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Abstract The effect of a linear stratification in the free atmosphere on near-surface properties
in a free convective boundary layer (CBL) is investigated by means of direct numerical
simulation. We consider two regimes: a neutral stratification regime, which represents a
CBL that grows into a residual layer, and a strong stratification regime, which represents the
equilibrium (quasi-steady) entrainment regime. We find that the mean buoyancy varies as
z−1/3, in agreement with classical similarity theory. However, the root-mean-square (r.m.s.)
of the buoyancy fluctuation and the r.m.s. of the vertical velocity vary as z−0.45 and ln z,
respectively, both in disagreement with theory. These scaling laws are independent of the
stratification regime, but the depth over which they are valid depends on the stratification. In
the strong stratification regime, this depth is about 20 to 25 % of the CBL depth instead of the
commonly used 10 %, which we only observe under neutral conditions. In both regimes, the
near-surface flow structure can be interpreted as a hierarchy of circulations attached to the
surface. Based on this structure, we define a new near-surface layer in free convection, the
plume-merging layer, that is conceptually different from the constant-flux layer. The varying
depth of the plume-merging layer depending on the stratification accounts for the varying
depth of validity of the scaling laws. These findings imply that the buoyancy transfer law
needed in mixed-layer and single-column models is well described by the classical similarity
theory, independent of the stratification in the free atmosphere, even though other near-surface
properties, such as the r.m.s. of the buoyancy fluctuation and the r.m.s. of the vertical velocity,
are inconsistent with that theory.
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1 Introduction

Free convection is the turbulence regime that prevails in the unstable planetary boundary
layer (PBL) when strong surface heating coincides with weak mean horizontal flow. These
conditions are primarily found near the centre of anticyclones (Wallace and Hobbs 2006).
The properties and evolution of these systems are relevant to weather forecasting, as excess
near-surface temperatures may occur (Miralles et al. 2014). However, our ability to model
the temperature and other near-surface properties in these areas remains limited due to an
incomplete understanding of the near-surface flow structure. We aim here to improve this
understanding by means of direct numerical simulations.

Flux-profile relationships and transfer laws are key to realistically represent land-
atmosphere interactions in atmospheric numerical models. Still, field measurements in the
unstable PBL (see review in Zilitinkevich et al. 1998, 2006) and laboratory studies of
Rayleigh–Bénard convection (see review in Du Puits et al. 2007; Mellado 2012; Ahlers
et al. 2012) show that near-surface properties can deviate significantly from the predictions
made according to the classical similarity theory (Prandtl 1932; Obukhov 1946; Priestley
1954).

The deviations from classical similarity theory are attributed to the formation of large-scale
circulations, identified as flow structures that extend across the whole system and interact
with the flow in the near-surface region (Kraichnan 1962; Businger 1973). This interaction
invalidates the basic assumption made in classical similarity theory, namely, that the near-
surface region is unaffected by the outer scales. Retaining this effect improves the theoretical
predictions, both in the unstable PBL (see, e.g., Schumann 1988; Zilitinkevich et al. 1998,
2006) and in Rayleigh–Bénard convection (see, e.g., Grossmann and Lohse 2000; Chillà and
Schumacher 2012).

The relevance of large-scale circulations inside the near-surface region raises the following
question: how do near-surface properties, such as flux-profile relationships and transfer laws,
depend on outer-layer properties that can modify the large-scale circulations? For instance,
large-scale circulations can be modified by entrainment-zone properties (de Roode et al.
2004), while entrainment-zone properties can even influence near-surface properties directly
(van de Boer et al. 2014). Here, we complement this previous work by investigating how
near-surface properties depend on the stratification of the free atmosphere.

We study a free convective boundary layer (CBL) that forms over a flat, aerodynamically
smooth surface and that grows into a fluid with a constant buoyancy gradient, N 2. Convection
is forced by a constant and homogeneous surface buoyancy flux, B0. The effect of a large-
scale pressure gradient is not considered, and the mean wind velocity is set to zero. We
compare two configurations: one with N 2 = 0, which corresponds to a CBL penetrating into
a neutrally stratified fluid, and one with N 2 > 0, which corresponds to a CBL penetrating
into a stably stratified fluid. In this second configuration, we focus on the equilibrium (quasi-
steady) entrainment regime.

The first reason to consider these two configurations is that they enclose any atmospheric
CBL growing into a linearly stratified free atmosphere over land. The first configuration
represents a weak stratification regime, such as is established after the early morning transition
when the CBL grows across the residual layer. The second configuration represents a strong
stratification regime, such as can be found during the afternoon period. The second reason is
that the large-scale circulations differ from one configuration to the other. This difference is
induced by the capping inversion that forms at the CBL top when N 2 > 0, which hampers
the vertical motion of the fluid. Thus, by comparing these two configurations, we can study
how different conditions far from the surface affect near-surface properties.
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Near-Surface Effects of Free Atmosphere Stratification... 71

We compare our results with data corresponding to a CBL with an imposed capping
inversion (e.g., de Roode et al. 2004; Sullivan and Patton 2011) and with data from Rayleigh–
Bénard convection. In addition to the relevance that these two configurations also have in
nature and engineering, the vertical motion in these two cases is restricted even more effec-
tively than in our case, which yields different large-scale circulations, and thus, possibly,
different near-surface properties.

We use direct numerical simulation (DNS) to remove the uncertainty associated with
turbulence models near the surface (Sullivan et al. 1994; Moin and Mahesh 1998; Zilitinkevich
et al. 1998; Brasseur and Wei 2010). Despite the moderate values of Reynolds number
currently achieved with DNS, we start to observe a tendency towards Reynolds number
similarity that allows certain extrapolation of the results to atmospheric conditions (Tennekes
and Lumley 1972; Dimotakis 2000; Monin and Yaglom 2007). Moreover, we can assess the
sensitivity of the results to changes in the Reynolds number, since the results are independent
of the numerical algorithm and there is no turbulence-model uncertainty to be considered in
the interpretation of the data.

We focus on the case of a flat surface and do not study the effect of roughness or larger-
size surface heterogeneity. This idealized configuration corresponds, for instance, to an air-
water interface when the air motion is weak enough for the interface to remain flat and
aerodynamically smooth (Brutsaert 1982). The advantage of such a simple configuration is
that it allows us to analyze in detail the flow near the surface. At the same time, despite
the limited range of surface conditions covered by such a configuration, the study serves
as a reference for, and provides insight into, the flow structure over aerodynamically rough
surfaces.

2 Formulation

2.1 Governing Equations

We solve the Navier-Stokes equations in the Boussinesq approximation

∂t ui + u j∂ j ui = −∂i p + ν∂ j j ui + bδi3, (1a)

∂ j u j = 0, (1b)

∂t b + u j∂ j b = κ∂ j j b, (1c)

where ui is the velocity component in the direction êi , p is a modified pressure divided by the
constant reference density, and b is the buoyancy. The parameter ν is the kinematic viscosity,
and κ is the molecular diffusivity. The operators ∂t and ∂ j are the partial derivatives with
respect to time, t , and with respect to the spatial coordinate x j , and δi j is the Kronecker delta.
Einstein summation convention applies to roman-letter indices throughout.

The background buoyancy varies as N 2z, where z = x3 is the vertical distance from the
surface. The buoyancy can be related to the virtual potential temperature θv through the linear
relation b = g(θv − θv,0)/θv,0, where θv,0 is the reference value obtained by extrapolating
the linear stratification of θv in the free atmosphere downwards to the surface. As explained
in the introduction and further discussed below, we consider two configurations: a neutrally
stratified configuration, N 2 = 0, and a stably stratified configuration, N 2 > 0.

In the stably stratified configuration, linear relaxation terms act on the velocity and buoy-
ancy fields inside a sponge layer occupying the upper 25 % of the computational domain.
The reference values of these relaxation terms are uref = 0 and bref = N 2z, respectively. The

123



72 J. P. Mellado et al.

proportionality coefficients of the relaxation terms increase quadratically with the distance
from the inner limit of the sponge layer, from zero at the inner limit to N/2π at the outer
limit.

No-penetration, no-slip boundary conditions are imposed at the bottom boundary of the
computational domain, and no-penetration, free-slip boundary conditions are imposed at the
top boundary. For the buoyancy field, we use Neumann boundary conditions to maintain con-
stant buoyancy fluxes −κ N 2ê3 and B0ê3 at the top and at the bottom, respectively. Periodicity
applies at the lateral boundaries.

The initial velocity field is set to zero, while the initial buoyancy field is defined as

b(x, 0) = bics

[
1 − erf

(√
π

2

z

δics

)]
+ N 2z, (2)

where bics(x1, x2) = [(B0 −κ N 2)/κ]δics(x1, x2) is the surface buoyancy and δics is the local
gradient thickness. A broadband field is constructed by specifying δics(x1, x2) = δ0[1 +
ξ(x1, x2)], the parameter δ0 to be given. The random field ξ(x1, x2) has a Gaussian power
spectral density centred at a spatial frequency λ−1

0 = (4δ0)
−1 and with a standard deviation

(6λ0)
−1, so that there is practically no energy with spatial frequencies below (2λ0)

−1. The
phase of ξ is random, and its mean value is zero and the root-mean-square (r.m.s.) is ξrms =
0.1.

2.2 Dimensional Analysis

The system is statistically homogeneous inside horizontal planes, and the statistical properties
depend on the independent variables {z, t}. We are interested in the fully-developed turbulent
regime that is established after an initial transient, once the details of the initial condition
have been sufficiently forgotten. The controlling parameters are then {ν, κ, B0, N }, with the
Prandtl number set equal to one, i.e., ν/κ = 1. Choosing B0 and κ to non-dimensionalize
the problem, statistical properties can be expressed as a function of the non-dimensional
variables {z/zκ , t/tκ ; L0/zκ }. The dependence on a stratification strength N 2 > 0 has been
expressed in terms of the length scale

L0 = (B0/N 3)1/2 (3)

(this length scale is further explained below). Variables and parameters have been normalized
with the inner (or surface) scales, and we consider an aerodynamically smooth surface, for
which the inner length scale is

zκ = (κ3/B0)
1/4, (4)

viz. the diffusive length scale (Townsend 1959; Fedorovich and Shapiro 2009). The corre-
sponding velocity, buoyancy and time scales are

wκ = (zκ B0)
1/3 = (κ B0)

1/4, (5a)

bκ = (B2
0/zκ )1/3 = (B3

0/κ)1/4, (5b)

tκ = (z2
κ/B0)

1/3 = (κ/B0)
1/2. (5c)

The outer length scale, z∗(t), is defined as

z∗ = B−1
0

∫ ∞

0
〈b′w′〉dz (6a)
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in the neutrally stratified case, and as

z∗ = {z : B(z) = 0} (6b)

in the stably stratified cases, where

B = 〈b′w′〉 − κ∂z〈b〉 (7)

is the total buoyancy flux. Angle brackets indicate averaging inside the horizontal planes,
while primes indicate turbulent fluctuations. Different definitions of the CBL depth, h, are
commensurate with z∗. For instance, in the stably stratified cases, the height of minimum
mean buoyancy flux is 1.17 z∗, and the height of maximum mean buoyancy gradient is
1.27 z∗ (Garcia and Mellado 2014). In the neutrally stratified case, there exists no local
minimum in the buoyancy flux, nor maximum in the buoyancy gradient, but z∗ also provides
a characteristic scale of outer-layer properties (Mellado 2012).

We demonstrate in Sect. 3 that, in terms of z∗, the depth of the turbulent region becomes
approximately equal in both the neutrally and the stably stratified configurations. Hence, by
comparing these two configurations for a given value of z∗, we can investigate how differences
in the large-scale organisation of the flow affect the near-surface region.

Equation 6a provides a one-to-one mapping between z∗ and t , so that statistical properties
can be rewritten as a function of the non-dimensional variables {z/zκ , z∗/zκ ; z∗/L0}. The
reason for using the variable z∗/zκ instead of t/tκ in the analysis presented below is that
the ratio z∗/zκ measures the scale separation between the CBL depth and the surface length
scale. Accordingly, we refer to this ratio as the scale-separation parameter, which can be
related to a convective Reynolds number by

Re∗ = z∗w∗
ν

= (z∗/zκ )4/3, (8)

where
w∗ = (z∗ B0)

1/3 (9)

is the convective velocity scale (Deardorff 1970). Hence, by comparing cases with different
values of z∗/zκ , we can assess the dependence of our results on the Reynolds number.

The variable z∗/L0 proves useful in the analysis of a CBL growing into a linearly stratified
free atmosphere because it combines the dependence on {t, B0, N } into a single parameter,
without loss of generality. For instance, for a given surface buoyancy flux B0 = 0.005 m2 s−3,
a CBL with a depth h = 750 m penetrating into a free atmosphere with a stratification
N = 0.015 s−1 is equivalent to a CBL of depth h = 1500 m penetrating into a free atmosphere
with a stratification N = 0.0096 s−1, since both cases correspond to z∗/L0 ≈ 20. By
appropriately rescaling the variables, we can reproduce the statistical properties of one CBL
from the data of the other CBL, without having to perform a second simulation. In other
words, one single simulation is sufficient to study the dependence of our results on all possible
combinations of the parameters B0 and N .

The length scale L0 can be interpreted as a cross-over CBL depth beyond which N 2 > 0
influences the CBL dynamics (Garcia and Mellado 2014). Atmospheric midday values of
z∗/L0 vary between 5 and 50, and the equilibrium (quasi-steady) entrainment regime sets in
at z∗/L0 ≈ 10–15. Within this quasi-steady regime, the integral time scale of the turbulent
fluctuations is much shorter than the characteristic time associated with the evolution of the
CBL depth, and some statistics of the flow behave self-similarly (Fedorovich et al. 2004).
Hence, the two limits z∗/L0 	 1 and z∗/L0 
 1 characterize, respectively, weak and strong
stratification regimes of the unstable PBL. The two cases considered herein, N 2 = 0 and
N 2 > 0, represent these two limits.
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2.3 Description of the Simulations

For the stably-stratified configuration (N 2 > 0), we consider two simulations with two
different values of L0/zκ , in order to study possible Reynolds-number effects (Table 1).
These simulations are a continuation of those discussed in Garcia and Mellado (2014), with
reference buoyancy Reynolds numbers B0/(νN 2) = (L0/zκ )4/3 equal to 42 and 117. The
first simulation has been continued until z∗/L0 ≈ 30, which represents a deep CBL (e.g.,
h ≈ 2700 m for the atmospheric conditions B0 = 0.005 m2 s−3 and N = 0.01 s−1, h being
defined by the height of the maximum mean buoyancy gradient). The second simulation
achieves larger Reynolds numbers but a smaller CBL depth, z∗/L0 ≈ 20. Both cases reach
well within the equilibrium (quasi-steady) entrainment regime, which starts at z∗/L0 ≈
10–15.

For the neutrally-stratified configuration (N 2 = 0), we need only one simulation because
the number of non-dimensional parameters defining the problem is zero (once the Prandtl
number has been set to 1). We use data at z∗/zκ ≈ 475 and z∗/zκ ≈ 680 to compare with
the stably stratified cases at those same values of the scale-separation parameter. In addition,
we have continued the simulation to achieve larger Reynolds numbers, reaching values ∼104

(last row in Table 1). As the CBL thickens, we have increased the vertical domain size
accordingly so that its influence on the flow remains small, which explains the larger grid
size for the larger values of z∗/zκ .

The horizontal size of the computational domain is 3525 zκ ×3525 zκ in the case L0/zκ =
16, and 7630 zκ × 7630 zκ otherwise. The thickness δ0 used in the initial condition (2) is
δ0 ≈ 4 zκ . Sensitivity studies with respect to changes in the domain size and in the initial
condition can be found in Mellado (2012) and Garcia and Mellado (2014).

2.4 Numerical Method

Equation 1 is discretized on a collocated, structured grid using sixth-order, spectral-like
compact finite differences (Lele 1992). The discretized equations are advanced in time

Table 1 Simulation parameters L0/zκ , and CBL properties at different states of development of the CBL as
indicated by the ratios z∗/L0 and z∗/zκ . L0 is defined in Eq. 3, zκ is defined in Eq. 4, and z∗ is defined in
Eq. 6

L0/zκ Grid z∗/L0 z∗/zκ Re∗ Ret Ra

N 2 > 0

16 25602 × 896 28.9 473 3690 2100 0.45×109

N 2 > 0

36 51202 × 840 13.4 474 3700 1840 0.45×109

36 51202 × 1024 19.1 679 5970 3480 1.4×109

N 2 = 0

∞ 51202 × 860 0 476 3720 1190 0.42×109

∞ 51202 × 860 0 679 6970 1970 1.3×109

∞ 51202 × 1792 0 1278 13870 5040 8.9×109

The convective Reynolds number, Re∗, is defined in Eq. 8. Ret is the maximum turbulent Reynolds number,
e2/(εν), across the CBL, where e is the TKE and ε its viscous dissipation rate. The Rayleigh number, Ra, is
defined in Eq. 32
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with a low-storage, fourth-order Runge–Kutta scheme (Carpenter and Kennedy 1994). The
divergence-free (or solenoidal) constraint is imposed by using a Fourier decomposition of
the pressure-Poisson equation inside the periodic, horizontal planes, factorizing the resulting
set of equations along the vertical direction (Mellado and Ansorge 2012).

The vertical grid spacing Δz satisfies always the relation Δz/η � 1.5, where η =
(ν3/ε)1/4 is the Kolmogorov length scale, and ε = 〈τ ′

i j∂i u′
j 〉 is the viscous dissipation

rate of turbulence kinetic energy (TKE), τi j = ν(∂i u j + ∂ j ui ) being the components of the
the viscous stress tensor. (At the centre of the CBL, typical values are η ≈ 1.1 zκ in the
neutrally stratified case and η ≈ 1.3 zκ in the stably stratified cases, decreasing to about half
of those values at the surface.) Details about the grid and grid-resolution sensitivity studies
can be found in Mellado (2012) and Garcia and Mellado (2014).

3 Comparison of Large-Scale Properties

As explained in the introduction, we are interested in how differences in the large-scale
organization of the flow might affect near-surface properties. For this purpose, we compare
the stably-stratified configuration and the neutrally-stratified configuration at a fixed, common
value of the outer length scale, z∗, defined in Eq. 6, and hence a fixed, common value of the
outer velocity scale, w∗, defined in Eq. 9.

The reason for this approach is as follows. As observed in Fig. 1, the depth of the turbulence
region in outer-scale units is approximately the same between the two configurations. In
particular, the viscous dissipation rate, ε, drops to zero at the same normalized height z/z∗
in both configurations (Fig. 2b), and ε provides a good estimate for the turbulence region.
Moreover, when normalized with z∗ and w∗, the profiles of TKE and the different terms in
its evolution equation become comparable between the two stratification regimes (Fig. 2a,
b). Hence, by fixing z∗/zκ , we can separate the dependence of near-surface properties on the
outer length scale, from the dependence on regime-specific large-scale properties, such as
the geometry of the large-scale circulations. (Each of these two dependences is represented
by the independent variables z∗/zκ and z∗/L0, respectively, in the set of non-dimensional
variables explained in Sect. 2.2.)

Note that the outer scales evolve at a different rate in each configuration. A good approx-
imation to this temporal evolution is provided by

z∗ ≈ 1.05
[
B0(t/3)3]1/2

(10a)

in the neutral stratification regime, and by

z∗ ≈ 0.98
[
B0(2t/N 2)

]1/2
(10b)

in the strong stratification regime (Fig. 3), in agreement with the corresponding theories
(e.g., see Fedorovich et al. 2004; Mellado 2012 and references therein). This one-to-one
mapping between time and CBL depth allows us to express the temporal evolution of the
CBL in terms of z∗ instead of t , as argued before in Sect. 2.2.

For a given value of the outer length scale, z∗, we observe several differences between the
two configurations. One difference that is relevant for the discussion that follows is the entrain-
ment zone. As the stratification increases, the ascending thermals penetrate less deep into
the fluid aloft and kinetic energy is increasingly transferred from the vertical direction to the
horizontal direction. The r.m.s. of the vertical velocity component decreases in the lower half
of the CBL; the r.m.s. of the horizontal velocity components increases everywhere, but more
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(a) N2 = 0

(b) N2 > 0

-3 -2 -1 0 1

log10(|∇ × u|2 t2κ)

Fig. 1 Vertical cross-sections of the enstrophy at z∗/zκ ≈ 680. The vertical white bars in the bottom-left
corners indicate the outer length scale, z∗ (Eq. 6). The horizontal white bars are located at z = hPML, the
top of the plume-merging layers, and the bars extend a distance λLSC = 10hPML, the large-scale circulation
width. The areas shown are 1/2 × 1/2 of the computational areas

markedly at the CBL top and bottom (Fig. 2a). (We note that the pointwise, maximum values
of the r.m.s. of the velocity components, summarized in Table 2, are a poorer indicator of this
change in the flow structure.) The increase of u1,rms at the CBL top enhances the local, shear-
induced mixing between boundary-layer air and free atmosphere air. The resulting entrain-
ment zone is thinner than in the neutrally stratified configuration, where large-scale motions
engulf outer, irrotational fluid over a length scale comparable to the CBL depth (Fig. 1).

Another difference is the tendency of the flow to organize itself into wider large-scale
motions in the strong stratification regime (Fig. 4b, d). Furthermore, downdrafts tend to
occupy a larger area fraction when N 2 > 0, as deduced from the study of the skewness of
the vertical velocity (Fig. 2c). In both regimes, this skewness is positive and increases with
height over most of the CBL. This is a general feature of bottom-heating-only convection:
the updrafts are narrower than the downdrafts, and the updrafts become more dispersed with
height. The approximation

〈w3〉/w3
rms ≈ 2.3

σd/σu − 1

(σd/σu)1/2 , (11)

derived by Moeng and Rotunno (1990) for cases with a solid wall at the top, applies as
well for the strong stratification regime considered here, having to modify the proportionally
coefficient only by 15 %; σd/σu is the ratio between the area fraction of downdrafts and
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Fig. 2 Large-scale properties at z∗/zκ ≈ 680. uh = (u2
1 +u2

2)1/2 is the magnitude of the horizontal velocity.
T = 〈w′u′

i u′
i /2 + p′w′ − u′

i τ
′
i3〉 is the vertical turbulent flux of TKE and ε = 〈τ ′

i j ∂i u′
j 〉 is the viscous

dissipation rate, τi j = ν(∂i u j + ∂ j ui ) being the components of the viscous stress tensor

Fig. 3 Temporal evolution of the
outer length scale, Eq. 6,
normalized with surface scales.
Dashed lines indicate the
corresponding scaling laws,
Eq. 10
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updrafts. Under neutral conditions, the skewness is noticeably smaller for z � 0.9 z∗. Further
analysis (not shown) reveals that this smaller value is mainly due to a 10 % smaller area
fraction of the downdrafts, and not by a substantial change in the structure of the vertical
velocity inside the updrafts and downdrafts.

The energetics is also altered by the stratification of the fluid above the CBL: the turbulent
buoyancy flux, 〈b′w′〉, and the rate of viscous dissipation of TKE, ε, are 50 % smaller at
z = 0.5 z∗ in the stably stratified configuration (Fig. 2b). A large extent of this difference in
the buoyancy flux is explained by the differences in the magnitude of the fluctuations of the
vertical velocity and the buoyancy. Nonetheless, the correlation coefficient 〈b′w′〉/(brmswrms)

at z = 0.5 z∗ still varies from ≈ 0.8 when N 2 = 0 to ≈ 0.7 when N 2 > 0 (not shown),
which further indicates a change in the organization of the flow.
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Table 2 Velocity properties at different states of development of the CBL as indicated by the ratios z∗/L0
and z∗/zκ

z∗/L0 z∗/zκ zu/zκ 〈u2
h〉m/w2∗ zw/z∗ 〈w2〉m/w2∗

∫
e dz/(w2∗z∗)

N 2 > 0

28.9 473 18.4 0.72 0.36 0.50 0.51

N 2 > 0

13.4 474 16.1 0.63 0.40 0.52 0.46

19.1 679 19.1 0.72 0.44 0.52 0.50

N 2 = 0

0 476 8.94 0.72 0.36 0.57 0.43

0 679 10.7 0.80 0.32 0.57 0.43

0 1278 14.9 0.95 0.34 0.58 0.46

zu is the height at which uh = (u2
1 + u2

2)1/2 has its maximum variance, 〈u2
h〉m. zw is the height at which w

has its maximum variance, 〈w2〉m. The integral of the TKE, shown in the last column, is calculated within the
interval (0 , 2 z∗)

In the remaining sections, we discuss how these order-one differences in the large-scale
properties affect, or are related to, near-surface properties.

4 Vertical Profiles

We study first the vertical structure of the first- and second-order moments of the buoyancy
and velocity fields. We show that the mean buoyancy profile near the surface, and hence
the corresponding flux-profile relationship, is well characterized by the surface scales and
z, in agreement with classical similarity theory. However, we need both surface and outer
scales to appropriately characterize other properties, such as the variances or the budget
equation of the Reynolds stresses. Despite this dependence on outer scales, the dependence
on N 2 is only moderate; the major effect of the free atmosphere stratification is that the
scaling laws observed near the surface extend deeper into the CBL for the strong stratification
regime.

4.1 The Diffusive Wall Layer

Near the surface, the mean turbulent buoyancy flux, the mean buoyancy gradient and the r.m.s.
of the buoyancy fluctuations are approximately independent of L0/zκ , i.e., independent of
the stratification (Fig. 5a–c): the vertical profiles corresponding to the case N 2 = 0 and to
different cases N 2 > 0 collapse on top of each other, up to a height ≈50 zκ in our simulations.

This independence on N 2 implies that the near-surface flow structure described in Mellado
(2012) for the neutrally-stratified configuration is applicable as well to the stably-stratified
configuration. The height 10 zκ , where zκ is the surface scale defined in Eq. 4, approximately
marks the end of the diffusive wall layer and the beginning of the outer layer. The outer
layer is defined as the region where the molecular contribution to the total buoyancy flux is
negligibly small (less than 4 % in the configurations of penetrative convection considered
here). Descending from this height towards the surface, the turbulent buoyancy flux decreases
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(a) N2 = 0 z = 0 (b) N2 = 0 z = hPML

(c) N2 > 0 z = 0 (d) N2 > 0 z = hPML

-2 -1 0 1 2 3

(b b )/brms

Fig. 4 Horizontal cross-sections of the buoyancy at z∗/zκ ≈ 680. The large black bars in the top-left corners
indicate λLSC, Eq. 25; the small bars indicate 50 zκ . The areas shown are 5 z∗ × 5 z∗ (less than 1/4 of the
computational areas)

(Fig. 5a) and the molecular buoyancy flux increases (Fig. 5b). Both become comparable at a
height equal to the buoyancy gradient thickness

δb = (Δb)∞/∂z〈b〉|z=0 (12)

(Kraichnan 1962; Chillà and Schumacher 2012). This height is slightly larger than 4 zκ for
the range of Rayleigh numbers achieved in our simulations, in agreement with data from
Rayleigh–Bénard convection. [(Δb)∞ is the buoyancy difference between the surface and
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Fig. 5 Vertical profiles of buoyancy and velocity statistics. (Δb) is the buoyancy difference with respect
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z∗/zκ ≈ 680; dark z∗/zκ ≈ 1280 (only for N 2 = 0). Ticks at the side mark z∗/zκ . Scaling laws are
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the CBL; it is defined in Eq. 28 and discussed in detail in Sect. 7.] Below a height equal to δb,
the molecular contribution dominates, accounting for the total buoyancy flux at the surface.

Inside the diffusive wall layer, ∂z〈b〉 and brms are also approximately independent of z∗/zκ ,
and of order one when normalized with zκ and B0. This result further confirms the use of
surface scales to characterize these flow properties near the surface.

In contrast to the buoyancy-related quantities just considered, pure velocity statistics near
the surface depend on the stratification regime (Fig. 5d, e). Moreover, surface scales alone fail
to characterize the horizontal velocity component, since normalized profiles of u1,rms depend
on z∗/zκ and thus on the outer length scale, z∗. This dependence of near-surface properties
on outer-layer properties contradicts the basic assumption made in classical similarity theory.
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4.2 The Outer Layer

Within the lower part of the outer layer (z � 10 zκ ), the clearest variation with height is
observed in the stably-stratified cases. On the one hand, the mean buoyancy gradient varies
as

(zκ/bκ )∂z〈b〉 ≈ −cb1(z/zκ )−4/3 (13)

between z ≈ 30 zκ and z ≈ 200 zκ , with cb1 ≈ 0.3 (Fig. 5b). This scaling with height agrees
with the prediction derived from classical similarity theory (Prandtl 1932; Obukhov 1946;
Priestley 1954). On the other hand, the r.m.s. of the buoyancy fluctuation and the r.m.s. of
the vertical velocity are well approximated by

brms/bκ ≈ 1.9(z/zκ )−0.45 (14)

and by
wrms/wκ ≈ 1.4 ln[z/(2.2 zκ )], (15)

respectively (Fig. 5c, d). These two scaling laws disagree with the predictions brms ∝ z−1/3

and wrms ∝ z1/3 made according to classical similarity theory, which further demonstrates
the dependence of near-surface properties on outer-layer properties. Moreover, the different
scaling laws of the first- and second-order moments of the buoyancy field indicate a duplicity
of characteristic scales—one single buoyancy scale implies the same scaling law, according
to dimensional analysis.

In the neutrally-stratified case, the vertical profiles deviate from the power laws and the
logarithmic law observed before (Fig. 5b–d). However, as the CBL deepens and z∗ increases,
the profiles tend towards those found in the strong stratification regime. In Sect. 5, we argue
that this behaviour is caused by the large-scale circulations, which, for a given z∗/zκ , affect
more strongly the small-scale motions near the surface when N 2 = 0. As the CBL deepens
and the scale-separation parameter z∗/zκ increases, the profiles in each stratification regime
become more similar to each other. Still, an effect of the outer scales near the surface seems
to remain because wrms, when N 2 = 0, is better approximated by

wrms/wκ ≈ 1.85 ln[z/(2.8 zκ )] (16)

than by Eq. 15. This dependence further supports the existence of a duplicity of characteristic
scales inside the near-surface region, since surface scaling collapses the profiles of wrms for
different CBL depths onto a single curve, but this curve is different in each stratification
regime.

4.3 Discussion

The scaling laws that we observe in our simulations are consistent with previous data. The
flux-profile relationship, Eq. 13, including the proportionality constant cb1 ≈ 0.3, agrees
with the asymptotic limit for strongly unstable conditions in commonly used flux-profile
relationships (Grachev et al. 2000; Wilson 2001). The exponent −0.45 in the power law
for brms compares favourably with the intervals (−1/2,−1/3) and (−0.8,−0.3) reported,
respectively, from atmospheric measurements (Wyngaard et al. 1971) and from laboratory
experiments and simulations (see review in (Du Puits et al. 2007; Mellado 2012). The loga-
rithmic law for wrms agrees with results from laboratory experiments and simulations (Adrian
1996; Fernandes and Adrian 2002), and it fits atmospheric data as well as the power laws
that are commonly used (Fig. 6).
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and u∗ is the surface friction velocity. Figure from Panofsky et al. (1977), modified by adding a logarithmic
fit to the data

How to rationalize these scaling laws, however, remains an open question. Adrian (1996)
assumes that the outer scale w∗ is the only characteristic velocity scale inside the overlap
region between the outer and the surface layers. A matched asymptotic expansion of the
functional forms of the corresponding profiles inside each layer yields then the scaling laws
brms ∝ z−1/2 and wrms ∝ ln z. Our data support these scaling laws; our data, however, also
contradict the assumption that w∗ is the only characteristic scale in the overlap region: curves
in Fig. 5c, d corresponding to different values of z∗/zκ (i.e., different w∗/wκ ) collapse on
top of each other when normalized with surface scales, which implies that those statistical
properties depend on the surface scales but not on the outer scale w∗.

Further analysis reveals that, in general, near-surface dynamics depends not only on surface
scales but also on outer scales, even though properties, such as wrms, do not reflect this
dependence directly. This non-trivial dependence on outer scales is further illustrated by the
analysis of the evolution equation of the normal Reynolds stresses,

∂t u
2
1,rms = −∂z T11 + � − ε11, (17a)

∂tw
2
rms = −∂z T33 − 2� − ε33 + 2〈b′w′〉. (17b)

The vertical turbulent fluxes are defined by T11 = 〈w′(u′
1)

2 − 2u′
1τ

′
13〉 and T33 = 〈(w′)3 +

2p′w′ − 2w′τ ′
33〉, the viscous dissipation rates are defined by ε11 = 2〈τ ′

i1∂i u′
1〉 and ε33 =

2〈τ ′
i3∂iw

′〉, and the magnitude of the pressure-strain correlation is defined by

� = 2〈p′∂1u′
1〉 = −〈p′∂zw

′〉. (18)

In both regimes, � increases with time as the CBL deepens and the scale-separation para-
meter, z∗/zκ , increases (Fig. 7a). According to the evolution equation of w2

rms, this increase
would suggest a direct influence of the outer scale z∗ on w2

rms similar to that observed in
u2

1,rms (Fig. 5e), as more kinetic energy is transferred from the vertical to the horizontal

directions. However, the turbulent transport term in the evolution equation of w2
rms increases

at the same rate as 2�, so that their difference, −∂z T33 −2�, remains constant in time below
100 zκ − 200 zκ (Fig. 7b). The viscous dissipation term balances the remaining ≈25% of the
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source term 2〈b′w′〉, and w2
rms remains constant near the surface as the CBL deepens, i.e.,

independent of the outer scale z∗ (or w∗).
In contrast, the term −∂z T11 + � in the evolution equation of u2

1,rms increases with time
as the CBL deepens and z∗ increases (Fig. 7a). In the stably-stratified cases, the viscous
dissipation term increases at the same rate and balances almost all of this source of horizontal
kinetic energy, since −ε11/(� − ∂z T11) ≈ −1. The cause for this balance is that the integral
time scale is much shorter than the characteristic time associated with the evolution of the
CBL depth, and the system is quasi-steady. Differently, only ≈80 % of the term −∂z T11 +�

is balanced by the viscous dissipation in the neutral stratification regime (dashed, red lines in
Fig. 7a). In this case, the characteristic time associated with the evolution of z∗ is the same
as the integral time scale of the turbulent fluctuation, and u2

1,rms is unsteady near the surface,

even though w2
rms is steady. We show in Sect. 5 that this difference between u2

1,rms and w2
rms

near the surface is because the spectrum of u2
1,rms is dominated by large scales, whereas the

spectrum of w2
rms is dominated by small and intermediate scales; thus, w2

rms is characterized
by time scales smaller than the integral time scale, and w2

rms remains in dynamical equilibrium
even when N 2 = 0.

In summary, buoyancy and velocity statistics demonstrate the need for a duplicity of
characteristic scales to appropriately describe the near-surface region in free convection:
surface scales, {zκ , B0}, and outer scales, {z∗, B0, N }.

5 Spectral Analysis

By means of the spectral analysis of the buoyancy and velocity fields, we show in this
section that the flow near the wall organizes into a hierarchy of circulations. This hierarchy
is established by the merging of smaller plumes into larger ones, starting at the surface scales
and ending at the large-scale circulations. This hierarchy of circulations is approximately
independent of the stratification in the free atmosphere; its depth, however, increases with
N 2, similarly to the depth of the scaling laws presented in Sect. 4.
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We use azimuthally integrated two-dimensional spectra and cospectra inside the horizontal
plane; for instance,

E (2)
bb (κ, z) =

∫ 2π

0
φ

(2)
bb (κ1, κ2)κ dθ (19)

for the buoyancy field, where κi is the wavenumber along the direction êi , κ = (κ2
1 +

κ2
2 )1/2 is the wavenumber along the radial direction, and θ is the azimuthal angle (Wyngaard

2010). [Although the two-dimensional spectra of the horizontal velocity is not azimuthally
symmetric (see, e.g.,Gibbs and Fedorovich 2014), the azimuthally integrated spectra proves
more convenient for our analysis.] Spectra and cospectra are presented in the premultiplied
form

φbb(λ, z) ≡ (2π/λ)E (2)
bb (2π/λ, z), (20)

where λ = 2π/κ is the wavelength along the radial direction, so that

〈b′b′〉(z) =
∫ ∞

0
E (2)

bb (κ, z)dκ =
∫ ∞

−∞
φbb(λ, z)d log10 λ (21)

holds. (The dependence on time is not shown explicitly for notational convenience.)
To improve statistical convergence, we have averaged the spectra in time within an interval

0.5 z∗/w∗ in the stably-stratified case, and within an interval 0.1 z∗/w∗ in the neutrally-
stratified case, and we have applied a Daniell filter with a window size of 3 spectral modes
(von Storch and Zwiers 1999).

5.1 Buoyancy and Buoyancy Flux

Near the surface, the main spectral contribution to 〈b′2〉 is approximately independent of
the stratification regime (Fig. 8a, e): in both cases, the buoyancy spectra concentrate within
a distance ≈ 10 zκ from the surface, and the spectra have a dominant wavelength λ ≈
50 zκ . This small-scale signal corresponds to the sheet-like thermals observed in Fig. 4a, c,
a well-known near-surface flow structure in free convection (see, e.g.,Stull 1988; Chillà and
Schumacher 2012).

Associated with this small-scale signal in the buoyancy spectra, the co-spectra between
the buoyancy and the vertical velocity component develop a local maximum at λ ≈ 50 zκ

(Fig. 8b, f). The reason for this maximum is that w is zero at the surface, its magnitude
increasing upwards while that of b decreasing, so that their product peaks at z ≈ 10 zκ .

As with φbb, φbw near the surface is also approximately independent of N 2 and z∗/zκ

when normalized with zκ and B0. This result shows that surface scales characterize not only
the vertical profiles, but also the complete spectral distribution of these two flow properties
near the surface.

Beyond z ≈ 10 zκ , inside the outer layer, most of the contribution to the turbulent buoyancy
flux stems from a bandwidth that is centred around the diagonal line

λbw = 5 z (22)

(Fig. 8b, f). The growth with height of the dominant wavelength in φbw has been observed
before in field measurements (Kaimal et al. 1976) and large-eddy simulations (Schmidt and
Schumann 1989). The interpretation thereof is that, as they rise, small plumes (or thermals,
or both) coalesce into fewer plumes that are farther apart in the horizontal directions (cf.
discussion on the skewness in Sect. 3). Here, we find that this growth is approximately linear
and well approximated by Eq. 22.
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In contrast to the near-surface structure, the outer-layer structure is strongly influenced by
the stratification. In the stably-stratified cases, plume coalescence continues until a height at
which the dominant wavelength λbw becomes larger than the CBL depth (Fig. 8f). Beyond
that height, plumes ascend without further merging and in the form of towers (cf. Fig. 1b). An
explanation for this structural change is that plumes have already acquired a vertical velocity
that is comparable to the horizontal velocity (cf. Fig. 5d, e), so that plumes rise faster than
the rate at which nearby plumes are brought together and merge.

In the neutrally-stratified case, a second, stronger maximum in the co-spectrum φbw

appears at λ ≈ 0.7 z∗ (Fig. 8b), and plume coalescence ends closer to the surface. This
large-scale signal extends from the CBL top until near the surface, and accounts for the
larger buoyancy flux in the CBL mixed layer under neutral conditions (cf. Fig. 2b). Next to
the surface, below z ≈ 4 zκ , this large-scale signal also contributes to φbb (Fig. 8a) and leads
to 10 % larger brms when N 2 = 0 (Fig. 5c). Visually, this large-scale contribution manifests
as a large-scale cellular pattern in which the sheet-like thermals tend to organize (Fig. 4a and,
to a lesser degree, Fig. 4c).

The region of negative φbw observed in Fig. 8f at z ≈ z∗ and wavelengths comparable to
z∗ corresponds to the entrainment zone that develops in the stably-stratified case. This region
has been discussed in detail by Garcia and Mellado (2014) and is not further considered
here.
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Fig. 9 Sketch illustrating the hierarchy of circulations that defines the plume-merging layer (cf. Sect. 6). The
hierarchy is established by the merging of smaller plumes into larger ones, starting at the surface scales and
ending at the large-scale circulations. In this sketch, only three levels at heights {z1 (red), 2z1 (green), 3z1
(blue)} are shown, where z1 
 10 zκ

5.2 Velocity

The vertical variation of the dominant wavelength in the cospectra φbw along the line λbw =
5 z indicates that, at a given height z, the buoyancy force redirects upwards the motions with
a wavelength ≈ 5 z most efficiently. Consequently, the wavelength of the maximum of the
spectra of the vertical velocity component follows that line, slightly above as a result of
vertical advection, along the line

λww = 3 z (23)

(Fig. 8c, g). The magnitude of this maximum increases with height as the plumes and thermals
accelerate. Concomitantly, the spectra of the horizontal velocity component have a local
minimum along the line λbw = 5 z, which splits φuu into two lobes, each with a local
maximum (Fig. 8d, h).

This spectral structure is consistent with previous data. The linear increase with height of
the dominant wavelength in φww agrees with that observed in the unstable PBL (Kaimal and
Finnigan 1984; Wyngaard 2010). Here, we find thatλww = 3 z provides a good approximation
to that linear increase, in both stratification regimes. Likewise, the broadband character of
φuu in the lower lobe agrees with that observed near the surface in atmospheric measurements
(Kaimal and Finnigan 1984; Wyngaard 2010) and in Rayleigh–Bénard convection (Verdoold
et al. 2008; van Reeuwijk et al. 2008).

This structure can be interpreted as a hierarchy of oblate circulations with an aspect ratio
5:2 (Fig. 9), and which represents the accumulating process of plume coalescence. From φww

(Fig. 8c, g), we infer that the velocity magnitude associated with each circulation increases
with its size, and that the size of each circulation grows proportionally to the distance of
its centre from the surface. From φuu (Fig. 8d, h), we infer that all those circulations are
attached to the surface, since φuu near the surface (z � 5 zκ ) is non-zero for a wide interval
of wavelengths. The upper and the lower lobes of φuu correspond to the upper and the
lower branches of the circulations. Such an attached-eddy flow structure near the surface,
with different features, is also characteristic of wall-bounded shear flows (Townsend 1976;
Jimenez 2013).

For a given height within this hierarchy of circulations, φww is approximately constant in
time, i.e., independent of z∗/zκ and hence independent of the CBL depth (Fig. 10). φww is
also well represented, to leading order, by a piecewise-linear variation with respect to log10 λ,
with a maximum at λ ≈ λww . This feature is observed in both stratification regimes. Hence,
for a given height near the surface,

〈w′w′〉 =
∫ ∞

−∞
φww d log10(λ/zκ ) ∝ [log10(λww/zκ )]2. (24)
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Substituting λww(z) from Eq. 23 into this relation leads to 〈w′w′〉 ∝ (log10 z)2, i.e., the
logarithmic law of wrms observed in Sect. 4.

We also note that a logarithmic variation of φww for λ < λww as observed above implies
more kinetic energy in the intermediate scales 50 zκ < λ < λww than the energy correspond-
ing to the 2/3 power law of Kolmogorov’s theory (Fig. 10). One possible explanation for this
deviation is that, at a given height, part of the kinetic energy at λ < λww has been transported
from below and results from the buoyancy force working directly on those intermediate scales
(Fig. 8b, f). This deviation would suggest that the concept of the inertial cascade alone is
insufficient to characterize the near-surface region in free convection; larger Reynolds num-
bers, however, might be necessary to draw a definitive conclusion about these details of the
spectral structure near the surface.

5.3 The Large-Scale Circulations

The hierarchy of circulations ends up in one spectral maximum in φww far from the surface
(Fig. 8c, g) and one spectral maximum in φuu near the surface (Fig. 8d, h). Within each regime,
both maxima occur at the same wavelength, λLSC, and this wavelength is proportional to the
CBL depth. We find

λLSC ≈ 0.7 z∗ (25a)

in the neutral stratification regime, and

λLSC ≈ 2.5 z∗ (25b)

in the strong stratification regime. At the same time, the magnitudes of each of these two
maxima are proportional to the maximum r.m.s. of the corresponding velocity component,
and thus proportional to the outer velocity scale, w∗ (cf. Fig. 2a; Table 3). Hence, we associate
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Table 3 PML properties at
different states of development of
the CBL as indicated by the ratio
z∗/zκ . hPML is the depth of the
plume-merging layer, Eq. 27.
λLSC = 10 hPML is the width of
the large-scale circulations. (For
reference, the horizontal domain
size is, in surface units, 35252 in
the case L0/zκ = 16 and 76302

otherwise.) The buoyancy
difference (Δb)∞ is defined in
Eq. 28

L0/zκ z∗/zκ hPML/zκ λLSC/zκ (Δb)∞/bκ

N 2 > 0

16 473 118 1180 4.25

N 2 > 0

36 474 119 1190 4.25

36 679 170 1700 4.35

N 2 = 0

∞ 476 33 330 3.90

∞ 679 48 480 4.00

∞ 1278 89 890 4.25

these maxima with large-scale circulations, a form of large-scale motion that is characteristic
of free convection (see, e.g.,Stull 1988; Chillà and Schumacher 2012). The width of the large-
scale circulation is then approximately equal to λLSC. The large-scale patterns visualized in
Figs. 1 and 4b, d support this estimate.

The interval 0.7 z∗ < λLSC < 2.5 z∗ spanned between the neutral and strong stratification
regimes is consistent with previous data. Kaimal et al. (1976) found intermediate values
λLSC ≈ 1.5 h in the unstable PBL under mixed convection conditions. [Recall that the
CBL depth, h, is commensurate with the outer length scale, z∗ (cf. Sect. 2.2).] Schmidt
and Schumann (1989) found large-scale circulation widths close to 2 h in their large-eddy
simulations of the strong stratification regime considered here. The upper bound λLSC ≈
2.5 z∗ also compares favourably with the results obtained by de Roode et al. (2004) from large-
eddy simulations of a CBL with an imposed capping inversion, and with entrainment ratios
similar to those of the stably-stratified cases studied here (minz{〈b′w′〉}/B0 ≈ −0.12; for
details, see Garcia and Mellado 2014). Last, the increase from λLSC ≈ 0.7 z∗ to λLSC ≈ 2.5 z∗
between the neutral and strong stratification regimes is consistent with the value λLSC � 4 H
observed by Bailon-Cuba et al. (2010) in Rayleigh–Bénard convection, H being the cell
height, since the upper plate in a Rayleigh–Bénard convection cell may be interpreted as an
infinitely strong capping inversion in a CBL.

The increase of λLSC with N 2 can be physically understood as follows. As N 2 increases,
the horizontal velocity intensifies in the lower half of the outer layer, above 10 zκ–20 zκ (cf.
Figs. 2a, 5e), while the vertical velocity weakens (cf. Figs. 2a, 5d). Hence, the plumes (or
thermals, or both) need to accelerate during a longer time to acquire a vertical velocity that
is comparable to the horizontal velocity, and that allows them to escape the hierarchy of
circulations. Since part of this acceleration is associated with plume coalescence, a longer
acceleration time implies a deeper hierarchy of circulations, which yields wider large-scale
circulations.

The increase of λLSC with N 2 could also be associated with a second mechanism. By push-
ing the large-scale circulations closer together, the intensification of the horizontal velocity
could facilitate plume merging at the large scales. This mechanism would bypass the process
of plume coalescence that defines the hierarchy of circulations, and the resulting dominant
wavelengths in φbw and φww would be larger than λbw = 5 z and λww = 3 z. However, we
do not observe such a behaviour; all our data tend to follow those linear relations, despite
the more than three-fold variation of λLSC between regimes. This result indicates that the
large-scale circulations do not alter the process of plume coalescence, but the large-scale
circulations are rather an outcome of such a process. Nonetheless, this second mechanism
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could gain relevance with larger ratios between u1,rms and wrms, such as in cases with an
imposed capping inversion, or in Rayleigh–Bénard convection. Radiative cooling or latent
heat effects could also favour this second mechanism by accelerating the flow inside the down-
drafts, increasing thereby the kinetic energy directly at the large scales, and thus increasing
the magnitude of the horizontal velocity near the surface.

6 The Plume-Merging Layer

The depth of the hierarchy of circulations grows proportionally to the CBL depth, since the
width of the largest element of the hierarchy is commensurate with the large-scale circulation
width and λLSC ∝ z∗ (cf. Eq. 25). Concomitantly, the spectra of the buoyancy, the vertical
buoyancy flux and the vertical velocity near the surface—and hence the corresponding profiles
discussed in Sect. 4—become increasingly constant in time as the CBL deepens and similar
between regimes (cf. Figs. 8, 10). The major difference is the deeper vertical extent of this
near-surface structure when N 2 > 0. In contrast, the spectra of the horizontal velocity near
the surface vary significantly among times and cases. The reason is that, unlike the buoyancy
and the vertical velocity, where the spectra concentrate in the wavelength interval (10 zκ , 5 z),
the horizontal velocity contains significant contributions from (5 z, λLSC). Hence, u near the
surface is more sensitive to the large-scale circulations than w and b, and thereby more
sensitive to outer-layer variables (cf. Fig. 5e).

The behaviour summarized in the previous paragraph suggests a structural definition of
a new near-surface layer in free convection: the plume-merging layer (PML). The PML is
defined as the region next to the surface that can be described, at least partly, in terms of the
hierarchy of circulations that is sketched in Fig. 9.

We can identify the PML with the inner layer that is often used to describe the vertical
structure of wall-bounded flows (see, e.g., Garratt 1992; Mellado 2012), since some properties
inside the plume-merging layer tend to become independent of the outer-layer variables
N 2 and z∗. However, some other properties, such as u1,rms, also depend on the outer-layer
variables, and the new term PML aims to reflect this dependence.

The PML depth, hPML, is proportional to the large-scale circulation width, but the pro-
portionality constant remains to be defined, e.g. as

hPML = 0.1 λLSC, (26)

such that the scaling laws 13–15 apply over a vertical distance approximately equal to hPML

(cf. Table 3; Fig. 5a–c). From Eq. 25, this definition yields

hPML ≈ 0.07 z∗ (27a)

in the neutral stratification regime, and

hPML ≈ 0.25 z∗ (27b)

in the stable stratification regime. Hence, for the same CBL depth, the plume-merging layer
in the strong stratification regime penetrates deeper into the outer layer, and hPML is approx-
imately four times larger than in the neutral stratification regime. We also note that hPML is
between 2 and 2.5 times larger—depending on the exact definition of the CBL depth, h—than
the thickness 0.1h commonly used to define the depth of a constant-flux (or surface) layer
(see, e.g., Garratt 1992; Wyngaard 2010).

We have already mentioned two possible reasons for the plume-merging layer in the
stably stratified case to be noticeably deeper than in the neutrally stratified case. First, for
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a given CBL depth, the entrainment zone recedes and becomes thinner when stratification
increases (cf. Sect. 3). Second, the intensification of horizontal velocity with increasing
stratification demands an acceleration and coalescence of ascending plumes for a longer
time, until they acquire a vertical velocity comparable to the horizontal one (cf. Sect. 5.3). We
emphasize, however, that the hierarchical structure inside the plume-merging layer unfolds
bottom-up, from smaller to larger sizes, and the role of the stratification in the fluid above
the CBL is merely to define the PML depth. As a corollary, the flow structure inside the
PML is independent of entrainment-zone properties in the cases considered in our study.
Still, properties of scalar fields different from the buoyancy can depend on entrainment zone
properties.

For the cases of a CBL growing into a linearly stratified fluid considered in our study, the
buoyancy field is dominated by a bottom-up diffusion part. It remains to be ascertained how
the near-surface flow structure changes when the buoyancy field depends more strongly on a
top-down diffusion part, such as in cases with an imposed capping inversion, or in Rayleigh–
Bénard convection, or when radiation or latent heat effects alter the CBL dynamics (see, e.g.,
de Roode et al. 2004).

7 Buoyancy Transfer Law

Integrating Eq. 13 yields the transfer law

Δb = (Δb)∞ − (3cb1)(B2
0/z)1/3, (28)

which relates the surface buoyancy flux, B0, with Δb, the mean buoyancy difference between
the surface and an arbitrary height z within the interval 30 zκ � z � hPML. The propor-
tionality constant cb1 has already been discussed in Sect. 4. The constant of integration,
(Δb)∞, is the buoyancy decrease across the plume-merging layer once hPML becomes large
enough to neglect the last term in Eq. 28. Fitting Eq. 28 to our data provides the range
(Δb)∞/bκ ≈ 3.9 − 4.35 (Fig. 5f). As observed in Fig. 11a, (Δb)∞ is increasingly well
approximated by 〈b〉(0, t) − N 2z∗ with increasing z∗/zκ and L0/zκ .

The buoyancy difference (Δb)∞ is often used to construct the bulk transfer law

B0 = C [(Δb)4∞κ]1/3, (29)

where the prefactor C is a function of z∗/zκ and z∗/L0, to be determined. By definition,
C = [(Δb)∞/bκ ]−4/3, so that the range (Δb)∞/bκ ≈ 3.9 − 4.35 obtained before implies
C ≈ 0.14 − 0.16. This result is consistent with the interval (0.1, 0.2) obtained from lab-
oratory experiments on penetrative convection, and from atmospheric measurements and
theoretical studies of a CBL over aerodynamically smooth surfaces (see, e.g., Beljaars 1994;
Zilitinkevich et al. 1998, 2006).

Our results also agree with data from Rayleigh–Bénard convection. In this context, Eq. 29
is expressed as

Nu = C Ra1/3, (30)

where

Nu = B0

κ(Δb)∞/z∗
(31)
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Fig. 11 Temporal evolution of (Δb)∞ (symbols), using two different normalizations (a, b). Colour shades
indicate the scale-separation parameter: light z∗/zκ ≈ 475; middle, z∗/zκ ≈ 680; dark z∗/zκ ≈ 1280 (only
for N 2 = 0). The curves in a indicate 〈b〉(0, t) − N 2z∗

is the Nusselt number, and

Ra = z3∗(Δb)∞
νκ

(32)

is the Rayleigh number. Figure 11b plots the compensated form of this bulk transfer law,
Nu Ra−1/3

eq = 2−4/3C , as a function of the equivalent Rayleigh number Raeq = 16 Ra. The
factor 16 in this definition stems from the interpretation of the CBL as half a convection cell,
whereby z∗ and (Δb)∞ represent half the height and half the buoyancy difference between
the two plates of the convection cell (Adrian 1996; Mellado 2012). This interpretation proves
convenient to compare data from different configurations (Fig. 11b). The mild but robust
decrease of C with Ra in all the data contradicts the assumption made in classical similarity
theory that C is independent of z∗, and hence independent of the Rayleigh number.

We find that the bulk transfer law (29) depends on the stratification of the fluid above the
CBL, but just moderately: C is ≈10 % smaller in the stably stratified case. This dependence
is relatively small, since it is comparable to the spread in the available data and therefore
difficult to measure. This small change in C contrasts with the more than threefold variation
of the large-scale circulation width between regimes (cf. Sect. 5.3), which suggests a small
role of the large-scale circulations in defining the buoyancy transfer law. The reason is that
the buoyancy flux is dominated by small and intermediate scales (cf. Sect. 6).

An alternative bulk transfer law can be obtained by particularizing Eq. 28 at a height
z = z0, which yields

B0 = (3cb1)
−3/2[(Δb)3

0z0]1/2. (33)

(Δb)0 = (Δb)∞−〈Δb〉(z0) is the buoyancy difference between z = z0 and some level inside
the CBL. This form of a bulk transfer law is commonly used in the case of an aerodynamically
rough surface, z0 being then the aerodynamic roughness length (see, e.g., Garratt 1992;
Wyngaard 2010). Despite its similarity, this bulk transfer law is different from the relation

B0 = C9/8 [(Δb)3∞zκ ]1/2 (34)
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that is derived from Eq. 29 and definition 4. The reason is that, unlike Eq. 33, Eq. 34 accounts
for the sharp buoyancy decrease next to the surface (Brutsaert 1982; Sorbjan 1997). For an
aerodynamically smooth surface, we find that this decrease is substantial, ≈80 % of the total
variation (Δb)∞. This sharp buoyancy drop across the diffusive wall layer is approximately
independent of the stratification in the fluid above the CBL (Fig. 5f).

8 Summary and Conclusions

We have quantified the effect of a linear stratification in the free atmosphere on near-surface
properties in a free convective boundary layer. We have used direct numerical simulation
to remove the uncertainty associated with turbulence models near the surface. With help
of dimensional analysis, the cases studied in this work represent any combination of free
atmosphere stratification, surface buoyancy flux, and CBL depth, as long as the CBL is in
one of the following two regimes: a neutral stratification regime, which represents a CBL
that grows into a residual layer, and a strong stratification regime that corresponds to the
equilibrium (quasi-steady) entrainment regime.

The only atmospheric parameter that we cannot match in our simulations is the Reynolds
number. However, well-known CBL properties are faithfully reproduced, and the observed
dependence on the Reynolds number of the properties studied in this work is negligibly small
compared to the dependence on the stratification regime.

We have found that the mean buoyancy profile varies as 〈b〉 ∝ (B2
0/zκ )1/3(z/zκ )−1/3,

which agrees with the classical similarity theory. In contrast, the r.m.s. of the buoyancy
fluctuation and the r.m.s. of the vertical velocity deviate from that theory: they vary as
brms ∝ (B2

0/zκ )1/3(z/zκ )−0.45 and wrms ∝ (B0zκ )1/3 ln(z/zκ ). This contrast shows that
surface models should consider both outer scales and surface scales simultaneously, and not
just one or the other. In our study, the surface length scale is zκ = (κ3/B0)

1/4, κ being the
molecular diffusivity.

The scaling laws presented above become independent of the stratification regime. Regard-
ing the proportionality constants, only that of wrms exhibits a clear but moderate dependence
on N 2, being approximately 30 % larger under neutral conditions. On the other hand, the
depth over which the scaling laws are observed strongly increases with the stratification in
the free atmosphere.

We have introduced the concept of the plume-merging layer to better understand these
findings. This layer is conceptually different from the constant-flux (or surface) layer. Accord-
ing to spectral analysis, the flow structure near the surface can be understood as a hierarchy
of oblate circulations that have an aspect ratio 5:2 and that remain attached to the sur-
face. The hierarchy is established by smaller plumes merging into larger ones, starting at
the surface scales and ending at the large-scale circulations. This flow structure defines the
plume-merging layer.

The structure of the plume-merging layer is independent of the stratification regime, but
its depth, hPML, strongly increases with stratification. The exact definition of hPML has been
chosen such that it represents the depth over which the scaling laws presented above are
observed. The result is hPML ≈ 0.07 z∗ in the neutral stratification regime and hPML ≈
0.25 z∗ in the strong stratification regime; z∗ is an outer length scale that is commensurate
with the CBL depth. The large-scale circulation width is λLSC = 10 hPML, so that λLSC

increases from 0.7z∗ in the neutral stratification regime to 2.5z∗ in the strong stratification
regime. The buoyancy transfer law is similar between regimes, despite the order-one variation
of the large-scale circulation width.
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The implication of our results for atmospheric models is two-fold. First, the buoyancy
transfer law needed in mixed-layer and single-column models corresponds to that predicted
by the classical similarity theory, independently of the stratification in the free atmosphere,
even though other near-surface properties are inconsistent with such a theory. Second, for
the buoyancy transfer law to apply in the equilibrium (quasi-steady) entrainment regime of
a free convective boundary layer, the model first level can be within 20–25 % of the CBL
depth, and not necessarily within 10 %.

This work has considered flat, aerodynamically smooth surfaces, which only covers a
small interval of the conditions typically found in nature. The bulk transfer law relating the
buoyancy difference between the surface and the interior of the CBL will be different for
an aerodynamically rough surface, and the diffusive wall layer needs to be replaced by the
roughness (or interfacial) layer. However, we expect that the characteristics of the plume-
merging layer described in this work—in particular, their dependence on the stratification in
the free atmosphere—are valid after substituting zκ by the appropriate surface length scale
(provided that the roughness layer is thinner than hPML). The reason is that the Reynolds
number characterizing the flow within the plume-merging layer, hPMLw∗/ν, is already ∼ 103

in our simulations, which, although smaller than in the PBL, is large enough for inertial forces
to dominate over viscous forces.
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