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Abstract. The European MACC (Monitoring Atmospheric

Composition and Climate) project is preparing the opera-

tional Copernicus Atmosphere Monitoring Service (CAMS),

one of the services of the European Copernicus Programme

on Earth observation and environmental services. MACC

uses data assimilation to combine in situ and remote sensing

observations with global and regional models of atmospheric

reactive gases, aerosols, and greenhouse gases, and is based

on the Integrated Forecasting System of the European Cen-

tre for Medium-Range Weather Forecasts (ECMWF). The

global component of the MACC service has a dedicated val-

idation activity to document the quality of the atmospheric

composition products. In this paper we discuss the approach

to validation that has been developed over the past 3 years.

Topics discussed are the validation requirements, the opera-

tional aspects, the measurement data sets used, the structure

of the validation reports, the models and assimilation systems

validated, the procedure to introduce new upgrades, and the

scoring methods. One specific target of the MACC system

concerns forecasting special events with high-pollution con-

centrations. Such events receive extra attention in the vali-

dation process. Finally, a summary is provided of the results

from the validation of the latest set of daily global analysis

and forecast products from the MACC system reported in

November 2014.
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1 Introduction

Air pollution is a major issue worldwide, and evidence is ac-

cruing on its adverse effects on human health (e.g. WHO,

2013) and ecosystems (e.g. Krupa et al., 2006). Since some

air pollutants are also radiatively active, climate change and

air pollution are tightly linked problems (IPCC, 2013; Ala-

paty et al., 2012). Air pollutant concentrations are not only

influenced by very local sources (traffic, industry, local heat-

ing) but also contain a long-range component (HTAP, 2010;

Schere et al., 2012). Greenhouse gases and certain pollutants

like carbon monoxide (CO) and ozone (O3) have long res-

idence times and can easily travel around the globe, while

chlorofluorocarbons can enter the stratosphere, harming the

ozone layer (WMO, 2014). Desert dust, volcanic ash, and

sulfur dioxide (SO2), or pollution plumes from major fires of-

ten travel far, even between continents, and long-range trans-

ported air masses can have a major influence on pollution

concentrations at the surface. The day-to-day variability of

pollution levels is large, and strongly influenced by local and

large-scale weather patterns.

The European Copernicus programme (http://www.

copernicus.eu) is focusing on Earth observation activities in

the field of land, marine, atmosphere, emergency monitor-

ing, climate change, and security. This programme includes

a series of satellite missions – the so-called sentinels. Sen-

tinel 5 precursor (Veefkind et al., 2012; launch planned in

2016), Sentinel 4, and Sentinel 5 are missions dedicated to

the atmosphere.

The atmospheric component of the Copernicus pro-

gramme is the Copernicus Atmosphere Monitoring Service

(CAMS). This service has been established to help Europe

respond to air quality problems and a changing climate.

The purpose of the CAMS and the precursor project MACC

(Monitoring Atmospheric Composition and Climate) is to

combine satellite and other observations into a data assimila-

tion modelling system in order to provide daily analyses and

forecasts of the variability in atmospheric pollutant concen-

trations. CAMS covers global and regional scales, providing

boundary conditions to finer-scale air quality models.

The CAMS system will provide operational services for

the composition of the atmosphere from 2015 onward, and

was developed in the past 10 years by a series of Euro-

pean projects including Global and Regional Earth Sys-

tem Monitoring Using Satellite and In situ Data (GEMS;

Hollingsworth et al., 2008), MACC-I, MACC-II, and the cur-

rent MACC-III (http://www.copernicus-atmosphere.eu). For

the global component of MACC, the numerical weather pre-

diction Integrated Forecasting System (IFS) of the European

Centre for Medium-Range Weather Forecasts (ECMWF)

was extended to provide daily forecasts, analyses, and re-

analyses of atmospheric composition, by combining satellite

observations of atmospheric composition with state-of-the-

art atmospheric modelling. Modules for aerosols (Morcrette

et al., 2009; Benedetti et al., 2009) and greenhouse gases (En-

gelen et al., 2009; Agustí-Panareda et al., 2014) were added

to the IFS model code. Originally, atmospheric chemistry

was not included online in the IFS, rather the chemistry trans-

port models were run alongside the meteorological analysis

system IFS with meteorological fields and chemical tenden-

cies exchanged by a coupler (Flemming et al., 2009). Two

such systems were developed, coupling the IFS to the chem-

ical transport models (CTMs) MOZART (Kinnison et al.,

2007) or TM5 (Huijnen et al., 2010). More recently, this re-

active chemistry component has been integrated in the IFS

(Flemming et al., 2015), creating the Composition-IFS (C-

IFS) system.

Through continued quantitative validation of forecasts and

analyses, the performance of the MACC model and data as-

similation system is documented. Awareness of issues relat-

ing to the uncertainties and representativeness of observa-

tions is crucial for interpreting the comparisons between the

analysis and the independent measurements. In MACC the

validation work is conducted by groups directly involved in

the measurements or with strong links to the measurement

teams. Verification and validation start with direct compar-

isons of model results with independent measurements, fol-

lowed by the evaluation of a set of accuracy measures and/or

skill scores (Wilks, 2006). For users of the MACC products,

it is important to present the skill of the system in a way that

is intuitively easy to understand and which documents the

improvements of the system over time. Standard practices

in the evaluation of meteorological forecasts, and the use of

headline scores (e.g. Haiden et al., 2014) serves as inspiration

for the MACC validation activity.

The validation (VAL) sub-project in MACC has the task

of evaluating the quality of the global service products on

aerosol and reactive trace gases, including not only the daily

forecasts but also the 2003–2012 MACC reanalysis. This pa-

per provides an overview of the VAL approach to the evalu-

ation of the MACC global modelling system developed over

the past 3 years (Sect. 2). Topics addressed are the validation

reports (Sect. 3), the procedure for model upgrades (Sect. 4),

and scoring methods (Sect. 5). The models evaluated, and the

measurements used for these evaluations are listed in Sect. 6.

A summary is provided of the main validation results for the

daily global forecasts (Sect. 9), but it is not the purpose of

this paper to describe these results in detail. Finally, we dis-

cuss current developments and future aspects (Sect. 10).

More detailed validation results have been (and will be)

described in several scientific papers from the individual

partners of VAL (Lefever et al., 2015; Cuevas et al., 2015;

Wagner et al., 2015; Langerock et al., 2015; Katragkou et al.,

2015) or contributions to papers led by partners from other

sub-projects of MACC (Huijnen et al., 2012; Inness et al.,

2013; Flemming et al., 2015; Pérez García-Pando et al.,

2014; Stein et al., 2014; Cesnulyte et al., 2014). Several of

these papers are submitted to the MACC special issue of

the EGU Copernicus journals Atmospheric Chemistry and
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Table 1. Overview of the trace gas species and aerosol quantities relevant for the real-time global atmospheric composition service. Shown

are the data sets assimilated (second column) and the data sets used for validation (third column). Normal text indicates that substantial data

are available to either constrain the species in the analysis, or substantial data are available to assess the quality of the analysis. Italic text

indicates that measurements are available, but that the impact on the analysis is not very strong or indirect (second column), or that only

certain aspects are validated (third column).

Species, vertical range Assimilation Validation

Aerosol, optical properties MODIS Aqua/Terra AOD AOD, Ångström: AERONET, GAW, Skynet,

MISR, OMI, lidar

O3, stratosphere MLS, GOME-2A, GOME-2B, OMI,

SBUV-2

Sonde, lidar, MWR, FTIR, OSIRIS, OMPS,

BASCOE and MSR analyses

O3, UT/LS Indirectly constrained by limb and nadir

sounders

IAGOS, sonde

O3, free troposphere Indirectly constrained by limb and nadir

sounders

IAGOS, sonde

O3, PBL/surface – WMO/GAW and NOAA/ESRL surface

ozone, IAGOS

CO, UT/LS – IAGOS

CO, free troposphere IASI, MOPITT IAGOS, MOPITT, IASI

CO, PBL/surface Indirectly constrained by satellite IR

sounders

WMO/GAW and NOAA/ESRL surface

ozone, IAGOS

NO2, troposphere OMI, partly constrained due to short

lifetime

SCIAMACHY, GOME-2, UV–VIS DOAS

HCHO – SCIAMACHY, GOME-2, UV–VIS DOAS

SO2 OMI (Individual volcanic eruptions and

strong sources)

–

Stratosphere, other than O3 – SCIAMACHY, GOME-2 (NO2 column only)

UV-index Constrained by the assimilation of ozone

and aerosol AOD

COST UV Index Database

Physics, Atmospheric Measurement Techniques, Earth Sys-

tem Science Data, and Geoscientific Model Development.

2 Validation of the global MACC services

Quality assurance is an essential element of a pre-operational

monitoring service such as MACC. Validation information

needs to be supplied regularly and accompany the data prod-

ucts and services provided on the MACC website. The main

purpose of the MACC validation effort is to provide the users

of the future CAMS with appropriate information to judge

the quality of the data sets. A secondary aim of the validation

work is to provide feedback to the MACC modelling teams

so as to guide model improvement and further development

and to contribute to scientific studies and the evaluation of

new model versions (Flemming et al., 2015; Inness et al.,

2015).

In MACC it was decided to provide 3-monthly updates of

the validation reports of the near-real-time analysis and fore-

casts services. This high update frequency of the validation is

implemented both for the global production of daily aerosol

and trace gas analyses (Eskes et al., 2014b), as well as for the

regional air quality forecast service, which is based on a de-

centralized ensemble of seven models (Marécal et al., 2015).

In this paper we discuss the activities for the global aerosol

and reactive gas services. The greenhouse gas sub-project of

MACC (Bergamaschi et al., 2013; Chevallier et al., 2014;

Massart et al., 2014) has its own validation activity, which

will not be discussed in this paper.

For the other global services, the update frequency of

validation reports depends on the product. During the pro-

duction of the MACC reanalysis (Inness et al., 2013)

in MACC-II, the corresponding validation report was up-

dated roughly each half year, corresponding to one more

year added to the reanalysis data record. These reports

(Eskes et al., 2014a) are available on the MACC web-

www.geosci-model-dev.net/8/3523/2015/ Geosci. Model Dev., 8, 3523–3543, 2015
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site at http://macc.copernicus-atmosphere.eu/services/aqac/

global_verification/validation_reports/. The VAL sub-project

also provided a validation report for the MACC 30-

year ozone column reanalysis (the Multi-Sensor Reanalysis

(MSR); van der A et al., 2010), which is available on the

MACC website.

The VAL sub-project is maintaining a set of web pages

with more detailed verification plots for individual sea-

sons, months, or days (http://www.copernicus-atmosphere.

eu/services/aqac/global_verification/). Some of these pages

are based on near-real-time data, and they are complemented

by the near-real-time (NRT) monitoring information from the

data assimilation system.

For a good understanding of the quality of the MACC sys-

tem, it is important to consider which species in the global

assimilation system are constrained by the observations, and

which species are covered by the validation data sets used;

this is summarized in Table 1. The MACC aerosol and re-

active gas models contain on the order of 100 species with

global coverage and range from the surface into the meso-

sphere. Clearly, only a small fraction of this is observed and

constrained by the available observations.

– Assimilation: the MACC assimilation is focusing on

aerosol optical depth (AOD), ozone, CO, NO2, and SO2.

Note that the species are treated in a univariate way and

correlations in background errors of different species

are neglected (Inness et al., 2015). An analysis update of

one trace gas will nevertheless influence others through

the chemical reactions.

– Validation: the validation is also constrained by the

limited amount of trace gas and aerosol properties for

which validation data are available. Furthermore, vali-

dation is limited by the amount of external data that are

available in real time or at least within a few weeks after

measurement, and with a reasonable global coverage.

For the validation work MACC has the following require-

ments.

– For near-real-time verification of the analyses, the inde-

pendent measurements should become available within

a few days.

– For the evaluation of the daily analyses and forecasts

service – through the 3 monthly validation reports – data

can be used that becomes available within 6 weeks.

– For the 10-year reanalysis produced by MACC (or

planned reanalyses in the future CAMS), the require-

ments are more relaxed and observations several years

old can also be accommodated.

Because of these requirements, the MACC consortium is

keeping close contacts with major worldwide networks.

– In the case of the Network for the Detection of

Atmospheric Composition Change (NDACC; http://

www.ndsc.ncep.noaa.gov), the European project NORS

(Demonstration Network Of ground-based Remote

Sensing Observations in support of the Copernicus At-

mospheric Service; http://nors.aeronomie.be) has set up

a validation server to provide real-time access to the val-

idation data and to produce verification plots.

– In the case of the In-service Aircraft for a Global

Observing System (IAGOS) routine aircraft observa-

tion infrastructure (http://www.iagos.org), the European

project IGAS (IAGOS for the Global Monitoring for

Environment and Security (GMES) Atmospheric Ser-

vice) is improving the real-time data delivery and is har-

monizing the data quality.

– The ICOS-Improved sensors, NetWork and Interop-

erability for GMES (INWIRE) project (http://www.

icos-inwire.lsce.ipsl.fr/) provides a harmonized access

to the Integrated Carbon Observation System (ICOS)

infrastructure in Europe for the Copernicus atmosphere

service.

– MACC maintains close links with the World Mete-

orological Organization, Global Atmosphere Watch

(WMO-GAW) (http://www.wmo.int/pages/prog/arep/

gaw/gaw_home_en.html) to improve the use of the

measurements performed at the numerous stations

worldwide, contributing to this programme, and some

stations have begun to submit data sets with weekly

or monthly update frequencies for use in the MACC

validation.

– Regarding aerosols, MACC has negotiated access to

level 1.5 AERONET (AErosol RObotic NETwork; http:

//aeronet.gsfc.nasa.gov) data as level 2.0 data only be-

come available after re-calibration of the instruments

which have been in the field.

We note that Table 1 represents the current status of

the system. In collaboration with networks like GAW and

NDACC, other data sets are investigated for inclusion in the

future CAMS validation activity. For instance, in the com-

ing years the IAGOS aircraft will provide observations of

aerosols, NOx , NOy , CO2, and CH4, in addition to O3 and

CO that are currently used.

3 Validation reports for the atmosphere composition

forecast and analysis service

The main aim of the 3-monthly validation reports (e.g. Eskes

et al., 2014a, b) is to provide the users of the services with

up-to-date information on the quality of the products through

comparison with independent observations. The reports con-

tain the following sections.
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– An extended summary – typically seven pages – of the

main findings of the validation work. This summary is

targeting the different user areas, which are defined in

the reports as climate forcing, regional air quality, ozone

layer, and UV.

– A system summary section. This section contains an

overview of the model configurations; description of the

models and assimilation; overview of the assimilated

data sets; evolution of the system and overview of major

model changes; MACC products overview; availability

and timing of the daily MACC analyses/forecasts. The

document refers to the detailed change logs and model

information that are available on the MACC website.

– A detailed section on the validation results obtained for

the different species in troposphere and stratosphere.

This is the bulk of the document.

– A section to discuss a number of high concentration

events and the ability of the MACC forecast and analy-

sis to capture these events.

– An annex providing traceability information on the val-

idation methodology used.

4 New updates: e-suite reports

The MACC project follows a well-defined procedure to in-

troduce model upgrades of the operational data assimila-

tion and model system, which is called the “o-suite”. First,

model changes that are developed by ECMWF’s research de-

partment or the scientific partner institutions in the MACC

project are tested offline, and quick checks are performed to

test the improvement of the model or assimilation aspects tar-

geted by the update. Once these tests are satisfactory, a new

model version is earmarked for operational use. At this point,

a series of hindcasts for a period between 3 and 6 months are

generated in a set-up that closely mimics the o-suite. This

parallel assimilation system is called the “e-suite”, or experi-

mental suite. A change log for this e-suite is provided on the

MACC website. Near the end of the e-suite production phase,

VAL performs an evaluation, comparing the performance of

the operational o-suite and the new e-suite against the inde-

pendent observations. If this test shows improved (or at least

comparable) scores, a positive advice is given to replace the

o-suite, but if problems are identified the VAL results may

also lead to a delayed instalment of the new model version

after the weaknesses have been corrected for.

In the period January 2012–November 2014, four up-

grades of the o-suite have been introduced, and for each of

them an “upgrade verification note” was produced. These re-

ports are part of the production system description pages that

can be found on the “operational info” section of the MACC

Figure 1. E-suite verification example. Total AOD plots showed

that there was a considerable loss of aerosol of 30 %, from a mean

AOD of 0.14 to 0.094, after a 96 h forecast in the e-suite (top panel)

compared to the o-suite (bottom panel). The Ångström exponent

showed considerably smaller particles in the e-suite as compared

to the o-suite. Because of this the o-suite upgrade of April 2013

was postponed. The problem was solved and a new e-suite run was

tested positively in August 2013. Example taken from the e-suite

report of April 2013 (Eskes et al., 2013).

website. In one case a negative upgrade advice was given be-

cause the e-suite showed a strong loss of aerosol mass during

the forecast (see Fig. 1).

5 Accuracy measures and scoring methods

The VAL sub-project maintains a living document on the

evaluation methodology with project-wide recommendations

on scoring approaches (Eskes and Huijnen, 2012). The aims

of this evaluation methodology report are

– to “harmonize” the scoring methods by proposing a “de-

fault” set of accuracy measures for VAL as well as the

other sub-projects in MACC;

– to develop a set of “headline scores” which may be

used in the future to document the improvements of

www.geosci-model-dev.net/8/3523/2015/ Geosci. Model Dev., 8, 3523–3543, 2015
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the Copernicus Atmosphere Monitoring Service prod-

ucts over time (discussed in the Discussion and Future

Perspectives section);

– to introduce uniform graphics styles and a uniform pre-

sentation of validation results on the MACC II website;

– to briefly discuss the value of alternative scoring ap-

proaches (e.g. threshold scores, ranking scores).

The main scoring recommendations are the following.

– Initial evaluation: verification–validation starts with ba-

sic evaluation of the model results against individual in-

dependent observations. This includes time series plots

and scatter plots. For large number of points (> 200)

it is recommended to replace the scatter plot by scatter

density plots.

– Accuracy measures: it is recommended to use a minimal

set of accuracy measures to evaluate and compare model

results. These are the modified normalized mean bias,

the fractional gross error and the correlation coefficient.

– Data stratification: it is recommended to apply a base-

line temporal aggregation of the individual model–

observation comparisons on a (3-monthly) seasonal ba-

sis. For the global models and for the troposphere it

is recommended to apply a baseline spatial data strat-

ification using pre-defined regions. It is recommended

that verification is done both against (a) gridded ob-

servations (model-oriented verification) on common

latitude–longitude grid, and, (b) station observations

(user-oriented verification) whenever possible.

– Presentation: within VAL we adopted a uniform presen-

tation in the figures. The colours of the curves are re-

served for the different model configurations. Black is

generally used for the independent data.

The scoring recommendations are used not only in VAL, but

also for instance for the evaluation of the MACC European

ensemble air quality forecasts (Marécal et al., 2015). Rep-

resentativity issues should be taken into account, given that

model predictions represent averaged concentrations over

a grid box, whereas observed values are either taken at indi-

vidual locations that are unequally distributed over the globe,

in the case of in situ observations, or integrated over space,

in the case of observations from remote sensing instruments.

The modified normalized mean bias (MNMB) B ′n, frac-

tional gross error (FGE) Ef and correlation coefficient r are

computed using the following formulas:

B ′n =
2

N

∑
i

fi − oi

fi + oi
, (1)

Ef =
2

N

∑
i

∣∣∣∣fi − oifi + oi

∣∣∣∣ , (2)

r =

1
N

∑
i

(
fi − f

)
(oi − o)

σf σo
, (3)

where f and o are the mean values of the forecast and ob-

served values and σf and σo are the corresponding standard

deviations (SDs), and N is the number of observations. The

B ′n can have values between −2 and 2, and is symmetric

around zero. Ef ranges from 0 to 2, where 0 is perfect agree-

ment, and values close to 1 or larger indicate a very poor

agreement. r ranges between−1 and 1, where−1 means per-

fect anti-correlation, 0 means uncorrelated, and 1 indicates

perfect correlation.

The MNMB and FGE are alternatives for the more com-

monly used mean bias and the root mean square error, re-

spectively. The normalized approach in the MNMB and FGE

provides errors in a relative sense, which is easier to compre-

hend by users not very familiar with the concentration ranges

and their units. The fractional gross error is a linear measure,

and has the advantage compared to the more common root

mean square measure in that it is not dominated by outliers.

Both MNMB and FGE are defined relative to the mean of

the observation and the model value, (fi + oi)/2, which im-

proves over expressions where the observation alone is used

as reference. For instance, surface ozone observations do in

practice give readings equal to 0, which causes the division

by oi to become infinity.

In the coming years, the resolution of the CAMS system

is expected to increase to below 1◦. The MNMB and FGE

scores in this case become less appropriate to monitor the

model improvements. Small filaments of polluted air may be

slightly displaced, and the mean norms will lead to a “dou-

ble penalty” for the higher resolution model, even though the

simulated peak values are more realistic. The introduction of

new metrics is needed for a more appropriate evaluation of

the improvements, and this is one of the tasks of the future

validation sub-project of CAMS.

6 Model configurations

6.1 Before September 2014: coupled systems

During the projects GEMS and MACC, three modelling sys-

tems were developed and used to describe reactive gases in

troposphere and stratosphere (Hollingsworth et al., 2008).

These were constructed by coupling the ECMWF IFS system

to a CTM. The CTM can be MOZART, TM5, or MOCAGE,

resulting in a small ensemble of models. In this coupled sys-

tem, the IFS simulates only the transport of a limited number

of chemical species (O3, CO, NOx , SO2, HCHO), and the

CTM provides concentration tendencies due to emissions,

Geosci. Model Dev., 8, 3523–3543, 2015 www.geosci-model-dev.net/8/3523/2015/
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deposition, and chemical conversion to IFS. Satellite obser-

vations of these species (apart from HCHO) are assimilated

into the IFS using the 4D-VAR analysis system, together with

the full suite of meteorological observations. The resulting

analyses for the five species are subsequently passed to the

CTM. The CTMs maintain their own transport schemes and

are driven by meteorological data at hourly resolution from

the IFS. More details on the coupled systems, and references

for the three models involved, can be found in Flemming

et al. (2009).

During MACC, the MOZART and TM5-based systems

have been used to produce daily forecasts. Because of the

computing costs of running the MACC 4D-VAR system, and

in order to provide one single pre-operational product, it was

decided to have only one operational analysis. This MACC o-

suite was based on the IFS–MOZART coupled system. This

system was used both for the daily analyses and forecasts,

and for the production of the MACC 2003–2012 reanalysis

(Inness et al., 2013). Apart from the analysis runs, the two

coupled systems are operated without data assimilation to

produce daily forecasts. The IFS–MOZART runs apply the

same settings as the o-suite, except that data assimilation is

not switched on and the spatial resolution is lower: T159L60

(where “T” is the spectral resolution and “L” is the number

of vertical layers) compared to T255L60 for the IFS part, and

this model version does not contain aerosol. The IFS–TM5

runs apply similar emissions as IFS–MOZART, but chem-

ical reactions, deposition and transport are described by the

TM5 model (Huijnen et al., 2010). More details on the model

configuration and the change log can be found on the MACC

website or in the validation report (Eskes et al., 2014a).

The aerosol model is integrated in the IFS and includes

12 prognostic variables, which are 3 bins each for sea salt

and desert dust, hydrophobic and hydrophilic organic matter,

and black carbon, sulfate aerosols, and its precursor trace gas

SO2 (Morcrette et al., 2009). Satellite AOD measurements

from the Moderate Resolution Imaging Spectroradiometer

(MODIS) are assimilated in this system (Benedetti et al.,

2009). Changes of the operational system compared to the

aerosol model described in the above papers can be found on

the MACC website or in the VAL reports. The aerosol sys-

tem is based on one model (Morcrette et al., 2009), and there

is no stand-alone version of the model operated without data

assimilation.

The reactive gas and aerosol modelling systems use real-

time aerosol fire emissions from the Global Fire Assimila-

tion System (GFASv1; Kaiser et al., 2012) developed within

GEMS and MACC.

The VAL project evaluates all of these model configu-

rations. For the near-real-time reports (Eskes et al., 2014a)

three model configurations are considered: the o-suite, the

free-running IFS–MOZART, and free-running IFS–TM5

coupled systems. The aerosol model is only switched on

in the o-suite. The comparison between the o-suite simu-

lated gas concentrations and the free-running model pro-

vides important information on the impact of the observa-

tions through the assimilation. The comparison between the

MOZART and TM5 configurations provides information on

the variability between the CTMs.

6.2 After September 2014: C-IFS

A major change occurred in September 2014 when the o-

suite based on the coupled system was replaced by an o-suite

based on a version of IFS with online chemistry (C-IFS).

Currently the chemistry modules from the TM5 model are

used, which are based on a modified Carbon Bond (CB05)

chemical mechanism. This C-IFS (CB05) model is described

in detail in Flemming et al. (2015) and the reactive gas data

assimilation results with C-IFS (CB05) are reported in Inness

et al. (2015). The aerosol scheme is basically unchanged, and

was already fully integrated into the IFS code.

The daily production of the analyses and forecasts consists

of operating the full system with 4D-VAR assimilation (the

o-suite). In parallel, daily forecasts are produced by running

the same model without assimilation. Both model configu-

rations are evaluated by the VAL team. A precursor of the

C-IFS (CB05) system without data assimilation was produc-

ing daily forecasts from December 2012 to September 2014.

This version was also evaluated by the VAL team, and results

for this version are shown below.

We remind the reader that o-suite always refers to the IFS-

based analysis and forecast system including the assimilation

of the full suite of aerosol, chemical, and meteorological ob-

servations.

7 Measurements used for validation

The following independent data sets are presently used (year

2014) to produce the validation reports. Typical uncertainties

and geographical details are provided in Table 2.

– Profiles of CO and O3 from Measurement of Ozone and

Water Vapour on Airbus in-service Aircraft (MOZAIC)

and IAGOS (http://www.iagos.fr/macc). IAGOS is

a new European Research Infrastructure conducting

long-term observations of atmospheric composition (re-

active and greenhouse gases) aerosol and cloud parti-

cles on a global scale from commercial aircraft of in-

ternationally operating airlines (http://www.iagos.org;

and http://www.iagos.fr for the map of network cov-

erage). IAGOS builds on the scientific and technologi-

cal experience of MOZAIC and CARIBIC (http://www.

caribic-atmospheric.com). The validation activities in

GEMS and MACC have been using ozone and CO from

MOZAIC and IAGOS for 10 years. Both the take off

and landing profiles and the upper troposphere lower

stratosphere (UTLS) cruise part of the flights at north-

ern mid-latitudes have been compared to the different

model runs on a regular basis. Special events such as the

www.geosci-model-dev.net/8/3523/2015/ Geosci. Model Dev., 8, 3523–3543, 2015
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Table 2. Overview of the estimated measurement uncertainties and the temporal and spatial properties of the observations.

Data set name Temporal/spatial frequency Typical uncertainty

Ozone sondes 38 stations worldwide uncertainty < 7 % for 20–30 km altitudes,

≈ 15 % in the troposphere

GAW O3 13 stations with NRT data ≈ 5 ppb for NRT, 1 ppb for validated data

NOAA/ESRL O3 15 stations globally, 3-hourly 1 ppb

GAW CO 11 stations with NRT data ≈ 10 ppb for NRT, 2–5 ppb for validated data

IAGOS O3 six commercial aircraft 2 ppb±2 % for O3 (Nedelec et al., 2015)

IAGOS CO six commercial aircraft 5 ppb± 5 % for CO (Nedelec et al., 2015)

Aeronet AOD 15 min observations averaged to daily mean,

≈ 400 ground sites

0.01 on AOD

Ceilometer surface network in Germany ±50 % on aerosol extinction coefficients

(Wiegner and Geiß, 2012)

NDACC FTIR O3 daily measurements 3 % on stratospheric column

MOPITT CO 22 km× 22 km footprint, global coverage ev-

ery 3 days

< 10 %

IASI CO 12 km footprint diameter, near-global cover-

age 2× per day

< 10 %

GOME-2 NO2,

HCHO columns

footprint 40 km× 80 km, near-global cover-

age in 1 day

systematic uncertainties ≈ 20–30 % in polluted

regions

SCIAMACHY

NO2, HCHO

footprint 30 km× 60 km, global coverage in

6 days

systematic uncertainties ≈ 20–30 % in polluted

regions

ACE-FTS, O3, v3 12 profiles/day 5 % (Dupuy et al., 2009)

OSIRIS, O3, v5 200 profiles/day 5 % (Adams et al., 2014)

OMPS-LP, O3, v2 6000 profiles/day up to 10 % (Kramarova et al., 2014)

summer 2003 heat wave over Europe (Ordóñez et al.,

2010) and summer 2004 Canadian boreal forest fires

(Elguindi et al., 2010) have been studied. Two versions

of IAGOS data are used to assess the model. The first

one is the validated data used to assess the NRT model

runs qualitatively in terms of vertical, daily, and re-

gional O3 variability. The second and final version of

IAGOS data is fully calibrated and hence more reliable

for an accurate model evaluation. This is usually avail-

able within 6 to 12 months after recording.

– Surface observations of CO and O3 from GAW sta-

tions, including the NOAA Earth System Research

Laboratory (ESRL) stations as available from http://

www.esrl.noaa.gov/gmd/ (Oltmans and Levy II, 1994;

Novelli et al., 2014). Detailed information on GAW

and GAW-related O3 and CO measurements can be

found in GAW report no. 209 (2013) and no. 192

(2010), available from http://www.wmo.int/pages/prog/

arep/gaw/gaw_home_en.html. Near-real-time monitor-

ing of the global forecasts is based on NRT observations

of ozone and carbon monoxide from WMO GAW sur-

face stations.

– Ozone sondes, used to validate stratospheric and tropo-

spheric ozone. This data are taken from a variety of data

centres: World Ozone and Ultraviolet radiation Data

Centre (WOUDC), Southern Hemisphere ADditional

OZonesondes (SHADOZ), and Network for the Detec-

tion of Atmospheric Composition Change (NDACC).

– O3 results from the independent Belgian Assimila-

tion System for Chemical ObsErvations (BASCOE),

Synoptic Analysis of Chemical Constituents by Ad-

vanced Data Assimilation (SACADA), and KNMI Data

Assimilation Model based on Transport Model ver-

sion 3 (TM3DAM) data assimilation systems (http://

www.copernicus-stratosphere.eu/; http://www.knmi.nl/

goa/ozone/tm3dam_webdocu/tm3dam.html). BASCOE

assimilates ozone profiles from Aura-MLS (Mi-

crowave Limb Sounder) retrievals, while SACADA and

TM3DAM assimilate ozone columns from GOME-2

(Lefever et al., 2015).

– Independent satellite data from the Atmospheric Chem-

istry Experiment Fourier Transform Spectrometer

(ACE-FTS; Dupuy et al., 2009), the OSIRIS instrument

onboard satellite Odin (Degenstein et al., 2009), and the

limb module of the Ozone Mapping and Profiler Suite

(OMPS; Kramarova et al., 2014) are used to evaluate

stratospheric ozone.

– NDACC data is automatically collected by means of

an online validation server, which was developed in

the EU FP7 research project NORS; see http://nors.

aeronomie.be, de Mazière et al. (2012), and Langerock

et al. (2015). Presently the NORS server validates O3
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using Fourier transform infrared spectroscopy (FTIR),

Microwave Radiometer (MWR), UV–Visible Differen-

tial Optical Absorption Spectroscopy (UV–VIS DOAS),

and Laser Imaging Detection And Ranging (lidar) mea-

surements; CO and CH4 using FTIR measurements;

H2CO and aerosol using UV–VIS DOAS; and NO2 us-

ing FTIR and UV–VIS measurements. The number of

sites is continuously expanding as more sites start sub-

mitting data in rapid delivery and in GEOMS format.

– Measurements Of Pollution In The Troposphere (MO-

PITT) and Infrared Atmospheric Sounding Interferom-

eter (IASI) CO observations (Emmons et al., 2009;

Deeter et al., 2010; Clerbaux et al., 2009).

– Independent DOAS-based retrievals of NO2 and HCHO

columns (Richter et al., 2005, 2011; Wittrock et al.,

2006) from the UV–VIS sensors SCIAMACHY (Scan-

ning Imaging Absorption spectroMeter for Atmo-

spheric ChartographY; Bovensmann et al., 1999) on-

board ENVISAT and GOME-2 (Global Ozone Mon-

itoring Experiment-2A; Callies et al., 2000) onboard

MetOp-A. These global data sets provide a large num-

ber of comparison points at all latitudes and seasons,

but do not offer vertical resolution and have larger un-

certainties than many in situ observations. As the Eu-

ropean Space Agency lost contact with the ENVISAT

satellite in April 2012, SCIAMACHY is used for model

validation up to March 2012, while model results are

compared to GOME-2 from April 2012 onwards.

– AOD and Ångström exponent (AE) data sets from the

AERONET sun photometer network. NRT level 1.5 data

are made available on a monthly basis by NASA God-

dard (Holben et al., 2001; Smirnov et al., 2000) and are

used for a real-time verification of the analyses and fore-

casts. Supporting graphs were generated with the Ae-

roCom tools (http://aerocom.met.no/cgi-bin/aerocom/

surfobs_annualrs.pl?Project=MACC).

– AOD, AE and dust aerosol optical depth (DOD) from 36

AERONET stations, combined with AOD from MODIS

(Aqua) and with lidar vertical extinction profiles at

Tenerife station. These data sets are used for the quar-

terly assessments of mineral dust content, and analyses

of outstanding dust events over northern Africa, Middle

East, and Europe. This is a relevant geographical region

where two of the most important mineral dust sources

of the world (the Sahara–Sahel and Middle East) are

present. Previous dust evaluations have extensively used

AERONET and ground-based and space-borne lidars

data to assess the column dust content provided by dust

models (i.e. Pérez et al., 2006; Schmechtig et al., 2011;

Tegen et al., 2013; Cesnulyte et al., 2014), and PM10

for surface dust concentration validation (Cuevas et al.,

2015).

– Greenhouse gas observations are provided by

ICOS (http://www.icos-infrastructure.eu) through

a special agreement between ICOS and MACC, and by

TCCON (Total Carbon Column Observing Network,

http://tccon.ornl.gov/, Wunch et al., 2011).

Apart from the GAW and ESRL in situ observations,

also measurements from rural and remote surface air qual-

ity measurement sites are considered. The sites have to be

carefully selected because they should be representative for

a larger area of the size of the model resolution. Further-

more, validated data sets are typically only available af-

ter a few years and only unvalidated data can be used for

the near-real-time evaluations. In particular, observations

from the European Monitoring and Evaluation Programme

(EMEP; http://www.emep.int), and the European air quality

database “AIRBASE” (http://www.eea.europa.eu/themes/air/

air-quality/map/airbase) are used to evaluate the reanalysis

results. Also evaluations based on the USA “AirNow” ob-

servations (http://www.airnow.gov) are in preparation. Apart

from ozone, the aerosol composition measurements from

these networks will also be considered, as well as other com-

pounds like CO and NO2.

The teams involved in MACC maintain close links with

many of the observation networks from which the above

mentioned observational data are obtained.

8 Case studies

One prominent application of MACC is the description and

forecasting of the variability of trace gas and aerosol con-

centrations and the occurrence of high concentration events.

These events include dust storms (Cuevas et al., 2015), ma-

jor wildfire or biomass-burning events (Elguindi et al., 2010;

Huijnen et al., 2012), ozone and aerosol pollution episodes

(Ordóñez et al., 2010), ash and SO2 from volcanic erup-

tions (Flemming and Inness, 2013), and the rapid depletion

of ozone over the Antarctic and Arctic (Lefever et al., 2015).

The VAL group studied more than 10 events in the period

2013–2014, and the results have been included in the valida-

tion reports.

A first example of a case study is shown in Fig. 2. In

June 2014 a huge desert dust plume occurred that originated

in the Sahara and travelled more than 6000 km over the Sa-

hel and the North Atlantic, impacting the Amazon and the

Caribbean. The path travelled by the plume was well cap-

tured by the MACC global system, as is shown by the com-

parison with MODIS. The correct timing of the dust event

in the MACC o-suite is further confirmed by the time se-

ries at the available AERONET sites (black dots), although

the modelled optical depth has a moderate low bias of about

0.1 compared to the observations. Note that the MODIS

DeepBlue data, which is providing aerosol observations over

bright land surfaces, is used in the figure but not in the as-

similation.
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Figure 2. (Top) daily averaged DOD from MACC o-suite (top right, with the AERONET sites marked with white dots: 1 – IER Cinzana;

2 – Dakar; 3 – Capo Verde; 4 – Barbados; 5 – Guadeloup) and daily AOD from MODIS-AQUA (AOD Ocean+DeepBlue) (top left, with

the AERONET sites marked with black dots) for 22 June 2014. (Bottom) coarse mode AOD at 500 nm (DOD) (black crosses) and AOD at

550 nm (grey triangles) from AERONET, DOD from MACC o-suite (red diamonds), and AOD retrieved from MODIS-AQUA (blue crosses)

at Dakar and Guadeloup AERONET sites during the case analysis from 21 to 30 June 2014.

A second example is the observation of a prominent

biomass-burning plume from Canada by ceilometer instru-

ments in Germany. Active fires in Canada in June/July 2013

produced a large amount of biomass-burning aerosols which

were transported to Europe. The features of this biomass

plume were observed by German ceilometers. In Fig. 3 mea-

sured and modelled 2-D time–height sections of biomass-

burning plumes at the station Soltau (northern Germany) are

compared. Though total extinction is displayed, the plumes

are only made of smoke particles. The uncertainty of the

ceilometer extinction coefficients is estimated to be ±50 %.

Areas with noisy or missing ceilometer data, e.g. above

clouds, are masked to prevent misinterpretations. During this

period, which is characterized by fast transport of the air

masses across the Atlantic, the heights of individual plumes

and even their internal structure (7 and 9 July, early 10 July)

are reproduced with remarkable detail by the model. This in-

dicates that injection heights and plume dispersion are real-

istic. The plume observed on 8 July at Soltau appears too

weak in the model, because it had a meridional extent of

about 100 km only and was displaced southward with re-

spect to the model grid cell. Absolute extinctions, however,

are about a factor of 2 too small in the model due to the

much coarser resolution (in order to prevent artefacts due

to averaging the ceilometer data over regions with low sig-

nal/noise ratios a high resolution is maintained). Many as-

pects influence the quantitative comparison, including uncer-

tainties in the source strength (fire radiative power observa-

tion and aerosol mass produced) uncertainties in the trans-

port over several days, removal processes, resolution of the

model and local representativity issues. Part of these mod-

elling errors may have been corrected by the assimilation of

the MODIS observations.

The widespread use of ceilometers and their capability

to measure the backscatter coefficient offers a level of in-

formation content that is well suited for the evaluation of

aerosol models. Their uncertainty of extinction coefficients

can be below 30 %, depending on the instrument used, see,

e.g. Heese et al. (2010) or Wiegner and Geiß (2012). The

adequate representation of sources and dispersion of dif-

ferent aerosol types is still a challenge for aerosol mod-

els. The evaluation of the MACC analyses with ceilome-

ter observations from the German Weather Service (DWD;

http://www.dwd.de/ceilomap) showed the usefulness of the

ceilometer data to track fire plumes, (Sahara) dust plumes,

and to validate the modelled boundary layer heights.

Data from major international measurement campaigns

are also used to evaluate if the MACC system is able to

describe mean concentrations, transport of pollutants and

observed variability. Examples are ACCESS (Roiger et al.,

2014) and POLARCAT/POLMIP (Emmons et al., 2015).
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Figure 3. Example from the ceilometer study. (Top) MACC o-suite biomass-burning AOD over Europe from 6 to 9 July 2013 at 12:00 UTC.

(Middle) time–height plot of extinction coefficient above Soltau from 6 to 9 July 2013 from ceilometer. (Bottom) vertical profiles from the

operational MACC o-suite at Soltau.

Note that MACC is providing support to flight planning dur-

ing field campaigns like ACCESS.

9 Validation of the MACC o-suite

Below we give a summary of the results from the latest

(November 2014) validation update for the MACC o-suite.

This provides an overview of the extent of the validation

work and validation methodology for the global aerosol and

reactive gas service, and at the same time it serves to doc-

ument the performance status of the recent MACC system

against independent observations for the period up to Au-

gust 2014. More detailed validation results and plots can be

found in the validation report (Eskes et al., 2014a), on the

MACC website and in the papers mentioned in the introduc-

tion.

The runs discussed here contain the o-suite, for this pe-

riod based on analyses and forecasts from the coupled

IFS–MOZART assimilation system including the MACC

prognostic aerosol module. The impact of other chemistry

schemes and of the use of data assimilation is furthermore

assessed by comparing the validation results from the o-suite

to those of the two other MACC model configurations, both

without assimilation. These are the coupled IFS–MOZART

system, and C-IFS (CB05), which is an earlier version of the

model described in Flemming et al. (2015).

9.1 Tropospheric ozone

Model tropospheric ozone is validated with respect to surface

and free tropospheric ozone observations from the GAW net-

work, IAGOS airborne data, and ozone sondes, hence cov-

ering the model performance at the surface, in the bound-

Figure 4. MNMB of ozone in the free troposphere (750–200 hPa in

the tropics and 750–300 hPa elsewhere) of MACC o-suite against

aggregated sonde data in four different regions.

ary layer and in the free troposphere. For the free tropo-

sphere MNMBs for ozone are on a global scale between

±0.4 for the o-suite, as displayed in Fig. 4. The best perfor-

mance is generally achieved over the northern mid-latitudes,

with MNMB often less than 0.1. This is also the region with

the largest coverage of ozone sonde data. In the northern

mid-latitudes and tropics, the coupled IFS–MOZART system

shows in most cases larger positive MNMBs: in the north-

ern mid-latitudes a positive offset of up to 0.2, in the trop-

ics of up to 0.3 which appears mostly during November to

March. This demonstrates that the ozone data assimilation,

using stratospheric profiles (MLS) and ozone column obser-

vations, on average has a positive impact on the tropospheric

ozone profile (Inness et al., 2013, 2015). For high-latitude

regions, where data assimilation is less effective, larger bi-

ases (±0.4) are observed (Fig. 4) and the o-suite partly shows

larger biases than the version without assimilation.
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At the surface, the o-suite evaluation against GAW stations

is generally slightly positive, especially during the summer

months for European stations, which is broadly in line with

the evaluation against ozone sondes, and also discussed in

Inness et al. (2015).

For tropical stations, biases are generally larger than over

the northern mid-latitudes. The model is scarcely evaluated

by the GAW network over the Southern Hemisphere. Both

for Arctic and Antarctic stations the variability between the

three model versions is generally larger than for mid-latitude

and tropical stations, while biases with respect to observa-

tions are significant. This indicates the poorer constraints

from data assimilation and also the larger uncertainty aris-

ing from the chemistry model.

9.2 Tropospheric nitrogen dioxide

Retrievals of tropospheric NO2 columns from SCIAMACHY

and GOME-2 observations are used for the validation of the

three MACC systems. Nitrogen dioxide (NO2) satellite ob-

servations from the OMI instrument are assimilated (Inness

et al., 2015), but this is based on a different retrieval scheme

and data from the OMI instrument which has a later over-

pass time. Comparisons to SCIAMACHY/GOME-2 monthly

mean tropospheric NO2 columns on a global map (Eskes

et al., 2014a) show that spatial distributions of tropospheric

NO2 columns are well reproduced by all three NRT model

runs throughout all seasons, indicating that emission patterns

and NOx photochemistry are generally well represented. A

general feature is the underestimation of NO2 columns over

the continents in general and particularly in China (the latter

is also evident from Fig. 5), which may point to an underes-

timation of anthropogenic NO2 emissions in the inventories.

The relatively low model resolution will lead to an underesti-

mate of strong localized emission sources. Unresolved non-

linearities in NOx photochemistry at the coarse model reso-

lution might also play a role, as well as larger retrieval uncer-

tainties in the winter months. Another observation is the oc-

currence of localized high-bias regions of NO2 in the north-

ern high latitudes during spring/summer, which indicates that

the NO2 produced by boreal fires in Siberia, Canada, and

Alaska, as derived from the GFAS system (Kaiser et al.,

2012) may be overestimated.

9.3 Tropospheric carbon monoxide

Carbon monoxide (CO) is validated using GAW network

surface observations, IAGOS airborne data, FTIR observa-

tions and satellite retrievals, hence providing good coverage

both horizontally and vertically. This evaluation consistently

shows that – even though the seasonality of CO can be re-

produced well – there is a systematic underestimation of CO

surface mixing ratios by all model versions in the Northern

Hemisphere, with seasonal MNMBs up to −0.3 in compar-

ison with GAW observations. The biases are largest during

Figure 5. Time series of tropospheric NO2 columns from SCIA-

MACHY (up to March 2012), GOME-2 (from April 2012 onwards)

compared to the o-suite (red) and the coupled IFS–MOZART model

(orange) results for Europe and East Asia. The blue line shows C-

IFS (CB05) results from December 2012 onwards.

winter and early spring. During take off and landing the IA-

GOS in-flight profile observations are frequently capturing

layers with elevated levels of CO, and have been used to eval-

uate the model ability to describe the magnitude and trans-

port of plumes originating from biomass burning (Elguindi

et al., 2010).

We note that MOPITT and IASI satellite retrievals of CO

are assimilated in the o-suite (Inness et al., 2015), so such

evaluation is not an independent source of information. Nev-

ertheless, these retrievals provide a good reference for the

ability of the models to capture spatial patterns and seasonal

cycles in free tropospheric CO and also clearly quantify the

effect of the bias correction applied in the o-suite.

During the fire season over Siberia and Alaska an underes-

timation up to 10 % is observed with respect to MOPITT, in

contrast to the significant overestimate in NO2 and a positive

bias in aerosol. It should be noted that MOPITT and IASI

show significant differences in this region.

A clear improvement in performance of the o-suite against

the free-running IFS–MOZART coupled system was found,

especially during summer seasons, indicating that data as-

similation is more effective in summer compared to the win-

ter season. This is confirmed by validation with FTIR profile

observations. The GAW surface observations with high tem-

poral resolution are used to evaluate the small-scale model

variability. For instance, a rather remarkable improvement

of the temporal correlation between the o-suite and C-IFS

(CB05) is found for most stations. This is illustrated by the
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Figure 6. O-suite (red), stand-alone IFS–MOZART (orange) and

C-IFS (CB05) (blue) compared to GAW observations (black dots)

at Hohenpeissenberg station (47.80◦ N, 11.02◦ E) for the period

March–May 2014. The correlation coefficients are 0.59, 0.62 and

0.71 for the o-suite, IFS–MOZART and C-IFS (CB05), respectively.

time series of CO at Hohenpeissenberg station for March–

May 2014 shown in Fig. 6. In this example the temporal

correlation coefficients (r) are 0.59, 0.62, and 0.71 for the

o-suite, IFS–MOZART, and C-IFS (CB05), respectively.

9.4 Formaldehyde

Model validation based on SCIAMACHY and GOME-2

HCHO satellite observations shows that overall, mean con-

centrations and spatial patterns show a good match; see, e.g.

Flemming et al. (2015). A more detailed comparison re-

veals differences between satellite data and models, partic-

ularly over the emission regions central Africa, South Amer-

ica, south-eastern USA as well as Southeast Asia, indicating

the significant modelling uncertainties associated with this

trace gas. For instance, time series over East Asia and the

eastern USA, which are both regions where HCHO columns

are likely dominated by biogenic emissions, show that the

MOZART-based model versions are well in line with satel-

lite retrievals in terms of magnitude and seasonality, whereas

the C-IFS (CB05) shows larger biases. In the African regions,

dominated by biogenic and biomass-burning HCHO (precur-

sor) emissions, model performance is reasonable although

the C-IFS (CB05) chemistry run overestimates satellite val-

ues. In contrast to NO2, the HCHO columns for boreal fire

regions are well reproduced by all models. It should be noted

that no formaldehyde observations are assimilated, and these

results reflect the performance of the unconstrained models.

9.5 Aerosol

Bulk optical properties of the MACC aerosol model are val-

idated against NRT level 1.5 AERONET observations (see

Fig. 7). Level 1.5 data are the only observations available

for validation within days or weeks after sensing. The cor-

relation coefficients are based on consistent daily mean val-

ues, from all stations and when observations are available.

The figure reveals that the latest model version has on aver-

age a positive MNMB of about +20 % for AOD. The posi-

tive bias is smaller in winter (+5 %) but increases in spring.

A month-to-month variation is observed in the correlation,

ranging from 0.65 to 0.8. On average, approximately 50 %

of the day-to-day AOD variability is predicted by the o-suite.

Also the +3-day forecast aerosol distributions are routinely

evaluated and show 5–10 % less AOD than the initial day.

This indicates that the model AOD at equilibrium between

emissions and removal is somewhat lower in optical depth

than the IFS analysis, possibly implying a bias in the MODIS

observations used in the assimilation. These forecasts addi-

tionally show slightly lower correlation, as a consequence of

imperfect forecasted meteorology and a fading impact of the

initial assimilation of MODIS AOD and MODIS fire infor-

mation on model performance.

The model AE is evaluated with the AERONET data, and

proved to be a good indicator of aerosol size changes as

a consequence of aerosol parameterization changes. The cur-

rent model version shows a positive global bias indicating

too fine particles in the model. A significant variation of

Ångström exponent was seen over the last 3 years, which

is a result of changes in the contributions from fine and

coarse aerosol components to total AOD. The latter being

constrained through the assimilation method.

The NRT aerosol model evaluation remains limited. One

limitation is the quality of the NRT AERONET data, which

have a preliminary nature. Retrospective analysis of the year

2011 shows that this level 1.5 NRT AOD AERONET data,

due to undetected cloud contamination and any uncorrected

instrumental drift, are on global average 20 % higher than

quality assured level 2.0 AERONET data (see Fig. 8). This

suggests that the o-suite bias in AOD is likely to be larger

than suggested by the comparison with the NRT observa-

tions. Another limitation is that little information on the

aerosol composition is available, and this can only be as-

sessed indirectly, e.g. through the AE.

MACC o-suite dust parameters have been routinely

assessed over northern Africa, Middle East, and the Mediter-

ranean basin and southern Europe, using AERONET,

MODIS (Aqua), and lidar observations. A specific evaluation

has been performed, as well, for the MACC-II short (2007–

2008) reanalysis with improved dust parameterizations

(Cuevas et al., 2015). The spatial agreement between MACC

o-suite AOD and MODIS AOD is very good, confirming

that MACC o-suite captures almost all dust outbreaks, and

tracks fairly well their spatiotemporal evolution, both over

the North Atlantic and the Mediterranean. The results of

the comparisons of the o-suite AOD/DOD with AERONET

AOD/DOD, MODIS AOD, and the WMO Sand and Dust

Storm Warning Advisory System (SDS-WAS) multi-model

DOD median (http://sds-was.aemet.es/forecast-products/

forecast-evaluation/model-evaluation-metrics), formed with

seven to nine models, indicate an excellent agreement in all

regions, except over the Sahara. In this region the o-suite

tends to overestimate, showing an averaged seasonal MB
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Figure 7. AOD at 550 nm (a) correlation coefficient MACC o-suite model simulation against Aeronet NRT level 1.5 data for April 2011–

August 2014 (thick red curve); last forecast day is shown separately (light red curve); (b) corresponding MNMB expressed as %. Note that

our best estimate of the o-suite bias is 20 % more positive, because the reference (AERONET NRT data) itself has a positive 20 % bias against

level 2.0 AERONET data.

Figure 8. Retrospective evaluation of MACC o-suite for 2011, using NRT Aeronet level 1.5 data (top) and quality assured Aeronet level 2.0

data (bottom).

(with AERONET) ranging from 0.08 to 0.24 in winter

and spring, respectively. The o-suite behaves quite well

compared with other regional and global dust models, pro-

viding similar results to those of the SDS-WAS multi-model

median.

9.6 Stratospheric ozone

Ozone profiles are routinely evaluated with vertical profiles

from balloon-borne ozone sondes, ozone profile retrievals

from the MLS, OMPS, and OSIRIS satellite instruments,

ground-based remote sensing observations at a selection of

stations from NDACC, including microwave, FTIR, and li-

dar observations.

The daily stratospheric analyses from the three model con-

figurations are further compared with three offline strato-

spheric analysis systems: BASCOE (Errera et al., 2008; Vis-

cardy et al., 2010), SACADA (Elbern et al., 2010), and

TM3DAM (van der A et al., 2010). Lefever et al. (2015)

compared the analyses of stratospheric ozone by the o-suite

(IFS–MOZART) with the results of these three offline sys-

tems and showed that its quality is primarily determined by

the availability and vertical range of Aura-MLS observations.

Relative monthly mean biases of the o-suite are on av-

erage between −5 and 17 % compared with ozone sondes.

The Antarctic ozone hole in 2013 was reproduced by the o-

suite with relative biases less than 10 %. The validation re-

sults of the o-suite in comparison to other model versions

clearly reveal that data assimilation, and especially the use

of profile observations by limb-sounding instruments such as

MLS, is essential for a correct representation of the vertical

distribution of ozone in the stratosphere (Inness et al., 2013,

2015; Lefever et al., 2015). The impact of data assimilation
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Figure 9. Comparison of the average O3 mixing ratios of

MACC o-suite (red), IFS–MOZART (orange) and C-IFS (CB05)

(blue) with the average NDACC FTIR profiles (black) observed

at Izaña (28.3◦ N, 16.5◦W) for the period September 2013–

September 2014. (Left) O3 profiles, (right) profiles of the bias and

standard deviation of the differences centred on the bias. The num-

ber of available O3 profiles and the number of collocated model

profiles are indicated in between brackets.

at other locations can also be seen in the evaluations based

on NDACC stations, for example at Izaña, Fig. 9.

Total ozone columns in the o-suite shows an overall good

agreement compared with TM3DAM (Lefever et al., 2015).

This system can serve as a reference for the ground truth

since it applies bias corrections to GOME-2 data based on

the surface Brewer–Dobson measurements.

Ozone daily mean time series from the o-suite are further

compared to BASCOE assimilation system and to OMPS,

OSIRIS, and MLS satellite data for different latitudes at

20 km (lower stratosphere), which is relevant for future val-

idation and operation of forecast models, see Fig. 10. This

evaluation illustrates that o-suite and BASCOE are usually

very close (< 5 %). There are in fact significant biases be-

tween satellite instruments, with an ozone abundance in

OMPS that is in general 25–30 % lower than MLS data for all

latitudes at 20 km. A similar behaviour is found for OSIRIS

in the tropics, while the agreement with MLS is much better

at the poles. It should be noted that the product from OMPS

is relatively new, and the comparisons may improve with fu-

ture retrieval algorithm updates.

10 Discussion and future perspectives

In this paper we provided an overview of the validation ap-

proach for the global MACC service products. The princi-

ple behind this work is that every product in the catalogue

of MACC should be accompanied by validation information

based on independent observations, and summarized in vali-

dation reports, which is essential for the users. For the global

forecast/analysis service this validation report is updated on

a very regular 3-monthly basis to provide up-to-date infor-

mation on the product quality. The validation team is oper-

ating largely independently from the modelling teams. The

VAL activity is targeted to users, but it also provides feed-

back to the modelling and data assimilation teams in MACC

concerning new model test versions.

The assimilation and validation activity within MACC is

clearly limited by the finite amount of high-quality obser-

vations available for comparison in NRT. The model con-

tains a large number of trace gases and aerosol components

simulated with global coverage at as high resolution as prac-

tically feasible. Only a small amount of these variables is

constrained, as was indicated in Table 1. Additional con-

straints can occasionally be obtained from an in-depth anal-

yses of field campaigns, e.g. Emmons et al. (2015). The fo-

cus in VAL is mainly on those modelling aspects that are

strongly influenced by the assimilation process: tropospheric

and stratospheric ozone, tropospheric CO, aerosol optical

properties, and, to a lesser extent, NO2, SO2, and HCHO.

Apart from this, the availability of observations in near-real

time is crucial for the assimilation. For the validation reports

the requirements are somewhat more relaxed: observations

should be available within 1 month to 6 weeks.

In the near future more focus will be given to the evalua-

tion of the MACC system in terms of trace gas and aerosol

boundary conditions to regional air quality models. Suitable

evaluation data sets and good quality metrics are currently

under investigation. Another aspect not yet well covered in

the VAL activity is the evaluation of the aerosol composi-

tion and vertical distribution, in particular because no, or very

limited NRT observations are available. Additional research

will be based on the climatological aerosol composition and

variation (as used for AeroCom model evaluations) to obtain

relevant information on the quality of the IFS forecast sys-

tem. Validation of vertical distribution of some components,

such as aerosols, could be improved in future, incorporating

observations from networks of ceilometers and micropulse li-

dars functioning operationally. However, for these measures

to be truly useful in MACC validation, calibration constraints

must be first overcome.

Apart from the observational data sets listed in Sect. 7,

which are currently used for the validation of the MACC

system, VAL is also expanding its scope by looking at new

promising data sets. Previous (e.g. ACCESS) and future field

campaign data provide interesting case studies and allow for

a more extensive evaluation in the free troposphere. A data

set that was considered in MACC are ceilometer observa-

tions, and the use of ceilometer networks was discussed in

Sect. 8.

A second type of new observations studied in MACC in-

volves ground-based MAX-DOAS instruments. These in-

struments are well suited to probe the amount of pollutants in

the boundary layer above urban areas. Because several of the

instruments are located close to large cities, these observa-
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Figure 10. Daily mean time series comparing ozone abundances from the o-suite (red line), the IFS–MOZART coupled system (orange line),

C-IFS (CB05) (blue line), and BASCOE (cyan line) with MLS (black dot), OMPS (pink cross) and OSIRIS (green plus) observations for the

period 1 September 2013–1 September 2014 at 20 km altitude.

tions are especially valuable to test regional air quality mod-

els with enough spatial resolution to simulate fine-scale vari-

ability (see, e.g. Vlemmix et al., 2011). The models can be

tested on an hourly basis during daytime, which offers the

possibility to investigate diurnal, weekly, and seasonal de-

pendencies, as well as dependencies on the meteorological

conditions. For a continuous validation, a mix of stations at

background locations in polluted and unpolluted regions as

well as close to emission hot spots, such as cities or indus-

trial areas would be ideal.

The near-future C-IFS system is foreseen to include a set

of three different chemistry modules for tropospheric and

stratospheric chemistry (Flemming et al., 2015), and a more

comprehensive aerosol model based on the GLObal Model of

Aerosol Processes (GLOMAP) model (Mann et al., 2010).

These independent model configurations will be employed

routinely to provide a small ensemble of forecasts (without

assimilation) to complement the o-suite. This ensemble will

be evaluated by the validation team. This intercomparison

between the model configurations will provide a better inter-

pretation of the validation results, identifying model-related

aspects and quantifying the improvement brought by the as-

similation.

In the long-term there are several more generic aspects

which are of concern for the validation activity in CAMS:

1. There is a clear need for a set of summary skill scores,

which can be used to document the performance and

monitor the improvements of the MACC system over

time. This is related to the concept of “headline scores”,

which are used by meteorological centres to monitor

and intercompare the performance evolution of the fore-

cast system in time. A prominent example is the 500 hPa

height anomaly score. In MACC we are developing

a methodology to arrive at a set of skill scores. The ap-

plication of this approach is work in progress.

2. The validation reports are written first of all for the

users of the services. The information should be di-

gestible by those user groups, and should be presented

in a friendly way, e.g. through intuitively meaningful

skill scores. Interaction with the users is facilitated by

a dedicated “interface” sub-project in MACC through

user surveys and workshops, and VAL is responding to

the validation-related user feedback. One example is the

provision of information on how well the global model

is able to simulate surface ozone observations in Eu-

rope, which is currently being implemented. It is rec-

ommended that the interaction with the users will be in-

tensified in CAMS, for instance by asking for feedback

to specific users on a more detailed level.

3. The CAMS validation work done should be tested for

compliance against general quality assurance princi-

ples. During MACC a “validation protocol” was devel-

oped (Lambert, 2013). In part this is based on princi-

ples developed in the Quality Assurance Framework for

Earth Observation (QA4EO; http://www.qa4eo.org) ac-

tivity of the Group on Earth Observations (GEO). Some

aspects have been incorporated in the VAL practice, but

a regular testing against these principles is foreseen.

4. The user driven future service evolution has been

the topic of the EU project GMES-Pure (http://www.

gmes-pure.eu). The definition of service data require-

ments (SDRs) was found to be a crucial intermediate

step in the systematic approach on service evolution.

The validation activity in the future CAMS forms an

essential element for the translation of (i) the end-user

Geosci. Model Dev., 8, 3523–3543, 2015 www.geosci-model-dev.net/8/3523/2015/

http://www.qa4eo.org
http://www.gmes-pure.eu
http://www.gmes-pure.eu


H. Eskes et al.: Validation of reactive gases and aerosols in the MACC global analysis and forecast system 3539

requirements into SDRs and of (ii) the SDRs into ob-

servational requirements for both space and non-space

components for assimilation as well as validation pur-

poses.

5. Surface and airborne observations are crucial for

CAMS, but the funding of these observations is not cov-

ered by Copernicus. Strong links with the major global

networks and data providers will be maintained to en-

sure NRT access and data quality standards. We note

that various MACC management team members and

partners are strongly involved in observational network

activities, in particular those coordinated by WMO.

The operational CAMS will start in 2015. It is foreseen that

the validation of CAMS will proceed in a similar way as was

developed in MACC, with, e.g. regular 3-monthly reports.

These regular updates allow the validation teams to contin-

uously improve the presentation of the information, taking

into account the more long-term aspects mentioned above.
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