn are relatively insensitive to changes in the large-scale flow, such as
large-scale subsidence or large-scale relative humidity. For instance, larger CFx ¢ is found during months
with lower (RH),,, (Figure 5), which shows that RH is not a decisive factor.

Using the high-resolution nighttime humidity measurements at the BCO, which provide a humidity profile
every 2 min, we find that the location of the mixed-layer top (1) with respect to the LCL of air parcels near the
surface is decisive for cloudiness near the LCL on short-time scales. Humidity anomalies for 15 min periods
during which CFx | is large or small (compared to the nighttime mean) are most pronounced near 700 m,
but less so toward the surface (Figure 7). Because the layer below 7 tends to be well-mixed, we expect g to be
relatively constant with height, which implies that the signal in g at 700 m merely reflects an increase of #.

This finding is not surprising. Going back to early work by Malkus [1958], it has been recognized that for
cumulus clouds to form, buoyant air parcels need to ascend through a stable layer, the transition layer,
which is similar to a layer of convective inhibition in studies of deep convection. The transition layer is
marked by a small decrease in absolute humidity and increase in temperature, which reflects the penetra-
tive nature of the dry convection in the sub-cloud layer: the overshooting and downward mixing of

NUIJENS ET AL.

PATTERNS OF COVARIABILITY 1753



QAG U Journal of Advances in Modeling Earth Systems 10.100212015mis0004s3

o§ i _WWMWWWW

O 09 | | | | | |
— RHLCL

:\0\100 -

; 80 —WWW

T 60 T T T T T ]

—~ 4 _ ECMWF-LI

3 05 —

L

(@] 0 |

;\?100

I 80 —

T 60 I I I I I

30

-
R A AN
S\ Ao VLA AT WhA L ] )
© 09 [ I | | |
—~100 — . N
g\i ™ A A A T\ A A i o LA s " e
z 80
60 T T T T T ]
0 5 10 15 20 25
time (days)

Figure 6. A sample time series of 4 hourly CC, ¢, (observations) and CF ¢ (models), as well as RH near the LCL. Note that observed RH has
a lower temporal resolution, because it is available during nighttime only. Daytime values are simply constructed by interpolating between

nighttime values.

relatively dry and warm air. This is illustrated in part 1 of Figure 8, adapted from Neggers et al. [2006]. In this
illustration, we also indicate that the LCL is not just one height level, but at a range of levels, because buoy-
ant parcels ascend from different levels in the well-mixed layer that have different humidity and tempera-
ture values. An increase in i with respect to the mean LCL, or vice-versa, a decrease of the mean LCL, will

increase the fraction of parcels that reach saturation.
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anomalies are not shown. where E is the rate at which cloud layer

air is entrained into the subcloud layer
(E>0, and ~1 cms™ ). w, is the large-scale vertical velocity, which is <0 downward and ~0.5 cms .
Finally, M is the mass removed from the layer by convection. M can be written as the product of w,, the ver-

tical velocity in the positively buoyant cores of clouds, and of a,, the cloud core fraction:
M=w, a, )

A typical core fraction a. is on the order of a few percent (0.01-0.05), which may be understood from the bal-
ance d. = E;y—':” and assuming equilibrium (% =0). For updrafts with w. ~ 1 ms ™ this leads to M ~ 1 cms ™"
Let us imagine a scenario by which the well-mixed layer is perturbed and g increases by dq, which lowers
the LCL and leads to a ten-fold increase in a. (Figure 8, #1 and 2,). Following equation (2), M consequently
increases by an order of magnitude to 10 cms ™', which has the potential to lower 5 by a 100 m in only
1000 s. The net effect is to lower 5, bringing it closer to the mean LCL again, which constitutes the negative

feedback. At the same time, the amount of dry air that is pushed down by convective downdrafts helps

L 2. 3.

Figure 8. lllustration of the negative feedback mechanism that constrains cloud amount near cloud base, adapted from a Figure by Neggers et al. [2006]. In (1) a typical humidity profile
above the ocean’s surface is illustrated, along with the location of the top of the well-mixed layer 1, shown by a dashed line, the lifting condensation level(s), shown as a blue shaded
layer, the surface buoyancy flux F, 5, and the processes that control the mass budget of the well-mixed layer (see equation (1)): the mass flux M, the entrainment rate at , E and the
large-scale vertical velocity at i, w,. In (2) a scenario is illustrated whereby the mixed-layer g is perturbed by adding an amount of moisture dq. This lowers the surface energy input and
the LCL, which in turn increases cloud (core) fraction and through equation (2) increases M. M removes moisture from the well-mixed layer and transports it upwards, thereby deepening
the layer, which leads to additional downward mixing of drier free tropospheric air. In (3) the adjustment to a new equilibrium is shown, whereby larger M has led to a lowering of 5
(through equation (1)), bringing it close again to the LCL, thereby reducing cloud (core) fraction again.
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increase the stability by increasing A 1. g. Both processes lead to a reduction in the fraction of air parcels
that saturate, which reduces M and brings the well-mixed layer to a new equilibrium state (Figure 8, # 3).

Note that a difference exists between the cloud core fraction a. and the actual CF. CF is determined by all
cloudy air parcels, including those that are negatively buoyant, whereas a. only includes the fraction of pos-
itively buoyant parcels. LES indicates that values for CF are a factor 2-10 larger than a, [Siebesma et al.,
2003; VanZanten et al., 2011]. What might control differences between the two warrants further investiga-
tion, but at first order we may assume that the two are proportional and postulate that because convection
acts to keep 1 and the LCL close to one another [Albrecht et al., 1979], variations in CFx ¢ are also limited.

Using this framework, it can be understood that the RH in the well-mixed layer can help regulate the LCL
and thus CFx _ on shorter-time scales. However, such local variations are poorly encapsulated in the RH
averaged over a day or longer. Why we do not see a stronger relationship with RH on even shorter-time
scales (not shown) is somewhat surprising, and in contrast with studies that have successfully linked humid-
ity and temperature variations to cloudiness, most notably the work by [Tompkins, 2002] on statistical (PDF)
cloud schemes. The temporal resolution of the measurements may play a role: although the updrafts and
downdrafts are likely resolved, the larger humidity in the core of the updraft may not be. Furthermore, tem-
perature fluctuations that matter to cloudiness on short-time scales are not resolved.

There appear to be mechanisms that may change CFx . on monthly time scales: namely, df/dz_ has a
negative relationship with CFx ¢ and U g has a positive relationship with CFx .. These relationships may
be understood from equation (1) by noting that different equilibria (% =0) are possible. Larger df/dzy_
may correspond to a smaller entrainment rate £ and hence a smaller #, which would correspond to
smaller a.. As for the wind speed, which has appeared as an important factor in numerous studies [Klein,
1997; Brueck et al., 2015], but generally receives less attention compared to thermodynamic arguments:
an increase in Uy linearly increases the surface buoyancy flux F, . Energetically, the effect of larger F s is
to increase the depth of the well-mixed layer 5 (through an increase in E): that deeper layer allows the
vertical gradient of the buoyancy flux, which determines the local heating rate, to remain unchanged, in
order to balance an unchanged radiative cooling rate [Nuijens and Stevens, 2012]. Thermodynamically, the
effect of a larger wind speed is to lower the LCL. This is due to a decrease in the Bowen ratio and an
increase in RH, due to a larger increase in the surface latent heat flux compared to the surface sensible
flux, the latter being limited by the entrainment of relatively warm air [Albrecht et al., 1979; Betts and Ridg-
way, 1989]. The increase in 1 through energetic constraints and the decrease in LCL through thermody-
namic constraints would increase cloudiness. Other possibilities through which stronger winds may
impact cloudiness are when they are accompanied by increased convergence, either locally, or when the
ITCZ is located at higher latitudes in boreal summer (assuming that winds vanish at the ITCZ). Increased
convergence would raise # by making wj, less negative. Stronger winds may also imply a larger wind
shear, which would increase the projected cloud cover, although wind shear appeared a less important
controlling factor than wind speed itself [Brueck et al., 2015]. We also note that the anomaly profiles of u
and v (Figure 4) do not suggest a strong role for shear. LES modeling studies would be necessary to better
understand all these interactions.

4.2. Cloudiness Aloft

4.2.1. Observed and Modeled Seasonal Patterns

Large values of CF* 5| orr occur when numerous shallow cumuli near the LCL are accompanied by larger and
deeper cumuli with stratiform layers near their tops [Nuijens et al., 2014]. We have seen that stratiform cloud
layers are more pronounced during the dry winter season (Figure 2, section 3.2). Therefore, the anomalous
profiles during periods of large CF* 5 ofr versus small CF*a ot (Figure 9) mainly reflect the dry and wet sea-
sons. Months with larger CF*5 ofr are relatively drier and colder, experience large-scale subsidence, larger
U,o and larger wind shear. These months also have a notable trade-wind inversion between 800 and 700
hPa. Both Klein [1997], focusing on the stratocumulus-to-cumulus transition region, and Brueck et al. [2015],
focusing on a region upstream of Barbados, found that low-level CC is best correlated with wind speed.
Both studies also emphasize that the air mass history matters: air masses coming from colder, drier regions
(under stronger subsidence) have larger lower tropospheric stability, which may promote low-level CC.

That said, the deeper clouds may occur during disturbed periods much shorter than a month, which deviate
from the mean conditions during the dry season, a point which we return to in the next section.
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Figure 9. The anomalous thermodynamic and kinetic profiles for months with large CCa orr (observations) or CFa orr (models) (thick lines) and small values of CCaiorr CFaLofFr (thin
lines). (top row) The observations; the following rows, models that frequently produce deeper cloud layers and for which large-scale parameters explain a larger fraction of variance in
cloudiness aloft than they do in observations (R? (30d), Table 3).

The models in Figure 9 diverge in their patterns. Some models resemble the observations and have larger
CFz.0r7 in the dry season (IPSL and ECMWF-LI) when the free troposphere is dry and warm and mean subsi-
dence prevails. Other models show the opposite: larger CF ofr is produced at times of mean ascent, when
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Table 4. Similar to Table 3, but Then for the Variance Explained in CCp  ofr (Observations) and CFa orr (Models)?

Abbreviation R? (1d) X, (1d) 1% (1d) X (1d) R? (30d) X, (30d) r% (30d) X (30d)
BCO 0.44 Ac RH 0.28 A RH 0.69 (RH) L 0.42 ALl
ECMWF-LI 0.39 Ay RH 0.24 AcL RH 0.79 Ay RH 0.48 Ul
MPIM-E63 0.19 AcL RH 0.15 AcL RH 0.46 AcL RH 0.16 AcL RH
MPIM-E62 0.05 0.10

BCC 0.54 A RH 0.31 AL RH 0.76 AcL RH 0.49 AcL RH
CCCma 0.11 0.47 AcL RH 0.32 A0
IPSL 037 Ay RH 0.26 AcL RH 0.62 Ay RH 0.60 Ui
CNRM 0.45 W25 035 (RHY . 0.66 W25 0.36 Ul
MOHC 052 Wgs 0.43 A RH 0.72 Wgas 0.36 Ay RH
MRI 0.65 W25 0.43 Ac RH 0.82 AcL RH 0.64 Ac RH
NCAR-C4 058 AcL RH 0.29 AcL RH 0.80 Ay RH 0.48 AcL RH
NCAR-C5 0.49 AcL RH 0.28 Ac RH 0.67 AcL RH 0.50 Ac RH

*The set of parameters used is the same, with one main difference, d6/dz = Ay 0. For the observations and those models that produce
clouds beyond 1 km often, the relationship of CCaorr CFaLorr With d0/dzy, is similar to that of CC, ¢ CF ¢ with d0/dzy,.

the inversion is weaker and the lower troposphere is more humid (MRI, CNRM, MOHC, and NCAR-C5). Dur-
ing those months, the boundary layer overall appears to be much deeper and moister than what is typical
for the trades.

Similar to what we did for CF ¢, we next compare the regressions of CF, orr with a set of predictors to dis-
cuss the most apparent relationships across time scales in the observations and the models.

4.2.2. Predictors of Cloudiness

On a day-to-day basis, CF¥5 ofr varies more strongly with RH in the cloud layer (measured by A ¢, RH, which
scales mostly with RHgys) and with wgys than what we have seen for CF* . The fraction of variance
explained by the selected set of predictors is also larger (0.44, compared to 0.24 for CF* ¢ Table 4). The
stronger covariance can be explained because the main source of RH in the cloud layer is convection itself,
which transports moisture out of the mixed-layer into the free troposphere. This relationship is already pres-
ent on time scales of minutes (Figure 7b) and explains why the daily regression coefficient between CF*,
Lorr and A¢| RH is relatively large at 0.5 (Figure 10).

Days with larger CF*, ot also correspond to weaker subsidence or larger mean ascent, so that the regres-
sion coefficient with wg;s is negative on daily time scales (Figure 10). This hints that synoptic disturbances,
such as easterly waves, can promote CF*5 orr even when on average that month experiences subsiding
motion. Consistent with that relationship, the regression coefficient with A;. RH is positive on daily time
scales, reflecting a deepening and moistening of the cloud layer.

<RH>ML ALO Ac RH A RH WDgo5 U EgaWF L
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Figure 10. As in Figure 5, but then for the variance explained in CFa orr (models) and CCp ot (0bservations). The set of parameters used is the same with one main difference, A, 0 is
used instead of d0/dzy.
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Also on monthly time scales, the variance in CF*s o is somewhat better explained by the selected set of
predictors than the variance in CC ¢ . However, the covariance with Ac; RH (RHg;s) is less pronounced, pre-
sumably because that covariance exists locally and is poorly encapsulated in longer averages. Parameters
that do play an important role are A 0 and U,,. What may underlie these relationships is a greater potential
for stratiform cloud layers to form under stronger inversions when surface evaporation is large [Nuijens and
Stevens, 2012]. However, those conditions appear to be a prerequisite rather than a controlling factor,
because neither covary strongly with CF*5 orr on the shorter daily time scales.

The results suggest that an important factor for increasing CF*,, orr and CC is the potential for trade-wind
cumuli to deepen, but nevertheless maintain a limited depth so that the trade-wind layer structure is pre-
served. If the trade-wind inversion becomes less defined because much deeper convection transports mois-
ture all the way through the cloud and inversion layers into the free troposphere, such as during the wet
season (Figure 2, light grey line), CF 4,0 will decrease.

All models agree with the observations that days with larger Ac. RH and weaker subsidence correspond
to larger CF4 0rr (Figure 10). Yet whereas such parameters become less important in the observations on
monthly time scales or relationships between these parameters and CF4,orr change sign, the majority of
models continue to show strong relationships with Ac. RH and wg,s. Models disagree on the sign of the
relationship with wg;s which leads to opposing anomaly profiles (Figure 9). Some models produce the
largest CF 0rr in the wet season with strongest mean ascent (MRI, CNRM), whereas others reproduce
the observations by producing the largest CF4,ofr in the dry season when strong inversions as well as
stronger winds are present (ECMWF-LI, IPSL). Many models fail to reproduce the observed relationships
with U, and A, 0, although a few models capture at least the relationship with A 0 (BCC, IPSL, NCAR-C4)
or with U, (ECMWE-LI).

5. Discussion

We have identified some common biases of global (climate) models in how they vary trade-wind cloudiness
with the environment. First, models have stronger than observed relationships between CF ¢, and the RH in
the well-mixed layer. We explained that in nature, variations in RH may regulate the LCL and thus be linked
to cloud formation locally, but that these local signatures diminish over longer-time scales. Furthermore, we
explained how convection responds rapidly to perturbations in RH by ventilating the mixed-layer, which
has a negative feedback on CF ¢, (section 4.1.3). Apparently climate models do not represent such proc-
esses properly. Therefore, modeled CF ¢, appears to be too sensitive to changes in RH.

Second, models have stronger than observed relationships between CF ¢, and the temperature stratifica-
tion at the top of the well-mixed layer. Models produce larger CF ¢, when the transition layer and lower
cloud layer are more stratified, whereas in observations larger cloudiness near the LCL is found when these
layers are less stratified. Observations do show larger CFa ofr underneath a stronger trade-wind inversion
further aloft, which many models do not reproduce.

The models diverge in how they distribute CF and RH across the depth of the trade-wind layer. While some
models reduce CF ¢ as the RH in the cloud layer and CF 4, ofr increase, other models keep CF ¢ unchanged
or even increase it.

We illustrate these different behaviors by means of Figures 11 and 12, which combine the behaviors of CF ¢
and CF4, o seen in Figure 5 and 10. The plots in Figure 11 represent how parameters differ between days
with a uniform distribution of moisture across the cloud layer and days with a less uniform distribution of
moisture, whereby the latter is measured by A, RH. These differences, §'s, are derived as follows: we order all
days by A RH, from high to low values, and select the upper and lower quartiles of days. Because A, RH is
generally negative, the upper quartile corresponds to small negative Ac; RH (well-mixed) and the lower quar-
tile to large negative A, RH (larger gradients in RH throughout the cloud layer). § = ¢ ypper— Plower COITE-
sponds to the difference in a parameter ¢ between those two quartiles, whereby ¢ ., is the average ¢ over
the upper quartile or days (and similar for the lower quartile). The grey-shaded box indicates negative §'s.

The range of values for 6(Ac.RH) on the x axis (20-70%) illustrates that models have a much larger variance
in RH gradients in the cloud layer than the observations suggest. Nevertheless, both observations and mod-
els agree that days with largest Ac. RH correspond to larger CF ofr and that the actual change in CF, which
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Figure 11. Each plot displays the difference (0) in a parameter between days with a uniform distribution of moisture across the cloud layer and days with a less uniform distribution of
moisture, as measured by A ¢, RH = RHgso-RH, . 4 is derived as follows: days are ordered by A ¢ RH from high to low values. The difference between the upper and lower quartiles of
days are taken: 6 = ﬁﬁuppe,7$|owe,, whereby J)uppe, and ¢ ... are the average ¢'s over the upper, respectively, lower quartile of days. The selected parameters are: (a-g) CFa ofr,
CFici, y* (changes in the shape of the cloud profile, section 3.2), (RH),, , AiL0, d0/dzr, and A;. RH = RH;0 — RHgso. The grey-shaded box indicates negative d's.

is less than 0.2, is modest (Figure 11a). In observations, those changes are accompanied by a small increase
in CF ¢ (Figure11b). A number of models instead show a large decrease in CF ¢ that falls into the grey-
shaded area. These models have the largest decreases in yx, which indicates that the models switch from
bottom to top-heavy profiles (dy <0, (Figurel11c)), whereas in observations the CF profile becomes only
slightly more top-heavy (remember also Figure 3). Because some of these models (MPIM-E62, CCCma) have
large CF ¢, to begin with, and little to no CFp ofr, these changes can be quite effective at reducing low-
level CC overall. The same models also show that the RH in the mixed-layer decreases (6(RH),, < O, Fig-
ure11d) when the distribution of RH in the cloud layer becomes more uniform.

Brient et al. [2015] show that models that produce a bottom-heavy profile more effectively reduce cloudi-
ness as climate warms and therefore have a high climate sensitivity. Our findings suggest that these models
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Figure 12. An illustration of different model behavior for a more uniform distribution of moisture across the cloud layer measured by A ¢, RH (see also Figure 11). In this illustration, we imag-
ine an increase in surface moisture flux (Fy) to trigger an increase in vertical moisture transport toward the upper cloud layer. Days are ordered by A ¢, RH from high to low values. The mod-
eled CF and RH profiles are averaged over the upper and lower quartiles of days and shown in dark, respectively, light solid lines. The BCO observations are shown as a reference at the top.
The MPIM-E62 model is an example of a model that effectively reduces CF, ¢, when moisture is mixed upward over a deep layer, whereby gradients and the inversion diminish. The MOHC
model is an example of a model that increases CF ¢ along with CFa ofr @s moisture is mixed upward, whereby the structure of the trade-wind layer and the inversion is maintained.

exhibit stronger relationships between CF and RH near the LCL than in observations. These models tend to
shift cloud layers near the LCL to levels further aloft when moisture is mixed upward and the cumulus layer
deepens, rather than sustaining cloudiness everywhere within the cumulus layer. The negative relationship
between RH or CF near the inversion (850 hPa) and CF near the LCL is also apparent in a larger sample of
CMIP models over all ocean regions that experience moderate subsidence or weak ascent Medeiros and Nui-
jens [2015].

Sherwood et al. [2014] furthermore show that the simulated vertical moisture structure over tropical oceans
in present-day climate separates high from low climate sensitivity models. They use A, RH as a measure of
lower tropospheric mixing and relate models with a small A;. RH to a high climate sensitivity. By diagnosing
Ay RH only over the western Pacific warm pool, where mean ascent dominates, they ensure that convection
is indeed the lead effect on moisture at those levels, rather than variations in large-scale descent. They then
argue that those models that sustain small A;. RH are apparently very effective at mixing moisture all the
way from the well-mixed layer to the free troposphere (700 hPa). Presumably, as this mixing increases with
global mean temperature CF ¢, disappears.

We find that models that are effective at mixing moisture by the definition of Sherwood et al. [2014] are
indeed those that readily dissipate clouds near the LCL in the present-day climate. These are the models in
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Figure 11 that reduce temperature and moisture gradients throughout the lower troposphere as they
reduce CF . An illustration of this behavior using the MPIM-E62 model as an example is shown in Figure
12b. The potential temperature difference across the inversion layer decreases (0A; 0 < 0) and so does the
temperature stratification across the transition layer (6A7 0 < 0). Furthermore, the RH difference across the
inversion layer decreases (A RH > 0, because A ;. RH becomes less negative).

This behavior contrasts with other models, which distribute RH and CF more uniformly across the cloud layer,
so that as CFa ofr increases, CF . changes little or increases by a small amount (MOHC, NCAR-C5, ECMWF-LI).
The MOHC model is used to illustrate this behavior (Figure 12c). These models tend to maintain the structure
of the trade-wind layer, in terms of layers separated by gradients. The associated larger temperature stratifica-
tion in the transition layer in these models (6 df/dzy > 0) may provide an additional mechanism through
which moisture is capped within the well-mixed layer, which sustains cloud layers there. On the other hand,
these models have a much stronger than observed positive relationship between CF ¢ and large-scale ascent
(Figure 5). Of the models that we have analyzed here, the BCC, NCAR-C4, and MRI models have a low climate
sensitivity in Sherwood et al. [2014]. In turn, high climate sensitivity models in Sherwood et al. [2014] include
the MPIM-E62, IPSL, CCCma, and CNRM models.

In observations, neither a large decrease nor a large increase in CF ¢ is evident when large-scale vertical
motion or RH in the cloud layer changes. However, it would be easy to misjudge a model’s behavior as
being more realistic, and therefore its climate sensitivity as more trustworthy, by means of a single pro-
cess such as vertical moisture mixing. There is no model that stands out by reproducing observed rela-
tionships in all respects. The climate models that we have analyzed here for instance lack either
constraints on CF ¢ due to convection, a sensitivity to wind speed and the strength of the trade-wind
inversion, or an insensitivity to large-scale vertical velocity on longer-time scales. Because changes in
cloudiness will be a combined response to changes in a variety of factors [see also Bretherton et al., 2013],
many of which are connected through circulations and some of which are regulated by convection itself,
a better understanding of the role of large-scale circulations versus the role of convection deserves more
attention.

6. Summary and Conclusions

We evaluated global (climate) models for their ability to reproduce observed patterns of covariability
between the structure of the trade-wind layer, cloudiness, and the thermodynamic and kinetic environ-
ment. A ground-based measurement site established on the Island of Barbados has provided the data
required to study such variability in detail. We used these measurements for a period of up to 4 years and
compared them to multiyear single-time step output from models at a single site near or upstream of Bar-
bados. The models include a subset of CMIP5 models and the ECMWF Integrated Forecast System; we ran
the latter in a climate-model-like long integration mode.

All the models exhibit the basic observed features of a trade-wind layer. Specifically, models produce a
well-mixed layer approximately 500-1000 m deep throughout which RH increases, peaking at cloud base at
a value less than 100%. Accordingly, CF is on average smaller than 0.4 throughout the cloud layer. The loca-
tion of the trade-wind inversion in both observations and models ranges from 850 hPa (2 km) to 600 hPa
(~4 km), reflecting the ability of trade-wind cumuli to reach substantial depth. As the ITCZ migrates north-
ward in boreal summer and vertical motion at Barbados changes from mean descent to mean ascent, tem-
peratures increase throughout the column and RH increases above the trade-wind layer. Corresponding
changes in the CF profile are relatively small, which the majority of models reproduce.

However, when moving away from long-term means and looking at variability instead, it is evident that models
achieve their fairly realistic climatology through rather unrealistic variability on shorter-time scales. This raises an
important question, namely whether models can capture potential changes in trade-wind cloudiness in a warmer
climate.

Variability in cloudiness is analyzed at two important height levels: (1) near the lifting condensation level
(LCL) or cloud base (CF ), and (2) near the detrainment level (cloud tops) of the deepest cumuli at the
trade-wind inversion (CFa oft). CF ¢ is important because it contributes on average two-thirds to low-level
cloud cover and is relatively invariant when averaged over a few days or longer. Relationships between
CF ¢, and RH, or other measures of the trade-wind layer structure, are weak. We explained that a negative
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feedback of cumulus convection on CF ¢, which can be found in theoretical models of convection, appears
present in the observations. In this negative feedback, cumulus convection acts like a valve on top of the
well-mixed layer that removes mass as soon as cloud formation is abundant. This mechanism maintains the
height of the mixed-layer top in the vicinity of the LCL, which in turn constraints CF.

CFaLorr on the other hand is important because it contributes most to the variance in low-level cloud cover.
CF at this level covaries with the strength of the trade-wind inversion and with surface wind speed on
monthly time scales, leading to larger CFa ofr in boreal winter, when the trade winds are stronger and
lower tropospheric stability is larger. However, variance in CFa ofr On shorter daily time scales is unex-
plained by these factors.

None of the models that we analyzed stands out by reproducing the observations better in all respects.
Almost all models overestimate the variance in CF ¢, compared to the variance in CF ofr On shorter (daily)
timescales. The large variance in modeled CF ¢, lies in stronger than observed relationships between CF ¢
and RH in the well-mixed layer. Furthermore, whereas in nature modest decreases in CF ¢ are observed
when the temperature stratification in the transition layer is larger (and convection is limited), the models
show larger CF ¢, under such conditions instead.

Most models do not indicate that the strength of the inversion and the surface wind speed can promote CFa oFr
in boreal winter. Models diverge in how they distribute CF and RH vertically across the trade-wind layer and in
particular in response to changes in large-scale vertical motion. One group of models places most cloud layers
near the LCL in a shallow layer with large CF. Cloud layers aloft are produced when moisture is transported
away from the surface to levels near and above the inversion. This dries the mixed-layer and lower part of the
cloud layer at the expense of CF . A very bottom-heavy profile (no CFa oFr) is then exchanged for a very top-
heavy profile (no CF ). These models behave like the ones that Sherwood et al. [2014] refers to as models with
a large vertical mixing potential, which effectively dry the mixed layer and cloud layer when climate warms.
These models appear to reduce cloudiness, especially near the LCL, too eagerly when vertical mixing increases.
Another group of models distributes RH and CF more uniformly across the cloud layer, so that CF near the LCL
is maintained when moisture is mixed upwards and CF aloft increases. However, this increase is strongly linked
to periods of mean ascent, which is unsupported by the observations.

Modeled cloud changes in present-day climate thus appear to have a larger susceptibility to changes in
their environment than the observations. This highlights that cloudiness in models is not entirely regulated
by the processes that underlie variations in cloudiness in nature, which decreases our confidence that cli-
mate models can realistically predict the response of trade-wind clouds to increasing global temperatures.
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