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Abstract Empirical modeling approaches are frequently used to upscale local eddy covariance observations
of carbon, water, and energy fluxes to regional and global scales. The predictive capacity of such models
largely depends on the data used for parameterization and identification of input-output relationships, while
prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural
networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE)
on local and European scales with the aim to assess the portion of uncertainties in extrapolation due to
sample selection. ANNs were found to be a useful tool for GPP and LE prediction, in particular for extrapolation
in time (mean absolute error MAE for GPP between 0.53 and 1.56 gCm�2 d�1). Extrapolation in space in
similar climatic and vegetation conditions also gave good results (GPP MAE 0.7–1.41 gCm�2 d�1), while
extrapolation in areas with different seasonal cycles and controlling factors (e.g., the tropical regions)
showed noticeably higher errors (GPP MAE 0.8–2.09 gCm�2 d�1). The distribution and the number of sites
used for ANN training had a remarkable effect on prediction uncertainty in both, regional GPP and LE
budgets and their interannual variability. Results obtained show that for ANN upscaling for continents with
relatively small networks of sites, the error due to the sampling can be large and needs to be considered
and quantified. The analysis of the spatial variability of the uncertainty helped to identify the meteorological
drivers driving the uncertainty.

1. Introduction

Rapid development of the FLUXNET network [Baldocchi, 2008; Papale et al., 2012], along with its first example
of liberal open-data use, has greatly promoted collaboration, enhancing our understanding of carbon and
water fluxes in terrestrial ecosystems in recent years. With the eddy covariance method, fluxes of CO2, water,
and energy, since recently as well CH4 and N2O, are directly measured using fast response gas analyzers and a
3-D sonic anemometer following well-established procedures [Aubinet et al., 2012]. There are more than 600
active sites globally, many of which are organized into regional and continental networks and contribute to
global synthesis activities in the context of the FLUXNET initiative, like for example, the LaThuile 2007 data set
(www.fluxdata.org) that has been used in this study. The scientific applications of these data are further
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advanced by combining the information from remotely sensed products, such as Moderate Resolution
Imaging Spectroradiometer-derived fraction of absorbed photosynthetically active radiation (FAPAR) and
vegetation indices. These applications have stimulated an increasing interest in empirical, semiempirical,
and process-orientedmodeling approaches to estimate regional to global carbon, water, and energy budgets
[e.g., Beer et al., 2007, 2009, 2010; Jung et al., 2010, 2011; Verma et al., 2014; Xiao et al., 2010; Yang et al., 2007].

Ecosystem ecology traditionally relies on concepts derived from first principles that lead to parametric
description of process responses to environmental drivers. This leads to the large family of process-based
modeling approaches, where ecosystem functional dependencies are reproduced as much as possible based
on the mechanistic knowledge of the processes involved [Haxeltine and Prentice, 1996; Krinner et al., 2005;
Sitch et al., 2003], but often also requires some data for parameter calibration. In semiempirical approaches,
a limited number of basic assumptions and parameters are predefined and then estimated from observations
with optimization techniques, such as in radiation-use-efficiency models [e.g., Lin et al., 2011;Monteith, 1972;
Running et al., 2000; Xiao et al., 2004]. Empirically derived models follow a very different path by describing
functional dependencies between input and output based on self-defined data adaptive functions, parame-
terized with a subset of observations during the training process. Hence, empirical models do not impose
predefined relations between drivers and outputs of the simulated processes [Hastie et al., 2001]. Clearly,
obvious overlaps among these three groups (empirical, semiempirical, and process-oriented models) exist.

When empirical models are applied to estimate regional ecosystem fluxes of greenhouse gases or energy
using gridded drivers (also known as empirical upscaling), observed fluxes and potential driving variables are
required to parameterize the model or even derive the relationship between driving variables and the target
variables—the fluxes. The best data available today for applying this approach are the fluxes measured at
ecosystem scale using the eddy covariance technique, since they are the only direct continuous measurement
integrated over a sufficiently large area. Different types of empirical models have been used for upscaling
CO2 and water vapor fluxes starting from eddy covariance data, remotely sensed vegetation indexes, and
meteorological gridded variable [Reichstein et al., 2007; Vetter et al., 2008; Beer et al., 2010; Jung et al., 2010,
2011]. Artificial neural networks (ANN) are one of these empirical upscaling techniques that were applied
to continental and global scale [see, for example, Papale and Valentini, 2003]. We used a set of ANNs in this
study to assess the most critical issues in the empirical upscaling processes: the uncertainty in predictions
due to the size, length, and distribution of the training data set.

For the empirical models, the training data set used to build and parameterize the functional relationships
between inputs and outputs plays a crucial role [see, as example, Jung et al., 2011]. Generally, thesemodels have
excellent predictive capacity for interpolation within the parameterization domain (e.g., similar land use type
and climate conditions). On the contrary, extrapolation to conditions outside the domain used for model
training (e.g., in a different land use or to predict effects of future climate change) remains highly uncertain
[e.g., Jung et al., 2009]. For example, training a simple empirical model such as a linear regression using only
flux data measured between 11:00 and 13:00 h during the growing season would be inapplicable to nighttime
conditions, because it cannot predict nighttime net ecosystem CO2 exchange (NEE) (nighttime fluxes are
determined by respiration, while growing season daytime fluxes are mostly driven by photosynthesis). Similarly,
an empirical model parameterized on only high latitude sites will likely fail when applied to tropical conditions,
due to different functioning of the vegetation, different drivers, and different ecosystem characteristics.
Therefore, the coverage of all conditions in the training data set is crucial for deriving a successful model.

For this reason, the widespread spatial distribution of the existing eddy covariance sites is an important factor
to be considered in the context of empirical upscaling [Carvalhais et al., 2010]. Although FLUXNET networks
cover a large variety of regions, the measurement sites are not uniformly distributed, with higher density
in Europe and North America and large undersampled areas in Africa, South America, and parts of Asia
[e.g., Valentini et al., 2014; Schimel et al., 2015]. This nonuniform distribution of sites can significantly affect
the parameterization and consequently the results of empirical upscaling models. For example, uneven
distribution of flux sites and skewed or misrepresented ecosystem types may lead to systematic errors or
biases in the estimated fluxes at regional and global scales. In addition to the spatial representativeness,
the temporal extent of the training data is also important. A long time series has more chances to include
a variety of climatic conditions and biotic stress events that are needed in order to correctly parameterize
the model and to reproduce ecosystems functioning.
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The aim of this paper is to assess the effect of the sampling selection of observations on the upscaled fluxes
and quantify model uncertainty when the network used for model training has a limited representativeness
of the spatial domain. In particular, we used an ANN and tested the following: (1) its efficiency in reproducing
carbon and water fluxes, and (2) its efficiency in extrapolating in space and time as a function of the spatial
distribution of the training sites.

To address these aspects, after optimization and validation of the ANN, we did a number of experiments
where the training data sets were reduced or subsampled to assess the effect on the uncertainty. In particular,
extrapolation in time was tested by splitting the data set into two periods while extrapolations in space (for
both the total European budget and interannual variability simulations) were checked using the training
subsampled networks of increasing size.

Since the amount of information available for empirical model training is directly related to the number of
sites collecting measurements in a given region or continent, we expect that artificially reducing the size
of the network the uncertainty component due to the training data set representativeness will increase.
However, it is worth mentioning that the concepts of “representativeness” and “network size” are, in general,
conceptually different. In fact, a smaller network created by following a proper sampling design could bring
more information for a specific analysis than a larger but randomly (or biased) established network [see, for
example, Sulkava et al., 2011]. The existing network of sites is not designed or optimized following this line of
thought, but is instead the result of a number of different scientific questions, oftenmore strongly related to a
national requirement than a global strategy. Therefore, in this study it was assumed that a larger network
is more representative than a smaller network because it increases the likelihood of sampling different
ecosystems under different climatic conditions.

2. Materials and Methods
2.1. Training of the Artificial Neural Network

ANNs can be set up to become purely empirical, nonlinear regression models characterized by a set of nodes
(i.e., a simple linear or nonlinear processing unit), often organized in layers and connected by weights that are
equivalent to the regression parameters. The first step in using an ANN is the network parameterization
process called “training”: the ANN is trained by presenting it with sets of input data (drivers) and associated
output data. In this phase, a training algorithmminimizes the error between predicted and observed outputs
by modifying the connection weights. Once the ANN is trained, the underlying dependencies of the output
on the driver variables are mapped onto the weights and the ANN can be then used to predict the variable of
interest, starting from new and unseen input values [Bishop, 1995].

To avoid the problem of overfitting that results in reduced generalization capacity, “early stopping” was
adopted in this study. This was achieved by splitting the data set available for the ANN parameterization into
three subsets: (1) the training data set (50% of the data) for adjusting the weights in order to minimize the
error between predicted and observed values; (2) a test set of 25% of the data to evaluate the ANN perfor-
mance during the training and to “early stop” the training process if the errors in the test set started to
increase, since this means loss of generalization power, and (3) a validation set (25% of the data) to evaluate
the ANN performance on unused data after completion of the training process.

The ANNs used here are the same type used in Beer et al. [2010]: a feedforward backpropagation ANN with
one hidden layer and sigmoidal transfer functions, trained with the Levenberg-Marquardt algorithm and
random initialization of weights. One ANN characteristic that needs to be defined before the training is the
number of nodes in the hidden layer. A larger number of nodes not only translate in larger flexibility and
adaptation capacity but also bear high risk of overfitting, which needs sufficient training data (increasing
the number of nodes automatically leads to increases in the number of parameters). Since there is no standard
procedure to define the optimal number of hidden nodes, the different ANN architectures were tested and the
ANN with the least complex structure (i.e., lowest number of nodes) and with similar performances is selected
[see, for example, Scardi et al., 1999]. In this study, six different architectures (25, 19, 16, 12, 8, and 5 nodes in the
hidden layer) were tested.
2.1.1. Data
These ANNs were trained separately to simulate NEE and LE starting from eddy covariance measurements
as well as GPP derived via a flux partitioning method [Reichstein et al., 2005]. Fluxes were aggregated at a
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monthly time resolution andwere acquired at 164 sites across the globe (Table S1 in the supporting information).
The sites used are part of the LaThuile collection (www.fluxdata.org) and were processed using standard
methods as described in Reichstein et al. [2005] and Papale et al. [2006]. To better evaluate the model perfor-
mances relative to other empirical approaches, the same sites andmonthly time resolution of Jung et al. [2011]
were used. The use of different time resolutions were also tested but results did not improve when daily of
weekly frequencies were used (despite a larger number of data points being available), rather results slightly
decreased probably due to processes not captured by the drivers selected (data not shown).

The drivers used as input for all the fluxes include monthly gap-filled air temperature, incoming shortwave
radiation, vapor pressure deficit (VPD), precipitation, the fraction of absorbed photosynthetically active radiation
(FAPAR) from the SeaWiFs products available at a 1 km resolution [Jung et al., 2011], and two transformations
of top-of-atmosphere radiation (one obtained by rescaling it between 0 and 1 and the other calculating its
first derivative for each month) to represent time and seasonality. These inputs were selected on the basis
of prior experience [Beer et al., 2010], as well as their availability at site level and in gridded format for
Europe, where we performed the spatial upscaling tests. To evaluate the best set of input variables, different
combinations of the five drivers (excluding the top-of-atmosphere radiation transformations that were always
present) were tested, using two differently organized ANNs: one ANN per plant functional type (PFT) and one
ANN trained for all the PFTs. The results indicated that the difference between the prediction accuracy of the
two structures at monthly time resolution is minimal (data not shown), and based on this we used only one
ANN trained with data from all the sites. The small differences could be due to the high variability among sites
in the same PFT, which is comparable to the variability among different PFTs [Groenendijk et al., 2011; Yuan
et al., 2014]. Furthermore, the use of a single ANN has the advantage of more available data for training
and being independent of the PFT maps (and the related uncertainty) [e.g., Jung et al., 2007; Giri et al., 2005].
As for the inputs, different combinations of the five variables were tested but the best results were obtained
using all of them together.

The training and validation of ANNs were accomplished using site-level measurements for the meteorological
variables and the tower-pixel value for the retrieved FAPAR; for the spatial application the meteorological
variables were used from the ERA-Interim collection (http://apps.ecmwf.int/datasets/data/interim_full_daily/).
The use of site-level measurements in the training and validation phase was to ensure that the microclimatic
conditions, which have a direct impact on the fluxes, were correctly considered. The agreement between
site-level and ERA-Interim variables differed among the different variables [Balzarolo et al., 2014] but should
have a limited effect on this study because we focused on the uncertainty resulting from the sampling of the
training data set and because the same strategy was followed in all the simulations.

The data set was split into training (Tr), test (Ts), and validation (Va) subsets 10 times through a random
extraction from the available data. Each of the 10 Tr-Ts-Va, combined data sets were used to train the six
ANNs with different architectures (i.e., different number of hidden nodes) and the best ANN identified
on the basis of performances (mean absolute error, MAE; root-mean-square error, RMSE; and coefficient of
determination, R2) with the validation set was selected as our reference ANN. This approach led, at the end
of the training process, to 10 selected ANNs (i.e., one for each Tr-Ts-Va extracted data set), and the final output
was calculated as the median of the predictions of these 10 ANNs.
2.1.2. ANN Selection
In order to assess the error in the simulation of sites that were not used in the training process, we followed
a tenfold scheme similar to Jung et al. [2011]: ten groups of sites were randomly selected with each group
including 90% of the sites and the 10% excluded, which were always different between the ten folds. This
approach achieved the exclusion of each site once. The ANNs were trained following the procedure explained
above and then applied to the 10%of the sites excluded to evaluate the real efficiency of the spatial extrapolation.
This error assessment forms part of the evaluation of the general capacity of the model to predict the fluxes,
which is similar to another widely used empirical approach such as the Model Tree Ensemble (MTE) [Jung et al.,
2011]. Because these results are not the primary objective of our study, they are presented in the supporting
information (Figure S1 in the supporting information) and discussed here as part of the methodology.

The performance of the ANNs was evaluated by directly comparing both the monthly values and the mean
annual value of NEE, GPP, and LE for each site in order to assess the capacity to correctly simulate the intersite
variability. The indexes used to analyze the results were the Pearson correlation coefficient (R), the RMSE, and
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the Nash-Sutcliffe model efficiency (MEF) coefficient [Nash and Sutcliffe, 1970]. Our results are in agreement
with those of Jung et al. [2011] who used the MTE, with an R of 0.88 between modeled and observed
data (RMSE = 1.35 gCm�2 d�1; MEF = 0.77) and 0.91 (RMSE = 1.11MJm�2 d�1; MEF = 0.83) for GPP and LE,
respectively, when the monthly values are compared, and 0.82 (RMSE = 0.76 gCm�2 d�1; MEF = 0.65) and
0.93 (RMSE = 0.67MJm�2 d�1; MEF = 0.86) among sites, respectively. For NEE, the model predictions
were less accurate (R = 0.69; RMSE = 1.08 gC m-2 d-1, MEF = 0.47 at a monthly time scale, and R = 0.53,
RMSE= 0.56 gCm�2 d�1, MEF = 0.28 among sites), but consistent with previous studies [Jung et al., 2011;
Xiao et al., 2014], likely due to the lack of discriminating information among the model predictors that
are significant in influencing NEE such as stand age, standing and dead biomass and soil carbon pools,
management practices, and past disturbance events. In fact, although these ecosystem characteristics are
also important for GPP and LE, NEE is the difference between two large quantities (GPP and ecosystem
respiration) which are driven by these factors in different ways; for example, ecosystem respiration is strongly
linked to substrate availability, total biomass, and soil conditions, which are not included in the drivers
but have an important effect on NEE. For this reason, the remaining analysis of uncertainty in spatial
representativeness focused only on GPP and LE.

2.2. Uncertainty Analysis

When empirical models are applied to estimate fluxes at continental or global scales for multiple years, there
are two main potential sources of uncertainty linked to the training data: (i) extrapolation in time (i.e., extra-
polation to climatic and environmental conditions not present in the training phase) and (ii) extrapolation in
space (i.e., sites not used in the training phase). To examine these uncertainties, a specific model experiment
was designed to evaluate the errors in the different extrapolations. We focused on GPP predictions using the
ANNs trained according to the methodology described above.
2.2.1. Extrapolation in Time
To evaluate the extrapolation in time, we split the data set into two periods. The ANNs were trained on one of
the two data sets and used to predict the other data set, and vice versa. The following two different splitting
criteria were used: (a) each single site time series with at least 18months of data was divided into two equally
long consecutive periods (58 sites in total, 1026 monthly values), and (b) same as criterion (a) but using only
the European sites (25 sites, 459 months).

The two splitting options were applied to ensure the same number of data points in the two subsets.
2.2.2. Extrapolation in Space
Spatial extrapolation was tested through three different exercises where GPP was simulated at sites not
used in the training of the ANN. The three tests were designed with increasing levels of extrapolation
complexity on the basis of the differences between the training data set and the simulated examples.
First, the ANNs were tested in the extrapolation within Europe with a leave-one-out approach, where
one site at a time was removed from the training data set (67 sites, see Table S1in the supporting
information) and then simulated. To evaluate the extrapolation across continents, the ANNs were trained
using all 67 European sites and then applied to simulate 69 sites in North America and the 19 sites in
South America, Australia, Africa, and Asia (Table S1in the supporting information), where in most of the
these cases the seasonal trend is not present (equatorial sites) or is opposite to those at the training sites
(Southern Hemisphere).

2.3. Uncertainty Due to Network Size and Distribution

To estimate the impact of the network size and site distribution on the results of the empirical upscaling, we
used the ANNs to estimate annual GPP and LE of Europe with different network configurations. Europe was
chosen for this activity because it has the densest network (number of sites per unit area). Subnetworks with
an increasing number of sites (5-10-15-20-30-40-50-60) were created by randomly extracting from the 67
available sites (only sites with at least 3months of quality data in a single year were used, i.e., with at least
75% of original measurements or high-quality gap filled, Table S1 in the supporting information). For each
subnetwork size, 50 random extractions were made to evaluate different possible distributions. The ANNs
trained using data from the extracted subnetworks were then applied at continental level using monthly
gridded inputs from ERA-Interim and SeaWiFs at 0.5° resolution to calculate the two fluxes at the annual time
scale, obtaining 50 estimates per subnetwork size.
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To quantify the effect of the network
size and distribution on the model out-
puts, a reference value for comparison
was required. Given that the objective
of the analysis is to evaluate the sub-
sampling effect and not to estimate
the “real” fluxes, the reference value
used in this study was the result pre-
dicted by the ANN trained with all the
67 sites available (maximum quantity
of information). The reference ANN
was also trained 50 times, each time
randomly splitting the data set into
training, test, and validation sets; the
differences in the results can be consid-
ered as the uncertainty from the model
parameterization. The reference values,
GPP_REF and LE_REF, were calculated
as the median of the 50 simulations.

2.3.1. Sampling Effect on the
Annual Budget
The uncertainty in the annual GPP and
LE of Europe was estimated as the dif-

ference between the 50 extractions per network size class and the reference values (GPP_REF and LE_REF).
In order to quantify the spatial variability of the uncertainty, a comparison was made using the gridded results
obtained for GPP and LE in 2005. In this case, the uncertainty was estimated for each pixel as the median of the
50 absolute differences between the extractions and the reference values.

Following this approach, the ANN results are affected at the same time not only by a different spatial repre-
sentativeness but also by a larger number of data points used in the training when the ANN is parameterized
using more sites. This, however, also reflects the reality of what a larger network represents (more sites that
provide more data and more ecosystems and climate conditions sampled). In order to disentangle the
roles of both effects (i.e., number of sites and amount of data), an additional test was performed following
the same network subsampling scheme, while keeping the number of data points constant for the different
sampling size. In this test, the number of sites was 10-15-20-25-30 for a total of 300 data points for each
extraction (from 10months × 30 sites to 30months × 10 sites).
2.3.2. Sampling Effect on Interannual Variability
A reference interannual variability (IAV_REF) time series was calculated as the difference between the annual
GPP_REF and LE_REF (for each year in the period 1999–2008) and their 10 year averages. For each network
subsample, the value of R between the interannual variability of the extraction and IAV_REF was calculated.
A value close to 1 means that the interannual variability obtained with the subsampled network had a similar
pattern relative to the one obtained with the full data set. To better analyze how variations in space affects
the IAV estimation when the network is subsampled, we performed the same analysis at the European scale
for eight locations, focusing on 3× 3 pixel areas extracted in different countries (Figure 1).

To analyze how much the uncertainties of upscaled GPP and LE are due to a low-level representativeness of
the drivers, the similarity between each pixel in Europe and all the sites used in the training was analyzed.
We counted, for each pixel and each of the five drivers, the number of sites which had a Nash-Sutcliffe model
efficiency (MEF) index between the pixel and site time series larger than zero. In other words, we calculated the
MEF between FAPAR, incoming solar radiation, air temperature, VPD, and precipitation extracted at each pixel
and the one measured and all 67 sites, obtaining 67 MEF values per pixel and per driver and then counted how
many times it was higher than zero (maximum 67). The MEF was originally proposed to compare modeled and
observed time series where a value larger than zero indicates that the model results are better than the mean
of the observed data. Carvalhais et al. [2010] followed a similar approach to identify similarities between eddy
covariance site and grid cells characteristics using meteorological and phenological variables.

Figure 1. Location of 3 × 3 pixel areas where the local IAV was analyzed.
Areas were randomly selected in different European regions: Spain (ES),
France (FR), United Kingdom (UK), Switzerland (CH), Sweden (SE), Macedonia
(MK), Belarus (BY), and Turkey (TR).
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3. Results and Discussion
3.1. Uncertainty and Errors in Extrapolation in Time and Space

The error in extrapolation in time was lower than that for the extrapolation in space, which may be expected
since the ANNs had the possibility to “see” all the sites. Figure 2 shows the distribution of the MAE and the R
in the extrapolation of GPP in time and space (extrapolation in time calculated by splitting all the sites into
two equally long subsets, i.e., option “a” of the four splitting criteria for temporal extrapolation). The other
temporal splitting test (only European sites) gave very similar results (Figure S2 in the supporting information)
with a slight increase in the extrapolation error when only European data were used. This confirms that,
despite the presence of interannual variability and anomalous years, the extrapolation by the ANN for
relatively short periods leads to lower errors than for the extrapolation in space. Interestingly, the error
in the spatial extrapolation from Europe to North America is on average lower than extrapolation inside
Europe. This could be due to the higher level of landscape fragmentation in Europe which, for example,
affects the representativeness of the FAPAR retrieval [Cescatti et al., 2012] and the heterogeneity of the land
use andmanagement practices applied in Europe. The latter, including their history, are most likely landing to
higher differences in the fluxes for the same climate-FAPAR combinations than in North America. As expected,
errors increased for extrapolation to areas such as tropical, desert, and equatorial ecosystems where climatic
and vegetation conditions (e.g., the seasonal cycle is inverse or not present) differ significantly from the
European sites used, although FAPAR and the indexes derived from the top-of-atmosphere radiation used
as an input helped to take into account these differences.

3.2. Uncertainty Due to Sample Selection

GPP and LE estimations at the European scale showed remarkable variability as a function of the number of
sites used to train the ANN, represented by the total range and interquartile range of the simulation results
(Figure 3). This was quantified as the relative change in the error when the network increased in size. It is
evident that a reduction in the uncertainty was found relative to its reference (note that this indicates only
the uncertainty reduction relative to a simulation considered as the reference). The rate of decrease in uncer-
tainty appeared similar for all the fluxes with an initial fast decrease with networks smaller than 15–20 sites,

Figure 2. Mean absolute error (MAE gCm�2 day�1, in red) and correlation coefficient (R, in black) obtained in the extra-
polation in time and space in estimating GPP. Each boxplot represents median, interquartile range (IQR), full range, and
outliers (indicated with “plus” and defined as points higher or lower, respectively, than the 75th percentile + [1.5*IQR] or
25th percentile� [1.5*IQR]) of the results obtained from simulating each site. The ANNs were trained on a subset of data:
“time➔” and “time

➔

” (58 sites): all sites time series were split into two parts, one used to train the ANN and the other
for validation; time➔ indicates the use of the oldest part of the time series to predict the newest, time

➔

indicates the
opposite; “EU➔ EU” (67 sites): trained using the leave-one-out strategy with European sites; “EU➔NA” (69 sites): trained
using European sites and applied to predict North American sites; “EU➔others” (19 sites): trained using European sites and
applied to non-European and non-North American sites (Australia, Asia, South America, and Africa).
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then with a smaller rate, and finally, the uncertainty stabilizes in the reference runs when the network size
is approximately between 30 and 50 sites. With this approach, it is possible to identify the upper limit of
the method applied in the use of the information from the observations. Clearly, the fact that additional sites
(for networks larger than 30 sites) did not lead to significantly better estimates is linked to the model and
drivers used (maximum use of the information reached). A change in the modeling approach or different
explanatory variables would probably lead to different results. Median values were similarly independent
of the network size because the 50 simulations with a reduced set of sites covered all the same range of
possible values and conditions. These results show that to assess the average yearly continental budget with
the proposed modeling approach, in an area with a spatial heterogeneity (in terms of drivers) like the European
continent, a network larger than 50 sites does not substantially improve the performance of the model. In
contrast, with smaller networks, built without a previous network design strategy (see Sulkava et al. [2011]
as an example), the uncertainty increases more than proportionally. Inductively, it could be expected that
in undersampled continents (such as Africa or South America) the error due to the network size would

Figure 3. The annual mean flux (gCm�2 day�1 for GPP and MJm�2 day�1 for LE) of Europe in 2005, estimated by ANNs
trained with a subsample of the available sites. The boxplots show the distribution of simulated GPP and LE obtained
with 50 random extractions of the subset of sites; red crosses indicate outliers. The distribution of results obtained
using the whole network (67 sites, last boxplot) is due to the uncertainty linked to the ANN parameterization because,
in this case, 50 ANNs have been trained using all the sites and only the splitting between Tr-Ts-Vl sets changes
(dashed blue lines). It is important to note that this is not the total uncertainty, but the only uncertainty relative to an
ANN realization taken as reference.
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follow a similar pattern if the spatial heterogeneity of the drivers were similar. Other modeling approaches
or areas with lower spatial heterogeneity than Europe may differ in these thresholds, but in general other
empirical modeling approaches are expected to give comparable results because they are all based on the
extraction of information from the observations. For LE, the results were similar, with the main difference
being that, based on the present result, the rate of decrease in uncertainty seen with more than 30 sites
is expected to continue.

A similar pattern in the uncertainty of estimates, with a decrease of variability when the number of sites
sampled increased, was found with the second test, where the number of points was kept constant for the
different extractions (Figure S3 in the supporting information), confirming that spatial representativeness is
a key aspect for the ANN parameterization when applied in upscaling activities.

The spatial variation in the uncertainty of GPP and LE was calculated as a median of the absolute differences
from the median of the reference simulations for each pixel. The uncertainty in GPP was consistently larger
with respect to the average in Southern and Western Europe (Figure 4) and along the Mediterranean
and Atlantic coasts. This may be an indication of the underrepresentation of these areas in the training

Figure 4. Uncertainty component in the estimation of annual GPP (gCm�2 d�1) due to the size of the training data set
used to parameterize an ANN. For each map, the values reported are the median of the absolute difference between
each of the 50 extractions and the reference value estimated using all the 67 sites available. The bottom right map (All sites)
reports the uncertainty in the model parameterization when all sites are used. Note that the color scale is not linear. See
Figure S3 in the supporting information for the samemap expressed as relative uncertainty (%) with respect to the median.
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data set. These areas are characterized by dry and warm climatic conditions, particularly in summer (for the
Mediterranean area), and primarily evergreen plant functional types. Other areas of relatively high uncertainty,
particularly when less than 20 sites were used, were central and southern France, Italy, Ireland, the western
part of the United Kingdom and Poland. The general patterns and hot spots of high and low uncertainty
are similar also when quantified as relative uncertainty values (i.e., percentage of uncertainty in respect to
the median value, Figure S4 in the supporting information) with the exception of the areas with low fluxes
where the relative values are, as expected, high.

The same regions (southern Europe, Mediterranean, and Atlantic coasts) were also identified as hot spots of
uncertainty for LE (Figure 5) with a more marked north-south trend. The same map but with uncertainty
expressed in relative units (Figure S5 in the supporting information, percentage of uncertainty with respect
to the median value) shows areas with generally low absolute fluxes, such as the Scandinavian Peninsula
and the Alps, as uncertainties hot spot with respect to the rest of Europe. This is in agreement with results
published by Sulkava et al. [2011] who, in using a different approach, found higher uncertainty in the same
areas because of the network design.

Figure 5. Uncertainty component in the estimation of annual LE (MJm�2 d�1) due to the size of the training data set used
to parameterize an ANN. For each map, the values reported are the median of the absolute difference between each of
the 50 extractions and the reference value estimated using all the 67 sites available. The bottom right map (All sites) reports
the uncertainty in themodel parameterization when all sites are used. Note that the color scale is not linear. See Figure S4 in
the supporting information for the same map expressed as relative uncertainty (%) with respect to the median.
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There may be several reasons for these patterns: given the nature of the data-driven model, the main issue is
probably linked to the representativeness of the network used in the ANN parameterization. In this case, the
areas with higher uncertainty had vegetation and climatic characteristics (in one or more of the five drivers
used) that were not well represented in the data set used for the ANN training. In fact, the possible effect
of the sea and ocean on the climate, the very dry conditions in South Europe and North Africa, and the cold
climate in mountains regions (Alps) and the Scandinavian Peninsula are all underrepresented in the network
of eddy covariance sites used. This was confirmed in the analysis of the training set representativeness for
each pixel in the drivers domain based on the MEF (Figure 6).

Incoming shortwave radiation was the better represented variable, particularly in the central Europe latitudinal
band, due to the high number of sites. A clear north-south trend exists for the representativeness of VPD, where
only few sites deliver information on the dry regions in South Europe and North Africa. The same areas were
also the less represented in terms of FAPAR, which also showed underrepresented areas north of the Black
Sea, the Scandinavian Peninsula, and along the coasts of Italy, France, and the UK. It is also important to remark
that part of the areas less represented in terms of VPD and FAPAR are in areas with bare soil or sparse vegetation

Figure 6. The representativeness in the training data set that has been estimated for each pixel and each of the five drivers.
Pixel values are the number of sites that have amodel efficiency (MEF, calculated between pixel and site time series) greater
than zero. Pixels represented by more than 60 sites were grouped in this last class.
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(in particular North Africa and Anatolia peninsula). Coastal areas, the Alps, and the Scandinavian region were
similarly less represented in terms of air temperature while precipitation showed in general the lowest degree
of similarity which is probably due to its high spatial variability; this could further indicate a minor role of this
variable in the ANNs parameterization.

By comparing “representativeness of drivers” and uncertainties in the fluxes, we detected some common
patterns: South Europe and North African regions characterized by larger uncertainty in both fluxes (both
in absolute and relative terms) were less represented for VPD and FAPAR, while air temperature is less well
represented for coastal areas, western UK, and Ireland. This could be the reason for the high uncertainty,
particularly in GPP, in these regions. Air temperature is also a less well represented driver in the inland areas
of the Scandinavian Peninsula, but its effect on the uncertainty in GPP and LE is low in absolute terms while
significant when it is expressed as relative quantities (Figures S3 and S4 in the supporting information).
FAPAR is the driver with higher fine-scale variability in terms of representativeness, which was also reflected
in some of the flux uncertainty patterns (e.g., GPP in Poland, western UK and France, LE east of the Black Sea,
Ireland, and Norway coasts).

In addition to the continental budget, the effect of network size and site distribution on the interannual variability
of the estimated fluxes (IAV) was investigated. Similar to the annual budget, there was a clear convergence
as the network size increased for both GPP and LE. Interestingly, IAV trends for GPP were in agreement with
a network size of 40 sites while the improvement in R for LEwasmore linear with the increasing number of sites,
showing a significant difference even between 50 and 67 sites (Figure 7). Given that the prediction capability

Figure 7. Evaluation of the interannual variability estimates. Each boxplot represents the distribution of the correlation
coefficient (R) calculated between the 50 ten years annual time series (1999–2008) using an ANN trained with subsamples
of the sites and the reference time series estimated with training ANN with all the 67 sites.
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Figure 8. Distribution of the correlation coefficient (R) between the interannual variability in the 10 year period calculated using the 50 estimates per sampling size
and the reference estimated by training the ANN with all the 67 available sites, for the eight regions reported in Figure 1. Red boxplots are for GPP, and black for LE.
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of the ANN for LE is higher than that for the other fluxes (Figure S1 in the supporting information), this result
is somehow unexpected and indicates a pronounced spatial heterogeneity in the interannual pattern of
evapotranspiration. One possible reason is that a driver exclusively linked to the IAV of water fluxes is
missing (e.g., soil water content is not used because it is not available as high-quality gridded product for
areas with dense vegetation cover for the upscaling). Other explanations are that precipitation—linked to
the water fluxes—is the driver with a higher spatial heterogeneity (i.e., least represented by the 67 sites used),
or simply that the water budget IAV has a larger spatial variability in Europe relative to GPP (i.e., affected
more by the network distribution).

The analysis of the effect of spatial heterogeneity on GPP and LE IAV in relatively small areas of Europe was
done following the same approach presented for the continental analysis but for the eight regions (defined in
Figure 1) separately. The different areas present contrasting results of the interannual variability modeled for
the two fluxes (Figure 8). Even though the result confirmed that IAV of GPP does not change significantly when
the network size becomes larger than 40 sites, some deviations from this pattern were identified. For example,
Switzerland, and to a lesser extent UK and Sweden, showed a stronger effect of the number of sites used
(Figure 8, plots CH, UK, and SE). These three areas are characterized by a low degree of representativeness
of FAPAR (Figure 6) that could explain the uncertainty in the IAV simulations. In other words, areas less similar
to the 67 sites available have more chance to not be adequately represented in the reduced training set
extracted in the simulations. Switzerland, in particular, is characterized by a unique combination of drivers
due to its mountainous environment (e.g., low temperature similar to northern Europe but higher incoming
solar radiation since it is at a lower latitude), which is one of the less represented driver combinations that
could explain the high uncertainty in the IAV estimates even when all the sites are used.

The effect of network size on IAV of LE in general was also similar to the one at the continental scale but
presented a less pronounced decrease of uncertainty with the growth of the network in most areas. The trend
was, however, different for the eight locations, with southern regions (Spain, Turkey, Macedonia, and France)
characterized by lower values of R (even negative) when the network was small (5–10 sites) and a slower
improvement with the growth of the network (Figure 8, plots ES, TR, MK, and FR). This can be due to the lower
level of representativeness of the key variables affecting LE (e.g., VPD and precipitation) in southern Europe
(Figure 6), making the estimation of fluxes in this area more difficult for both the annual budgets and IAV.

The different tests performed, also in comparison with some other studies, are summarized in Table 1. The
magnitude of the uncertainty in temporal extrapolation is relatively small in particular when compared to
the errors in extrapolation in space, but it can still play an important role. Differences among models used

Table 1. Summary of the Uncertainties in GPPa

Uncertainty Type Method Results

Model validation Tenfold cross validation using FLUXNET sites RMSE of 0.76 gCm�2 d�1 in this study (Figure S1), RMSE of
0.74 gCm�2 d�1 in Jung et al. [2011]

Errors in the extrapolation in time Training and validation splitting the data set in two
equally long subsets

MAE of 0.78 (IQR 0.53–1.1) gCm�2 d�1 (Figure 2). MAE of
0.97 (IQR 0.76–1.36) gCm�2 d�1 when only European
sites are used (Figure S2)

Errors in the extrapolation in space Training and validation based on different sets of sites
according to different geographical regions

MAE of 0.91 (IQR 0.7–1.41) gCm�2 d�1 in extrapolation from
Europe (training) to North America (validation), MAE of 1.24
(IQR 0.8–2.09) gCm�2 d�1 in extrapolation from Europe
(training) to other regions (validation) (this study, Figure 2)

Effect of network size and sampling
in extrapolation in space

Subsampling the full European network using a
bootstrapping approach and using the estimate
obtained using all the sites available as reference

Interquartile range for the reduced networks varying between
0.12 and 1.06 gCm�2 d�1, full range varying between
0.38 and 3.4 gCm�2 d�1 (this study, Figure 3)

Overall GPP estimation uncertainty Uncertainty in the estimation of average GPP at global
level derived from different modeling approaches

Different modeling approaches were compared at global scale
including two empirical models, four offline land carbon
process models, and four online Earth system process
models. GPP ranged between 112 and 168 PgC yr�1

(equivalent to 2.28–3.5 gCm�2 d�1), with median
141.5 PgC yr�1 (equivalent to 2.87 gC m-2 d-1) and IQR
130–148 PgC yr�1 (equivalent to 2.64–3.03 gCm�2 d�1).
Results are from Anav et al. [2015]

aThe table summarizes the different uncertainties addressed in this paper and also in other papers for comparison. IQR = Interquartile range.
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to estimate global GPP have comparable values with respect to the uncertainties addressed in this analysis
[Anav et al., 2015], confirming that underrepresentativeness is an important issue, in particular in the tropics
and equatorial areas where a limited number of eddy covariance sites exists despite the important contribution
of these regions in the global GPP.

4. Conclusions

This study helped to improve our understanding of uncertainties and limitations in the use of machine learning
methods for the upscaling of water and carbon fluxes by provided insights into the effect of network size and
distribution on model parameterization, which can be used as guidance for the future development of the
observation networks. ANNs were confirmed as a useful tool for the GPP and LE estimation at continental scale,
while for NEE the results were less accurate. This is probably due to the marked effect of management practices
and disturbances as well as site history in NEE (e.g., through their effects on ecosystem respiration). These vari-
ables, however, could not be included as drivers in the ANNs, suggesting a future direction for the development
of the method. This was confirmed in Xiao et al. [2014] where they found in a similar upscaling activity that the
inclusion of aboveground biomass and stand age as drivers reduced the error in both GPP and NEE by about
15%, and an additional 3–4% of error reduction was found when adding leaf nitrogen content as an input.
The results suggest that there are key drivers that could substantially improve upscaling results if available
in gridded format and at a global scale. These missing drivers are particularly the ones related to ecosystem
respiration and NEE such as biomass, soil carbon and water content, nutrient availability, and history of the
management and disturbances. The validation activity performed using data acquired on different continents
showed that extrapolation to similar climatic and vegetation conditions is possible (e.g., between Europe and
North America), though the errors increased when the extrapolation was to areas with different seasonal cycles
and regulating factors. This further highlights the need for additional research sites to provide the essential data
to reliably estimate GPP, NEE, and LE fluxes in regions that are currently underrepresented while at the same
time critical for global C cycling (Tropical, Equatorial, Mediterranean, and dry regions).

We conclude that site network size plays an important role even in a simple model with five variables as drivers.
By using all available sites in ANNparameterization and considering the results as references (a large simplification
of reality), the uncertainty component just due to the sites sampling and data set size in the continental budget
varied up to ±50% for GPP and ±25% for LE when the network was particularly small (5 or 10 sites). The same
effect was found for the interannual variability where results showed a stronger dependency for LE than GPP
and a higher degree of spatial variability. This suggests that if a similar upscalingmethod is applied to continents
with small networks (e.g., Africa or South America), compared to Europe or theU.S., the error due to the sampling
could be large.

The analysis of the spatial variability of the uncertainty in the flux estimates and a quantification of the
representativeness of the network of sites in terms of the domain of drivers both highlight the importance
of variables such as FAPAR, VPD, and air temperature, which were less represented in some regions (dry areas,
coastal zones, mountains, and cold environments). These same areas exhibited a higher level of uncertainty,
confirming the crucial role of the training data set in upscaling exercises using empirical models: biases in the
distribution of measurements could lead to high uncertainties in the undersampled areas where results are
extrapolated. Our investigations here suggest that future developments of the European flux network should
improve the coverage of areas poorly sampled in the climate space including south-east and south-west
Europe and coastal and mountainous regions.

Eddy covariance networks across the globe provide unique data sets that are used across different disciplines
and for a large number of applications. Globally, the number of eddy covariance sites is still growing (more than
700 registered in FLUXNET in June 2015—http://fluxnet.ornl.gov—although not all of them are still active), and
each site could contribute to better-parameterizedmodels applied in upscaling exercises. However, most of the
data are still not shared and there are sites not yet registered in the continental and global networks. To better
understand carbon and water cycles, we need a joint collaboration across communities that can only start with
data integration, standardization, harmonization, and open access initiatives, similar to what was accomplished
with the LaThuile data set in 2007 (www.fluxdata.org). Measurement networks and research infrastructures
such as ICOS, NEON, Ameriflux, andOzFlux have started tomove in this direction and the hope is thatmore sites
and networks will join these initiatives with the aim to find answers to the global issues.
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