
Supplement of Geosci. Model Dev., 9, 2755–2769, 2016
http://www.geosci-model-dev.net/9/2755/2016/
doi:10.5194/gmd-9-2755-2016-supplement
© Author(s) 2016. CC Attribution 3.0 License.

Supplement of

YAC 1.2.0: new aspects for coupling software in Earth system modelling
Moritz Hanke et al.

Correspondence to: Moritz Hanke (hanke@dkrz.de) and René Redler (rene.redler@mpimet.mpg.de)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.



Max-Planck-Institut für Meteorologie Compte rendu CIMD No. 6 v2

A Graphical User Interface for
configuring YAC
Maxim Yastremsky and René Redler

Max-Planck-Institut für Meteorologie, Hamburg

Aug 2015

We introduce the usage of the graphical user interface to generate
a coupling configuration XML file for YAC. We explain the neces-
sary steps to define the coupling between a pair of model components
and describe the options we offer to configure a particular interpo-
lation method. In the appendix we provide an example of the XML
files which are required for input and explain some elements of the
resulting XML file generated by the GUI.

1. Starting the GUI

The java source code for the GUI is shipped together with the source code of
the coupler library. A precompiled archive (jar) file is available as well to start
right away. User who would like to compile a jar file on their own require ant.

Once, ant is available the whole java project is built within the gui directory
using

ant build

and the java library is generated by typing

ant create_run_jar

1



2. New coupling

In its current version 1.0.4 the GUI requires a XML description of model com-
ponents as input to allow for the configuration of the coupling. An example of
a component XML file is provided in Appendix A. Compared to the coupling
XML file (an example is provided in Appendix B) a component XML file has
a very simple structure an can easily (and probably much faster) be generated
with a simple text editor.

To assist users in constructing the coupling XML file the YAC GUI can be
launched via command line

java -jar CouplingGui.jar

The start window appears as shown in Fig. 1. To create a new coupling from
scratch the user needs to load two components represented by XML files by
clicking on Component 1 and Component 2 buttons below the file status line.
After clicking on any of these buttons the standard Open File Dialog will appear.
When the user has selected the component XML file and clicked on the Open
button, the content of the component file will be loaded and displayed in the
component panel. Typically, this will consist of a list of transients (see Fig. 2).
Likewise, the second component has to be loaded. For each transient the GUI
displays the name of the field, the name of the numerical grid on which the field
is defined and its collection size. As YAC currently supports a 2-dimensional
interpolation in the horizontal (on the sphere) only, the collection size can either
be the number of vertical levels of this field or the number of horizontal fields
hidden behind this particular field name, sometimes also referred to as bundles.

2. New coupling

To start creating a coupling between any two physical fields (transients) of two
different components the user needs to click the check box representing the
source field. In this case all transients which cannot be coupled with this source
transient will remain inactive. The transient is considered as valid for coupling
only if it has the same name and collection size. After finding the second possible
transient for coupling and the checking of its corresponding checkbox, a red
arrow connecting these two transients will be drawn. The direction of this arrow
is pointing into the direction of the coupling, from the source to the target. Both
directions of coupling are possible: from the left component to the right one and
vice versa. Once an interpolation instruction is defined the colour of arrow is
turned into green, like shown in Fig. 2 for the heat flux.

“collection size” has the same meaning as in the Fortran/c user interface where

2



3. Basic settings

Figure 1: YAC XML configuration GUI start window.

it is used to describe the number of vertical levels or the number of horizontal
fields that are stored with this one transient. The same horizontal interpolation
stack is applied to all members in the collection.

3. Basic settings

Time settings of coupling can be specified in the Basic settings panel of the main
window. The parameter Calender has 3 options: Proleptic-gregorian,
360d and 365d which activates either the Proleptic-Gregorian calendar1, a cal-
endar with an equal length of all months (30 days), or a calendar without any
leap years. Specific dates of coupling can be set manually in the fields Start
date and End date. After any user input or other interactions with values of
these fields the user will be notified by the colour of the strings whether the
provided date is correct or not according to the specified calendar. A green
colour of values means that the date is correct for the selected calendar while
red means it is not. For the Proleptic-gregorian calendar also a quick date picker
is available as an alternative. It helps to select any date with a few clicks. This
widget will disappear after selecting the day of the chosen year and month or
with the starting of any user interactions in the date edit field.

1http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

3

http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar


3. Basic settings

Figure 2: Example of a coupling configuration.

The Timestep unit parameter indicates which time units are to be used in the
timestep parameter tab described in Sec. 4.1.2.

Further the user can request the redirection of stdout and stderr by checking
Stdout redirect. When this is activated, output will be redirected after the
application has called yac_finit or yac_cinit. The output file name gets the
name of the respective component followed by the local MPI process ID. When
Stdout redirect is activated the user has the additional choice to let only the
component root processes redirect their output rather than letting each process
write into its own file.

4



4. Subpanels

4. Subpanels

4.1. Setting parameters of specific transients coupling

In case the user has coupled two transients, additional parameters have to be
provided for the coupling. To open the dialog for setting up coupling parameters
(Fig. 3) the user has to click on any of the coupled transients in the component
panel area. The coupling parameters dialog will appear after that. This dialog
has 3 tabs: Interpolation, Timestep and More.

Figure 3: Coupling interpolation parameters window.

4.1.1. Interpolation parameters tab

Interpolation parameters that can be specified for the coupling are the mask
handling, i.e. whether the source and/or target masks shall be considerd, and
the sequence of interpolation methods which will be used for the interpolation.
The specification of interpolation methods is organized in a list. The default
number of interpolation methods which can be specified is three, but additional
method options will appear after clicking on the Add more interpolations
button. The user has to define at least one interpolation method in order to
activate the coupling. Otherwise, no interpolation weights will be calculated
and the particular exchange of transients will remain inactive.

5



4.1. Setting parameters of specific transients coupling

Most interpolation methods require more specific parameters. These will be
dynamically added next to the particular interpolation method and described
in some more detail in Sec. 4.2.

The complete selection can be saved as default setting for defining further tran-
sient couples with Use these parameters as default. This will then activate
Forget default params. For a next transient couple definition Load default
params will apply the currently stored default.

4.1.2. Timestep parameter tab

On the timestep tab (Fig. 4) the user can indicate time parameters of the
coupling. In particular we require the user to specify the model time step or in
other words, the period with which the respective exchange routines are called
by the application. Next we require the user to specify the coupling period for
the transient. The units of these parameters are controlled in the main window
of the application in the Basic settings panel described earlier in Sec 3.

Figure 4: Coupling timestep parameters window.

I addition the Source and Target Time lag can be specified. The lag is a
positive integer number or zero to adjust the internal event trigger clock for the
source (put) and target (get) operations according to the timestepping algorithm
used in the application. A source time lag of 2 will put forward the internal clock

6



4.2. Interpolation specific parameters

for the put event by 2 times the source time step.

Like with the interpolation parameters tab default settings can be stored and
applied.

4.1.3. More coupling parameters

On the last tab (Fig. 5) the user can specify the following parameters: Debug
mode and its stage, Enforce write restart and Mask value (optional). Note
that these are not yet interpreted by the YAC library.

Figure 5: More coupling parameters.

4.2. Interpolation specific parameters

4.2.1. Average interpolation

Partial coverage (Boolean)

By setting this to true, partially covered target cells will receive an inter-

7



4.2. Interpolation specific parameters

polated value.

Weighted (Enumeration: Distance weighted or Arithmetic average, default
Arithmetic average,)

The values at the vertices or other locations of an element can be combined
to a simple arithmetic average or can contribute weighted by their distances
to the source points. In the latter case distances between sources and target
location are calculated on the sphere. These distances are then normalised
to 1. Using the vertices of a quadrilateral element the distance-weighted
avererage is equivalent to a bi-linear interpolation.

4.2.2. N-nearest Neighbor interpolation

N (Integer value)

Number of source point values requested for the nearest-neighbour inter-
polation.

Weighted (Enumeration: Distance weighted or Arithmetic average, default
Arithmetic average,)

The n nearest neighbours can be combined to a simple arithmetic average
or can contribute weighted by their distances to the source points. In the
latter case distances between sources and target location are calculated on
the sphere. These distances are then normalised to 1.

4.2.3. Conservative interpolation

Enforced conservation (Boolean, default false)

By setting this to true, local conservation is achieved by correcting the
local weights obtained from the partial area contributions such that they
locally add up to 1 as far as numerical precision allows.

Partial coverage (Boolean, default false)

8



4.2. Interpolation specific parameters

By setting this to true, partially covered source cells will be interpolated.

Normalization (Enumeration: FRACAREA or DESTAREA, default DESTAREA)

In case Partially coverage is set to true, a request for FRACAREA will
use the fractional (partially covered) area to normalise the weights. When
DESTAREA is selected weights will be normalised with the destination
area, the area of the target cell.

4.2.4. Patch recovery interpolation

Polynomial order (Integer value, default 1)

The order of the polynomial is selected here. Currently we support full
3d 1st, 2nd and 3rd order polynomials. The polynomial fit is applied to
the fix points on the sphere in the carthesian x-y-z coordinate system. For
example, the 1st order polynomial thus has the form

P1 = a0 + a1x + a2y + a3z.

Gauss order (Integer value, default 1)

This value defines in an abstract way the number of fix points per source
cell over which the polynomials are fitted. The number of fix points is set
for a triangle. All other elements (number of edges larger than three) are
split into triangles according to the number of edges and the requested
number of fix points is applied to each resulting triangle.

Gauss Order Number of fix
points in triangle

Number of fix points
in polygons

1 1 1 ×# edges
2 3 3 ×# edges
3 4 4 ×# edges
4 6 6 ×# edges
5 7 7 ×# edges
6 12 12 ×# edges
7 13 13 ×# edges

Extend source patch (Integer value, default 1)

9



4.2. Interpolation specific parameters

For a particular target cell the original source patch is made up of all source
cells which have an overlap with this target cell (exactly those cells that
are used for the 1st order conservative remapping). The Extend source
patch value specifies the number of source cell rings by which the patch
shall be extended. Currently we only support 0 or 1, where 0 represents
the original patch. By selecting 1 we extend the patch by one more ring
of cells around the original patch.

Allow extrapolation (Boolean, default false)

By default we apply the interpolation only if the target location is located
inside any of the cells of the source patch. By setting Allow extrapolation
to true we use the polynomial to extrapolate to the target location.

4.2.5. Fixed value

User value (Float/Real value)

A fixed value can be specified by the user which is assigned to target cells
or points. If it is selected as first method in the stack all target cells
or points will be assigned to this value and all remaining interpolation
methods in the stack will have no effect. If selected as 2nd option or later
the user value will only be assigned to those target points which could not
be considered (interpolated) by any of the previous methods in the stack.
The Fixed value interpolation shall thus be set as the final interpolation
in the stack. No warning is thrown if this is not the case.

4.2.6. User file interpolation

Files containing the interpolation weights can be generated off-line e.g. using
the cdo. By selecting the user file interpolation YAC can be forced to read in a
file. The user can force YAC to write out the interpolation weights into a file.

10



5. Saving a new XML file

5. Saving a new XML file

To save the coupling that has been created through the previously described
actions in the application the Save and Save as ... options are available in
the File menu. In case the user did not save the coupling before, for both of
these menu options firstly the Saving File dialog will appear. After a successful
saving of the file, the file status string will show the file name of the newly created
coupling XML file. Subsequent plain save operations will overwrite the existing
file. The GUI does not provide any automated versioning of XML files. This is
left to the user with the Save as ... option.

6. Modification of an existing coupling configuration

The above allows for saving intermediate steps or the final setting. In order
to continue the work to create or to modify an existing setting a valid coupling
XML file can be loaded using open in the File menu. As described in the previous
sections all parameters can be modified, and connections between any two fields
can be activated or deactivated.

7. Multi component coupling

Once a pair of components has been loaded follwing the description above (and
the coupling been defined) additional component (component XML descriptions)
can be loaded via the menue entry Couple add component.

Alternatively we allow to use the “add component” mechanism to first load all
components before starting with any further configuring.

When selecting select active components from the Couple menu a window
similar to what is depicted in Fig. 6 will pop up. In the upper part the GUI
lists the available component descriptions while the lower part displays those
component pair for which some coupling between transients has already been
defined.

A new set of component pairs can now be selected from the list in the upper half.
By clicking Apply the selected two components will now be displayed similar for

11



7. Multi component coupling

Figure 6: Selection of component pairs.

Fig. 2 and the coupling can be defined. Already (partly) defined component
pairs can also be selected from the lower part, by a click on Apply this particular
pair is now on display for further editing.

12



A. Component XML description

A. Component XML description

In order to generate a coupling XML file the GUI requires a XML description of
two model components which are going to be coupled as input. As can be seen
in Fig. A1 the structure of such a component XML file is rather simple and can
easily be generated with a simple text editor.

Figure A1: Example of a component XML file

The id has to be selected such that it is unique among the component XML
descriptions, likewise the name of the component shall be unique.

A list of transients links standard names with a unique local identifier. For
each component these IDs can run from 1 to N.

The list of transient_grid_refs provides additional information for the tran-
sients. The IDs of the transient_grid_refs shall again run from 1 to N. These
references are later used in the coupling XML description to access the transient
information. The number of the transient_ref refers to the transient ID
explained above. A transient_ref of 3 refers to transient ID 3, and thus to
heat_flux. Likewise, the grid_ref of 1 refers to the grid ID 1 defined below.
In this case we have only defined one grid, thus the grid_ref is set to 1 for all
transients in the list of transient_grid_refs. Last but not least the collection
size (size of bundle or number of vertical levels) has to be provided for each
transient.

13



B. Coupling XML dependencies

B. Coupling XML dependencies

A coupling XML file as it was produced by the GUI is shown in Fig. B1.

Figure B1: Example of a coupling XML file

For each component we have a list of N transient_grid_refs with consecutive
IDs from 1 to N, where each transient_grid_ref ID may have a different
collection_size, grid_ref and transient_ref (Fig. B2).

14



B. Coupling XML dependencies

Figure B2: List of transient grid reference IDs

These lists are copied from the componet XML descriptions. The grid_ref
and transient_ref ids get updated (see Appendix A). Typically we will have
at least two entries in the grid element (Fig. B3), thus grid_ref becomes
either 1 or 2 in this case. In the same way the transient_ref ids point to the
appropriate entries in the transient list.

Figure B3: List of grids

In the couple (Fig. B4) the two components are listed with its component ID.
Next a list of transient couples is provided which defines the source component
identified by its component ID and its respective transient grid reference ID and
the transient grid reference ID of the target.

Figure B4: Coupling dependencies

15


