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Abstract

The ice—ocean boundary layer ubiquitously mediates the heat exchange between
ocean and ice in polar regions. It is unclear how the heat exchange depends on
the ocean conditions such as salinity, temperature and turbulence intensity. Gen-
erally, turbulence intensity in a boundary layer affects the heat exchange most of
all. Instead of approaching the full complexity of turbulence, the present work
utilises free convection into a neutrally stratified ocean beneath a smooth surface
as an abstraction. In this work, direct numerical simulation and laboratory exper-
iments of free convection are performed. They prove to complement each other:
their heat fluxes and flow structures agree quantitatively. Then, simulations of a
simplification of the ice—ocean boundary layer, the fresh-ice—fresh-water system,
reveal how a stably stratified inversion beneath the ice shields the heat exchange;
a convective Richardson number, Ri,, is introduced to describe the shielding.
Finally, the simulations of the sea-ice—sea-water system reveal how the double
diffusion supports and enhances the stably stratified shield; as a result, the heat
flux is reduced by one to two orders of magnitude compared to the former. Melt-
water advection is estimated to influence the heat flux only for Ri, < 0.2. The
flux ratio of heat flux to salinity flux is found to be 80-90. From the flux ratio,
a physically sound assessment of the interfacial conditions and the heat flux of
both systems are provided as functions of salinity, temperature and turbulence
intensity.
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Zusammenfassung

Die Grenzschicht zwischen Ozean und Eis bestimmt iiberall im Polargebiet deren
Wiérmeflu. Dabei ist noch unklar, in welchem Ausmafl der Warmeflufl zwis-
chen Ozean und Eis von den ozeanischen Umgebungsbedingungen wie Salzgehalt,
Temperatur und turbulenter Mischung abhéngt. Im Allgemeinen bestimmt vor
allem turbulente Mischung den Warmeflufl. Anstatt das Phanomen der turbulen-
ten Mischung in seiner vollen Komplexitdt zu untersuchen, wird in dieser Arbeit
der Ansatz verfolgt, eine Abstraktion dessen zu untersuchen: freie Konvektion
unter ebenem Eis in einen neutral geschichteten Ozean hinein. Konkret bedeutet
dies, dafl im Folgenden direkte numerische Simulationen und Laborexperimente
dieser Abstraktion durchgefiihrt werden. Die Simulationen komplementieren die
Laborexperimente erfolgreich: IThre Wéarmefliifie und Stréomungsverldufe stim-
men iiberein. Daraufhin werden direkte numerische Simulationen verwendet,
um zunéichst eine weitere Vereinfachung der Abstraktion zu untersuchen, ein
Systems aus Siilwassereis und Siifiwasser, bevor im Anschlufl das System aus
Meereis und Salzwasser untersucht wird. Anhand des Systems aus Siifiwassereis
und Siiwasser wird deutlich, wie eine stabile Schichtung unter dem Eis den
Wiérmeflu§ abschirmt. Um diese Abschirmung zu quantifizieren, wird eine kon-
vektive Richardson Zahl Ri, eingefiihrt. Das System aus Meereis und Salzwasser
zeigt schliefSlich, wie Doppeldiffusion die stabil geschichtete Abschirmung un-
terstiitzt und verstarkt. Der Warmeflufl wird dadurch im Vergleich zum System
aus Siiwassereis und Siifiwasser um ein bis zwei Grofenordnungen reduziert. Der
Vergleich beider Systeme deutet in der Folge darauf hin, dafl der Warmefluf§ durch
schmelzendes Wasser nur beintrachtigt wird, wenn Ri, kleiner als 0.2 ist. Das
Fluverhéaltnis zwischen Warmeflul und SalzfluB wird zu 80-90 bestimmt. Diese
Arbeit préasentiert mit Hilfe des bestimmten Fluverhéltnisses eine physikalisch
fundierte Abschéatzung des Warmeflusses fiir beide Systeme in Abhéngigkeit von
ihrem Salzgehalt, ihrer Temperatur und der auftretenden turbulenten Mischung.
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Chapter 1

Introduction

Five to ten percent of the earth’s ocean is covered by ice which separates the
ocean from the atmosphere. Hence, ice influences the direct exchange of internal
energy, mass, and momentum on a global scale. How much ice exists and where
it exactly persists on top of the oceans depends on the growth and the ablation of
ice at its boundaries. Both the ice—atmosphere boundary layer and the ice—ocean
boundary layer are responsible for the growth and ablation of ice. In this work,
I focus solely on the ablation of ice by the ice-ocean boundary layer.

In this introduction, relevant characteristics of the ice—ocean boundary layer, of
the energy transport across it, and relevant process studies are recapitulated.
The recapitulation will guide the reader to the proposition of research questions
and their solution in the following chapters.

1.1 The Ice—-Ocean Boundary Layer

The ice—ocean boundary layer is the upper ocean layer that is influenced by the
presence of ice (cf. Figure 1.1). Ice and the ocean layer that is not influenced
by the presence of the ice—the far-field ocean—pose the boundary conditions
to the flow in-between. It is the flow’s fate to comply with these boundary
conditions. As a result, the flow mixes to equalise the boundary conditions by
transporting mass, momentum and energy between far-field ocean and the ice.
When the boundary conditions are sufficiently destabilising, the flow even mixes
turbulently.

Two main forcing mechanisms drive turbulence: shear and buoyancy. A shear
occurs when the far-field-ocean current is different from the velocity of the ice.
A buoyancy occurs when the density in the ocean varies due to temperature,
salinity or pressure variations. In general, a combination of these two mechanisms
forces the mixing while a combination of other opposing mechanisms dampens
the mixing.
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Figure 1.1: Drawing of the ice—ocean boundary layer. Ice and far-field ocean impose
the boundary conditions to the boundary layer. When the boundary conditions are
sufficiently destabilising, the flow in the boundary layer features turbulent mixing. The
turbulent mixing has two important consequences: It enhances the internal-energy trans-
port across the boundary layer, and the interaction of turbulent mixing with the interface
promotes the formation of a diffusive sublayer beneath the ice. The internal-energy trans-
port from the far-field ocean to the ice crosses the mixed layer and the diffusive sublayer
likewise.

This work mainly focuses on the forcing and dampening of turbulent mixing by
buoyancy in the absence of other forcings.

The buoyancy forcing arises from the dependence of density on temperature,
salinity, and pressure, and on the boundary conditions that the ice and the far-
field ocean provide. In polar oceans, the boundary conditions are nearly always
that of a cold and less saline layer aloft a warmer and more saline layer of water
(McPhee, 2008, p. 28). The equation of state of sea water (Sharqawy, Lienhard
and Zubair, 2010) renders the temperature layering—cold aloft warm—here un-
stable. The salinity layering—Iless aloft more saline—is always stable. Generally,
the effect of salinity layering excels that of temperature in the polar ocean and the
ice—ocean boundary layer is stably stratified. Where salinity sufficiently meets its
far-field boundary condition, temperature, however, can still vary so much that
its effect reverses the effect of salinity. As a result, the buoyancy layering features
a reversal and the ice—ocean boundary layer is unstable. The buoyancy reversal
features the most negative buoyancy and is an intrinsic feature to the boundary
layer. The instability that arises due to the buoyancy reversal is referred to as
buoyancy reversal instability.

The buoyancy reversal instability solely prevails in the ice—ocean boundary layer
due to the diffusivity difference between temperature and salinity. In general,
hydrophysical processes that are caused by diffusivity differences are referred to
as double diffusion (Stern, 1960; Turner, 1974). Double diffusion promotes the
buoyancy reversal instability in the following way. Across the boundary layer
the mean profiles of both temperature and salinity vary continuously from their
condition at the ice towards their far-field condition. Temperature, however,
diffuses stronger than salinity and the temperature layering, as a result, occurs
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across a wider distance than the salinity layering. The faster diffusive broadening
of the temperature layer with respect to the salinity layer will continue until the
temperature-layer fraction beneath the salinity layer yields a buoyancy reversal
instability (Martin and Kauffman, 1977). Then, the boundary layer mixes and,
as the case may be, becomes turbulent.

Turbulent mixing in the boundary layer has two important consequences. First,
it enhances the transport capabilities of the boundary layer. A turbulently en-
hanced transport of energy determines, then, the ablation of ice. Second, the
interaction of turbulent mixing with the interface promotes the formation of a
diffusive sublayer (Yaglom and Kader, 1974) just beneath the ice. The diffusive
sublayer separates the ice from the layer of turbulent mixing, “the mixed layer”.
Any energy transport from the far-field ocean to the ice interface crosses the
mixed layer and the diffusive sublayer likewise. The energy transport may hence
be considered based on only one of the two parts of the ice—ocean boundary layer.

Due to the immediate vicinity of the diffusive sublayer and the ice, and due to a
prospective analytical description of diffusive processes, the consideration of the
energy transport across the diffusive sublayer has become the dominant approach
to describe the energy transport to the ice in literature. In the following section,
the basics of the energy transport are recapitulated.

1.2 The Energy Transport Through the Boundary
Layer

The energy transport across the diffusive sublayer is mainly restricted to molecu-
lar diffusion because momentum boundary condition suppresses turbulence close
to the ice interface—the flow may not slip and may (almost) not penetrate the
ice. This diffusive sublayer is defined as the layer next to a ice interface across
which the contribution of the molecular transport exceeds the turbulent trans-
port by order one (Pope, 2000). As a result of negligible turbulent transport,
the characteristics of the diffusive sublayer depend only on the diffusivities of the
fluid and the buoyancy forcing, but not on the intensity of turbulence. From this
it follows that the diffusive sublayer has a fixed extent. The smaller the diffusive-
sublayer extent is, the larger is the energy transport at the interface. This extent
is well known for horizontal interfaces if the buoyancy depends linearly on only
one scalar (Mellado, 2012). For systems with a buoyancy reversal instability or
for double-diffusive systems, however, the diffusive-sublayer extent is unknown.
As a consequence, the energy transport is unknown, and so is the ablation rate
of ice.

Besides the diffusive-sublayer extent, also the temperature difference across it de-
termines the energy transport. The particular temperature and salinity boundary
conditions (Frank, 1950) that ice imposes on the ocean summon an additional
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puzzle. While mixing transports energy to ablate the ice, the ablation dilutes the
upper ocean. But the mixing also transports salt towards the ice interface that
counteracts the dilution. The interfacial temperature—important for the temper-
ature difference across the sublayer—results from the equilibrium of dilution and
salt transport. The interfacial conditions are, thus, subject to the thermodynam-
ics of the ice, and to the dynamics of the ocean. This adds an interesting twist:
In the end, not only molecular diffusion but also turbulent mixing is decisive for
the interfacial conditions of the diffusive sublayer and the ice. The equilibrium of
dilution and salt transport is readily obtained from the boundary conditions, the
far-field temperature, the far-field salinity, and the ratio between the transport
of temperature and salinity (Gade, 1979, 1993).

Turbulence enhances the mixing of salt and temperature as compared to molecu-
lar diffusion. Temperature and salinity are then mixed more equally in the mixed
layer and the ratio between the transport of temperature and salinity is expected
to be smaller than given by the ratio of the diffusivities. But turbulence does not
entirely suppress the difference in molecular diffusivities, and the ratio remains
different from unity. How much so, is unclear. Gade (1993) calculates the ratio
in units of the total salinity and temperature difference of 2.3 from the labora-
tory data of Martin and Kauffman (1977) and of 2.26 from the simulation data
of Wilson, Sarma and Pritchard (1980). Interestingly, the latter study considers
a laminar flow, which indicates that the experiment of the former study plays
also in a rather laminar regime. From the laboratory data provided by Gebhart,
Sammakia and Audunson (1983), Gade further concludes that the ratio should be
constant and independent of the thermal forcing for fully developed turbulence.
The author is not aware of further efforts to determine the exact ratio between
the transport of temperature and salinity at the interface.

Generally, systems of different forcing, shear or buoyancy, feature a similar ver-
tical flow structure next to an interface (Pope, 2000; Mellado, 2012). Whenever
turbulence aids the ablation of ice, the diffusive sublayer develops between the ice
and the turbulent layer irrespective of the forcing. The characteristics of the diffu-
sive sublayer determine the transport of internal energy, mass and momentum to
the ice. In summary, two unknown characteristics of the diffusive sublayer hinder
the general determination of the energy transport across the diffusive sublayer:
First, the extent of the diffusive sublayer beneath ice, and second, the interfacial
temperature and salinity that mark the interface of ice and diffusive sublayer.
Both unknowns will be addressed in this work. The following section introduces
the methods that will be applied to do so, as well as the state-of-the-art in the
application of the methods.

1.3 Approaches to Studying the Energy Transport

To gain a qualitative understanding of the behaviour of the energy transport
from observations has proven difficult. In the field, the transport of internal
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energy, mass and momentum are hard to measure with satisfactory resolution.
Commonly, the above-mentioned forcing mechanisms and other environmental
conditions interact, such as surface heterogeneity, roughness, intermittency and
impacts from the ice-atmosphere boundary layer. Great efforts are therefore
necessary to obtain a comprehensive picture of the field conditions that later
on allow one to interpret the data, or questionable simplifications need to be
employed. In the laboratory, boundary and initial conditions are well under the
researcher’s control and some success in determining the interfacial temperature
and salinity has been made (Martin and Kauffman, 1977; Gebhart, Sammakia
and Audunson, 1983; Gade, 1993). A laboratory setup is, however, necessarily
bounded, and the achievable independence of turbulence intensity is limited. In
numerical studies, on the contrary, single processes may be investigated in a well-
defined setup that is unaffected by the bounding geometry or by a limited scale
separation. It is key to the study of the diffusive sublayer that the flow evolution
is resolved down to diffusion. Direct numerical simulation offers the opportunity
to do so without any turbulence parameterisation.

Three main processes involved in the ablation of ice were isolatedly studied in
this way so far.

Mellado (2010) studies the buoyancy reversal instability motivated by the cloud-
top mixing layer in the atmosphere. He finds a horizontal layered structure whose
evolution is determined by molecular transport. A relatively thin inversion of con-
stant thickness forms aloft a turbulent convection layer that continuously broad-
ens with time. The inversion thickness depends on the diffusivity, the buoyancy
and a well-defined scalar mixing fraction only. The turbulent layer approaches a
self-preserving state that is characterised by a reference buoyancy flux.

Mellado (2012) provides the boundary-layer structure of purely buoyancy-driven
free convection over a heated plate. He forces free convection with a linear buoy-
ancy, thus, does not account for buoyancy reversal. He finds that the internal-
energy transport of free-convection systems is Nu o« Ra™ with Nusselt number
Nu, Rayleigh number Ra € 5 x [105; 107] and v € [.28; .30] as generally observed
in Rayleigh-Bénard convection (Chilld and Schumacher, 2012). The Nusselt num-
ber is a measure for the internal-energy transport. The Rayleigh number is a
measure for the buoyancy forcing of the system. Mellado (2010, 2012) has nei-
ther considered the buoyancy reversal instability in vicinity of an interface, nor
double diffusion.

Carpenter, Sommer and Wiiest (2012) take up convective double-diffusive in-
terfaces. Their experiment setup consists of two vertically inverted ice—ocean
boundary layers on top of each other. They find a double-boundary-layer struc-
ture that allows gravitationally unstable boundary layers at the edge of the dif-
fusive interface. The thickness ratio of the diffusive interface, a proxy for the
ratio between the transport of temperature and salinity, is found to scale with
the diffusivity ratio to yield about 2.6 for as high a diffusivity ratio as 100. They
further confirm that turbulence is not able to penetrate the stable stratification of
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the interface core, and that molecular diffusion of salinity determines the growth
of the diffusive-interface thickness in time.

The mechanism responsible for the formation of the diffusive sublayer next to
an interface (Mellado, 2012) might be inherently different from that of forming
diffusive layers in the absence of an interface (Mellado, 2010; Carpenter, Sommer
and Wiiest, 2012). It is a priori not clear how the interface and the effectively
non-linear buoyancy forcing will influence each other, and no studies on it have
come to the author’s attention. This ignorance reflects in uncertainty on the
rates of ablation of ice in the ice—ocean boundary layer with respect to far-field
temperature, salinity, and ice-water speed (Notz, McPhee, Worster et al., 2003).
I study the influence of the ice interface and the effectively non-linear buoyancy
forcing on each other in a combined laboratory experiment and numerical study
to diminish the uncertainty on the ablation rate of ice. At first, I review the
numerically simulated evolution of an ice—water boundary layer with a laboratory
tank experiment to complement the real-world measurement with comprehensive
simulation data. Then, I use the simulation to investigate the extent of the
diffusive sublayer and the ratio between the transport of temperature and salinity.

1.4 Research Proposition

With this work I address the overarching question: How does the diffusive
sublayer that separates the ice from turbulent convection evolve with
respect to far-field temperature, salinity, and ice—water speed? Rather
than trying to quantify the impact of a plurality of forcing mechanisms on the
diffusive sublayer, one main question that guides me focuses on the qualitative
impact of turbulence that confronts the diffusive sublayer. A second main ques-
tion then focuses on the influence of double diffusion on the diffusive sublayer.
Two methodological questions have to be addressed first, before the two main
questions will be tackled and answered thereafter. Fach of these questions is now
posed individually in the following four paragraphs.

To study the overarching question, I choose a buoyancy-driven setup to study the
diffusive sublayer, because it provides a well-known and well-controllable frame-
work in both numerical simulations and laboratory. Buoyancy-driven turbulence
beneath an ice—ocean interface mainly depends on the combination of several
processes mentioned in the previous section: the influence of the ice interface,
the buoyancy reversal instability, and double diffusion. The first methodologi-
cal question that needs to be resolved is: How can the processes involved
in the turbulent mixing be studied independently from each other in
the context of ice ablation? I present the fresh-ice—fresh-water system as an
idealisation of the buoyancy-driven ice—ocean system in chapter two. It shows
that the idealisation simplifies the research subject in that it reduces the number
of independent control parameters without changing the qualitative structure of
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the mean-buoyancy profile. It allows one therefore to study the evolution of the
mean-buoyancy profile as a combination of two well-known systems: the influence
of the interface (Mellado, 2012), and the buoyancy reversal instability (Mellado,
2010). Along with the idealisation, I present a laboratory setup and the direct nu-
merical setup that can be used to study both the fresh-ice—fresh—ocean boundary
layer and the sea-ice—sea-water boundary layer.

The second methodological question is: Can direct numerical simulations
be used to reproduce and complement laboratory experiments? I em-
ploy the idealised setup in the laboratory and in direct numerical simulations to
review their evolution in chapter three. The temporal evolution of their mean-
temperature profiles and the internal-energy change of the whole system will be
used to compare the two. The assessment of the comparison allows one to review
the validity of the physical model employed in the direct numerical simulation
and further provides indications as to whether the vertical melt-water advection
is relevant for the physical model.

My first main question is to understand: How does the buoyancy reversal
instability influence the flow structure of free convection next to the ice
interface? The presented idealisation neglects the influence of salinity, allows
one to omit double diffusion and to focus on the evolution of the mean-buoyancy
profile that is caused by the buoyancy reversal instability. I employ the idealised
setup with direct numerical simulation in chapter four to overcome resolution and
size limitations of the laboratory experiment and to yield statistically converged
boundary-layer mean profiles. The statistically converged boundary-layer infor-
mation allows me to learn which dominant processes determine the flow structure
next to the interface and the melt rate. Once the underlying dynamics of the
processes is understood, the simulations are employed to assess further aspects of
the flow, such as the influence of vertical melt-water advection on the flow next
to the interface, the spatial inhomogeneity of the melt rate, implications of the
results of the fresh-ice—fresh-water system for the more general case of ice floating
on a salty ocean.

My second main question is to understand: How does double diffusion in-
fluence the flow structure of free convection next to an interface? I
employ the full setup that includes the interplay of temperature and salinity
with direct numerical simulation in chapter five. The diffusivity ratio between
temperature and salinity—the Lewis number—is varied to approach real-world
conditions. As opposed to previous research methods, the ratio between the
transport of temperature and salinity at the interface is readily obtained as a
simulation outcome. Consequently, this work provides a physically sound answer
to the question: What are the interfacial conditions between ice and the diffusive
sublayer? The simulations are then used to study the question: How much is the
diffusive-sublayer extent increased compared to that of the idealised setup? As a
consequence, this work further provides approximations of the energy transport,
as well as for the ablation rate of ice.
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Chapter 2

Setup and Methods

The concept of this study has been introduced in the previous chapter: a com-
bined laboratory and simulation approach to study the individual processes of the
energy transport beneath the ice. The combined approach to study the energy
transport from the ice—ocean boundary layer to the ice requires a well-defined
common framework. This chapter sets it up (section 2.1). Two similar sub-
setups are derived from the physical setup: the full setup that incorporates salt,
and an idealised setup that is only driven by temperature. Then, this chapter
explains the methods that are employed, namely the laboratory experiment and
the direct numerical simulation (section 2.2).

2.1 The Physical Setup

A mass of solid, pure ice rests on top of an initially motionless body of sea water
of fixed uniform temperature 7' = T, (cf. Figure 2.1a). Ice and water form a
horizontal interface. The ice mass is isothermal at the freezing temperature of
water and has a smooth surface. Hence, the ice imposes a Dirichlet boundary
condition on the temperature field of the water and a no-slip boundary condition
on the velocity field of the water. I consider this physical setup of the ice—ocean
interface together with the sea-water body as my system of interest.

This system is purely buoyancy driven. I define buoyancy b as:

Poo

, (2.1)

with earth’s gravitational acceleration, g, and water density, p, where the sub-
script o denotes the value of a property far away from the interface—in the far
field.

Generally, the density of sea water, psw, depends on temperature, T, and on
salinity, S. It does so in a particular way that is, to present day, best described
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as
psw (S, T) = pw (T) +ay (T) S+ ag (T) S%% + as 52, (2.2)

with the density dependence of fresh water, p,,, the high-order polynomials a1,
ay and a constant as (Sharqawy, Lienhard and Zubair, 2010). Subsequently, I
approximate this function with the product of a linear salinity-dependence of the
density, ps, and a parabola as temperature-dependent variation to it, p;. I define
the density p as:

p (S, T) = ps(S) pe(T), (2.3a)
ps(S)=c1+c2 S, (2.3b)
p(T)=1—c3(T —Tw)>. (2.3¢)

Notice that the temperature-dependent variation p; (T') is dimensionless. It is
chosen analogous to the functional form of the fresh-water density formula with
the temperature of maximum density, T1,. To allow for the analogy, the variation
of T}, with the solute concentration, S, needs to be considered,

Tm (S) — C4 — C5 S. (2.4)

The density-formula coefficients ¢; need to be chosen according to the particular
parameter range of T' and S of the system and according to the solute under
consideration. c¢; is the background density, co is the haline contraction coeffi-
cient, c3 is the relative thermal expansion coefficient, ¢4 is the maximum-density
temperature, and c5 describes the variation of the maximum-density temperature
with salinity. Within the confining temperatures, Tic. at the ice interface and T
in the far field, and the confining salinities, Sice at the ice interface and S, in the
far field, the buoyancy based on p varies between zero in the far field, a minimum
buoyancy, b,,, and the interfacial buoyancy, bice, that can exceed the far-field
value.

The system is purely buoyancy driven and evolves in space and time according
to the evolution equations of mass, momentum, internal-energy and solute. With
the velocity field v (x,t), the temperature field T (x,t), the salinity field S (x,t),
the spatial coordinate x = x1eq + x2e2 + ze3, with e; = ¢;;,eje;, and with time
t, these evolution equations are respectively given as

;v =0, (2.5a)
O = —v;05v; + V@?vi —0ip+0b(S,T) 93, (2.5b)
OT = —v;0;T + k02T, (2.5¢)
S = —v;0;5 + k505 S. (2.5d)

The equations are given in the Bussinesq approximation. v is the kinematic
viscosity, k7 the thermal diffusivity, kg the diffusivity of salinity, p the modified
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kinematic pressure, 0; the temporal derivative and 9; is the spatial derivative in
direction e;.

After an initial transient, once the effet of the initial conditions is suffi-
ciently forgotten, the system solely depends on a set of control parameters
{v, kr, K3, Tice;, Too, Sice, Sco0, Ci}. Typically, dimensional analysis for a lin-
earised buoyancy function provides the set of independent control parameters
{Pr, Le, R}}, with Prandtl number Pr = v/rr, Lewis number Le = r7/kg,
and density ratio R} = (8 (Seo — Sice)) / (@ (Too — Tice)), where « is the thermal
expansion coefficient, & = 1/pdp/0T, and S is the saline contraction coefficient,

B =1/pdp/dS.

2.1.1 The Fresh-Ice—Fresh-Water System

The core idea of this work is to idealise the system based on its prospective
mean-buoyancy profile. The prospective mean-buoyancy profile beneath the ice—
ocean interface looks as follows (cf. Figure 2.1b, dotted line). The buoyancy
at the ice interface is higher than the buoyancy in the far field. The system
would be stably stratified but the buoyancy between ice interface and far field
features a global minimum. This buoyancy minimum leads to overturning and
mixing. I propose the fresh-ice—fresh-water system, S = 0 g kg™, with a far-field
temperature T, > T}, as an idealisation to the more general ice—ocean system.
The application offers the possibility to separately study one aspect of the general
system, the buoyancy-forcing structure, in a well defined environment.

The buoyancy-forcing structure of the idealised setup is obtained from the buoy-
ancy definition (cf. Eq. (2.1)) with ¢; = 999.96 kg m™3, ¢ = ¢5 = 0,
with a slightly differently defined thermal coefficient ¢3 x ¢ = a = —7.00 x
1073 kg m—3 °C™2, and ¢4 = 3.98 °C. This choice of ¢; yields a simpler density
function.

p(T)=c14a(T —Ty)? (2.6)

This parabolic density function deviates relatively to Eq. (2.2) by less than
0.01 % between 0 °C and 30 °C for S = 0 g kg~!. The resulting buoyancy-forcing
structure is qualitatively similar to the one beneath the ice—ocean interface. In
the case of the fresh-ice—fresh-water system, it is sufficient to follow the evolution
of the water temperature to understand the buoyancy-forcing structure.

The water body has a fixed uniform temperature, T,. The ice also has a fixed
uniform temperature, T, that corresponds to the freezing temperature. Just
beneath the fresh-ice—fresh-water interface, the temperatures merge: With in-
creasing distance from the ice interface, the water temperature increases from
Tice to Too (cf. Figure 2.1¢). As the water temperature increases, the density first
increases (as long as T' < T,;,) and then decreases (T' > T,,) (cf. Figure 2.1d).
Accordingly, the buoyancy first decreases and then increases again. Hence, for
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Figure 2.1: Sketch of the system studied. a) Ice rests on top of a water body (greenish).
A sketch of a turbulently mixed temperature field is exemplarily given (dark blue). b)
The density variation shown in (¢) poses a certain buoyancy profile in the system. The
dashed line shows a buoyancy profile for a density function without buoyancy reversal.
The dotted line is a prospective mean-buoyancy profile of the sea-ice—sea-water interface
for a Ri = 130. Ri = 130 corresponds to the far-field conditions employed by Martin
and Kauffman (1977). ¢) The water temperature increases from the interface value, Ticc,
to the far-field value, T. The distance from the interface is given in units of the tank
height Ayater- Different colours symbolise different far-field temperatures according to
cf. Figure 2.1c. The given profiles are the initial profiles of the numerical simulations
of this work. d) Coloured bars indicate the temperature range of density variation that
characterises the system for a certain far-field water temperature.
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Too > Ty, the buoyancy in the far field is higher than the buoyancy close to
the interface and the system is convectively unstable (cf. Figure 2.1b). I am
interested in this convectively unstable regime.

For T, = 2 T}, the buoyancy at the interface equals the buoyancy in the far field.
The buoyancy profiles suggest a different behaviour if T, < 2 T}, compared to if
Tw > 2 Ty, For T, > 2 T,,, the whole column of fluid can overturn (cf. Figure
2.1b, reddish profiles). In contrast, for T, < 2 T,,, there exists a layer next to
the interface that is statistically stable (cf. Figure 2.1b, bluish profiles). This
stably stratified layer beneath the ice acts as a shield against the warmer fluid of
the convectively unstable region as will be shown below.

The spatiotemporal evolution of the system is determined by the buoyancy b
(cf. Eq. (2.5b)). For sufficiently low viscosity, the system becomes turbu-
lent, decorrelates from its initial state, and solely depends on the set of con-
trol parameters {v, Kk, Ty — Tice, Tice — To}. Dimensional analysis provides
the set of independent control parameters {Pr, xm}, with Pr = v/kp and
Xm = (Tm — Txo) / (Tice — Two). This is a remarkable simplification compared to
the physical system that depends on three independent control parameters. While
the system is reduced to only two independent control parameters, it maintains
the buoyancy-forcing structure.

This investigation shall be constrained to water-like fluids of fixed Prandtl number
Pr = 10. Hence, any flow property solely depends on one governing control
parameter, Yo, and on the position in space and time, {xm, X, t}. I am interested
in convectively unstable conditions, Too > Ty, so that 0 < ., < 1.

The fully developed turbulent system is statistically homogeneous in horizon-
tal directions. I denote horizontally averaged quantities by (-) and fluctua-
tions around that mean by /. Horizontally averaged statistics only depend on
{Xm, 2, t} with z = x - es and the origin of x chosen such that z gives the
distance from the interface. xm, b, and T equivalently describe the system
(cf. Egs. (2.10,2.13)).

2.1.2 The Sea-Ice—Sea-Water System

The inclusion of salt is the sole difference between the fresh-ice—fresh-water system
and the sea-ice—sea-water system. Now, both temperature and salinity influence
the buoyancy. The diffusivity of salinity, kg, is significantly smaller than the
diffusivity of temperature, k7, and the evolution of buoyancy is not given in
terms of one conserved scalar anymore (Mellado, Stevens, Schmidt et al., 2010).
Thus, a second scalar diffusion—advection equation describes the evolution of
salinity, Eq. (2.5d) and kg adds to the set of independent control parameters of
the system.

Salinity influences the evolution of the flow in two ways. First, the freezing tem-
perature of water fixes the interfacial temperature, Tice, no longer at zero degrees



14 Setup and Methods

Celsius, but depends on the interfacial salinity, Sice. The resulting interfacial
buoyancy is

bice =b (Sicey Tice) . (2'7)

Second, while the buoyancy reversal instability no longer occurs due to the density
anomaly of water, it is now due to the mixing of temperature and salinity. The
minimum buoyancy, b,,, occurs when fluid of far-field salinity, S, is cooled to
the interfacial temperature, Tice:

bm = b(SOOaT‘ice) (28)

(cf. Eq. (2.3)).

The fully turbulent free-convection sea-ice—sea-water system depends solely on
the set of control parameters, {v, rr, Ks,, Tice, Too; Sice; Soos Ciy ). In-
stead of focusing on the precise density-formula coefficients, ¢;, I will study the
sea-ice—sea-water system based the most striking features of the buoyancy func-
tion: the interfacial buoyancy, bice, and the minimum buoyancy, b,,. Under this
premise, dimensional analysis provides a set of independent control parameters
as {Pr, Le, Rip}, with Pr = v/kr, Le = k7 /Kkg, and Richardson number

Rio = 1 — bice/ |bm| . (2.9)

As will be shown during this study, now Rig represents the choice of the far-field
conditions, T5, and Sy.

2.2 The Methods

2.2.1 Laboratory Experiment

The laboratory setup that I use to mimic the idealised setup consists of a Plexiglas
tank filled with tap water, a thermistor cascade just beneath the water surface,
and an ice block dangling on a manual tackle just above the water surface (cf. Fig-
ure 2.2). The setup resides in a cold room whose temperature can be controlled
with a precision of £3 °C. The water body has the dimensions 0.347% m? and is
laterally isolated by a Styrofoam cover around the tank. Temperature changes
are measured with a cascade of 23 thermistors. The thermistor cascade has a
spacing of 7 mm between the thermistors and a total profile length of 154 mm.
Each thermistor is spherical with a radius of 1 mm and is placed on the tip of a 4
mm thick and 2 cm long finger to minimise the influence of the instrument body
on the flow. The precision of the temperature measurement is at least 0.01 K
while temperature changes are measured with a response time of two to four sec-
onds depending on the sign of the temperature change. The ice block, 8 cm to



2.2 The Methods 15

)

.35 m

- S

Figure 2.2: Laboratory setup. a) Dyed ice dangles on a manual tackle just above the
water body in the tank. The setup is placed in a cooling chamber. b) Magnification of
the upper thermistor cascade.
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13 cm thick, covers almost the entire water surface and is prepared from distilled
water prior to the experiment.

Before an experiment is conducted, I orientate the system components and pre-
pare the temperatures of the water body and the cold room. I align the ice block
horizontally to attach it plainly to the water surface and displace the thermistor
cascade vertically such that the upper thermistor is just beneath the water sur-
face. A pump mixes the water body to a homogeneous initial temperature Ty,.
The cold-room temperature is set to match 7T, in order to minimise any temper-
ature gradient between the water body and its lateral surrounding. I keep the
cold-room temperature constant at 1., for several hours to ensure that the ice is
isothermal. When the pump stops, I await the decay of turbulent kinetic energy
for 3 minutes and then cautiously lower the ice block via the manual tackle.

The experiment starts as soon as the ice touches the water surface. The ice is not
lowered further. The thermistor cascade measures a temperature profile every 5
seconds for an experiment run time At. After that, the ice block is lifted from
the water surface and the recording continues for about another minute while
the water is mixed with the pump to record the final bulk temperature of the
system, Tenq. This entire procedure constitutes one realisation of the laboratory
experiment. The horizontal position of the thermistor cascade is varied after
every laboratory realisation.

First, I assess the capability of the setup to temporally resolve the turbulently
mixing system, and to detect thermal changes that result from the mixing. For
high far-field temperatures, the system evolves too quickly compared to the re-
sponse time of the thermistors. For lower far-field temperatures, the temperature
changes too little compared to the temperature sensitivity of the system. Second,
I record an ensemble of 25 realisations at T, = 5 °C and At = 15 min to capture
the mean temperature profile of the turbulent system. Third, I record several
ensembles of small realisation number (three to five) at T, € {4.5, 5, 6, 15} °C
and varying run time, At, to capture the temporal bulk-temperature change of
the turbulent system.

2.2.2 Direct Numerical Simulation

I integrate Eqgs. (2.5) using a high-order finite-difference method on a collocated,
structured grid. The integration is approximated by a fourth-order Runge-Kutta
scheme and the spatial derivatives by sixth-order spectral-like finite differences
(Williamson, 1980; Lele, 1992). After every integration step, a pressure solver
ensures fulfillment of the solenoidal constraint. For this, a Fourier decomposition
is employed along periodic horizontal coordinates and a factorisation of the re-
sulting second-order equations in the vertical coordinate (Mellado and Ansorge,
2012).

The calculations are performed on three-dimensional grids, that yield an aspect
ratio of 3.33 : 1 (big simulations) and 1.33 : 1 (small simulations). Adequacy



2.2 The Methods 17

of the vertical resolution, the domain height, and the domain width has been
assured for the simulations of the fresh-ice—fresh-water system. Consequently,
the results discussed in this work are sufficiently independent of those simulation
properties. The simulations of the sea-ice—sea-water system have been derived
from the well-tested simulations of the fresh-ice—fresh-water system. Adequacy of
the vertical resolution has also been assured for those simulations but influences
of the domain height on the simulations cannot completely be ruled out.

The grid spacing is uniform in the horizontal directions e;, e; and in most of
the vertical direction es. The resolution in es next to the ice interface, however,
is increased because the main mean-temperature variation all over the domain
occurs next to the ice interface. This temperature variation potentially entails
the main mean-buoyancy change, a change in the forcing of the system from a
positive to the global-extreme negative value and back to almost zero (cf. Figure
2.1b). To fully cover this buoyancy variation, I increase the resolution next to
the ice interface by a factor of five for the simulations of the fresh-ice—fresh-
water system. For the simulations of the sea-ice—sea-water system, a factor of 2.5
was sufficient to ensure an adequate vertical resolution next to the ice interface.
The regions of uniform and adjusted resolution in es are gradually matched by
hyperbolic tangents. Finally, the grid in ez far from the ice interface is coarsened
to save computing time. This part of the domain serves to diminish the influence
of the computational boundary on the flow.

The boundary conditions in the velocity field are no-slip and no-penetration at
the ice interface, and free-slip and no-penetration in the far field. The boundary
conditions in the scalar fields—temperature field and salinity field—are Dirichlet
at the ice interface and Neumann in the far field. The initial condition is an
error function of thickness d across the vertical profile in the scalar and a zero
field in velocity. The scalar fields are perturbed close to the ice interface with a
wavelength that corresponds to 7 d [see Mellado (2012) for details].

Simulations of the Fresh-Ice—Fresh-Water System

To simulate the fresh-ice—fresh-water system, I integrate the evolution equations,
Eq. (2.5), with the buoyancy based on the simplified density function, Eq. (2.6).
It is convenient to express the buoyancy in terms of the control parameter y,,.

Tm - Too

T = T:T T = - 2.10
X (Toc) = X (T = Ty, To) = (2.10)

This control parameter bi-uniquely describes the far-field temperature of the sys-
tem, To,. One could also argue x,, describes the fraction of the temperature
range (Tice — To) that is responsible for the occurrence of the buoyancy reversal
instability. To obtain the buoyancy expression in terms of x,,, I also give the
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temperature, T', as normalised deviation from the far-field temperature:

T-Tsw

T.T) = ——2 2.11
X( OO) T‘ice—Too ( )

The normalised temperature, x, then varies between 0 in the far field and 1 at
the interface.

With y, the buoyancy of the fresh-ice—fresh-water system can be given as
b="bm X (2Xm — X) X1;127 (2.12)
where the minimum buoyancy is

oeTfn an ozTnzl
g ) g
p(Teo) (1 — Xm)2 p(Ts)

b = ~—11x10"" ms™2 (2.13)

I simulate systems of different far-field temperatures T, (cf. Table 2.1). For
the idealised setup, I study the system of T, = 2 T, (xm = 0.5) and three
systems of both higher and lower buoyancy at the interface. In addition, I perform
three numerical simulations with altered flow boundary conditions to study the
influence of melt water on the flow.

The final boundary-layer height of the simulated systems, z,, is between 0.12 m
and 1.05 m. These sizes are comparable to the size of the laboratory tank of
0.347 m. The Reynolds numbers “=2= and k?/ (ev) are about 900 and 100, with
the turbulent kinetic energy k, the viscous dissipation rate e, the convective
velocity scale, w, and the viscosity v.



Xm Rip T [)C] by [m s72] Colour  z, [m] Wk % wmdX [wy  zp [mm] wy [mm d—1]
0.152 31 4.69 3.6x107° | 1.05 950 190 0.81 39 42
0.179 21 4.85 0.5x1074 0.96 990 190 0.87 31 o8
0.232 11 5.18 1.0x107% 0.86 1100 200 0.95 21 90
0.500 1 7.96 1.1x1073 0.37 900 140 1.03 5.6 400
0.586 0.5 9.61 2.2x1073 | 0.29 820 120 1.01 4.0 610
0.760 0.1 16.57 1.1x1072 | 0.15 670 87 0.94 2.0 1700
1.000 0 To b (To) n : 531 34 . : wy (Too)
0.500° 1 7.96 1.1x1073 - 0.39 960 140 1.04 5.6 390
0.841*f 0.04 25.00 3.1x1072 - 0.14 850 88 0.99 1.3 3200
0.901*f 0.01 40.00 0.9x107! - 0.12 1000 85 1.01 0.9 6700

Table 2.1: Properties of the numerical simulations of the fresh-ice-fresh-water system. The first four columns equivalently define the
simulation. They are the far-field temperature parameter x.,, the Richardson number Rij, far-field temperature T, and minimum
buoyancy b, (cf. Egs. (2.13, 2.10, 4.18)). The colour column gives the colour assigned to the simulation throughout the whole work.
The following four columns, characterise the turbulent system in its stage of final simulation time. The boundary-layer height z, and the
convective velocity scale w, are defined in Eq. (4.4) and Eq. (4.5), respectively. The turbulent Reynolds number Regy,p is the maximum
value of €2/ (ev) in the domain with turbulent kinetic energy k, viscous dissipation rate ¢ and viscosity v. Regup, and w,z,.v~! are measures
for the scale separation in the simulations. The diffusive velocity scale wg = (zg bm)l/ % with the diffusive length scale zq is defined in Eq.
(4.3). The last two columns, the diffusive length scale and the melt rate of the fresh-ice—fresh-water interface, wy, Eq. (4.12), are results
of the simulation and analysis. The regular grid size of the simulations is 1280 x 1280 x 576. (f) marks simulations with background mean
advection; (*) marks simulations of smaller size 512 x 512 x 576 points.
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Simulations of the Sea-Ice—Sea-Water System

To simulate the sea-ice—sea-water system, I integrate the evolution equations, Eq.
(2.5), based on a linear buoyancy parameterisation—linear in temperature and
linear salinity. This buoyancy parameterisation is established from the density
function of sea water, Eq. (2.2), in the appendix A.1 and reviewed in A.2. As
explained along with the introduction of Eq. (2.9), instead of focusing on the
precise density formula, I will use the Richardson number, Rig, to study the sea-
ice—sea-water system based on the striking features of the buoyancy function: the
interfacial buoyancy and the minimum buoyancy, by,.

b
— = —Rip o+ 6. (2.14)

bm
To avoid confusion between the fresh-ice—fresh-water system and the sea-ice—sea-
water system, the distinct symbols, 6 and o, will be used here to represent the

normalised temperature and normalised salinity:

T — Ty

S — S
= . 2.15b
7 Sice - Soo ( )

In analogy to the fresh-ice—fresh-water system, b,,, defines the minimum buoyancy
in the parameter space. b, occurs when fluid of far-field salinity, S, is cooled to
the interfacial temperature, Tice, (cf. Eq. (2.8)). For Riy > 5, the approximation
yields deviations from the real buoyancy smaller than 0.06 b and smaller than
about 0.2 b, in the relevant section of the parameter space (cf. appendix A.1).
This approximation of b is sufficient to reproduce the buoyancy reversal instability
that leads to overturning of the system.

I am particularly interested in simulations of the sea-ice—sea-water system of
Pr = 13.8 and Le = 176 that resembles ocean-like fluids (Steele, Mellor and
Mcphee, 1989). The available computational resources, however, constrain my
investigations to PrxLe= 40. The smaller I choose Pr, the larger the Le that I
can simulate.

I study one system of Pr = 10, Le = 4, and Rig = 10 on a 12802 x 1152 grid
(cf. Table 2.2). Le = 4 is the largest diffusivity ratio kp/kg for which turbulence
is still fully resolved on diffusive scales in a water-like fluid of Pr = 10. I further
study the behaviour of systems with different far-field temperatures T,, with
Pr =1, Le = 4, and Rig € {1,2,5,10,100} on a 5122 x 576 grid. And I study the
behaviour of systems of different Le with Pr = 1, Le € {2,4,10}, and Ri = 2 on
a 5122 x 576 grid.

The size of the simulated systems is between 0.09 m and 0.19 m and thus almost
an order of magnitude smaller than the simulations of the fresh-ice—fresh-water
systems. The Reynolds numbers “22= and k?/ (ev) are about 5 x 10 and 2 x 102,
with the turbulent kinetic energy k£ and the viscous dissipation rate e.



Pr Le  Riy R; T [)C] by [m s72] Colour  Zzest [m] e Zest % g—z ws [mm d—1]
10 4 11 -6.4 16.4 2.6x1072 | 0.16 390 42 1.69 18
01* 4 1 -0.86 77.8 2.7x107! 0.09 1200 310 2.68 620
01* 4 2 -1.14 47.9 1.35x10~1 0.14 1100 340 6.79 170
01* 4 ) -2.9 27.0 0.53x107 ! 0.14 610 140 11.1 40
01* 4 10 -6.1 17.3 2.6x1072 0.13 400 110 11.7 19
01* 4 100 -81 2.9 2.0x1073 | 0.19 140 25 9.39 1
01* 2 2 -1.14 47.9 2.6x1072 - 0.10 960 260 2.5 160
01* 10 2 -1.14 479 2.6x1072 - 0.14 1300 330 12 190

Table 2.2: Properties of the numerical simulations of the sea-ice—sea-water system. The set of the first three columns uniquely define the sys-
tem. They are the Prandtl number Pr, Lewis number Le, and Richardson number Ri. The reader can obtain the far-field temperature, Ty,
and the far-field salinity, S, corresponding to the simulations from Figure 5.14 and Figure 5.15. For his convenience, T, and the minimum
buoyancy, b,,, are given for an assumed far-field salinity of So, = 34 g kg~'. The density ratio, Ry = B (So0 — Sice) a YTy — Tice)_l7 is a
commonly used system-describing parameter and is provided here to compare this work to other studies. The far-field values Sy, = 34 g kg ™!
and T, have been used as a reference to determine the thermal expansion coefficient, o, and the saline contraction coefficient, 5. The
colour column gives the colour assigned to the simulation throughout the whole work. They are chosen such that they match the colour of
the fresh-ice—fresh-water simulation of corresponding Richardson number (with the exception of the simulation of Pr = 10). The columns
6-8 characterise the turbulent system in its stage of final simulation time. The simulations reach a boundary layer height, zes, [cf. Eq.
(5.5)] of about 0.15 m, and a turbulence intensity, “=2=t  of about 5 x 10%, and Reyy,1, = k*/ (ev) of about 2 x 10?, with turbulent kinetic
energy k, viscous dissipation rate € and viscosity v. The convective velocity scale, wy, is defined in Eq. (4.5). The last two columns are
results of the simulation and analysis. The diffusive length scale zg, [cf. Eq. (5.3)] describes the observed salinity gradient thickness, Js,
to order one. w, are the melt rates observed from the simulations. For the simulations of Pr = 1, w, has been multiplied by 10'/3 to
give presumable melt rates for the corresponding Pr = 10 case. The grid size of the simulations at Pr = 10 is 2560 x 1152 x 2560 with an
aspect ratio of 3.33:1. The grid size of the simulations at Pr = 1 (*) is 512 x 576 x 512 with an aspect ratio of 1.33:1.
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Chapter 3

Measurements of the Melt
Rate in the
Fresh-Ice—Fresh-Water System

The main objective of the laboratory experiments is to review if they can be
represented by direct numerical simulations. In its core, the question encompasses
whether or not the physical model involved in the direct numerical simulation is
valid. The laboratory experiment has therefore been developed along the setup of
the direct numerical simulation. The one-to-one comparison allows me to review
that all relevant aspects of the physics are captured.

From the physical model, the freely developing system is expected to mix diffu-
sively for T, < T}, and mix turbulently for T, > T;,. First, I assess how well
the diffusively mixing system is represented in the laboratory (section 3.1). The
precision, to which the diffusively mixing laboratory system laboratory follows
the theory, benchmarks the laboratory setup. Second, I assess the capability of
the laboratory setup to temporally resolve the turbulently mixing system, and its
capability to detect thermal changes that result from the mixing (section 3.2).

Then, the turbulent evolution of the laboratory system is compared to the one
of the numerical system. The assessment of the validity of the physical model is
achieved in two ways: First, by comparing the temporal evolution of the mean-
temperature profiles of the laboratory system and the numerical system (section
3.2.3). Second, by comparing the melt rates of both (section 3.3).

3.1 Diffusive-Mixing Experiments

A diffusive-mixing laboratory experiment of the fresh-ice—fresh-water system
should follow the evolution equations, Eq. (2.5), for neglected advection terms.
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Figure 3.1: The profile of the normalised temperature, x = 1 — (T} /T, of the diffusive
laboratory experiments. It varies between 1 at the ice interface (z = 0) and 0 in the
far field (z = 0.5hwater). Temporal evolution of a single vertical temperature profile for
T = 3.0 °C. Profiles are given after an evolution time of a) 7 minutes, b) 15 minutes,
and c) 60 minutes. Next to the interface, thermistor measurements (crosses) generally
deviate from a theoretical error-function profile (solid) by less than 10% (circles). Away

from the interface, thermistor measurements deviate by about 1072 (T,

the theoretical error-function profile. d,e,f) same as (a,b,c) but T, = 3.5 °C.

— Tice) from
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A diffusive-mixing numerical experiment of the fresh-ice—fresh-water system rig-
orously does so for the particular boundary and initial conditions. The solution
to the numerical experiment is a zero velocity field and a growing error function
in the vertical mean-temperature profile. Here, I present two diffusive laboratory
realisations, one for T, = 3.0 °C (cf. Figure 3.1a,b,c) and one for T, = 3.5 °C
(cf. Figure 3.1d,e,f), to obtain the solution of the laboratory experiment for the
mean-temperature profile.

Over the course of these two laboratory runs, the ice bottom melts and the
distance between the melting ice bottom and the thermistor cascade grows. A
considerable ablation of the ice bottom is only observed after an experimental run
time of hours. The ice had ablated by 2 mm after two hours, while the far-field
temperature remained unaffected to within less than 1%.

I compare the temperature profile from the diffusive-mixing laboratory experi-
ment to an error-function profile that takes the growing distance between melting-
ice bottom and thermistor cascade into account. The measurement by each ther-
mistor is normalised by its own maximum temperature that is found throughout
the experiment realisation. I give the relative deviation with respect to the the-
oretical curve.

In both realisations, the thermistor measurements (crosses) do follow the theo-
retical error-function profile (solid) to within an accuracy of 10% (circles) next
to the interface. Away from the interface, there should not be any temperature
deviations from T, if the experimental realisation were perfect. Here, the noise
level of the temperature measurements is about 102 (T — Tice) for the measure-
ment of T, = 3.0 °C (cf. Figure 3.1a,b,c). For the measurement of T,,, = 3.5 °C
the temperature deviations away from the interface clearly exhibits a pattern (cf.
Figure 3.1f). The pattern suspiciously resembles that of slight convective motion.
The motion has likely been induced from a temperature difference between the
cold room and the water body.

Any mean-temperature signal that shall be attributed to convection induced by
the ice interface in the following laboratory experiments has to be compared to
the described temperature noise level of 1072 (The — Tice).

3.2 Turbulent-Mixing Experiments

3.2.1 Laboratory Realisation

I conduct several laboratory realisations to investigate the principle behaviour of
the laboratory setup for varying far-field temperatures, T, > T},. Once the far-
field temperature, T, surpasses the temperature of maximum density, T;,, the
stable stratification of the system is lost. Then, the system features a buoyancy
reversal instability instead and becomes convectively unstable.
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Figure 3.2: Temporal evolution of the thermistor measurements in a single realisations
of a) Too = 3.7°C, b) T, = 4.6 °C, and ¢) T, = 16.4 °C. (C) marks the application of
the ice to the water body.

The comparison of the temporal evolution of the thermistor measurements in a
single realisations of Ty, = 4.5 °C to one of T, = 17 °C shows that the flow
evolves too quickly compared to the response time of the thermistors when T
is chosen too high (cf. Figure 3.2). Then, all 23 thermistors simultaneously mea-
sure a continuous temperature drop: The system has completely overturned and
yields a new mean temperature after about half a minute. That corresponds to
five thermistor-cascade measurements and the temporal evolution is not resolved
anymore. So, a suitable far-field temperature that allows me to sample the flow
evolution with a decent amount of measurements lies on the lower end of the
temperature range given by these two realisations.

The comparison of a turbulent-laboratory-experiment ensemble of T, = 4.35 °C
to the diffusive runs exhibits systematic deviations between their mean-profiles
(cf. Figure 3.3). At the interface, the mean temperature gradient is increased in
the turbulent ensemble compared to the diffusive run. Away from the interface,
a constant mean-temperature level prevails that differs systematically from the
far-field temperature, T.,. These differences are the turbulent signal in this lab-
oratory experiment. In the diffusive run on the contrary, the mean-temperature
profile away from the interface varies more randomly (cf. Figure 3.1).

The turbulent signal in the far field is, however, only of the order of the noise level,
1072 (Tso — Tice). The turbulent signal will increase with increasing turbulence
intensity. From the two opposing requirements on the laboratory experiment, to
use

(i) a high far-field temperature to comply with the temperature resolution of the
thermistor measurements, and to use

(ii) a low far-field to comply with the temporal resolution of the thermistor
cascade,
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Figure 3.3: The profile of the normalised mean-temperature, x = 1 — (T} /T, (crosses)
after a experiment run time, At, of 40 minutes for a) T, = 3.00 °C, and b) T, = 4.35 °C.
(a) is taken from the same experiment as Figure 3.1b. The profile pattern in (b) seems
to systematically deviate from the diffusive profile (dashed). It follows the simulation
(solid) behaviour. It is still similar to that of the diffusive setup shown in Figure 3.1f.

educated guessing suggests T, = 5.00 °C as a reasonable compromise.

I record an ensemble of 25 realisations at T, = 5 °C and At = 15 min to capture
the evolution of the mean-temperature profile of the turbulent system (cf. Figure

B.3).

3.2.2 Numerical-Simulation Realisation

I record an ensemble of 25 tower measurements from one simulation at T, =
4.975 °C (xm = 0.20) to capture the evolution of the mean-temperature profile of
the turbulent system (cf. Figure B.4). The simulation grid needed to resemble a
laboratory tank of domain size 0.360 m is just 512 x 512 x 192 grid points, with
an aspect ratio of four to one. 256 base locations equally distribute within a hor-
izontal cross-section of 512 x 512 grid points to obtain tower measurements. The
tower measurement consists of the temporal evolution of the vertical temperature
profile beneath the ice interface at the base locations, just as does a laboratory
ensemble member.

3.2.3 Assessment

I compare the ensemble of 25 laboratory realisations of T, = (5.00 + 0.01) °C to
the simulation of T, = 4.975 °C (xm = 0.20). First, I qualitatively compare the
phenomena obtained from laboratory realisations with dyed ice and simulation
visualisations. Second, I quantitatively compare the temporal evolution of both
the mean behaviour and individual tower data of laboratory experiment and
simulation.
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a) Laboratory b) Simulation c) Simulation
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Figure 3.4: Structure of the flow as retrieved from laboratory tank experiment (a) and
simulation (b,c). Bright fluid indicates a low temperature compared to the temperature
of the dark warmer surrounding fluid. The blue dash in all of the visualisations indicates
the diffusive length scale of 26 mm. Dashed boxes contain a horizontal (upper box) and
vertical cross-section (lower box). A visualisation of the temporal evolution of (c) can
be found in Keitzl, Notz and Mellado (2014). Note: The horizontal cross-sections of
the laboratory tank experiment visualise a substituting setup in which—for visualisation
purposes—a constant-temperature cooling plate is used instead of ice.



3.2 Turbulent-Mixing Experiments

29

10° time: 210 seconds time: 285 seconds
‘A --- Lab. ensemble mean \B\ --- Lab. ensemble mean
““‘\ ---  Sim.-domain mean ‘\\“ ---  Sim.-domain mean
() 'y
3 '\ Lab. intra-ensemble spread R Lab. intra-ensemble spread
t ‘\“\‘ Sim. inter-ensemble spread “‘\‘ Sim. inter-ensemble spread
20 \
W\ \
VA \
~ W
! Y \
— .
\ .
o
S NES
LN ~
\ - e
10-2 s 5
.“ |
\ <~
\ S . -
100 time: 360 seconds time: 435 seconds
:‘C --- Lab. ensemble mean p --- Lab. ensemble mean
W --- Sim.-domain mean “\“ --- Sim.-domain mean
2 '\“ Lab. intra-ensemble spread ‘\“ Lab. intra-ensemble spread
= '-\‘ Sim. inter-ensemble spread \'\\ Sim. inter-ensemble spread
~ 01 " \
g | % )
— SRS | | e
102 . G- .
000 005 010 015 020 025 030 035 040 0

005 010 015 020 025 030 035 040

z [hywater] z [hwater]

Figure 3.5: The profiles of the normalised mean-temperature, x = 1 — (T') /T, of the
laboratory ensemble (blue) and the simulation-data ensemble (grey) for T, = 5 °C after
a) 210 s, b) 285 s, ¢) 360 s, and d) 435 s. The standard deviation around the means is
given to indicate as the spread of the individual ensemble members (shaded areas).

Qualitatively, the structure of the boundary layer beneath the ice in the lab-
oratory matches the one in the simulation (cf. Figure 3.4). Cold fluid (bright)
unites more mass per volume and congregates to thin streaks that push downward
through warmer surrounding fluid (dark). The lowermost point of the streaks is
marked by a plume-like tip structure with vortexes at their sides. Looking at
the horizontal cross-section, a honeycomb pattern is seen for both laboratory
experiment and numerical simulation. From the comparison of vertical and hor-
izontal cross-sections, one observes that plumes actually form the septum of the
honeycomb cells. Cold plumes push down along the cell rim while fluid must con-
sequently move up in the interior of the cell. Plumes are the dominant structures.
Their movement and diffusive decay mixes the water beneath the ice in the so

called 'mixed layer’. The mixing successively entrains calm, warmer water from

below and the colder mixed layer broadens. Both laboratory experiment and

simulations exhibit this working principle, known from the convective boundary

layer in the atmosphere (Stull, 1988), but vertically inverted, and from Rayleigh-
Bénard convection (Chilld and Schumacher, 2012).

Quantitatively, the time evolution of temperature profiles of individual laboratory
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ensemble members, as well as that of individual tower data from the simulation,
vary strongly among each other. Hence, I draw the comparison on the basis of the
mean-temperature profiles instead of on the basis of laboratory ensemble member
and individual tower data from the simulation.

The mean profiles evolve as described in the previous paragraph: A mixed layer
develops and broadens in time. The broadening happens at the same pace in
the laboratory experiment as in the simulation (Figure 3.5) and takes about 7
minutes to cover a height of 0.40 hwater, With the water height hyater. In the
mixed layer, the mean temperature is almost constant in time. At the interface,
(x) decreases by an order of magnitude over a distance of ~ 0.05 hyater for both
laboratory and simulation. This region forms part of what is generally referred
to as ’the surface layer’.

Differences between laboratory experiment and simulation exist in the boundary
conditions, the initial conditions and the system itself. Regarding the bound-
ary conditions, the lateral boundary of the numerical experiment is periodic in
e and es, whereas the laboratory tank walls impose no-penetration conditions.
The tank walls also allow for additional heat exchange if the surrounding temper-
ature is not matched perfectly. The horizontal bottom boundary of the numerical
experiment is far from the turbulent region and the flow develops freely. A ground
plate of a certain heat capacity limits the flow in the laboratory instead. The
comparison is therefore only carried out as long as the fluid motion is no affected
by the motion redirected by the bottom boundary. Regarding the initial condi-
tions, the numerical experiment manifests instabilities half a minute later than for
those of the laboratory experiment, because kinetic energy remains from the lab-
oratory preparations. The need to initiate a thermally equilibrated water-body
temperature opposes the prerequisite of the water being motionless. The longer a
timespan the system is given to lose its turbulent kinetic energy acquainted from
mixing to yield a homogeneous initial temperature, the more it stratifies due to a
heat flux through the tank top where the ice awaits its employment. Regarding
the setups, they differ in the presence of the thermistor cascade and its response
time in the laboratory. The main issue when comparing temperature profiles is
the presence of the measuring device itself. The device is not negligibly small in
relation to the size of the tank and imposes no-slip conditions across its surface
which alters the movement of the flow.

K-S Test

To test the agreement between the laboratory experiment and the numerical
simulations, I perform a Kolmogorov—Smirnov test on the mean profiles with the
following null hypothesis: The laboratory measurements and simulation tower
data are drawn from the same distribution. I cannot reject the null hypothesis
on a significance level of 5% for the regions indicated by the grey bars in Figure
3.6a. The laboratory measurement and tower data can thus be considered as
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Figure 3.6: Comparison of laboratory (blue) and simulation (grey) temperature profiles.
a) The laboratory temperature profile (blue dashed line) is averaged over 25 realisations
after equal elapsing time of seven minutes. The simulation temperature profile (grey
dashed line) is averaged over the complete horizontal plane. The grey bars below the
profiles indicate regions of quantitative agreement between laboratory experiment and
simulation. In these regions, the nullhypothesis cannot be rejected that the laboratory
ensemble of 25 members and the mean profile of the simulation are drawn from the same
distribution with a Kolmogorov—Smirnov test. b) Temporal evolution of one realisation
of a temperature-profile measurement taken from the laboratory. (C) marks the time of
ice—water contact, (F) the time when fully developed turbulence approximately starts and
(P) the time of external mixing with a pump. After (P), I find a temperature difference
AT of the averaged mean-temperature profile with respect to the temperature prior to

the experimental conduct. ¢) Same as (b), taken from the simulation. (S) marks the
starting time of the simulation.
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statistically equivalent in those regions. The regions broaden with evolving time
and stretch from close to the interface to roughly half of the mixed layer.

In summary, I find qualitative and quantitative agreement between laboratory
experiment and simulation given the number of laboratory ensemble members.
Both experiments and simulations are used in the following section to investigate
the melt rate of the ice.

3.3 The Melt Rates

Ice melts if more internal-energy per area and time, Hyater, is supplied to the ice
interface than can be transported away, Hic. I focus on an isothermal ice block
with Hice = 0 W m~2. The melt rate w ¢ is hence solely determined by Hyater-

1

=—H, 3.1
PiceL ater ( )

wy
L = 333.5 kJ kg~ ! is the specific energy required to melt the ice (Frankenstein and
Garner, 1967) and picc = 916.8 kg m™3 is the density of pure ice at 0°C (Pounder,
1965). The internal-energy flux at the ice interface, Hyater, originates from the
evolution of the internal energy in the fluid system. The mean evolution of the
internal energy, Eq. (2.5¢), is

O (T) (5,8) = —— 1 OH (2,1), (3.2)

PwaterCp

with
H (z,t) = —pwaterCp (IiTag (T) (2,t) — <U§T’> (z, t)) . (3.3)

The specific heat capacity of water is ¢, = 4.22 kJ kg=! K=!; the thermal diffu-
sivity of water is kp = 1.36 x 107" m? s~! at 273.15 K (Sharqawy, Lienhard and
Zubair, 2010) and pyater = p (Too)-

3.3.1 Melt Rates Observed in the Laboratory Experiment

From the laboratory bulk measurements, I evaluate the melt rates from an ap-
proximation of the energy-flux, Hyater, based on the net change of the internal
energy, AFi,: and the run time, At.

Hyater =~ pwatercp/’iTAEint/At (3.4)

The net change of the internal-energy, A Eiy, has been converted to heat of fusion
Elat = miceL and to internal energy of the melt water Evyw = MiceCp (Tend — Tice)-
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From the integral formulation of Eq. (3.2) one obtains the internal-energy balance
of the system,

AE1int = MwaterCp (Tend - Too) = ELat + Enw = MiceL + MiceCp (Tend - Tice) s
(3.5)

with the mass of the melted ice, mjce, and the mass of water in the tank, myater-

From Eq. (3.5), from the approximation that water and ice share the same base
area A, from mice = pice Nice A and from Mmyater = Pwater Pwater A, the height hjice
of the melted ice is given as

Pwater Cp (Too - Tend)
Pice L+ Cp (Tend - Tice)

hice - hwater (36)
Several laboratory experiments for the same temperature Ty, but with different
run time At, allow to estimate a melt rate wy = Ahjc/At from the data. This
assumes a constant energy flux at the interface, which is well known for free-
convection systems and which I observe for all our simulations (presented in
section 4.3). The standard deviation among the calculated heights at each At
is up to 13 %. I obtain the melt rates wy = [53, 55, 136, 1260] mm d~! for
Too = [4.5, 5, 6, 14.8] °C within the error bounds supplied in Figure 3.8 (crosses
and black solid bars).

I compare these melt rates w; to melt rates wy in a purely diffusive laboratory
experiment of similar boundary-layer height § = 0.40 hyater (dotted line). An
error-function profile in Ty (z) and ¢ defined by (Ty (z = 9)) /T = 0.995 yield

-1
_ Pwater Cp 9 (T _ Pwater CpToo KT 2 erf (_~995) 3.7
Pice LKVT 3< d>‘6 Pice L 0 ﬁ ( . )

I find that the melt rates w; are increased by one to two orders of magnitude
compared to wy (Figure 3.8b,c), in contrast to the increase by a constant factor
of about two reported in Martin and Kauffman (1977). I will elaborate on this
finding in section 5.1.

Wq

3.3.2 Melt Rates Simulated in the Numerical Experiment

In the simulation, I evaluate the melt rates from the horizontally averaged energy
flux Hyater according to Eqgs. (3.1,3.3). At the interface (z = 0) one finds

Hyater = H (Z7t)|z:0 = _pwatercp’iTai% <T> . (38)

I obtain melt rates for several simulations of varying far-field temperature (Table
2.1, Figure 3.8a, dots). From temperatures T, = 3.98 °C to T, = 5.20 °C,
melt rates increase strongly from diffusive values of 11 mm d~! (dashed line) up
to 86 mm d~! (Figure 3.8b, blue dot). From temperatures of T, = 17 °C to
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Figure 3.7: Energy-flux, Hyater, approximation from the net change of the internal

energy, AFE;,; and the run time, At, from laboratory experiments of same T,,. a) T, =
45°C, b) T, =5.0°C, ¢) T, = 6.0 °C, and d) T, = 14.9 °C.
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Figure 3.8: Melt rate derived from scalar gradient at the interface (simulation, coloured
dots corresponding to Figure 2.1) and derived from bulk-temperature change (laboratory,
crosses). Diffusive melt rates, wg, as given in Eq. (3.7) (dotted line). (a) Double
logarithmic plot illustrates the power-law change over the full temperature range. (b)
Linear plot illustrates the melt-rate enhancement in the low-temperature range. (c)
Linear plot illustrates the melt-rate enhancement in the high-temperature range.
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To = 40 °C, melt rates increase from 1.7 m d=! to 7 m d=! (Figure 3.8c, grey
dot and plus). These meltrates agree quantitatively with those observed in the
laboratory.

The relative error of the melt rates from the simulation is less than 10% due to
varying initial conditions (Mellado, 2012).

The simulation of x,, = 1 cannot be assigned to a definite far-field temperature.
If the far-field temperature increases, X,, approaches 1 asymptotically (cf. Eq.
(2.10)). xm = 1 is the limit of high far-field temperatures. Just in this limit
the buoyancy reversal vanishes entirely (Figure 2.1, dotted line) and I find the
minimum buoyancy directly at the wall. This situation is reminiscent of the
free convection over a heated plate (Mellado, 2012), where buoyancy decreases
linearly with the stratifying agent from the maximum value at the wall to the far-
field. I provide the melt rate derived from this simulation (x,, = 1) exemplarily
for a far-field temperature of T, = 40 °C for which I expect the assumption of
negligible buoyancy reversal to be sufficiently good approximation (Figure 3.8,
plus).

3.3.3 Melt Rates Observed by Boger and Westwater (1967)

Boger and Westwater (1967) experimentally investigated the effect of buoyancy
on top and bottom melting in a 0.05 x 0.0127 x 0.0127 m? test chamber. Among
mostly bottom-freezing and top-melting experiments they conducted one bottom-
melting experiment labeled “12V” with buoyancy reversal just as considered in
this work. I briefly present their setup and result to compare it properly to the
melt rates obtained so far.

They set the temperatures of the bottom and the top of an laterally isolated
test chamber that is filled with water. The top of the test chamber is held at
—38.4 °C and ice forms. The bottom of the test chamber is set to 24.9 °C once
the experiment starts. They provide the measured interface velocities and time
series of three thermocouple measurements, one in the ice and two in the water
beneath.

From their interface velocities v,, between 2 x 107% cm s™! to 1 x 107* cm s~}

and the corresponding thermocouple measurement in the ice, a heat flux in the
water of about

aT kW kW
Hyster = Quat + Hice = pice L + kice 7~ = 3.06——5 +3.01_— (3.9)
z m m

can be estimated. This heat flux corresponds to a melt rate of 1700 mm d—' if
the ice were isothermal (cf. Figure 3.7, pink).

From their thermocouple measurement in the water beneath the ice at position
z = 1.402 cm and z = 2.339 cm, the far-field temperature can be estimated
with an error function fit (cf. Figure 3.9a). An educated guess for the far-field
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Figure 3.9: The two thermocouple measurements in the water beneath the ice at position
z = —1.402 cm and z = —2.339 cm from Boger and Westwater (1967) (crosses). The far-
field temperature is estimated from an error function fit considering different unknown
ice-interface positions (dashed lines). Ice prevails at z = —0.442 cm and water prevails
at z = —1.402 cm at the time of measurement and the true position must have been
in-between. An estimated far-field temperature of the experiment is read from these fits.
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temperature in their experiment must lie between 16 °C (error function shape)
and 17.7 °C (turbulent mean profile), while values close to 16 °C are more likely.

3.4 Summary

The melt rates observed in the laboratory and the simulated melt rates agree
quantitatively (cf. Figure 3.8) and the structure of the flow differs insignificantly.
Thus, the physical model is sound and I complement the temperature profile
from the laboratory experiment with the temperature and flow fields of the direct
numerical simulations. The melt rate observed by Boger and Westwater (1967)
lies within the range of the observed and simulated values. The melt rates depend
strongly on the far-field temperature.
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Chapter 4

Parameterisation of the Melt
Rate in the
Fresh-Ice—Fresh-Water System

With the successful complementation of laboratory measurements with direct
numerical simulations in the previous chapter, I now employ the simulations to
find a physically sound parameterisation of the melt rate of the fresh-ice—fresh-
water system. The melt rate serves as a metric for the energy transport.

A physically sound parameterisation necessarily arises from an understanding
of the structure of the flow (section 4.1). This chapter therefore follows the
development of a general understanding of the energy transport through the
system (section 4.2) that points to the investigation of the flow structure in
terms of the two main transport mechanisms: diffusive transport and turbulent
transport (section 4.3). The consideration of both transport mechanisms leads
to my main result of this chapter (section 4.4): the formulation of a physically
sound parameterisation of the melt rate with Eq. (4.12).

Several aspects of the melt rate such as its spatial inhomogeneity and its sensitiv-
ity to melt water are then discussed as well as its applicability to sea-ice—sea-water
system.

4.1 The Appearance

The numerical simulations complement the temperature-profile measurements in
the laboratory with temperature and velocity fields that are fully resolved in
space and time. They also allow me to examine systems of increased domain
size of up to one meter (cf. Table 2.1). Consequently, I obtain a statistically
converged and more comprehensive impression of the flow: Figure 4.1.
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The appearance of the flow has necessarily been described already for the compar-
ison of laboratory experiment and simulation (cf. section 3.2.3). The description
I have given there along with the visualisations in Figure 3.4 also holds for the
visualisations of the higher resolved simulations (cf. Figure 4.1):

“Cold fluid [(blue)] unites more mass per volume and congregates to
thin streaks that push downward through warmer surrounding fluid
[(white)]. The lowermost point of the streaks is marked by a plume-
like tip structure with vortexes at their sides. Looking at the horizontal
cross-section, a honeycomb pattern is seen for both laboratory experi-
ment and numerical simulation. From the comparison of vertical and
horizontal cross-sections, one observes that plumes actually form the
septum of the honeycomb cells. Cold plumes push down along the cell
rim while fluid must consequently move up in the interior of the cell.
Plumes are the dominant structures.”

Their motion and diffusive decay mixes the water and transports energy across
the boundary layer.



Figure 4.1: Vertical cross-section of the temperature field of the simulation of Pr = 10, x,, = 0.232 on a 12802 x 576 grid at final simulation

time. That corresponds to Ri = 11 and a far-field temperature T, = 5.18 °C.
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4.2 The Energy Flow

From the simulation data, I obtain the global energy flow through the system.
The turbulent-kinetic-energy budget illustrates the similar working principle be-
tween fresh-ice—fresh-water system (cf. Figure 4.2b) and free convection in general
(cf. Figure 4.2a). The evolution equation of the turbulent kinetic energy,

1
k= 5(1};11;), (4.1)
is derived from the second-order evolution equation of the velocity components.

k evolves approximately according to
1

875]{3 = —*8tT+ <b/Ué> — & (42)
P

for purely buoyancy-driven flows (in the Boussinesq limit). (b'v4) is the buoyancy
flux. 7 represents the turbulent transport term, i.e. the flux vector of k, and ¢
is the viscous dissipation rate.

Only vertical buoyancy production, (b'v), feeds the turbulent kinetic energy, k,
in the system (cf. Figure 4.2b). It can be shown that (b'v}) potentially converts
potential energy to turbulent kinetic energy and vice versa. The dissipation rate,
g, on the contrary, converts turbulent kinetic energy unidirectional to internal
energy. Dissipation is an irreversible process. It follows the production of turbu-
lent kinetic energy in each component and follows the turbulent transport next
to the wall.

The global energy flow through the system is thus from potential energy via
kinetic energy to internal energy. Internal energy is continuously transported out
of the system through the ice interface, the sink. Potential and internal energy
is continuously supplied to the system by the infinite high-temperature reservoir
in the far field, the source. To equilibrate the temperature difference between
sink and source, the system diffuses and mixes fluid in-between sink and source
and thereby entrains fluid from the high-temperature reservoir. The entrainment
sustains a constant potential-energy flux to the system, that feeds the turbulent
kinetic energy.

The distribution of turbulent kinetic energy in the system is not homogeneous.
To equilibrate the spatial kinetic-energy inhomogeneity in the system, turbulent
kinetic energy is transported away from the regions of its production to regions
of lesser production: to a thin sharp region next to the interface and to a broad
region in the far field. This transport of turbulent kinetic energy maintains the
entrainment.

The symmetry of the system yields a vertical potential-energy gradient. The
potential-energy gradient yields, thus, only vertical velocity fluctuations. To equi-
librate this inhomogeneity in the partition of the kinetic energy, (i) the vertical
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Figure 4.2: Turbulent-kinetic-energy budget of free convection over a heated plate (hp,
left) and of the fresh-ice—fresh-water system (fbm, right). The data is normalised by
the maximum buoyancy flux of the fresh-ice—fresh-water system. The upper panels (a,d)
show the terms contributing to the total turbulent-kinetic-energy evolution d;k: buoy-
ancy production, (b'v’), (black), dissipation, €, (red), and the turbulent transport term,
T, (blue). The panels in the middle (b,e) show the terms contributing to the vertical
component of the turbulent kinetic energy. The pressure strain correlation (green) moves
turbulent kinetic energy from the vertical component to the horizontal component [shown
in lower panels (c,f)]. Data of the heated plate by courtesy of Juan-Pedro Mellado.
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Figure 4.3: Simulation internal-energy flux and velocity fluctuation. Colours indicate
different far-field temperatures according to Fig. 2.1. Molecular (dotted) and turbulent
(dashed) fluxes contribute to the total internal-energy flux (solid). a) Internal-energy
flux with abscissa normalised by the diffusive scale. b) Internal-energy flux with abscissa
normalised by the convective scale. ¢) Vertical velocity fluctuation, normalised by the
convective scale.

velocity fluctuations are transported away from the regions of their production
to regions of lesser production: the interface and the far field. (ii) The pressure
strain shifts turbulent kinetic energy from the vertical component to the hori-
zontal (cf. Figure 4.2b,c). (iii) The interface also deflects the vertical velocity
fluctuations to horizontal velocity fluctuations. The region next to the interface
is the main region of horizontal velocity-fluctuation production. To equilibrate
the spatial kinetic-energy inhomogeneity in the system, the horizontal velocity
fluctuations are transported away from the regions of their production to regions
of lesser production: to the mixed layer and the far field.

The system pursues equipartition of energy with the help of dissipation, the
transport of turbulent kinetic energy and its spatial components. The resulting
internal-energy fluxes and the resulting internal-energy distribution between sink
and source are discussed in the following chapters.

4.3 The Flow Structure

The partitioning of the internal-energy flux according to Eq. (3.3) into a molecu-
lar flux —cpprds (T') and a turbulent flux cpp (v5T") shows the working principle
described in section 3 (Fig. 4.3): The positive turbulent flux shows that negative
temperature fluctuations occur with descending motion and positive tempera-
ture fluctuations occur together with ascending motion in most of the domain
(dashed line). Cold water descends, warm water ascends. At the interface the
no-penetration condition suppresses the turbulent flux nearby, and the molecular
flux remains as the only transport mechanism (dotted line). The total energy flux
(solid) is sustained by turbulent entrainment of warm far-field water at the lower
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boundary of the mixed layer. As the mixed layer broadens with time, it entrains
warm water at a rate that yields a spatially constant energy flux throughout the
mixed layer (solid line). The energy flux throughout the system determines the
energy flux at the interface, Hyater- The constant flux foretells according to
Eq. (3.2) a steady mean-temperature profile despite cooling from the interface.
A large extent of the system is hence in dynamic equilibrium (Mellado, 2012).
As a consequence, I expect a steady temperature gradient at the interface, i.e. a
constant melt rate.

The illustrated working principle and the heat-flux partition warrant a separate
description of the diffusion-dominated inner layer and the turbulence-dominated
mixed layer.

4.3.1 The Diffusion-Dominated Inner Layer

Next to the interface, the mean temperature changes by an order of magnitude
over a diffusion-dominated layer of thickness zy. The layer is stably stratified
except for an unstably stratified fraction at its lower bound. This unstable frac-
tion tends to overturn and hence tends to thin the diffusion-dominated layer.
Such a situation is reminiscent of the buoyancy-reversal configuration studied,
e.g., by Siems, Bretherton, Baker et al. (1990) and Mellado (2010). The unsta-
ble fraction covers the non-dimensionalised temperature range [0, 2x.,] (cf. Eq.
(2.12) and Fig. 2.1d) and thus extends over a distance 2x,,z9. A perturba-
tion to the flow within 2x,,z9 accelerates proportionally to b, and decelerates
proportionally to the viscosity v. The timescale of the perturbation growth is
thuoy = (¥/bm) / (2Xmz0) (Turner, 1973). On the other hand, diffusion broadens
2o at a rate k/zp. The timescale of diffusive advancement over the fraction of
2o is hence tgir = 2xmz0/ (k/20). While diffusive advancement broadens zy, a
buoyancy perturbation accelerates fluid away from the region and thins it. The
critical depth at which the rate of thinning is equal to the rate of broadening,
taif = thuoy, marks the extent of the diffusion-dominated layer 2o,

10

WPW?’ (52/ |bml) /. (4.3)

zZ0 —

The layer of extent zq is 'the diffusive sublayer’, a part of the surface layer that
has been introduced in the previous section. The factor 10 gives the commonly
used criticality for this Rayleigh-number criterion. zg is independent of time; the
diffusive sublayer has a fixed extent.
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4.3.2 The Turbulence-Dominated Mixed Layer

The mixed layer, on the contrary, is unsteady; it broadens in time. Still, it
behaves self-similarly if a boundary-layer height z, is chosen as

1 o0
Ze = / H ((T'vg)) (T"v5)dz (4.4)
Hwater 0
(Fig. 4.3b), and a convective velocity scale wy is chosen as
o0
w? = /0 H ((b'vy)) (b'us)dz (4.5)
(Fig. 4.3c), where H is the Heavyside function. The convective velocity scale

wy is found from the inviscid scaling of the viscous dissipation rate & oc w? 2z,

(Pope, 2000) and the observation that

Jo~ edz
— _ ~ (0.7 4.6
fooo<blvé>dz (4.6)

in our simulations. This result implies that the viscous dissipation rate & balances
a large constant fraction of the turbulent buoyancy production (b'v5).

1

Commonly, a relevant buoyancy-flux scale of a free-convection system, Beg, is
known a priori, and is then used in combination with the boundary-layer height
2z« to construct a velocity scale from (Beg z*)l/ ® (Deardorff, 1970). In this work,
however, a relevant buoyancy-flux scale is not known a priori, nor is it readily
evident from the internal-energy flux, Hyater, via a buoyancy parameter that
relates temperature and buoyancy (cf. Eq. (2.13)). Hence, I define an effective
buoyancy flux by

w;

In agreement with the previous paragraphs and with free-convection systems in
general, Bog as defined above is found to be constant in time, once the mixed
layer is developed (cf. Figure 4.4a). Beg ranges between 0.1 and 0.4 in units of
the diffusion-dominated buoyancy flux of free-convection systems, (b‘ﬁn/ﬁ) 1/3 (cf.
Figure 4.4b). As a function of y.,, Beg decreases by a factor of 4 from the low-
temperature range to the high-temperature limit. By definition of Eq. (4.7), the
effective buoyancy flux relates to the energy flux Hyater as

Hfooo H ((T'v3)) (T'vg)dz

TS H (o)) (bvh)dz
(Fig. 4.5¢). The linear relationship, Hyater/Bet = 0.55XmTo0/bm, is empirically
determined. With Eqgs. (2.13, 2.10, 4.7, 4.8) it yields

Hyater = B (4.8)

wf T

ZTOO - Tm,
ar =83 x10° W s m™. (4.9b)

Hwater = Qa7 (49&)
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Figure 4.4: Effective buoyancy flux. Colours indicate different far-field temperatures
as illustrated in Fig. 2.1b. a) Time evolution of the effective buoyancy flux given in
convective time scale. b) Averaged effective buoyancy flux as a function of far-field
temperature parameter. The average does not include the initial transient (cf. panel a).

Hyater is thus obtainable for systems of known far-field temperature T,, once
estimates for the boundary-layer height, z,., and the convective velocity, w,, are
provided. With Hyater determined, the melt rate can be obtained from Eq. (3.1).

4.3.3 The Energy Flux of Fully Developed Systems

After an initial transient, the energy flux of all simulations decays towards a
constant value (Fig. 4.5). The warmer the far-field water is, the larger the energy
flux. The energy flux in terms of the temperature gradient ranges over more than
an order of magnitude, from 2.6 x 102 K m~! at T, ~ 4.8 °C t0 3.7 x 10> K m™!
at T = 9.6 °C. I find that the gradient is described by a temperature drop of
order T, over a length zj.

83<T> (Z7t)|z:0 = f (Xm) Too 20—1’ (410)

with the proportionality constant f only dependent on the far-field temperature
parameter x,, (Fig. 4.5b). f varies within the interval [1.0;2.2]. So far, the
diffusive length scale zg has been derived as the critical depth at which molecular
diffusion and buoyancy are in balance. This reasoning was inspired by the analogy
between this study and the cloud-top mixing layer. The system in this study,
however, has a solid wall next to the diffusive sublayer. Hence, I attribute the
variation f of the normalised temperature gradient at the wall (Fig. 4.5) to the
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Figure 4.5: Melt rates (a) given as the interfacial temperature gradient in units of
Too/z0. All simulations seem to target a non-dimensional temperature gradient between
one and two. Colours indicate different far-field temperatures according to Fig. 2.1. (b)
Temperature gradient at final simulation time over the far-field temperature parameter,
Xm, defined in Eq. (2.10), and f (xm) (dotted line). (c) Proportionality coefficient
ST H(Th) (T'h)dz /[ H ((B'vh)) (b'vh)dz in units of Tee by,! as determined from
our simulations.
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Figure 4.6: Melt rate derived from scalar gradient at the interface (simulation, coloured
dots corresponding to Fig. 2.1) and derived from bulk-temperature change (laboratory,
crosses). Analytical melt rate, wy, as given in Eq. (4.12) (black solid line). Diffusive
melt rates, wy, as given in Eq. (3.7) (dotted line). The dashed line indicates the high-
temperature melt rate limit. (a) Double logarithmic plot illustrates the power-law change
over the full temperature range. (b) Linear plot illustrates the melt-rate enhancement in
the low-temperature range. (c) Linear plot illustrates the melt-rate enhancement in the
high-temperature range. The pink dot indicates the interpreted measurement “12V” of
Boger and Westwater (1967).

presence of the wall. To account for this influence, I estimate

f(xm) =2 = xm (4.11)

(Fig. 4.5, dotted line).

4.4 The Melt-Rate Parameterisation

The assessment of the inner layer and the mixed layer indicates that the internal-
energy flux of the simulation is in a steady state (cf. Figure 4.5). A steady
internal-energy flux to the interface yields a constant melt rate that only depends
on the far-field temperature of the water.

The previous results are now combined to give an analytical expression for the
melt rate of a thermally driven fresh-ice—fresh-water interface. With Eqgs. (2.13,
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2.10, 3.1, 4.3, 4.10, 4.11) I find

9\ 2/3
— (M) (M) 41

TTm T
with
22 \'3 p(Too) cpTin ( BT2 )1/3
weg = K =215x10%m s, (4.13
£0 ( 103Pr > Pice L g Pwater ( )

with Pr= 10 and p (T) = 10° kg m™3 (Fig. 4.6, black solid line). wgo corre-
sponds to 1.86x 10?2 mm d~!. Note that in nature Pr=Pr(T) and varies from 13.18
to 5.40 in the relevant temperature range of 0 °C to 30 °C (Sharqawy, Lienhard
and Zubair, 2010). The melt rates of Eq. (4.12) match the melt rates estimated
in the laboratory experiment and in the simulations. Eq. (4.12) seems to slightly
underestimate the simulation results for low far-field temperatures (Fig. 4.6b),
but these simulations have not yet completely reached their steady behaviour.

The enhancement of the melt rates for far-field temperatures between four and
eight degrees Celsius ranges from 0 to 16 (Fig. 4.6b). The enhancement of the
melt rates for far-field temperatures between 20 °C and 40 °C range between 45
to 77 (Fig. 4.6¢). Thus, the relative enhancement of the melt rates with far-field
temperature decreases for increasing temperature.

The comparison of Eq. (4.12) to the corresponding expression of free convec-
tion without buoyancy reversal reveals the dynamics of the system. With Egs.
(2.13, 3.1, 3.8) and the diffusive length scale in free convection without buoyancy

reversal, zgig = (/<c2/ ]bm|)1/3, one finds:

B 2/3
Too (T“Tm> . (4.14)

In the high-temperature limit, I obtain (T /Tm)5/ % from Eq. (4.14) and T also
obtain (TOO/Tm)5/3 from Eq. (4.12) (Fig. 4.6, dashed line). Thus, the high-
temperature limit of Eq. (4.12) corresponds to the behaviour found for the heated
plate, where no stable stratification is present. I conclude that the shielding of the
interface by the stable stratification next to it effectively vanishes for T, > T,.

In the low-temperature limit, I obtain ((Tse — Ti) /Tin)?? from Eq. (4.14) in
contrast to ((Teo — Ton) /Tm)4/3 from Eq. (4.12). Thus, the shielding of the
interface diminishes the melt rate with a power of two in the dependence on the
relative temperature difference (T — Tin) /Tin) < 1.
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4.5 Discussion

4.5.1 The Onset of Convection

In general, the comparison of melt rates wy to diffusive melt rates wy yields
an enhancement by one to two orders of magnitude, where I give wy related to
the final boundary-layer thickness of our laboratory experiment, § = 0.40 hyater
(cf. Eq. (3.7)). For temperatures T, just above T,,, however, for which the
occurrence of buoyancy reversal sets in, I find turbulence-enhanced melt rates
that seem smaller than diffusive melt rates (Fig. 4.6, solid line below dotted line).
For these systems the diffusive sublayer zg is larger than §, and no turbulence
were to be observed for a boundary-layer thickness of O (9).

4.5.2 The Influence of Melt Water on the Melt Rate

When ice melts, it forms melt water of T = 0 °C. Recently formed melt water
does not possess any kinetic energy and thickens the diffusive sublayer in which
the stable stratification occurs. Thus melt water increases the shielding of the ice
from rising warm fluid and diminishes the melt rate. This describes a negative
feedback. I now assess its strength.

In a frame of reference that moves with an interface melting at speed wjce, the
formation of melt water appears as vertical background mean advection. The
corresponding advection velocity is

Uint = — 2 . (4.15)
Pwater
In principle wice depends on time and on the position within the interface. The
time dependence of the mean value vanishes after an initial transient, when the
system is freely developing (cf. Fig. 4.5). For now, I also assume no dependence
on the position within the interface, but I will assess this assumption in the next
section.

With constant v, the moving frame of reference is still an inertial system. The
governing Egs. (2.5) still apply, but different boundary conditions need to be
considered. Instead of no-slip, no-penetration boundary conditions, the system
imposes no-slip, constant-velocity boundary conditions, vintd;s at z = 0.

A first estimate of the influence of melt-water formation on the flow structure
can be obtained as follows. The constant-velocity boundary condition imposes
a second velocity scale, viyt, to the system. I am interested in how it compares
to common velocities within the flow. From ”;—T, using wice = wy in Eq. (4.15),
I find that the melt-water advection in the limit of small far-field temperatures
is negligibly small compared to common flow velocities (cf. Fig. 4.7, crosses).
The magnitude of %T increases with increasing far-field temperature from 1.5%o
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Figure 4.7: Estimates of the influence of melt-water formation at the interface on the
melt rate. (black) Analytical estimate (cf. Eq. (4.16)). (dots) Numerical estimate
derived from comparison between analytical melt rates and melt rates obtained from
simulations with background mean advection. (dashed line) Guidelines to the eye.

at 8°C to O (1 %) at 17 °C. Only for far-field temperatures larger than that a
considerable influence of vi,; on the flow structure is to be expected.

I obtain a second estimate for the influence of the constant-velocity boundary
condition on the melt rate from the comparison of the advection to the diffusion
flux at the interface using wice = wy in Eq. (4.15):

Vint (Tice — T Vint (Lice — T c
t(m;jT o) _ Vint (Tiee “):l(:rice_:roo). (4.16)

avint

For far-field temperatures approaching 1T,,, the estimate approaches
(p/L) (Tice — Trn) = %, and diverges for high far-field temperatures (Fig.
4.7, line). The divergence for high far-field temperatures exposes that the esti-
mate of Eq. (4.16) does not account for the full feedback mechanism described
above. Melt water cannot diminish the melt rate infinitely but only diminishes
it as long as ice is melting. Here, I only considered a fixed constant-velocity
boundary condition with wice determined from Eq. (4.12). Thus, Eq. (4.16) is
merely a maximum estimator to the feedback mechanism and I expect to find in
practice a smaller diminution than estimated here.

To verify these estimates, I conduct a set of three simulations at temperatures
Too € {8, 25, 40} °C that account for the melt-water formation with vy set
accordingly. I compare the melt rates of these simulations w; to the analytical
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melt rate wy obtained from Eq. (4.12) as

ot et (4.17)
wy
The values range within those of the analytical maximum estimator, Eq. (4.16),
and confirm the diminishing effect of melt water on wy (T) (Fig. 4.7, dashed
line). The simulated diminution and Eq. (4.16) follow an alike dependence on
T, with an offset of ~ —8 % and a shift of ~ 0.06 x,,,. Hence, the velocity viyd;3
of each of the three simulations was systematically chosen too high to correctly
represent reality. Smaller velocities vy would in fact diminish the melt rate less
and yield melt rates closer to Eq. (4.12).

I find the numerical estimate in agreement with the laboratory experiments. I
did not observe a pronounced signature of the melt water in the flow structure
as compared to the simulations with no-penetration boundary conditions.

I conclude that the effect of melt-water formation can at least be neglected for far-
field temperatures To, < 20 °C (xr, = 0.8). Within this limit the presented melt-
rate equation, Eq. (4.12), holds with a diminution of less than 10 % due to the
influence of melt water (Fig. 4.7, black dashed lines). For far-field temperatures
Too > 20 °C, for which the influence of the melt water is significant, I expect the
feedback to yield a temperature dependence in-between wy o T (diffusive) and

wy T/ (turbulent).

4.5.3 The Spatial Inhomogeneity of the Melt Rate

The temperature gradient at the interface (Fig. 4.8a,b) varies in space, (z1, z2).
I now assess this variation of the melt rate around its mean value, Eq. (4.12), on
the basis of the probability density function (pdf) (Fig. 4.8c).

The ensemble of pdfs for different far-field temperatures exhibits two main modes
of different characteristic. The first mode is dominant in pdfs of low far-field
temperatures, represents melt rates smaller than the mean and has a relative
standard deviation of 10 %. The second mode is dominant in pdfs of high far-field
temperatures, represents the mean and has a relative standard deviation of 60 %.
In the diffusive limit, that is in the absence of convection, one expects to find a
pdf that is a delta function at (937)|,_,. The first mode is considerably narrower
than the second and yields absolute melt rates closer to those of purely diffusive
melting (Fig. 4.6). I refer to the first mode as the diffusive mode. The second
mode at the centre of the pdf resembles the melt rate in the high-temperature
limit x,, = 1 (Fig. 2.1d, dashed curve; cf. Fig. 4.8¢c, black). This mode is purely
convection dominated as can be inferred from the interface pattern (Fig. 4.8b).
I refer to the second mode as the turbulent mode.

With increasing far-field temperature I observe a shift of the main contribution
to the pdf from the diffusive mode to the turbulent mode. This transition is
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in line with the mechanism proposed so far: For low far-field temperatures, a
strong stable stratification close to the interface shields the ice from the rising
warm turbulent water. Only few rising plumes manage to intrude this shield and
enhance the melting at the interface locally (Fig. 4.8a). This local turbulent
intrusion contributes to the pdf at values five to seven times larger than the first
mode. Most of the near-interface region remains stably stratified, thus diffusion
dominates. For high far-field temperatures, the strength of the stable stratifica-
tion is not sufficient to shield the ice anymore. The increasing contribution of
the turbulent mode broadens the absolute bandwidth of the pdf and shifts the
diffusive mode to lower relative values. As the importance of the diffusive mode
ceases the relative bandwidth of the pdf reduces. Then, the ice is immediately
exposed to rising warm turbulent plumes and I find an interface pattern known
from the turbulent free-convective motion (Fig. 4.8b).

I have found in the last section that the influence of the melt-water formation
is negligible for low far-field temperatures. For high far-field temperatures, the
shielding effect of the melt water becomes more relevant, according to Eq. (4.16).
The maintenance of a spatially resolved viy, (21, z2) in section 4.5.2 would dimin-
ish the upper end of the pdf more than it would diminish the lower end of the
pdf. As a first approach, Eqs. (3.8, 4.16, 4.17) suggest multiplying the pdf with a
linear function of slope [Eq. (4.16)] to account for a spatially resolved viy. This
would narrow the bandwidth of the probability density function in Fig. 4.8c and
would homogenise the interface pattern found in Fig. 4.8b.

4.5.4 The Application of the Parameterisation to Natural Flows

The motivation to study the present setup has been its structural similarity to the
sea-ice—ocean interface and to the ice-shelf-ocean interface. The question arises
how much information can be transferred from our findings to such interfaces. I
am aware that ice—ocean interfaces do not just melt, but ablate, in the interplay of
differently diffusing salinity and temperature. Still, I use our model as a simplified
approach and focus only on the shape of the mean-buoyancy profile.

The process picture used to derive the scaling laws of the inner layer suggests that
the strength of the stable-stratification shield beneath the ice characterises the
flow. The stable stratification has shown to shield the ice for all b (z = 0) > by,.
The relative strength of the shielding is therefore defined as Ab =0 (z = 0) — by,
and compared to the strength of the buoyancy forcing by, (Fig. 2.1d). This is
effectively the Richardson number

_ Abzy  Abzxy  b(2=0)

Rig = = = +1 4.18
7 w2 Jbml 20 by (4.18)

that describes the ratio between the potential energy that a fluid particle requires
in order to overcome the diffusive shield Ab of thickness zg, and the kinetic energy
w% a fluid particle acquires in free fall at b, over zj.
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Martin and Kauffman (1977) study the case of the sea-ice—ocean interface in a
laboratory tank experiment. I derive b(z = 0) 2~ 0.1385 m s~2 from their salinity
and temperature profiles given in Fig. 2e and Eq. (9) of their study ! together
with Eq. (2.1) of this study. With a redefinition of the minimum buoyancy that
accounts for the influence of temperature and salinity,

1% (Sooa Tice) —p (Som Too)
P (Soo; Teo) ’

by, =g (4.19)

with the far-field salinity S., taken from their salinity profile, I find b, =~
0.0011 m s~2 and Rig ~ 129. If I use the boundary conditions Tice, Ssc and
Tw as provided from their one-dimensional theoretical model, I consistently ob-
tain Rip = 136 for their setup. In the case studied in this work, I find a similarly
strong stable stratification for a far-field temperature of T, = 4.33 °C.

According to our results turbulence enhances the melt rate by
wy (Too = 4.33) Jwg (Tso = 4.33) ~ 1.23. Martin and Kauffman (1977) de-
termined an enhancement of the melt rate by a constant factor of 2.5. Given
that I consider melt-rate variations over two orders of magnitude (Fig. 4.9a),
this is in fairly good agreement despite the neglect of the influence of salt.

As opposed to the finding of Martin and Kauffman (1977), turbulence does not
seem to enhance the melt rate by a constant factor but by a factor that de-
pends on the relative strength of the shielding, the Richardson number Rip.
With the parameter range of far-field temperature and salinity that they pro-
vide from their model (Fig. 9 therein), Rig varies between 10? and 103. This
order-of-magnitude variation in Rig translates to a variation in the turbulent en-
hancement by a factor of approximately four according to Fig. 4.9a (herein).
Tw € [10,30] °C even yields Rip of O (101). Rig=40 corresponds to this T
range and I find wy (Rig = 40) /wys (Rip = 136) ~ 2. I conjecture that Martin
and Kauffman (1977) would have found a turbulence enhancement of the melt
rate by a factor of five for significantly increased far-field temperatures.

In nature, the flow beneath an ice interface is driven by several mechanisms. To
allow for the comparison of our results to those of systems with different driving
mechanisms, such as shear or internal heating from radiation, I propose to use
the convective Richardson number

Ri, = . (4.20)

The direct link of the buoyancy-forcing strength b,, to the velocity scale of the
system wy is replaced by the more generic convective velocity scale of the system,
wy, as defined in Eq. (4.5). One could thus interpret the simulations of different
far-field temperatures as simulations of fixed far-field temperature but different

!The zero-order density is taken as 10°> kg m ™2 and not as given there as 10% kg m~3.
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Figure 4.9: Turbulent enhancement of the melt rate compared to the diffusive melt rate
wa, Eq. (3.7), (a) over Richardson number Rig, Eq. (4.18), with the simulations (dots),
laboratory experiments of this study (crosses), Eq. (4.12) (solid) and the study of Mar-
tin and Kauffman (1977) (black dot). Colours indicate different far-field temperatures
according to Fig. 2.1. b) Turbulent enhancement of the melt rate over the convective
Richardson number Ri,, Eq. (4.20). Crosses indicate the temporal evolution towards the
final simulation time (dots). A linear fit of the final-simulation values log (wy/wg) over
log (Ri,) gives the fitted curve (dotted line).



58 Parameterisation of the Melt Rate in the Fresh-Ice—Fresh-Water System

Ri, (Fig. 4.9b). From a linear fit of the final-simulation values log (wy/wg) over
log (Ri,), I conjecture that the melt rate follows Ri, as

wy = const. x Ri; %4 (4.21)
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Chapter 5

Parameterisation of the Melt
Rate in the Sea-Ice—Sea-Water
System

The successful parameterisation of the melt rate in the previous chapter from
the insights into the flow structure obtained by direct numerical simulations, en-
courages to apply this approach also to the sea-ice—sea-water system. Analogous
to the treatment of the fresh-ice—fresh-water system, this chapter is organised
into the appearance of the flow (section 5.1), the energy transport through the
sea-ice—sea-water system (section 5.2) and its flow structure (section 5.3).

The influence of salt in the sea-ice—sea-water system complicates the parameteri-
sation of the melt rate. In addition to the influence of salt on the flow structure,
salt also influences the interface temperature of the ice. The flow transports heat
to the ice interface, thereby ablates it and dilutes it, but the flow also transports
salt to the ice interface that counteracts the dilution. The equilibrium between
dilution and salt transport yields an interfacial salinity that determines the inter-
facial temperature. An additional section is therefore devoted to the interfacial
equilibrium and the determination of the interfacial conditions (section 5.4).

The insights into the flow structure and the interfacial equilibrium are then com-
bined to parameterise the melt rate with Eq. (5.24) (section 5.5). Several aspects
of the melt rate such as the relevance of temperature, salinity, and intensity of
turbulence are discussed and the parameterisation is applied to real-world condi-
tions (section 5.6).

5.1 The Appearance

The visual appearance of the sea-ice-sea-water system (cf. Figure 5.1) is similar
to the one of the fresh-ice—fresh-water system at first sight (cf. Figure 4.1). Whirls
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of warm and cold water manifest next to the interface and move downwards (cf.
Figure 5.1a). Their movement and their diffusive decay mixes the water.
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Figure 5.1: a) Vertical cross-section of the temperature field of the simulation at Pr = 10, Le = 4, and Ri = 11 on a 25602 x 1152 grid at
final simulation time. That corresponds to a far-field temperature of T, = 16.4 °C if a far-field salinity of So, = 34 g kg™! is assumed. b)
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The whirls are evident in both the temperature field and the salinity field (cf.
Figure 5.1b). The comparison of the two fields highlights several intrinsic aspects
of the sea-ice—sea-water system. First, salinity structures are more filigree than
temperature structures because the Schmidt number is higher than the Prandtl
number. Second, the mixing structures appear at the same locations in both
fields because the instability arises from the interplay of both scalars. It is a
double-diffusive phenomenon. Third, the core of instabilities consists of cold and
saline fluid. The most saline and coldest fluid is particularly dense, it has the
minimum buoyancy, b,,. This fluid promotes the buoyancy reversal instability
and drives the convection.

On second sight, the visual appearance of the system differs from the one of
the fresh-ice—fresh-water system. Double-diffusive systems are known to man-
ifest different regimes with typical instabilities, such as salt fingers, staircases,
oscillations and convection (Turner, 1974). Initially the flow clearly exhibits salt
fingering in the form of plumes that are more waisted and elongated and reach
further into the domain compared to those of the fresh-ice—fresh-water system
(cf. Figure 5.1c). This is an effect of the high Schmidt number, Sc > Pr, and
of the chosen initial condition to force a quicker development of the boundary
layer. The regime of cold and fresh water above warm and salty water is called
double-diffusive convection or semiconvection. Later when the flow is fully devel-
oped, semiconvection shows its countenance. The motion appears more confined
than in fresh-ice—fresh-water system. In the latter plumes freely fall and mix till
they diffuse. Here, they seem to be deflected and to travel sideward and upward.
This is characteristic for double-diffusive convection (Zweigle, 2011): While the
cold and salty structures sink and diffuse, they gain buoyancy by heating and rise
again. In the fresh-ice—fresh-water system the plumes can often be traced back to
their emerging spot at the interface, here they seem to disconnect more quickly
from their source and form an interweaving network as they mix and diffusive to
transport energy.

5.2 The Energy Flow

The global energy flow through the system is in principle similar as seen for
the fresh-ice—fresh-water system. The total energy within a fixed volume can
be stored as kinetic, potential or internal energy. In simple terms, the energy
flows from potential energy via kinetic energy to internal energy. Internal en-
ergy is continuously transported out of the system through the ice interface, the
sink. Internal energy is continuously supplied to the system by the infinite high-
temperature reservoir in the far field, the source. To equilibrate the temperature
difference between sink and source, the system diffuses and mixes fluid in-between
sink and source and thereby entrains fluid from the high-temperature reservoir.
The entrainment sustains a potential-energy flux to the system, that feeds the
turbulent kinetic energy, and internal energy flows at continuous rate.
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The difference to the fresh-ice—fresh-water system is that the potential energy is
not supplied or removed by the sheer presence of the temperature difference
between source and sink. Instead, the interplay of salinity and temperature
provides the energy potential, thus provides and removes kinetic energy. Just
beneath the lower boundary of the mixed layer, water is more saline than the
average in the mixed layer. This water is cooled when it is entrained, and tends
to sink, overturns, and sustains entrainment. Just aloft the upper boundary of
the mixed layer, water is less saline than the average in the mixed layer. This
water is heated by the mixed layer and would tend to rise. However, it does not:
The influence of the salinity gradient throughout the diffusive layer dominates
the heating. The salinity gradient acts as a potential-energy barrier to the kinetic
energy of the mixed layer.

This interplay of temperature and salinity provides new means to reversibly and
irreversibly convert energy between its different forms. In general, the potential-
energy difference between two evolution stages of the system does not necessarily
reflect the irreversible change in the system states. On the one hand, the system
can reversibly convert potential energy to kinetic energy and vice versa. On the
other hand, the system can irreversibly convert kinetic and potential energy in a
way that alters the minimum potential energetic state of the system. One way
to address the ambiguity in the definition of the energetic states of a turbulent
system is by defining an available potential energy (Winters, Lombard, Riley
et al., 1995). The available potential energy is the energy available for irreversible
conversion. Another way to address the ambiguity of reversible and irreversible
energy conversion is the discussion of the energy flow in terms of the turbulent-
kinetic-energy budget. The latter must only be applied if the turbulent-kinetic-
energy budget can unambiguously be obtained in a way that excludes adiabatic
processes. That is, the turbulent-kinetic-energy budget must be obtained by
averaging over sufficiently large space or time. The successful employment of the
latter method for the fresh-ice—fresh-water system encourages an attempt on the
sea-ice—sea-water system.

The turbulent-kinetic-energy budget illustrates the similar working principle be-
tween fresh-ice—fresh-water system (cf. Figure 5.2, left column: a, b, ¢) and
sea-ice—sea-water system (middle column: d, e, f) for similar shielding, Riy = 11.
In both systems, vertical buoyancy production feeds the turbulent kinetic energy
in the system (cf. Figure 5.2b,e, black line). Turbulence transports the turbulent
kinetic energy away from regions of higher production to regions of lesser pro-
duction (blue line): to a thin region above the mixed layer and the far field. The
pressure strain shifts turbulent kinetic energy from the vertical component to the
horizontal (cf. Figure 5.2b,e, green line). Dissipation follows the production of
turbulent kinetic energy in each component and follows the turbulent transport
next to the wall (red line).

The difference in the turbulent-kinetic-energy budget between fresh-ice—fresh-
water system and sea-ice—sea-water systems for similar shielding is evident in
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Figure 5.2: Turbulent-kinetic-energy budget of the fresh-ice—fresh-water system (fbm,
left) and of the sea-ice—sea-water system (sbm, middle and right). The data is normalised
by the maximum buoyancy flux of the fresh-ice—fresh-water system. The first (a,b,c)
and second (d,e,f) column compare systems of similar Richardson number, Rig. The
third column (g,h,i) adds a sea-ice-sea-water system of reduced Richardson number to
the comparison. The upper panels (a,d,g) show the terms contributing to the total
turbulent-kinetic-energy evolution d;k: buoyancy production, (b'v’), (black), dissipation,
g, (red), and the turbulent transport term, 7, (blue). The panels in the middle (b,eh)
show the terms contributing to the vertical component of the turbulent kinetic energy.
The pressure strain correlation (green) moves turbulent kinetic energy from the vertical
component to the horizontal component [shown in lower panels (c,f,i)]. Note: The budget
of the sea-ice—sea-water systems is blown up by a factor of 50 and 7.5, respectively.
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two aspects. First, in the sea-ice—sea-water system the peak intensity is con-
siderably smaller: about a factor of 50. Double diffusion creates a buoyancy
reversal instability that is weaker than that of the single-diffusive counterpart,
the fresh-ice—fresh-water system. A weaker buoyancy reversal instability results
in decreased velocity fluctuations and in decreased buoyancy production. The
distorted peak shape is a remaining effect of the initial condition and will equili-
brate while the system develops further as will be seen later. Second, as a result
of the decreased buoyancy production in the sea-ice—sea-water system, turbulence
is transported less intense to the interface.

For a weaker shielding of the sea-ice—sea-water interface, the velocity fluctua-
tions are transported closer to the ice (cf. Figure 5.2, right column: d, e, f). A
weaker shielding of the sea-ice—sea-water interface is commensurate with a weaker
stabilising salinity gradient across the system compared to the destabilising tem-
perature gradient (cf. Eq. (2.14)). Thus, as the shielding ceases, the stabilising
influence by molecular diffusion of salinity also ceases. The diffusion of temper-
ature gains importance compared to the diffusion of salinity. As a consequence,
double diffusion creates a stronger buoyancy reversal instability and the buoy-
ancy production increases (cf. Figure 5.2, right column is only amplified by a
factor of 7.5 while the middle column is amplified by 50). Both effects contribute
to increasing buoyancy production with decreasing shielding strength, Rig.

As seen in the fresh-ice—fresh-water system, the sea-ice—sea-water system pursues
equipartition of energy with the help of dissipation, the transport of turbulent
kinetic energy and its spatial components. The resulting flow structure between
ice interface and far field are examined in the following.

5.3 The Flow Structure

Both the normalised temperature and the normalised salinity yield a major
change by more than one order of magnitude next to the interface and a con-
stant mixing level away from the interface in the mixed layer (cf. Figure 5.3).
The main change next to the interface happens over about the same distance for
temperature and salinity. The constant mixing level is, however, a different one
for each. Because the change next to the interface happens over the same dis-
tance but towards a different constant mixing level, it yields different interfacial
gradients. Both the main change next to the interface and the constant mixing
levels are a result of different diffusivities and fluxes of temperature and salinity.

The temperature and salinity fluxes across the boundary layer can be attributed
to molecular transport and to turbulent transport (cf. Figure 5.4). For example,
the magnitude of the temperature flux across the system, H = Hesg, is

H (2,t) = —pwaterCp (k703 (T) (2, 1) — (V5T") (2,t))
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Figure 5.3: Mean profile of normalised temperature, ©, (red) and normalised salinity, o,
(purple) over distance from the ice interface, z for the simulation at Pr = 10, Ri = 11. The
mean profiles are given for two time instances: initial profiles (dashed) and final profiles
(solid). The initial mean profiles are error functions. The final mean profiles both exhibit
a main change next to the interface and yield a constant mixing level thereafter before
they approach the far field. The main change occurs over the same distance for both
profiles. The constant mixing level is, however, different. As a consequence, the mean
profiles yield different interfacial gradients. z.g is evaluated at final simulation time.
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Figure 5.4: Simulated internal-energy flux. Colours indicate different far-field tempera-
tures. Molecular (dotted) and turbulent (dashed) fluxes contribute to the total internal-
energy flux (solid). a) Fresh-ice—fresh-water system. b) Ice-ocean system. c¢) Ice—ocean
system. Illustration of the temporal evolution for the simulation at Pr = 10, Rig = 11.
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(Eq. (3.3) repeated from page 32). A comparison of the flux attributions in
the region where the main change in the profiles occurs and in the region of
constant mixing level shows: the transport next to the interface is dominated by
molecular transport, the transport away from the interface is dominated turbulent
transport.

If the temperature and salinity distributions were in a steady state, no spatial
gradients in the flux could be observed (cf. Eq. (3.2)). As opposed to the simula-
tions of the fresh-ice—fresh-water system, the simulations of the sea-ice—sea-water
interface hardly seem to have reached this equilibrium. For the fresh-ice—fresh-
water systems (cf. Figure 5.4a) the internal-energy flux is constant throughout
a diffusion-dominated and a turbulence-dominated region right beneath the in-
terface. The internal-energy flux H only varies about £0.2 Hyater- For the
sea-ice—sea-water system only simulations of Rig = 1, Rig = 2 and Rip = 5 yield
internal-energy fluxes that are about to approach an equilibrium (cf. Figure
5.4b). The internal-energy flux H only varies about +0.3 Hyater-

If spatial gradients in the flux remain—as is the case for the simulations of the sea-
ice—sea-water system—, the corresponding quantity will change in time towards
an equilibrium (cf. Eq. (3.2)). For example, the temperature flux across the
boundary layer is directed towards the ice, H-e3 < 0, and if vertical gradients of
the temperature flux occur, they are mostly positive, 03 Hyater > 0. Therefore, the
temporal gradient of the temperature is negative there, 9;(T") < 0, (cf. Eq. (3.2))
and the interface is hence cooling the boundary layer. The presence of spatial
gradients in the flux is expected at the lower boundary of the mixed layer, where
warm far-field water is entrained. Next to the interface, however, a steady state
of the mean-temperature profile is to be expected in a fully developed system.
The simulations for high Rig € {5, 10,100} are hence still developing.

The partitioning of the internal-energy flux, H, according to Eq. (3.3) into a
molecular flux —c,prds (T') (dotted) and a turbulent flux c,p (V5T") (dashed)
warrants a separate description of the diffusion-dominated inner layer and the
turbulence-dominated mixed layer.

5.3.1 The Diffusion-Dominated Inner Layer

Next to the interface, the molecular flux alone determines the transport (cf. Fig-
ure 5.4b). Over this molecular-diffusion-dominated inner layer, the main mean-
temperature and mean-salinity change is of order (Th, — Tice) and (Soo — Sice)
respectively (cf. Figure 5.3). The resulting gradient diffusively transports inter-
nal energy, salt and momentum across the inner layer to the interface. According
to the laws of Fick and Fourier, the transport is quantified by this mean change
over the extent of the inner layer.

Martin and Kauffman (1977) identify the extent of the inner layer through the
edge of the so called ’salinity boundary layer’. They define its height, zg, by the
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Figure 5.5: Inner-layer extent (vertical dashed lines) according to temperature (red),
salinity (purple), buoyancy (green), temperature-fluctuation (red dashed) and internal-
energy flux (black, cf. Figure 5.2) profiles of a simulation at Rig = 6. The salinity
gradient thickness is indicated by the vertical gray dashed line.

point of occurrence of the maximum of <T'2)1/2. There, S has reached its far-field

value to within their measuring accuracy. From the consideration that

1 ap ! 1 ap

= AS= —— L AT, 5.1a
0(527T2) aS SQ,T2 p(SQ7T2) 8T SQ,TQ ( )

they find that temperature mainly varies outside of the salinity boundary layer.
They also use a temperature difference AT = (T — T) = 1072 °C and AS =
(Seo — S2) to define zg in terms of So = S (z = zg). Generally, in free-convection
systems the extent of the diffusive wall layer is usually defined by the decline of
the buoyancy flux down to 10% of the total flux. That leaves four possibilities for
the definition of an diffusion-dominated inner layer extent: (i) where S = So, (ii)
>1 2

where max <<T/ 2 ) occurs, (iii) where the diffusive flux has declined to 10% of

the total flux in salinity, temperature or buoyancy and (iv) the salinity gradient
thickness dg = (Soc — Sice) / 935|,_-

The inner-layer extent is of the same order of magnitude according to all def-
initions (i), (ii) and (iii) (cf. Figure 5.5) and evolves similarly in time. The
definitions are thus equally valid even though the spread between them ranges
between four to one-and-a-half in my simulations depending on the Rig. In the
following, I will use definition (ii) because it collapses with the height at which
the mean-buoyancy profile intersects the value of the far-field buoyancy. This
definition is useful in comparing the sea-ice—sea-water system to the fresh-ice—
fresh-water system. It matches the extent of the stable-stratification shield next
to the ice interface. Furthermore that definition collapses with about the height at
which molecular and turbulent flux contributions equal for all of my simulations.
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Figure 5.6: a) Temporal evolution of the extent of the salinity boundary layer, zg, in
terms of the salinity gradient thickness dg. b) Turbulent enhancement, F, of the non-
dimensionalised salinity gradient, 651, in terms of the non-dimensionalised gradient of a
diffusively broadening error function, 5&%. ¢) Temporal evolution of the salinity gradient
thickness, dg, in terms of the diffusive length scale, z5. d) Temporal evolution as in (b)

but taken from the temperature gradient thickness of the fresh-ice—fresh-water system,
or.
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Definition (iv), by the gradient thickness,
0o = (000 — Oice) / 83°‘z:0= (5.2)

of salinity (with o = S)! is the most direct measure for the extent of a salinity
boundary layer. dg is still growing as the boundary layer continues to develop.
Its growth rate is identical to that of the salinity boundary as defined by (ii) (cf.
Figure 5.6a). The non-dimensionalised salinity gradient, 935/ (Sec — Sice) = 5;1,
develops diffusively for almost all Rip (cf. Figure 5.6b). A significant enhance-
ment of the gradient is only observed if the Richardson number is very low,
Rip = 1 or Rip = 2 (orange line and yellow). Richardson numbers so low corre-
spond to far-field temperatures T, > 50 °C according to Figure A.6 for R ~ 2
and S, ~ 34 g kg~!. In these cases, the enhancement of the gradient follows a
similar pattern as has been observed for the fresh-ice—fresh-water interface (cf.
Figure 5.6d).

The similarity of the temporal evolution of dg to the one of dr from fresh-ice—
fresh-water interface and the similarity of inner-layer extent, zg (ii), to the shield
of the fresh-ice—fresh-water interface motivates the consideration of zg in terms
of a diffusive length scale. In analogy to Eq. (4.3), I define a diffusive length
scale

10
9(Rig)*/?

1/3

20 = Pr'/3 (k%) bml) (5.3)

where g(Rip) is the unstable fraction of the diffusive region next to the interface.
For the fresh-ice—fresh-water interface, g was analytically determined as 2x,.
For the sea-ice—sea-water interface, g results from the double-diffusive interplay
of temperature and salinity.

If g is chosen such that it perfectly represents the unstable fraction under con-
sideration of the vicinity of the wall, then

5s/z0 = 1. (5.4)

One can then define zj, = ¢%/3zy. From the simulation data, I observe an unstable
fraction g, gobs = 5/, of order one (cf. Figure 5.6¢c). Especially the simulations
at high Rip € {5,10,100} have not yet reached a flux equilibrium and they
show an enduring growth of the diffusive-sublayer extent (cf. Figure 5.6¢). The
determined unstable fraction can therefore only be understood as an upper bound
to the unstable fraction of the fully developed system, g+ = gobs-

To circumvent the issue that the systems are mostly still approaching a fully
developed state, I make use of evolution of turbulence further away from the
interface, in the mixed layer.

!The gradient-thickness is identically defined for temperature with o = T
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Figure 5.7: Boundary-layer height measured by z, as defined in Eq. (4.4) (solid) and
estimated by zest as defined in Eq. (5.5) (dashed). The fraction zest/zs (dotted) indi-
cates how well z, represents zes. a) For the fresh-ice—fresh-water systems of different
stable stratification Rig, zest/2« & 1. b) For the ice-ocean systems of different stable
stratification Rig, zest/2« is constant but depends on Rip.

5.3.2 The Turbulence-Dominated Mixed Layer

Away from the interface, the turbulent flux alone determines the transport (cf.
Figure 5.4b). The turbulent transport of temperature is now used to assess the
boundary layer height and the convective velocity. Both measures will be useful
in the discussion of the melt rate in chapter 5.5. The turbulent transport of
salinity is used in this section to assess a lower bound for the unstable fraction
of the fully developed system.

The length scale z, is strictly defined as based on the turbulent transport of tem-
perature as in Eq. (4.4) (cf. Figure 5.7, solid). I assess its quality in representing
the boundary-layer height with the estimate, zest, defined with the threshold
criterion,

(T (2 = zest)) = 0.99 T (5.5)

The comparison of ze and z, shows, that z, is proportional to the boundary-
layer height. As opposed to the fresh-ice—fresh-water system, zesi/z« is generally
not O (1) nor is it independent of Riy (cf. Figure 5.7b, dotted) (cf. Figure 5.7a).
An analogous definition based on the turbulent transport of salinity also proves
to be off. The boundary-layer height is estimated better by zest. The temporal
evolution of zegt is similar in both the fresh-ice—fresh-water system and the sea-
ice—sea-water system (cf. Figure 5.7, dashed).
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Figure 5.8: a) Velocity root mean square scaled with the convective velocity scale w,
for the fresh-ice—fresh-water systems of different stable stratification Rig. b) Same as
(a) but for the ice-ocean systems of different stable stratification Rig at Pr = 1. ¢)
Balance between viscous dissipation and turbulent buoyancy production for the ice—ocean
systems.

Following the argumentation of the fresh-ice—fresh-water system, I define a con-
vective velocity scale for the sea-ice—sea-water interface, w,, from the inviscid
scaling of the viscous dissipation rate € oc w2 27! and the balance of the viscous

dissipation rate e and the turbulent buoyancy production (b/'v}):

0. o]
ofoigdz ~ (5.6)
Jo (V'vs)dz
(cf. Figure 5.8c). I define w, based on the turbulent buoyancy flux as Eq. (4.5).
wy scales the root-mean-square vertical velocity fluctuations (cf. Figure 5.8b)
just as it does for the fresh-ice—fresh-water system (cf. Figure 5.8a). The effective
buoyancy flux based on zest and w, (cf. Eq. (4.7)) is about 0.01(b} k1) 1/3, an
order of magnitude smaller than that of the fresh-ice—fresh-water system (not

shown).

The transport of salinity across the boundary layer follows a similar pattern as
the transport of temperature (cf. Figure 5.9a, solid lines). Next to the interface,
the molecular flux alone determines the transport (dotted lines). Away from
the interface, the turbulent flux alone determines the transport (dashed lines).
The turbulent flux in the mixed layer is significantly smaller than the molecular
flux at the interface. As long as the molecular flux dominates the turbulent
transport, the transport at the interface dilutes the water next to the interface.
As a consequence, the region over which the molecular flux is dominant broadens
because diluted water stabilises. If the diffusion-dominated inner layer broadens,
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Figure 5.9: a) Simulated salinity flux, F', normalised by the salinity flux at the wall,

Fyater- Molecular (dotted) and turbulent (dashed) fluxes contribute to the total flux
(solid). Colours indicate different far-field temperatures. b) The unstable fraction,
g~ 2%/% = 6g/2}, as evaluated from the gradient thickness (lower bound of the black bar)
and the ratio of salinity flux at the interface and in the far field (upper bound of the
black bar). Bars in (a) mark the difference between molecular and turbulent flux. The
comparison with the unstable fraction of the fresh-ice—fresh-water system shows, that
double diffusion is at least an order of magnitude less effective in producing the buoy-
ancy reversal instability. The least-square power-law fit to upper and lower bound of
g neglects the simulation at Rip = 1, because the buoyancy parameterisation here only
very vaguely reflects reality.

the molecular flux decreases and the unstable fraction, g, decreases. When the
diffusion-dominated inner layer has broadened sufficiently that turbulent flux and
molecular flux are in equilibrium, then the dilution is balanced by the turbulent
transport of salt from the far-field. The turbulent flux provides a lower bound
to which the molecular flux could possibly decrease to reach this equilibrium.
The turbulent flux however also increases—slowly—in time. Analogous to the
determination of the upper bound of the unstable fraction, g;, by the molecular
flux, the turbulent flux of salinity is now used to determine a lower bound to the
unstable fraction, g, (cf. Figure 5.9b, bars indicate upper and lower bound).

From the upper and lower bound of the unstable fraction, gy and g|, one realises
that a considerably smaller fraction of the diffusion-dominated layer yields a
buoyancy reversal instability than in single diffusive counterpart (cf. Figure 5.9b,
dashed and dotted lines). Double diffusion is at least an order of magnitude less
effective in producing the buoyancy reversal instability. A least-square power-
law fit gives an indication how ¢ varies with the shielding strength, Rig, for the
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simulations for Pr = 1.
gs (Rig)™%? = 6.43 Ri™" (5.7)
I estimate the extent of the diffusive sublayer from this fit with Pr =1 as

20 = 64.3 RiJ ™ (k2/ [bml) > (5.8)

5.4 Interfacial Equilibrium

The mixed-layer transports heat to the ice interface, thereby ablates it, and di-
lutes it, but the mixed-layer also transports salt to the ice interface that counter-
acts the dilution. The interfacial equilibrium between dilution and salt transport
yields an interfacial salinity. The temperature of the interface must always be
the freezing temperature of this interfacial salinity (cf. Eqgs. (A.20)).

Following Gade (1993), the interfacial salinity follows from the boundary condi-
tions, Eqgs. (A.20), as

Pice Lat RS (Soo - Sicc)
Sice = — —— R 5.9
Pwater Cp KT (Too - Tice) ( )
[cf. Egs. (A.21-A.26)], where
R =6r/ds (5.10)

is the gradient-thickness ratio—the ratio between the gradient thicknesses of tem-
perature and of salinity. R describes the effect of the mixing beneath the interface
on the interfacial equilibrium.

The fact that the interface conditions can be predicted from the boundary con-
ditions once the effect of the mixing of the ocean is known, has launched several
assessments: Josberger (1983) uses a two-layer boundary-layer model and defines
the interface conditions based on the ratio of the heat transfer coefficient, Cyz, to
salinity transfer coefficient, C's. He introduces Cy and Cg as

H = pyc,Ch (Too — Tice) and (5.11a)
F= prS (Soo - Sice) . (511b)
From the analogous definitions of the heat flux, H, and the salinity flux, F,
H = pyey (k703 (T) (2,t) — (v5T") (2,1)) , and (5.12a)
F = py (ks05(S) (z,t) — (v35") (2,1)) , (5.12b)
one obtaines the flux ratio, +,

Oy Hle/ (=T _ sty @) 0~ (40 )
Cs F/(Soo — Sice) kgOs (o) (z,t) — (V5o') (z,t) '
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Notz, McPhee, Worster et al. (2003) use only the turbulent contributions of v to
determine the interface conditions. This turbulent-flux ratio, Yiub, is identical
to their ratio of turbulent exchange coefficients,

Yturb = < (514)

vho') (z,t)

Gade (1993) uses only the molecular contributions of v at the wall to determine
the interface conditions. This molecular-flux ratio, vmol, is

93 (0) (2,1)

B (o) (1) (5:15)

“Ymol = Le

with R = Levymol Z:O_l. The approximation to only employ either 7, at the
wall or Y in the far-field is reasonable, because there the corresponding con-
tributions to the fluxes dominate numerator and denominator of ~.

The determination of the interface conditions from 4y is convenient, because
it allows for the employment of turbulent-flux measurements from the field. This
determination requires, however, that turbulent-flux ratio and molecular-flux ra-
tio at the interface are equivalent. It has been shown that this is not the case
for the double-diffusive regime of saltfingering (Zweigle, 2011). In the double-
diffusive regime of semiconvection—subject to the present work—, the equiv-
alence of molecular-flux ratio, yme, and turbulent-flux ratio, ~tuwh, is to the
author’s knowledge untested. It still has to be assessed. The quality of the
equivalence of ¢y and el is expressed by the turbulent Lewis number.

The turbulent Lewis number is an effective Lewis number. Just as the Lewis
number describes the ratio of diffusivities, Le = kr/kg, the turbulent Lewis
number 2 | 7, describes the ratio of effective diffusivities of temperature, K7, and
salinity, Kg.

B <U/T/>
Kr = 9T (5.16)
(v'S")
Kg = — 5.17
S =7 5.09) (5.17)
(V') Os(0)
= Kr/Ks = =L ur mo 5.18
T T/ S <U’O”> 83 <0> € Y b/’Y 1 ( )
—— N —
Yeurb  Le ymo1 L
If turbulent Lewis number is unit, then
“Ymol = ’Yturb/Le. (519)

For the double-diffusive regime of semiconvection, my simulations show that
turbulent-flux ratio and molecular-flux ratio are indeed close to identical over



5.4 Interfacial Equilibrium 77

103 . . . . 103
A __ Rip=11
Rip=1
Rig =2
102} Rig = 5 ] 102}
Rip = 10
L—  Rip =100
10! 10'}

1 00 1 00 |

Figure 5.10: a) Turbulent Lewis number, 7, for the simulations at final simulation time.
b) Molecular-flux ration, v, and turbulent-flux ratio, veu.b at final simulation time.

a broad range of conditions, Rip € {1,2,5,10,100}, (cf. Figure 5.10a); The tur-
bulent Lewis number fluctuates around unity. The local fluctuations are due to
two things: on the one hand too small a domain to yield statistically converged
results (cf. Figure 5.10b). On the second hand, deviations seem to be systematic
in parts of the mixed layer. For one, the simulation at Pr = 10, Rip = 11 (cf.
Figure 5.10a, black) mostly lingers in-between one and two, partly up to ten.

Even if the turbulent Lewis number is different from unity, it is always true that
the molecular contribution to the flux of temperature and salinity in the mixed
layer is negligable compared to their respective turbulent contribution:

fy’mixed layer > Yturb- (520)

It is also always true that at the interface the turbulent contribution to the flux
of temperature and salinity is negligable compared to their respective molecular
contribution:

Vo > Vmol- (5.21)

The main complication in using b as a measure for H/F arises from the
spatial structure of v (cf. Figure 5.11a). The ratio of flux ratio is different in
the mixed layer than and in the diffusive sublayer. At the interface, I find a
constant flux ratio, v, when turbulence is fully developed, independent of the far-
field conditions (cf. Figure 5.11a). Away from the interface, I find a flux ratio,
v, that depends on the far-field conditions. v away from the interface scales with

2Turbulent Lewis number 7, not to be confused with the turbulent transport term 7
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Figure 5.11: a) Ratio between the total transport (molecular + turbulent) of temperature
and the total transport of salinity at final simulation time (solid line) and at half time
of the simulation (dashed line). 4ty describes this spatial structure well in the mixed
layer, vmo1 describes it well next to the interface (cf. Figure 5.10b). b) Ratio between
the total transport of temperature and the transport of salinity at final simulation time,
but scaled with Riy L

the shielding strength, Rip (cf. Figure 5.11b). This can lead to confusion in the
determination of the transport ratio at the interface from ~gyn. Currently, viub
is deemed to be in-between 35 and 70 (Notz, McPhee, Worster et al., 2003), which
probably reflects the dependence on the far-field conditions of the measurements.

In the following, I will assess the interfacial equilibrium based on the gradient-
thickness ratio, R = Le ol 2:0_1. Two-dimensional and three-dimensional
simulation are employed to examine the way in which R varies with {Pr, Le}.
In real-world systems, Pr = 13.8, and Le = 176. Here, 1 approach the real
behaviour of R with two sets of simulations. Simulations of Pr = 1 approach the
behaviour of varying Le up to 40, and the behaviour of varying Rig. Simulations
of both Pr =1 and Pr = 10 on two dimensional grids approach the behaviour of
varying Le up to 160. The comparison of two-dimensional and three-dimensional
simulation in the next section, follows the assessment of the gradient-thickness
ratio, R, and—once determined—the assessment of the interface conditions.

5.4.1 2D Simulations as a Proxy for 3D Simulations

Simulations of a system on a two-dimensional grid take considerably less effort
in storage and in computational power than on a three-dimensional grid. Unfor-
tunately, the mean evolution of two-dimensional turbulence does not represent
the mean evolution of three-dimensional systems correctly: A fundamental dif-
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Figure 5.12: Comparison of the interfacial internal-energy and salinity balance between
two-dimensional (dashed lines) and three-dimensional (solid) simulations. Despite dif-
ferent initial conditions, two-dimensional and three-dimensional simulations coincide to
within 10% regarding their interfacial temperature and salinity fluxes at final simula-
tion time. This is illustrated by coinciding ratio R (a) and coinciding salinity gradient
thickness (b).

ference between two-dimensional and three-dimensional turbulence is that the
former cannot generate small intense vortices (Tabeling, 2002). Two-dimensional
turbulence features an inverse energy cascade to ever larger scales (Kraichnan
and Montgomery, 1980).

Nonlinear flow phenomena, such as cascades, coherent structures and dissipative
processes, however, take place in both systems and a common conceptual frame-
work between two- and three-dimensional turbulence exists (Tabeling, 2002). It
can hence be instructive to employ simulations of two-dimensional turbulence,
not only to test the working principle of a setup (cf. Figure A.5), but also to
study certain aspects of turbulent systems (Fedorovich, Rotunno and Stevens,
2004). Direct numerical simulation of two-dimensional double-diffusive systems
have been employed before (Zweigle, 2011), and have proven to agree in cer-
tain respects with three-dimensional simulations (Carpenter, Sommer and Wiiest,
2012).

Even though two-dimensional simulations of free convection do not conserve en-
ergy and their time evolution is likely to be different, they appear to yield an
energy balance at the interface that is to within 10% precise to that of three-
dimensional simulations. This has already been observed for simulations of the
fresh-ice—fresh-water system (not shown), and it is so for the simulations that
have been compared of the sea-ice—sea-water system in both temperature and
salinity (cf. Figure 5.12). Carpenter, Sommer and Wiiest (2012) have shown
that two-dimensional direct numerical simulation “accurately ”captures the heat
flux and interfacial structures of three-dimensional direct numerical simulations
when the density variation due to salinity is at least three times larger than the
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Figure 5.13: Lewis-number series (a) and Richardson-number series (b) of gradient-
thickness ratio R = dp/ds. a) Three-dimensional simulation series (solid / dot) and
two-dimensional simulation series (dashed, crosses) of Pr = 1 (blue) and Pr = 10 (black).
b) Three-dimensional simulation series of Pr = 1 and Le = 4 (blue), three-dimensional
simulation series of Pr = 1 and Le = 10 (red).

density variation due to temperature (Carpenter and Timmermans, 2013).

I will support my studies by the use two-dimensional simulations as a proxy for
expected gradient thicknesses from three-dimensional simulations that are infea-
sible even with the most recent computational ressources. Still, results arise from
three-dimensional simulations in the following if not explicitly stated otherwise.

5.4.2 Determination of the Gradient-Thickness Ratio R

The gradient-thickness ratio, R = d7/dg, approaches a constant value long before
the system is in a fully developed state. An increase in the gradient thickness
of salinity is thus accompanied by an increase in the gradient thickness of tem-
perature and vice versa. An estimate of R may therefore be obtained from the
simulation series while they are still developing (cf. Appendix A.6).

The three-dimensional simulation series of Pr = 1, Ri = 10 and varying Le in-
creases in R with increasing Le (cf. Figure 5.13a, blue line): The larger the
difference of temperature diffusivity and salinity diffusivity is, the larger the
difference in their gradient thicknesses. This evolution agrees to the evolution
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of simulations of the same parameter set but on a two-dimensional grid (blue
crosses). The two-dimensional simulation series of Pr = 1 and varying Le seems
to level off in R for further increasing Le. This evolution agrees to the one of
a two-dimensional series of Pr = 10 (black dashed). R first increases and then
levels off with increasing Le. The three-dimensional simulation of a water-like
fluid of Pr = 10 and Le = 4 agrees with the two-dimensional simulation series of
Pr = 10 (black dot). The similar evolution of Pr = 1 and Pr = 10 simulation
series in terms of R and the agreement of three-dimensional and two-dimensional
simulations in terms of R suggests an extrapolation of R to (2.25 £ 0.10) for a
real-world Le = 176.

Gade (1993) interpreted the temperature and salinity profiles found from previous
laboratory experiments and model work to determine R. He finds R = 2.3 from
Martin and Kauffman (1977) with Eq. (A.26) and R = 2.26 from Wilson, Sarma
and Pritchard (1980). My finding supports this value. I find that the three-
dimensional simulation at Pr = 10 and a Lewis number of only Le = 4 already
exhibits the near-interface characteristics that are to be expected for Le ~ 200. A
report of effective diffusivities that are similar no matter if Le = 100 or Le = 10
is used by (Zweigle, 2011, 87) supports this finding.

My findings oppose previous assessments of the interfacial flux ratio based on the
turbulent-flux ratio of Notz, McPhee, Worster et al. (2003) and Sirevaag (2009).
For a smooth ice interface, the interfacial flux ratio, v|,—0 = “mol, is rather
Ymol = Le R™! € [80;90] than the previously assessed [35;70]. Eventhough the
flux ratios determined by Sirevaag (2009) compare well to the values I observe in
the mixed layer, these flux ratios do not hold at the interface (cf. Figure 5.11a).

The three-dimensional simulation series of Pr = 1, Le = 4 and varying Rig
(cf. Figure 5.13b, blue crosses) and the three-dimensional simulation series of
Pr =1, Le = 10 and varying Rip (red crosses) exhibit values of R around two.
R of both series varies little compared to the variation with Le. The three-
dimensional simulation of a water-like fluid of Pr = 10 and Le = 4 agrees with
both series (black dot) given the shift observed between series of Pr = 1 and
Pr = 10 (cf. Figure 5.13a). I conjecture that R does not vary with Rip given a
relative standard deviation of only 10% for each simulation series.

5.4.3 Determination of the Interfacial Conditions

With R determined, I provide the interfacial conditions in Figure 5.14 for varying
far-field conditions, To, and S, from Eq. (5.9) with an iterative technique (cf.
A.4.2).

The interfacial salinity, Sice, decreases with increasing far-field temperature, Ty,
(cf. Figure 5.14a). At first sight, this is plausible: higher temperatures melt
more ice and the melt water dilutes the interface. At second sight, it is implau-
sible: higher temperature create more intense mixing and turbulence transports
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Figure 5.14: Interfacial conditions obtained from Eq. (A.26) with R = 2.25. a) Depen-
dence of the interfacial salinity, Sjce, on the far-field temperature, T,. The interfacial
salinity is given in units of the far-field salinity, S.. b) Dependence of the interfacial
temperature, Tice, on the far-field temperature, T,,. The interfacial temperature is given
in units of the temperature difference (T — Tice)- ¢) Dependence of the interfacial salin-
ity, Sice, on the far-field salinity, So.. d) Dependence of the interfacial temperature, Tice,
on the far-field salinity, S..
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thus more freshwater away from, and more salt to the interface. The truth lies
somewhere in-between: salt transport to the interface and dilution pursue an
equilibrium. To counteract the stronger dilution at higher far-field temperatures,
more salt must be transported to and through the interface. Because the trans-
port of salt at the interface is limited by diffusion, the only way to increase the
transport is to increase the difference, S, — Sice, and thus to decrease the inter-
face salinity Sjc.. Because lower interface salinities imply an increased difference,
Too — Tice, via the freezing-point relationship, it also implies an increased trans-
port of temperature. The equilibrium between the transport of temperature and
transport of salinity is possible because the relative change to So — Sice by a
change in Sjce is larger than the relative change to T, — Tice by a change in Tice.
This has been described and defined by Eq. (5.9).

The interfacial temperature, Tic., must be at the freezing temperature (cf. Eq.
(A.21)). It follows from the interfacial salinity. The interfacial salinity and thus
the interfacial temperature hardly vary with the far-field salinity (cf. Figure
5.14¢,d).

5.5 The Melt-Rate Parameterisation

The assessment of the flow structure and the interfacial equilibrium in the previ-
ous two sections, allows to approach the melt-rate of the sea-ice—sea-water system.
The melt rate, wg, is used as a metric for the internal-energy transport, Hyater,
from the ocean to the ice by neglecting any internal-energy transport through
the ice:

1
Ws = piceLHwater~
The internal-energy transport is
Hyater = —PwaterCpRT 03 <T> (27 t)|z:0 ) (5'22)

determined solely by the temperature gradient at the ice interface, 95(T")|,_,.
This temperature gradient can be expressed in terms of the temperature differ-
ence between ice interface and the far-field ocean, (T, — Tice), over the gradient
thickness, o7, (cf. Eq. (5.2)).

Too - ﬂce Too - ,Tice — lToo - Tice

83<T> (27 t)‘z:(] = 5T = R(SS R 20

(5.23)

It has been shown that the gradient-thickness ratio, R = dp/ds = 2.25 | is
constant. The gradient thickness of temperature can therefore be expressed in
terms of the gradient thickness of salinity which is equivalent to the extent of
the diffusive sublayer, zp, (cf. Eq. (5.4)). I note that the expression derived for
zp is based on the simulation at a Prandtl number Pr = 1. From the scaling
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Figure 5.15: Interfacial buoyancy and minimum buoyancy obtained from the interfacial
conditions (cf. Figure 5.14). a) Minimum buoyancy, b,,. b) Interfacial buoyancy, bice. c)
Richardson number, Rig, for To, € [—1,0] °C. d) Riy for T € [1,100] °C.

of the fresh-ice—fresh-water interface and the cloud-top mixing layer, it is to be
expected that the temperature gradient scales with Pr'/3. The comparison of
these simulations of Pr = 1, Le = 4, Rig = 10 to the one of Pr = 10, Le =
4, Rig = 11 confirms this scaling. In the following I therefore include an additional
factor of Pr'/3 in the expression of the temperature gradient, Eq. (5.23). Together
with the expression derived for the diffusive-sublayer extent, Eq. (5.8), this yields
the melt rate of the sea-ice—sea-water system:

ws = (5.24)

Pr'/3 pyater (Too) ¢p (Too — Tico) <(|bmy m))lﬂ”
R 64.3 Pice (Sice) L Rig'?’l ’

for Pr = 10, R = 2.25, pwater = 1020 kg m™3 and pice = 920 kg m 3.

The melt rate, ws, depends on the interfacial conditions, Tice and Sjice, via the
interfacial buoyancy, bijce, and the minimum buoyancy, b,,, that are implicit to
the shielding strength, Rig. It is beyond the scope of this work to provide scaling
laws for these buoyancy values that are based on the density of sea water (cf. Eq.
(2.2)). The buoyancy values, bice and b,,, and their dependence on the far-field
conditions can however be obtained from the solution to the interfacial conditions
(cf. Figure 5.14). I provide these buoyancy values in Figure 5.15a,b.

From b;.e and b,,, it shows that once the interface is fresh, the interfacial buoyancy,
bice, hardly changes anymore with the far-field temperature (cf. Figure 5.15b); say
above 2 °C. It only changes with the far-field salinity and does so equivalently to
the change of the minimum buoyancy, by,, (cf. Figure 5.15a). As a consequence,
the Richardson number no longer depends on salinity anymore. The variation of
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the minimum buoyancy with the far-field temperature is then the only influence
on the Richardson number (cf. Figure 5.15d). Below 2 °C, the influence of salinity
on the Richardson number is as apparent as the influence of temperature.

With T from Figure 5.14b, b, from Figure 5.15a, and Riy from Figure 5.15c&d,
I calculate the melt rate of the sea-ice-sea-water system from Eq. (5.24) (cf.
Figure 5.16).

5.6 Discussion

The melt rates provided with Figure 5.24 have to be assessed with caution. They
have been derived from a Rayleigh-number criterion in analogy to the fresh-
ice—fresh-water system. A theory that describes the unstable fraction as in the
fresh-ice—fresh-water system is so far unknown. As an approach to the unstable
fraction, I have approximated it from numerical simulations of flows at Pr = 1
. Even though one simulation at a Pr = 10 supports the results obtained from
the former (cf. Figure 5.16,b empty diamond), one should bare in mind that this
approximation has a large uncertainty attached (cf. Figure 5.9). Therefore, Eq.
(5.24) is not final but a great deal can be learned from it.

The melt rates depend on both the far-field salinity and on the far-field temper-
ature. For high temperatures, the dependence on salinity is lost because, here,
salinity variations contribute less to shielding strength, Rip, (cf. Figure 5.16a,b).
For low temperature, the dependence on salinity can be as important as the
dependence on temperature.

For reasonable far-field temperatures of T, &~ 0 °C the melt rates seem to be
of the order of 0.1 mm d~!. Such melt rates are similar to those of diffusive
sublayers with an extent of the order of meters. Only if a boundary layer would
be considerably larger and fully turbulent, a free-convection-driven enhancement
of the melt rate is to be expected. Typical boundary-layer depths in nature range
in-between 10 m and 100 m. If the boundary-layer depth is 100 m, a turbulent
enhancement of the melt rate to the rates given in Figure 5.16 is plausible. If
the boundary-layer depths is 10 m, a turbulent enhancement of the melt rate will
only occur for Richardson number, Rip, smaller than 100 (cf. Figure 5.16¢). Only
then a scale separation of an order of magnitude or more prevails. A Richardson
number below 100 corresponds to far-field temperature of three degrees Celsius
or more. These conditions would only occur in nature if a floe of ice happened to
travel over extraordinary warm water. Hence, free-convection boundary layers of
a depth of the order of O (101 m) are likely to feature diffusive energy exchange
at the interface.

Even if the boundary layer is not sufficiently deep to evolve turbulently by free
convection, other driving mechanisms, such as shear or internal heating from
radiation, can promote a turbulent enhancement of the melt rate. To allow for the
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Figure 5.16: a) Melt rate as a function of the far-field temperature, T, and far-field
salinity, S.o, as given in Eq. (5.24). Diffusive melt rates for Si.e = 5 g kg™!, according
Tice = 5, and boundary layers of thicknesses 0.14 m, 1 m and 8 m provide a reference
(dashed lines). b) Melt rate as a function of (T, — Tice), and Ss, Diffusive melt rates for
boundary layers of thicknesses 0.14 m, 3 m and 8 m provide a reference (dashed lines).
The black dot is the melt rate derived from the temperature profile of the experiment
of Martin and Kauffman (1977) at time 46.5h. A fairer comparison can be found in the
appendix where the melt rate is given for a NaCl solution of 38 g kg=! (cf. B.4). The
empty square is melt rate of the simulation Pr = 10, Le = 4, Ri = 11. The simulation
is still in a developing stage. Consistently, the observed melt rate is lower than the melt
rates predicted for the fully developed system. c¢) Turbulent enhancement of the melt
rate compared to the diffusive melt rate wq of a boundary layer thickness of 10 m (cf.
Eq. (3.7)) over Richardson number Riy (cf. Eq. (4.18)): fresh-ice-fresh-water system
(black line) and sea-ice—sea-water system of 34 g kg~! (pink). d) Turbulent enhancement
of the melt rate over the convective Richardson number Ri, (cf. Eq. (4.20)) with the
simulations of the fresh-ice—fresh-water system and of the sea-ice—sea-water system. A
linear fit of the final-simulation values of the sea-ice-sea-water system, log (wy/wq) over
log (Ri.), gives the fitted curve (dotted line).
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comparison of my results to those of systems with different driving mechanisms,
I have proposed the use of the convective Richardson number, Ri,, based on
the study of the fresh-ice—fresh-water system in chapter 4. The simulations of
different stable-stratification strength have so far been interpreted as simulations
of varying far-field conditions (cf. Figure 5.15¢,d). As for the fresh-ice—fresh-water
system, they can also be interpreted as simulations of fixed stable stratification
but varying convective velocity.

Simulations of varying Ri, o w;? behave qualitatively similar to those of the
fresh-ice—fresh-water system (cf. Figure 5.16d, coloured squares): The stronger
the convective velocity is, the higher the enhancement of the melt rate (coloured
dots). From a linear fit of the values log (w/wg) over final-simulation values of
log (Ri4), I conjecture that the melt rate follows Ri, as

w, = const. x Ri; ™ (5.25)

(dotted line). The influence of the convective velocity on the melt rates is stronger
for the sea-ice—sea-water system than for the fresh-ice—fresh-water system.

With the interpretation of the simulations in terms of the convective Richardson
number, the relevance of melt-water advection can be assessed for the sea-ice—sea-
water system based on the simulations of the fresh-ice—fresh-water system. For
the fresh-ice—fresh-water system, melt-water advection did not affect the melt
rates for x,, < 0.8. The simulation at x,, = .76 is just beneath that threshold
(cf. Figure 5.16d, grey square). Because the influence of the convective velocity
on the melt rate is stronger in the sea-ice—sea-water system, the melt rates for
a shear-driven melting of similar relative convective velocity, i.e. similar Ri,,
are larger. Consequently, the sea-ice-sea-water system is already affected by
melt-water advection for lower convective velocities than the fresh-ice—fresh-water
system. Melt rates, for which the influence of melt-water advection cannot be
ruled out, occur here for Ri, < 0.2.
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Chapter 6

Conclusions

This work is a combined laboratory and numerical study on the effect of
buoyancy-driven turbulence on the heat flux to a horizontal ice—water interface.
Buoyancy-driven turbulence beneath an ice—ocean interface mainly depends on
the combination of three processes: the presence of an ice interface next to tur-
bulence, the buoyancy reversal instability that intrinsically drives any ice—ocean
boundary layer, and double diffusion. In this work, I have approached the pro-
cesses one after another. Two methodological questions had to be addressed first,
before the two main questions have been tackled and answered thereafter.

How can the three processes involved in the turbulent mixing beneath
ice be studied independently from each other? The diffusive sublayer be-
tween any interface and turbulent convection is a well studied aspect, and the
posed question reduces to that of the separation of the remaining two processes:
the buoyancy reversal instability and double diffusion. I have demonstrated the
fresh-ice—fresh-water system as an idealised setup and framework. The idealisa-
tion simplifies the research subject and reduces the number of independent control
parameters without changing the qualitative structure of the mean-buoyancy pro-
file. The well-defined and well-controllable framework depends only on its far-field
temperature and allows me to study wall-bounded turbulence that arises from the
buoyancy reversal instability without the occurrence of double diffusion. I have
applied the framework successfully in the following in laboratory and simulations.

Can direct numerical simulations be used to reproduce and comple-
ment laboratory experiments? In its core, the question encompasses whether
or not the physical model involved in the direct numerical simulation is valid. The
validity of the physical model is assessed in two parts: First, I ask: How do the
melt rates of laboratory and simulation compare? Second, I ask: How does the
temporal evolution of their mean-temperature profile compare? The melt rates
agree quantitatively and the structure of the flow differs insignificantly. Thus,
the physical model is sound and I complement the temperature profile from the
laboratory experiment with the temperature and flow fields of the direct numer-
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ical simulations. The simulations are spatially and temporally higher resolved
and provide comprehensive statistics. This advantage has subsequently allowed
me to solve, first, the questions on the idealised setup, and, second, the questions
on the full setup including double diffusion.

How does the buoyancy reversal instability influence the flow structure
of free convection next to the ice interface? The simulations show that
molecular diffusion sets and limits the energy exchange at the ice interface, just
as seen for linear-buoyancy-driven free convection next to any smooth interface
under Dirichlet conditions. Deviating from linear-buoyancy free convection, free
convection with the buoyancy reversal instability imprints on the flow structure.
The diffusive sublayer of the former is quasi replaced by the inversion layer of
the latter. As a consequence, the extent of the diffusive sublayer decreases with
increasing far-field temperature. In the limit of high far-field temperatures the
diffusive-sublayer extent is similar to that of linear-buoyancy free convection. The
presence of the ice interface next to the buoyancy reversal instability reflects in
a factor of two to the diffusive-sublayer extent. That factor linearly decreases
down to one as the high-temperature limit is approached. The increased extent
of the diffusive sublayer decreases the effective surface buoyancy flux as well
as the surface heat flux. I have identify the extended diffusive sublayer as a
stably stratified shield of the ice against the turbulent outer layer. The effect of
the stably stratified shield is characterised by a Richardson number, Rig. This
understanding allows me to derive an analytical expression for the melt rate
wy of ice under purely thermally driven conditions from first principles. The
meltrate has been discussed in the context of more general systems, investigating
in particular the impact of melt water on the flow, the spatial homogeneity of
the melt rate and estimating the effect of salinity on the derived melt rates. The
meltrate has been discussed in the context of more general systems: The impact
of melt water on the flow shows to be only relevant for far-field temperature larger
15°C. The spatial homogeneity of the melt rate is characterised by its probability
density function, which shows relative standard deviations of up to 60 %. The
effect of salinity on the melt rate can be estimated from this setup with the
introduction of the Richardson number, Rig.

How does double diffusion influence the flow structure of free convec-
tion next to an interface? For the first time ever, a fully resolving simulation
of the physical processes beneath the horizontal sea-ice—sea-water interface is
performed to answer this question. The simulations show that molecular dif-
fusion sets and limits the energy exchange at the ice interface, just as seen for
the idealised setup: With increasing strength of the stably stratified shield, the
diffusive sublayer broadens. In the presence of double diffusion, however, the
stably stratified shield is more efficient in protecting the ice from turbulence. As
a consequence, the diffusive-sublayer extent is significantly increased over that of
the idealised setup and the fluxes of heat, salt and momentum to the interface
are reduced: The melt rate is decreased. I assess the two following questions
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that have hindered the determination of the energy transport across the diffusive
sublayer so far. How much is the diffusive-sublayer extent increased compared
to that the idealised setup? The diffusive-sublayer is increased by a factor of
10 for Rip = O(1). The diffusive-sublayer is increased by a factor of 200 for
Rip = O (100). An assessment of the unstable fraction of the diffusive sublayer is
given that provides the broadening. For (very) low Rig, both systems are mainly
thermally driven and the role of the stably stratified shield is negligible compared
to the influence of the wall on the flow. For high Rig, both systems are mainly
determined by the influence of the stably stratified shield. Besides the extent of
the diffusive sublayer, the interfacial conditions also need to be known. What are
the interfacial conditions between ice and the diffusive sublayer? The interfacial
conditions are determined tby he flux ratio between heat transport and salt trans-
port across the diffusive sublayer. I find that the flux ratio is mostly independent
of the diffusive-sublayer extent. As opposed to previous research methods, the
flux ratio, v is readily obtained as a simulation outcome: v = Le/2.12 = 94
with Le = 200. From the evolution of v with increasing Le, I have strong in-
dications that the real-world value will not play within the previously assessed
interval of [35, 70] but above. With the determination of the flux ratio, this work
provides physically sound interfacial temperatures and salinities in Figure 5.14.
With these two questions answered, I provide approximations to the melt rate in
Figure 5.16.
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Appendix A

Analytical Considerations

In this appendix, some analytical considerations are recorded that have been
essential for the development of the fifth chapter. In the pursuit of an analo-
gous presentation of chapter four and five, however, these considerations seemed
interuptive. They are appended in the following.

A.1 The Buoyancy

The buoyancy Eq. (2.1) is a function of the density Eq. (2.2). The density
is mainly effected by the salinity S of a fluid particle. For a typical ice-ocean
system, Tho ~ 0 °C , Tice = —1.0 °C and So ~ 36 g kg~ ! and Sjcc ~ 18 g kg™ !,
the largest relative buoyancy sensitivities found are at the order of

1 dp

— = =80x10"* g ! kg Ala

p(Siceyﬂce) oS Sice,Tice ( )
1 dp —5 ov—1

_ =-5.6 x107°°C". A.1b

P (Soo, Too) OT SooToo ( )

A temperature variation of order Tice — Two yields a relative density variation of
order 8.4 x 107°. A similar relative density variation is already achieved for a
salinity variation of T700 (Sice — So0)-

The resulting variations of buoyancy that occur within the parameter space
(S,T), is consequently largest for salinity variations. This variation is well-
captured with a first-order approximation for any temperature 6 (cf. Figure
Ala).

b
— ~ —ago, (A.2)

bm 0=0

with ag = (p (Sices Too) — P (S0 To0)) / 1P (Soos Tice) — P (Soos Too)|-  The varia-
tion of buoyancy that occur for temperature variations is more subtle. This can
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be infered from b <§,T) ‘ N (cf. Figure A.2a). The temperature
Se{0,21,35} g kg~!

of maximum density varies with salinity (cf. Figure A.2b) and needs to be rep-
resented depending on the salinity. I introduce a parameterisation of buoyancy
as

b

o= aso +ar (o), (A.3)

where ar (o) accounts for the variation of maximum density.

A.1.1 Buoyancy Parameterisation

The buoyancy parameterisation that I am looking for shall thus meet the following
requirements.

b
b 0 A4
b (8,T)=(Sc0,Teo) (A
b
b 1 A.4b
bm (S,T);E;,Tice) ( )
b
a S):_Si)ce —ag (A4C)
Hence,
S Sice
_ —1— A
ar (U) Soo - Sice 7 ( 5)
and
b

P (Sice; Too) —p (Som Too)
‘P (Som Tice) —p (Som Too)’

ag = (A.6b)

For avg = 290 the deviations between Eq. (2.2) and Eq. (A.6) are indistinguish-
able by eye when the full parameter space is observed (cf. Figure A.la). Slight
deviations only appear for salinities close to So (cf. Figure A.1b). Caution is
advised when low values of ag < 10 are to be investigated. Then the deviations
between Eq. (2.2) and Eq. (A.6) become apparent. The smaller ag is, the more
pronounced the curvature of iso-buoyancy lines in the parametric plot (cf. Figure
Allc).

It shows that the simpler buoyancy parameterisation,

b
b—z—(ag—i—l)a—i—@z

= —Rip o +6, (A7)
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also satisfies Eq. (A.4) except for

b
— —ag. A8
bm (SyT);EZmTOO) aS ( )

The parameter combination {Sice, T }, however, is never expected to occur due
to the significantly smaller diffusivity of salinity. Eq. (A.8) can therefore be re-
moved from requirements Eq. (A.4). The resulting parameterisation, Eq. (A.7),
matches the data better in the relevent region of the paramter space and approx-
imates it well, even for small Richardson numbers down to 5 and 2 (cf. Figure

A.lc). Similar parameterisations have been employed before, for example by
(Zweigle, 2011, 21) and by Carpenter, Sommer and Wiiest (2012).

A.1.2 Explicit Expression for the Buoyancy Parameters

In analogy to the analysis of the fresh-ice—fresh-water setup, I define the strength
of the buoyancy forcing b, with respect to the strength of the stable stratification
next to the ice bjce.

bm =b (Som Tice) (Aga)
bice =b (Sice; T’ice) (A9b>

The best approximation to the buoyancy b is given by a high-order polynomial
that depends on both temperature and salinity (cf. Eqs. (2.2, 2.1)). A suffi-
ciently good approximation is obtained by a fresh-water-like temperature depen-
dence with a variable maximum-density temperature T;,, (S) and a linear salinity
dependence in density.

Pat = ps - Apr (A.10a)
ps (S) =c1+c2S (A.10Db)
Apr (T,8) =1 —e3(T — Tpy (S))? (A.10c)
T (S) = Trn — 48 (A.10d)
With the definitions Eq. (A.9), I obtain
bm,calc = —gc3 (Too - ﬂce) (Too + T‘ice - 2Tm) & (All)
bico,cale = %02 (Sice = So) + O (0.1 bice) - (A.12)

from this approximation (cf. Eq. (A.10)). In general this formulation of b,, and
bice yields relative deviations from Eq. (A.10) smaller than 5% (cf. Figure A.3) for
the parameter range of interest. Caution is advised for bjce when uncommonly
high far-field temperatures 1o, > 6 °C are to be considered because relative
deviations then exceed 10% (cf. Figure A.3b).
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Figure A.3: Comparison of the approximation of bice, bice,cale (cf. Eq. (A.12)), to the full
expression that results from Eq. (A.10) for variations of interfacial salinity in the relevant
parameter range. a) Far-field salinity is varied in the relevant parameter range. Relative
deviation of bice calc tO bice Mk as obtained from Eq. (A.10). d) Far-field temperature
is varied in the relevant parameter range. Relative deviation of bicecalc 10 bice, MK aS
obtained from Eq. (A.10).
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A.2 Two-Dimensional Proof-Of-Concept Study: Cre-
ation of the Buoyancy Reversal Instability by
Double Diffusion

The mixing as a consequence of different diffusivities is called double diffusive
(Turner, 1974). Before I studied the impact of double-diffusive mixing on the
melting of ice, I have verified that the simulations reproduce the buoyancy reversal
instability by double diffusion based on the chosen buoyancy parameterisation.
Here, I depict the working principle in an averaged sense and demonstrate it with
two-dimensional simulations.

If temperature and salinity mix equally well, then

(9) (') = S0 1 (T) () = Too

!

Sice - Soo CZjice - Too

(A.13)

Hence, the mean-buoyancy profile along z maps to that of a diagonal line con-
necting (Seo, To) and (Sice, Tice) in a parametric plot (cf. Figure A.4a, solid line).
Consequently, if temperature and salinity mix differently well, the mean-buoyancy
profile maps to that of a curved path (cf. Figure A.4a, dotted and dashed lines).
Temperature has the larger diffusivity, x; > ks, and is the destabilising agent
(cf. Eq. (2.14)). Temperature will therefore always mix more efficiently and its
mixing will curve the path towards the point of the instability by, = b (S0, Tice)-
If the curvature is sufficient to exceed the contour line of b/b,,, = 0, the buoyancy
reversal instability occurs (cf. Figure A.4b, dotted and dashed lines crossing the
orange line). The exact path in the parametric plot is subject to the solution of
the two advection—diffusion equations, Eq. (2.5¢) and Eq. (2.5d).

Neglecting the advection terms in Eq. (2.5¢) and Eq. (2.5d), one obtains a
mean-buoyancy profile that depends only on the diffusivities of temperature and
salinity, k¢ and k. The mean-buoyancy profile then evolves as follows. Close to
the interface, Rig o is always larger than the normalised temperature ©, because
o~ 1,0~ 1and Rip > 1 [cf. Eq. (2.14)]. Here, the buoyancy follows the diffusive
advancement of the normalised salinity o. Away from the interface, © inevitably
becomes larger than Riy o, because temperature diffusively advances faster than
salinity with k; > ks. There, the buoyancy follows the diffusive advancement of
© and becomes negative (cf. Eq. (2.14)). This is the origin of the buoyancy
reversal instability. The diffusive advancement of © compared to that of o,

Ky 1/2
<> = Lel'/?, (A.14)
Rs

—square root of the so called Lewis number, Le—scales the maximum strength
of the domain-wide buoyancy reversal instability .

Accounting for the advection term in Eq. (2.5¢) and Eq. (2.5d), one obtains a
mean-buoyancy profile that depends not only on the diffusivities of temperature
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Figure A.4: Diffusive mean-buoyancy profiles (black) for varying ratio (';—Z) / = Le!/?
in a parametric plot. Coloured lines indicate iso-buoyancy levels. a) For increasing
diffusivitiy difference, Le, the curvature of the mean-buoyancy profile increases. b) Zoom-
in on the high-salinity region of (a). If the Le is large enough, the mean-buoyancy profile
crosses the zero-buoyancy line (orange) and negative buoyancies occur (to the right of
the orange line). This is the origin of the buoyancy reversal instability that drives the
system and leads to mixing if the advection term is accounted for.
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Figure A.5: Three two-dimensional simulation runs of varying initial gradient thickness
and diffusivity of temperature and salinity illustrate the working principle of double dif-
fusion. The runs are simulated with the parameterisation Eq. (A.6). They reproduce
double diffusion as expected. The upper row illustrates the mean buoyancy of the sim-
ulations parametrically (analogous to Figure A.4). The lower row illustrates the mean
buoyancy of the simulations spatially. Each column represents one of the following sim-
ulations after different evolution times: a,d) a run with same diffusivities, but different
initial gradient thicknesses, b,e) a run with same diffusivities and same initial gradient
thicknesses and c,f) a run with different diffusivities and same initial gradient thicknesses.
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and salinity but also on the turbulent mixing. To illustrate this working principle,
its dependence on the diffusivities and its reproduction by Eq. (2.14), I exam-
plarily give three simulated mean-buoyancy profiles for varying initial gradient
thickness and diffusivity of temperature and salinity:

Run (i) Same diffusivities, different initial gradient thicknesses
Run (ii) Same diffusivities, same initial gradient thicknesses

Run (iii) Different diffusivities, same initial gradient thicknesses

The buoyancy profile in run (i) shows a pronounced buoyancy reversal instability
in the initial profile (t=0). The gradient thickness of the salinity profile is chosen
ten times smaller than the gradient thickness of the temperature profile. Salinity
increases quickly to its far-field value next to the interface. Temperature increases
more slowly and reaches its far-field value further away from the interface. Next
to the interface, buoyancy decreases with increasing salinity. Away from the
interface, buoyancy increases with increasing temperature. Because temperature
and salinity diffuse at the same rates in (i), their gradient thicknesses approximate
each other. Salinity increasingly dominates the buoyancy across the whole domain
and the buoyancy reversal instability vanishes (cf. Figure A.5a,e).

Run (ii) illustrates the limit of similar gradient thicknesses, the buoyancy profile
does not feature a buoyancy reversal instability anymore (cf. Figure A.5b.d).

If temperature and salinity diffuse, however, at different rates like in run (iii)
as opposed to run (i) and (ii), then a buoyancy reversal instability intrinsically
creates even for similar initial gradient thicknesses (cf. Figure A.5c,f).

With these two-dimensional simulation a proof-of-concept has been achieved.

A.3 Initial Conditions

From the two-dimensional proof-of-concept study I have learned that system
tends from an initial diffusive state to a final turbulent free-convection state.
The initial state is set as

a=)

) =0, (A.15)

;) : (A.16)

v(x,t=
Tbg (.73, = 0) = Tice + Troerf <_

g VT
Sbg (7, = 0) = Sice + Socerf < 7&/10 , (A.17)

SE

where 9; = 0.056 Lo and Lg is the system length scale. The final turbulent state
is my objective.
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I aim to speed up the initial transient of the system from the diffusive state
to the final turbulent state. I use initial perturbations to the scalar profiles to
provide the system already initially with driving buoyancy perturbations. The
turbulent state of proof-of-concept study features temperature fluctuations on the
order of 15% (T, — Tice) and salinity fluctuations on the order of 8% (Soo — Sice)-
I supply a tenth part of theses fluctuations to all following systems as initial
broadband perturbations Tpertur, and Sperturb- The perturbations are chosen to
have a gaussian power spectral density centered around a spatial frequency fo
with a standart deviation of fy/6. The temperature field is perturbed as

T (2,t = 0) = Tperturb (21, 72) [1 —erf <>] + Tyy (A.18)

and the salinity field is perturbed as

2
S ({L‘,t = 0) = Sperturb (.Tl, X2, Z) exp (_ (Z;p(serturb> ) + Sbg, (Alg)

where zperturb/LO e 0.006, (51'73 — 0.0025 Lo,
max (Sperturb (21,22, 2)) / (Soo — Sice) = 0.008 and &,; = 0.056 Lo,
max (Tice (21, 22)) / (Tso — Tice) = 0.015. fy = 26.6 corresponds to 7 d.

A.4 Boundary Conditions

A.4.1 1In Nature

Unlike in the purely thermally driven system, here, molecular fluxes at the in-
terface, the interfacial temperature and the interfacial salinity values adjust dy-
namically. Frank 1950 formulated the boundary conditions as

(T, S)‘Zice = (Tf (Sice) 5 Sice) (A.20a)
oT  Latpice 0Z (t)

9k ot (A.20b)

98 _ Siee 0Z (1) (A.20c)

0z kg Ot

The first boundary condition Eq. (A.20a) forms the Dirichlet boundary condition
of the temperature field at the interface just as in the fresh-ice—fresh-water system
and is generally approximated as

Tice (21, 22) + MmSice (21, 22) = 0, (A.21)

where m = 0.05411 °C g~ ! kg (for sea water) and m = 0.0598 °C g~! kg (for
NaCl solutions) is a first order fitting parameter to the empirical relationship of
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freezing-point temperature T and salinity (Notz, 2005). The interface value Tic.
depends on the interface value Sice of the salinity field.

Each the second and the third boundary condition Eq. (A.20b) and Eq. (A.20c¢)
form a boundary condition on the velocity field. We found from the study of
the purely fresh-ice—fresh-water system, that the flow velocity imposed by this
boundary condition is negligable for the Richardson numbers under considera-
tion. The boundary conditions on the velocity field must essentially be identical,
because the interface can only ablate at one well-defined rate. Thus, Eq. (A.20b)
and Eq. (A.20c) together form the Neumann boundary condition of the salinity
field at the interface:

/o @ _ Pice Lat Tice (Sice) -1 K al
S 0 N Pwater CpT’ice (Sice> Sice T

= (A.22)

Zice Zice

Eq. (A.21) and Eq. (A.22) illustrate how the boundary conditions of tempera-
ture field and salinity field depend on the turbulent evolution of the flow. Certain
prevailing interfacial values and gradients of temperature and salinity, Ty, Si,
03T| .0, and 955 |.=0, form the boundary conditions and determine the buoy-
ancy structure of the flow close to the interface. The boundary conditions and
the buoyancy profile force the velocity field of the flow. The temperature and
salinity field evolves according to the velocity field and the boundary condition.
The evolution of the flow in turn yields new interfacial gradients, 83T |.=0, and
955 |.=0. The interfacial gradients influence both the interfacial values, Ty, Sh,
and the evolution of the flow.

A.4.2 1In the Simulations

The interfacial temperature, Tic., and interfacial salinity, Sjc., are subject to the
evolution of the flow and to the boundary conditions (cf. Appendix A.4.1). In
general, they are not constant, and neither is bjce = b (Sice, Tice) constant.

Notwithstanding the boundary conditions encountered in nature, Eq. (A.21) and
Eq. (A.22), I have apply Dirichlet boundary conditions at the top boundary of
the scalar fields. The implementation of dynamical boundary conditions in the al-
gorithm for the numerical simulations is not trivial and the following workaround
is used instead:

I perform the simulations with Dirichlet boundary conditions at the top bound-
ary of the scalar fields. It is therefore not readily evident that the simulation
reflect a natural evolution of the fields. Once, turbulence is fully developed, the
simulation certainly yields fixed interfacial scalar gradients. I make use of these
fully developed interfacial scalar gradients to redefine {T, Tice, Soo, Sice} & pOs-
teriori such that the boundary conditions Eq. (A.21) and Eq. (A.22) are met.
Thus, the fields in the simulations do initially not evolve as they would in nature,
but they do so once turbulence is fully developed.
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Determination of Interfacial Temperature and Salinity

{To,Soc} and the interfacial scalar gradients determine {Tice, Sice} as follows.
Following Gade (1993), I use the gradient thicknesses of salinity and temperature,

85 = (Soo — Sice) / 35, and & = (Too — Tice) / 5T, (A.23)

to derive an expression for the interfacial salinity Sjce from the boundary condition
Eq. (A.22):

Pice Lat KRS (Soo - Sice)
Sice = - - Ri, A24
Pwater Cp KT (Too - ﬂce) ( )
where
R = 6,/5, (A.25)

is the ratio of gradient thicknesses between temperature and salinity. Eq. (A.24)
simplifies to

fSs
Too - Tf (Sice) + f7

with Eq. (A.21) and f = —(pice/ pwater) (Lat/cp)(ks/kT)R. Eq. (A.26) converges
independently of the initial choice of Sjce. Sice only depends on T, S and R.
Tice is then obtained from Sjce with Eq. (A.21).

Stee = (A.26)

The gradient-thickness ratio R of natural systems is unknown. Previous studies
suggests R ~ 2 based on temperature and salinity profiles measured in a labora-
tory experiment (Martin and Kauffman, 1977). For identical gradient thicknesses,
R = 1. For pure diffusion, Gade (1993) provides R = 13.8 —1.17 (Tx — Tice) with
the solutions given by Martin and Kauffman (1977).

A.5 Sensitivity of Interface Conditions to the
Gradient-Thickness Ratio

If the flow is intermittent, gradient-thickness ratio in-between Gade (1993)’s pa-
rameterisation or pure diffusion and 2.25 will occur. Here, I utilise Eq. (A.26) to
obtain a sense for the sensitivity of Tice, b, and Rig on R.

The sensitivity of Tice, b, and Rig on T, appears slightly stronger than on So.
Tice and b, change by order one for considerable changes in So, from 26 g kg™!
to 38 g kg~! but several times as strong for considerable changes in T, from
(Tso — Tice) = 0 K to up to (T — Tice) = 5 K. Rip even changes by an order of
magnitude for varying To,. For very high far-field temperatures, the sensitivity
of Rig on S is lost and it only depends on T'.
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Figure A.6: a) Dependence of T on far-field temperature T,, and on salinity S..
following Eq. (A.26) for R = 2. b) b, = b(S = S, T = Tice) as calculated from the
values of (a), Eq. (9) in Martin and Kauffman (1977), Eq. (2.1) and Eq. (4.18). ¢)
Rip =1 — %ﬁ as calculated from the values of (a), Eq. (9) in Martin and Kauffman
(1977), Eq. (2.1) and Eq. (4.18). d) Dependence of Tic. on the gradient-thickness ratio
R following Eq. (A.26) for S, =38 g kg™!. €) b, = b(S = Soo, T = Tice) as calculated
from the values of (b), Eq. (9) in Martin and Kauffman (1977), Eq. (2.1) and Eq. (4.18).
f) Rip =1— ll’;“ as calculated from the values of (b), Eq. (9) in Martin and Kauffman

(1977), Bq. (2.1) and Eq. (4.18).
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The sensitivity of Tice, b, and Rig on R appears slightly stronger than on Su.
Tice and b, change by order one for considerable changes in Ss from 26 g kg™!
to 38 g kg~! but several times as strong for considerable changes in T, from
(Tso — Tice) = 0 K to up to (T — Tice) = 5 K. Rip even changes by an order of
magnitude for varying Tr,.

For R = 2 as estimated from the laboratory experiment of Martin and Kauffman
(1977), one finds that the interfacial temperature varies between about —1.3°C
and about —0.2°C for different far-field temperatures and salinities. For T, just
slightly above Tice, Tice increases rapidly with increasing T, (not shown). This
behaviour yields the lower branch in Figure A.6a of increasing T, with decreasing
Too — Tice- The upper branch for T, well above Ti,e and Tice increases with
increasing Too — Tice-

The absolut magnitude of the minimum buoyancy b,,, varies by order one with
Soo-

A.6 Sensitivity of the Buoyancy-Reversal Strength on
the Initial Conditions

The simulations of the fresh-ice—fresh-water interface serve as a starting point for
the setup of the ice—ocean interface. I choose error functions as mean vertical pro-
files in temperature (cf. Figure 5.3, red dashed) and salinity (purple dashed). Run
(iii) indicates that considerable computational time is expended when diffusion
alone developes the buoyancy reversal instability (BRI) from identical gradient
thicknesses in temperature and salinity. The ratio of gradient thicknesses is R.
R (t = 0) = Rinitial sets the initial BRI strength bmin/bm|,_o- Its choice is a risky
business. On the one hand the system should quickly reach a fully developed
state in which the initial conditions are forgotten. On the other hand the system
should not be provided with potential energy substanially higher than the in-flow
that it would develop out of itself. The choice of Rjpitia is further complicated
by the dependence of the initial BRI strength on the Rig of the simulation (cf.
Figure A.7), and the dependence of the potential-energy flow to the system on
the Le.

I choose an initial value of R = Rjnjtia1 = 4. This is close to previously reported
values of R ~ 2.3 (Gade, 1993) and features a sufficiently strong initial BRI of
about 0.4+ 0.1 (cf. Figure A.7) to trigger convection early within the simulation
(cf. Figure A.8). It will be shown later that the choice of Rj,itia influences
the evolution of relevant flow properties significantly. The relevant simulation
outcome, R and e, remain however uneffected (cf. Figure A.8), and Ripjtia) = 4
seems to yield quickly developed and stable results.

Spatial perturbations to the initial BRI b,/ bm|t:0 grow in time and lead up to
mixing and free convection. The perturbations are chosen similar to the setup
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Figure A.8: a) The simulation outcome R at a final non-dimensionalised simulation time
t = 30 is similar for simulations of different R;pitia1- The transition to the final value takes
a substantial fraction of the whole simulation time for too low a value of Ripitia (here
for Rinitial = 2). Simulations of higher Rjnitial reach a stable state more quickly. b) The
simulation outcome e at a final non-dimensionalised simulation time ¢ = 30 seems similar
for simulations of different Rjnitia1. The transition to the final value is not achieved for
simulations of too low a value of Ripnitial (here for Ripitial = 2). Simulations of too high
Rinitial seem to oscillate around a final value that is not reached.
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Figure A.9: Non-dimensionalised temperature gradient (a), salinity gradient (b), in-
tegrated horizontal velocity fluctuations (c) and vertical velocity fluctuations (d) over
non-dimensionalised simulation time for simulations of different initial temperature fluc-
tuations: half as strong as later on used in simulations (black), twice as strong (red),
five times as strong (green). Final temperature gradients, salinity gradients and ve-
locity fluctuations that are identical within the degree of statistical convergence of the
two-dimensional sensitivity test study.

of the fresh-ice—fresh-water interface. I perform three simulation of initial tem-
perature fluctuations that are (i) half as strong, (ii) twice as strong and (iii)
five times as strong to test the sensitivity of the simulation on the initial per-
turbations (cf. Figure A.9). Final temperature gradients, salinity gradients and
velocity fluctuations that are identical within the degree of statistical convergence
of the two-dimensional sensitivity test study. Final temperature fluctuations are
of the order of 15% (T — Tice)-
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Appendix B

Experimental Considerations

In this appendix, the heat flux through the walls of the tank in the laboratory
experiment is assessed. Further, the double page 114-115 provides the ensemble
data of the laboratory realisation and the numerical realisation of the turbulent-
mixing experiment at To, ~ 5 °C. Finally, an assessment of the experiment by
Martin and Kauffman (1977) is given.

B.1 Heat Flux Through Walls

Eq. (3.5) assumes that no energy flows through water-body boundaries except
through the ice-water interface but the system is not perfectly closed. Even
though it is isolated and located in a cooling chamber, energy still enters and
leaves the system through its boundaries. In the following, I assess how AFEjy is
influenced by the energy fluxes through the boundaries, first the latent-heat flux
by melt water dripping from the ice walls, second the sensible-heat flux through
the tank walls.

Latent-Heat Flux

Melt water is created by two processes: the energy exchange at the ice—water
interface and the energy exchange at the ice—air interface.

The energy exchange at the ice-air interface, Eyw air, compares to the energy
exchange at the ice-water interface, Frnw, water, as

0.1x0.3
—Aair VT €3 (1 + 4%&355)

Emw7air _ ] (B].)
Emw,water _)\W&tereB v,I'|Wa]1
The geometrical factor (1 + 4%) represents one main and four lateral ice

walls of an area of 0.1 mx0.35 m that are in contact with air compared to the the
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ice—water interface of an area of 0.35 mx0.35 m. Eq. (B.1) can be simplified as
follows because the initial and final temperatures of the melt waters are identical,

Emw,air _ 0.10:~’70,w3n:e1r7 (BQ)

Emw,water 20,air

where zy is the characteristic distance over which the temperature change
VTeszy occurs. If both energy exchanges were diffusive, 0.10 2o water/20,air =
0.10 (Pryater/ Prair)l/ 2 = 0.32. The energy exchange at the ice—air interface is
laminar most of the time, because the cooling chamber is only in operating mode
for a short term every 30 minutes. The energy exchange at the ice-water interface,
however, is turbulent, and Dmweale < 0.32.

Emw,water

The internal-energy change of the melt water compares to the heat of fusion as

Emw,water . picehmcv (Tend - ﬂce)

= B.3
Ehat piceth ( )

Eraw water/ Elat < 0.08 for all laboratory experiments except the one at T, =
15.9 °C, where it is < 0.20. I therefore conclude to neglect melt water dripping
from the ice—air interface to the water body, and to retain melt water from the
ice—water interface in the analysis.

Sensible-Heat Flux

The energy flux through the tank walls distorts AFE;.t as a measure for the en-
ergy exchange at the fresh-ice—fresh-water interface. The temperature difference
between the water body and the cooling chamber drive this energy flux. In prin-
ciple, I minimise the temperature difference, but the chamber’s ability to keep
the temperature is limited to about +3 °C. The chamber is mostly in a stand-by
mode while it is slowly heating from temperatures beneath its set temperature
to temperatures above its set temperature. The temperature difference between
cooling chamber and water body, hence, varies from realisations to realisation.
Further, the temperature profile in the cooling chamber stratifies while it is in
stand-by mode and one finds a vertical temperature gradient in air next to the
tank wall (cf. Figure B.1). I therefore obtain the mean energy flux through the
tank walls from the temporal evolution of the bulk temperatures of all laboratory
realisations (cf. Figure B.2).

In the beginning of the laboratory realisation at T, = 5 °C, before the ice is in
contact with the water but after the water temperature has been homogenised to
Ts, the mean-temperature flux out of the water body is

K
— (0.3 4+2.0) x 10*4g (B.4)
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Figure B.1: a) Temporal evolution of individual thermistor measurements in a water
body at homogeneous far-field temperature. b) Temporal evolution of individual thermis-
tor measurements in air next to the water body. ¢) Temporal mean of the temperature
evolution shown in (a) and (b).
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Figure B.2: Mean energy flux through the tank walls from the evolution of the mean
temperatures of all laboratory realisations. a) Before the laboratory realisation but after
the water temperature has been homogenised to T,,, the mean-temperature flux out of
the water body is — (0.3 +2.0) x 107*£. b) After the laboratory realisation but while

the water is mixed with a pump, the mean-temperature flux out of the water body is
+(1.6+9.9) x 107°K,
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(cf. Figure B.2a). At the end of a laboratory realisation, while the water is mixed
with a pump, the mean-temperature flux to the tank is

K
+ (1.6 £9.9) x 107°= (B.5)
]
(cf. Figure B.2b). These temperature fluxes reveal that the average temperature
in the cooling chamber at the height of the tank is in-between T,, and Teng-
The spread of 2.0 x 107% K/s is larger than the average temperature flux of
0.3 x 107* K/s itself.

From the spread of 2.0 x 107% K/s and (Tenq — Tho) = 0.25 K follows that A Ejpy
could statistically deviate by up to 80 % over the course of a 20-minute laboratory
realisation. Effectively the observed statistical spread for a given run time is less
than 10 % for all bulk measurements except for T, = 15.9 °C, where it is between

5 % and 22 % (cf. Figure 3.7).

From the average temperature flux of 0.3 x 10~* K/s follows that a systematic
deviation can be excluded to an accuracy of 12 % of AFE;y;.






114 Experimental Considerations

B.2 Turbulent Laboratory Experiment for 7, = 5.0 °C

Figure B.3: Thermistor measurements of all individual laboratory realisations of the
ensemble of T, = 5.0 °C. Y axis: Temperature from 0 °C to 5.5 °C; ticks mark one-
degree-celsius steps. X axis: Time; ticks mark 5 minute steps. The first vertical line
marks the time of ice—water contact, the second line the starting time of external mixing
with a pump.
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B.3 Numerical Simulation of the Turbulent Labora-
tory Experiment

Figure B.4: Temperature measurement of randomly selected towers of a numerical
simulation of T, = 4.975 °C. Y axis: Temperature from 0 °C to 5.5 °C; ticks mark one-
degree-celsius steps. X axis: Time; ticks mark 5 minute steps. The first vertical line
marks the time of ice—water contact, the second line the starting time of external mixing
with a pump.
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Figure B.5: a) Temperature (blue) and salinity (purple) profiles observed by Martin and
Kauffman (1977) in their laboratory tank experiment after 46.5h. b,c) Buoyancy profile
derived from the temperature and salinity profiles in (a).

B.4 The Martin—Kauffman Case

The study of Martin and Kauffman (1977) provides an insightful reference. They
conduct a laboratory experiment of floating fresh ice on a 37.6 %oNaCl solution.
From the temperature and salinity profiles, they provide (cf. Figure B.5a), one
can obtain the buoyancy profile (cf. Figure B.5b,c). It suggests values bijce =
1.384 10~ 'm s72, by, = 1.083 1072>m s~2 and byn = 2.83 107! b, from which
we then obtain Rig = 129 and Ri, = 450. The Ripg number determined from
their laboratory experiment agrees almost to order one with the estimate from
our diffusive assessment of Rig ~ 300 for T, = 0 “Cand S,, = 38 g kg~ ! (cf.
Figure A.6).

Martin and Kauffman (1977) provide the relationship of boundary conditions
Tices, Seo and T + mSy from their one-dimensional theoretical model, where
T is the temperature at a height s = 2 x 2.8 x (kg t)1/2 beneath the ice and
m = 5.71 x 1072 °C. T use their results (copied in Figure B.6a) to obtain the
minimum buoyancy values b, (cf. Figure B.6b) and Richardson numbers Ri
(cf. Figure B.6b). To give b, and Rij as a function of the temperature difference
Too — Tice, I rewrite their dependent variable H = Ty + mSs. I further assume
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Figure B.6: a) Copy of relationship between interfacial temperature T, and far-field
temperature T, and salinity S, (originally given as Fig. 9. in Martin and Kauffman
(1977)). b) by, = b(S = Soo, T = Tice) as calculated from the values of (a), Eq. (9) in
Martin and Kauffman (1977), Eq. (2.1) and Eq. (4.18). ¢) Rip = 1 — &= as calculated
from the values of (a), Eq. (9) in Martin and Kauffman (1977), Eq. (2.1) and Eq. (4.18).

that the temperature Ts, defined as the temperature at the lower end of the
diffusive layer next to the wall, is approximately Tice + 0.9 (T — Tice)-

H' =Ty + mSoo ~ Tice + 0.9 (Too — Tice) — T (Soo) (B.6)

T — Theo ~ % (H' — (T — Ty (Sw0))) - (B.7)

Depending on the temperature difference Ty, — Tice and the far-field salinity S,
their results yield Richardson numbers between 17 and 170.

One can further use the buoyancy profiles obtained from the laboratory experi-
ment of Martin and Kauffman (1977) as indication to how the system is repre-
sented in the (S,T)-diagram (cf. Figure B.7). In agreement with the (o,6)-profiles
found from diffusive salinity and temperature profiles (cf. Figure A.4), the (0,0)-
profiles of Martin and Kauffman (1977) alsO bend towards (0,1). In particular,
the curvature of the (o,6)-profile in the parameter space is far more pronounced
than the curvature of the iso-buoyancy lines (coloured lines). The comparison
of the two shows that difference of diffusivities has a substanially stronger influ-
ence on the (S, T)-profile than does the difference between parabolic and bilinear
buoyancy profile. I conclude that the bilinear buoyancy function Eq. (A.6) is
sufficiently precise for the simulation setup, given the constraints in Le number
and boundary conditions.
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Figure B.7: a) Parametric plot of iso-buoyancy contours for the laboratory study con-
ducted by Martin and Kauffman (1977) as calculated from their temperature and salinity
profiles Figure B.6a, Eq. (9) in (Martin and Kauffman, 1977, 279), Eq. (2.1) and Eq.
(4.18). b) Zoom-in on the high-salinity region of (a)

An evaluation of the temperature profile of Martin and Kauffman (1977)
(cf. Figure B.6a), yields a melt rate in their laboratory experiment of about
(0.82 4 0.17) mm d~!. If the melt rate expression obtained in this work, Eq.
(5.24), is used in combination with the density of NaCl (as used in their ex-
periment), melt rates by a factor of three lower than those observed in their
experiment are obtained (cf. Figure B.8). Two main consideration may explain
the discrepancy. First, the determination of the unstable fraction yields a con-
siderable uncertainty for the Richardson number equivalent to the laboratory
experiment by Martin and Kauffman (1977). The comparison would thus indi-
cate that the unstable fraction is actually larger than given in Eq. (5.7). Second,
the bound laboratory configuration that they use and run till equilibrium may
also have influenced their result. Further free-convection experiments of lower
Richardson number along with an stability analysis to properly determine the
unstable fraction would provide insight.
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Figure B.8: Melt rate as derived from Eq. (5.24) for ice in a 38 g kg~ NaCl solution as
a function of (T, — Tice). Diffusive melt rates for boundary layers of thicknesses 0.14 m,
3 m and 8 m provide a reference (dashed lines). The black dot is the melt rate derived
from the temperature profile of the experiment of Martin and Kauffman (1977) at time

46.5h.
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the far-field temperature parameter y,,, the Richardson number Ri, far-
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and Eq. (4.5), respectively. The turbulent Reynolds number Reqy,, is
the maximum value of e?/ (ev) in the domain with turbulent kinetic en-
ergy k, viscous dissipation rate € and viscosity v. Reywb and w,z,v !
are measures for the scale separation in the simulations. The diffusive
velocity scale wg = (2o bm)l/ % with the diffusive length scale zg is defined
in Eq. (4.3). The last two columuns, the diffusive length scale and the
melt rate of the fresh-ice—fresh-water interface, wy, Eq. (4.12), are results
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2.2 Properties of the numerical simulations of the sea-ice—sea-water system.
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the Prandtl number Pr, Lewis number Le, and Richardson number Ri.
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signed to the simulation throughout the whole work. They are chosen
such that they match the colour of the fresh-ice—fresh-water simulation of
corresponding Richardson number (with the exception of the simulation of
Pr = 10). The columns 6-8 characterise the turbulent system in its stage
of final simulation time. The simulations reach a boundary layer height,
Zest, [cf. Eq. (5.5)] of about 0.15 m, and a turbulence intensity, “=Zest,
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kinetic energy k, viscous dissipation rate € and viscosity v. The convective
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