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Abstract

For the last centuries soil erosion has been accelerating globally due to human activities.

Accelerated soil erosion and the resulting soil redistribution have impacted the lateral

fluxes of carbon and nutrients across terrestrial ecosystems. However, as Earth System

Models (ESMs) ignore these lateral fluxes altogether, the anthropogenic impact to these

fluxes remains unquantified. The aim of this study is to close this knowledge gap by

the development of methods and tools, compatible with ESMs, to simulate long-term

soil redistribution on a global scale.

In this context the computation of topographical- and rainfall erosivity factors of an

existing soil erosion model (the Revised Universal Soil Loss Equation, RUSLE) was

adjusted to improve the performance of the RUSLE model at a coarse resolution of

ESMs. Application of the model in combination with observed data on environmental

factors confirmed the accelerated soil erosion rates in many regions, with a global mean

rate of 6.5 t ha−1 year−1 for present day. However, no specific global trend of erosion is

found for the last millennium (850 - 2005AD) when data on climate and land cover from

different ESMs is used. This shows that the adjusted RUSLE model is very sensitive

to climate and land cover data.

In order to simulate soil redistribution, a new large-scale sediment budget model was

developed. This model builds on the adjusted RUSLE model and simulates beside soil

erosion, also sediment deposition in floodplains and on hillslopes, as well as sediment

transport. The new model was forced with climate and land cover data from the Max

Planck Institute Earth System Model (MPI-ESM) for the last millennium. The model

reproduces the spatial distribution of sediment storage in floodplains when compared

to observations from the Rhine catchment, and shows that the change in erosion rates

during the last millennium modified the sediment budgets resulting in a significant

increase in sediment storage for different catchments. Globally, land use change turned

out to be the main driver behind this increase for most of the catchments during the last

millennium. Here, catchment characteristics, such as slope and area, play an important

role in buffering or intensifying the effect of external forces.

The main limitations of the model are related to the fact that model parameters are

calibrated based on data from the Rhine catchment only, and to the neglection of

other types of soil erosion. Furthermore, a general limitation in simulating historically

realistic soil redistribution arises from the unknown initial state of a river catchment.

Most catchments in northern latitudes have been in a transient state since the last

glaciation in contrast to tropical catchments.

Finally, soil erosion can result in significant fluxes of carbon and nutrients, of which only

a small part is exported by rivers globally. This indicates the importance of including

sediment dynamics in ESMs to estimate the overall impact of soil redistribution on the

biogeochemical cycles, and to quantify the human impact on these cycles. With the

new sediment budget model an important first step is made in this direction.
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Zusammenfassung

Über die letzten Jahrhunderte hat sich die Bodenerosion aufgrund menschlicher Ak-

tivitäten global beschleunigt. Die beschleunigte Bodenerosion und die daraus resul-

tierende Bodenumverteilung verändern den lateralen Transport von Kohlenstoff und

Nährstoffen in den terrestrischen Ökosystemen. Da Erdsystemmodelle (ESMs) solch

laterale Transporte nicht beschreiben, wurde der anthropogene Einfluss auf diese Flüsse

bisher allerdings nicht quantitativ bestimmt. Um zur Schließung dieser Wissenslücke

beizutragen, werden in dieser Arbeit Methoden und Werkzeuge für Ersystemmodelle

zur Simulation der globalen Langzeit-Umverteilung des Bodens entwickelt.

Dazu wurde zunächst die Berechnung der topographie- und regenspezifischen Ero-

sivitätsfaktoren des bereits vorhandenden Bodenerosionsmodell (Revised Universal Soil

Loss Equation, RUSLE) an die grobe Auflösung von ESMs angepasst. In Kombina-

tion mit Beobachtungsdaten verschiedener Umweltfaktoren bestätigt die Anwendung

des Modells die beschleunigten Erosionsraten für viele Regionen weltweit, mit einer

heutigen mittleren globalen Bodenerosionsrate von 6.5 t ha−1 pro Jahr. Allerdings er-

gab sich für das letzte Jahrtausend (850 - 2500AD) kein global einheitlicher Trend der

Bodenerosion bei Verwendung von Klima- und Landbedeckungsdaten aus verschiede-

nen Erdsystemsimulationen. Offensichtlich ist das angepasste RUSLE-Modell bezüglich

dieser Eingabedaten sehr sensitiv.

Um die Bodenumverteilung zu simulieren, wurde ausgehend von dem angepassten

RUSLE-Modell ein großräumiges Sedimentbilanzmodell entwickelt. Dieses neue Modell

simuliert neben Bodenerosion auch Sedimentablagerung an Hängen und in Flußauen,

sowie den Sedimenttransport. Zum Antrieb des Modells wurden Klima- und Landbe-

deckungsdaten aus Simulationen des letzten Jahrtausends mit dem Erdsystemmodell

des Max-Planck-Instituts für Meteorologie (MPI-ESM) verwendet. Das Modell repro-

duziert die beobachtete Sedimentverteilung in den Flußauen des Einzugsgebietes des

Rheins und zeigt weltweit für verschiedene Flusseinzugsgebiete eine starke Zunahme

der Sedimentmengen infolge der Intensivierung der Erosion im letzten Jahrtausend.

Landnutzungsänderungen erweisen sich weltweit für die meisten Flusseinzugsgebiete

als Hauptursache dieser Entwicklung. Die Stärke des Effektes hängt stark von den

Besonderheiten des jeweiligen Einzugsgebietes ab, wie etwa dessen Fläche und den

herrschenden Steigungsverhältnissen.

Die Haupteinschränkungen des Modells ergeben sich durch dessen Kalibrierung allein

auf Basis von Daten für das Rheineinzugsgebiet, sowie durch die Nichtberücksichti-

gung anderer Arten von Bodenerosion. Darüberhinaus ergibt sich eine generelle Ein-

schränkung für die Simulation historisch realistischer Bodenumverteilung aus der Un-

kenntnis des Anfangszustands der jeweiligen Flusseinzugsgebiete. Im Gegensatz zu

tropischen Einzugsgebieten befinden sich die Einzugsgebiete nördlicher Breiten seit

der letzten Vereisung in einem transienten Zustand.

Schließlich wird in der Arbeit diskutiert, dass Bodenerosion zu starken Umverteilun-

gen von Kohlenstoff und Nährstoffen führen kann, die aber global nur zu einem
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geringen Teil über Flusssysteme exportiert werden. Hierdurch ergibt sich die beson-

dere Notwendigkeit die globale Sedimentdynamik in Erdsystemmodelle zu integrieren

um die Folgen der Bodenumverteilung für die globalen biogeochemischen Kreisläufe

abzuschätzen und um zu quantifizieren, welchen Anteil der Mensch daran hat. Die

Entwicklung des neuen Sedimentbilanzmodells ist ein erster wichtiger Schritt in diese

Richtung.
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Chapter 1

Introduction

1.1 Background

In the year 2015 the monthly mean atmospheric CO2 concentrations have reached 400

parts per million (ppm) for the first time in recorded history based on data from the

Mauna Loa Observatory in Hawaii. CO2 concentrations have not been this high for the

past millions of years (Honisch et al., 2009; Lüthi et al., 2008). This milestone has led

to more concerns regarding global warming and the future climate. The Conference of

Parties in Paris in the year 2015 aims, therefore, to reach a universal legally binding

agreement that can lead to a reduction of greenhouse gas (GHG) emissions to limit

global warming to below 2 ◦C (www.cop21.gouv.fr). Limiting global warming to below

2 ◦C is not only a political, economical and societal challenge, but also a challenge

for the scientific community which still struggles to accurately quantify all present day

sources and sinks of carbon.

It is well known that the increasing CO2 concentrations is a result of rapid emissions

by human activities such as fossil fuel combustion and land use change (Ciais et al.,

2014). This emitted CO2 is currently taken up in about equal parts by the ocean and

the terrestrial system (Ciais et al., 2014). For the terrestrial system a net sink is ob-

served as a result of an imbalance between several sink and source processes. However,

the exact contribution of all the relevant processes behind this net sink is still unknown

(Ciais et al., 2014; Friedlingstein et al., 2014).

One major reason for this knowledge gap is the ignorance of the contribution of world’s

soils and soil related processes, such as soil erosion, to atmospheric CO2 concentrations

and climate change (Todd-Brown et al., 2014). Soils are one of the largest stores of

carbon, storing about 1500-2400 Pg of carbon, which is almost three times the quan-

tity stored in the terrestrial biomass, and twice that in the atmosphere (Ciais et al.,

2014; Lal, 2003). This soil carbon pool is in direct exchange with the atmosphere. At

the same time, soils support life on our planet by storing and cleaning drinking water,

supporting the production of food and keeping the air breathable (Wall and Six, 2015;

Quinton et al., 2015). The United Nations (UN) have therefore recognized the year
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2015 as the International Year of Soils, with the focus on the increasing pressures on

soils and their ripple effect on global challenges (Wall and Six, 2015). Soil security is

now a priority and several UN Sustainable Goals for the future directly or indirectly

involve soil research.

Human induced alterations of soils that accelerate soil erosion can lead to significant

changes in net terrestrial ecosystem carbon balances and negatively affect the society

through climate change feedback’s (Van Oost et al., 2012; Schuman and Herrick, 2002;

Wall and Six, 2015).

For the last centuries to millennia soil erosion has been accelerating globally due to hu-

man activities, such as deforestation and agricultural practices (Bork and Lang, 2003).

Currently, global rates of soil erosion exceed the rates of soil production by several

orders of magnitude (Hoffmann et al., 2015; Montgomery, 2007; Wall and Six, 2015).

Accelerated soil erosion is a process that triggers land degradation in the form of nu-

trient loss, a decrease in the effective root depth, water imbalance in the root zone and

finally also productivity reduction (Yang et al., 2003). Deposition of the eroded soil

downstream has lead to the alteration of fluvial ecosystem functioning and structure

(Hoffmann et al., 2015). All this is a threat to sustainable agriculture and climate

on the long term, that is currently exacerbated by the global population growth and

climate change.

Soil erosion by rainfall and the resulting sediment deposition and transport (soil re-

distribution) play an important role in the mineralization and sequestration of soil

carbon and the loss of carbon and nutrients from ecosystems (Van Oost et al., 2007).

On the one hand, mineralization of soil carbon at eroding sites and during transport

can lead to significant fluxes of GHGs (Lal, 2003; Van Oost et al., 2007; Lal, 2005).

On the other hand, the transport of carbon and nutrients from a terrestrial ecosystem

can result in either sequestration of carbon at deposition sites (Stallard, 1998; Van

Oost et al., 2007), or significant lateral fluxes of carbon and nutrients (Van Oost et al.,

2007; Quinton et al., 2010). However, the net global effect of soil redistribution on the

vertical and lateral fluxes of carbon and nutrients is still unknown.

The land components of Earth System Models (ESMs) are the main tools to investi-

gate the terrestrial carbon cycle and land use and land cover change (LULCC). They

mainly represent the effects of fossil fuels and land use change on the carbon cycle and

the resulting carbon flux between soil and the atmosphere (Regnier et al., 2013). How-

ever, they ignore carbon exchange associated with soil redistribution and the resulting

lateral fluxes of carbon and nutrients from land to the ocean (Regnier et al., 2013; Van

Oost et al., 2012).

Recent evidence demonstrated that human activities, such as land use change, fertil-

izer use, and those that accelerate soil erosion, have significantly altered this lateral

transport (Regnier et al., 2013; Stallard, 1998; Bauer et al., 2013; Le Quéré et al.,

2013). For example, Regnier et al. (2013) estimated that human activities increased

the carbon flux to inland waters by as much as 1.0 Pg C yr−1. As ESMs, currently,

ignore lateral flows of carbon and nutrients altogether, anthropogenic disturbance of
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the biogeochemical cycles remain largely unquantified (Regnier et al., 2013).

To address this problem, soil redistribution should be included in ESMs to estimate the

effects of soil redistribution on the biogeochemical cycles. Not only will this improve

the understanding of human disturbances of the biogeochemical cycles, but it will also

decrease the large uncertainties in the soil response to climate and land use change.

Another aspect that underpins the importance of modeling soil redistribution on a

global scale is the fact that soil erosion can lead to tipping points in a landscape.

A tipping point is defined as the threshold, which is reached when small changes in

external conditions lead to abrupt changes in the equilibrium conditions of a system

(Lenton, 2011). Accelerated soil erosion can on millennial and longer timescales lead

to modifications of the landscape, in terms of soil structure and texture, nutrient and

productivity loss, that result in strong positive feedbacks between soil, vegetation, hy-

drology and the atmosphere. Such feedback’s can lead to a state or tipping point in the

landscape formation from which the landscape can not recover anymore. For exam-

ple, the studies of Bork (1989) and Bork and Lang (2003) show that land use change

during the last millennium in Germany lead to very vulnerable soils where precipita-

tion extremes triggered sudden strong erosion fluxes that transformed the landscape.

Unfortunately, soil erosion in relation to tipping points in a landscape has not yet

been studied before on a regional or global scale due to the lack of suitable techniques.

Modelling soil redistribution with ESMs would therefore open the possibility to study

soil-vegetation-atmosphere interactions and the overall effect on the climate system.

The overall long-term aim of this study is to contribute in quantifying the anthro-

pogenic impact on the lateral fluxes of carbon and nutrients, through improving the

understanding on how soil redistribution affects the lateral fluxes on a global scale.

Soil redistribution operates on different scales of time and space, and involves interac-

tions with multiple processes in the terrestrial system. Therefore, before introducing

the specific objectives of this study, (1) the processes behind soil erosion and (2) soil

redistribution, as well as (3) the effects of soil redistribution on the biogeochemical

cycles, are explained in more detail.

1.2 Global soil erosion

Soil erosion describes the detachment of soil particles from the surface by rainfall or

wind. This study focuses on soil erosion by rainfall. Soil erosion by rainfall comprises:

splash erosion, sheet or rill erosion and gully erosion (Morgan, 2009). Splash erosion

occurs when soil particles are detached from the surface and moved from their places

due to the impact of falling raindrops. In this way, soil erosion is primarily related

to the energy of the falling raindrops, which is a result of the precipitation intensity

and amount. Sheet or rill erosion occurs when the water is concentrated in flows

and transports the detached soil particles downhill. Here, the second parameter that

provides energy for the soil to erode comes into light, which is the topography of the
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landscape. The steeper the topographical slope, the stronger the sheet or rill erosion

will be. Finally, gully erosion occurs, when the flow concentration becomes so large

that the incisions in the soil created by rill erosion get deeper and wider (Thapa, 2010;

Morgan, 2009).

Besides precipitation and topography there are other environmental factors, such as

land cover and soil characteristics, that significantly affect soil erosion but at the same

time are not the drivers behind soil erosion. On the one hand, the structure and texture

of the soil to be eroded determine how resistant the soil is to splash erosion (Morgan,

2009). On the other hand, these soil characteristics determine how large the shear

stress is, which affects the overland flow when rill or even gully erosion takes place

(Léonard and Richard, 2004). Soils in agricultural landscapes are usually organic and

lack large soil particles such as gravel that makes these soils very vulnerable to soil

erosion.

Land cover can limit soil erosion due to the presence of roots that minimize the energy

of overland flow (Vannoppen et al., 2015), and by the density of the land cover itself that

minimizes the energy of falling raindrops (Garćıa-Ruiz, 2010). The effects of human

activities on soil erosion are mainly via alternation of land cover, where for example,

forest is replaced by crops and the ability of the land cover to limit soil erosion decreases

(Van Oost et al., 2012). These effects are correlated with the level of land management

(Renschler and Harbor, 2002). For example, tillage strongly increases soil erosion rates

compared to natural conditions. Other management strategies, such as rotation of

crops, cause less disastrous effects on soil erosion.

Land cover and land use interact with all the other environmental parameters that

affect soil erosion, which hampers the ability to quantify the effects of land use change.

For example, the effect of land use change on erosion depends on the place of land use

change in the landscape. Land use change on steep hillslopes leads to larger soil erosion

rates than land use change in flat areas. The effects of land use change on erosion can

also be modified by precipitation. If cycles of harvesting and planting of crops coincide

with strong precipitation rates, the resulting erosion rates will be larger in comparison

to occasions where the strong precipitation rates occur when the plants are fully grown.

It is thus essential, to capture these interactions between the different environmental

parameters that affect erosion in order to estimate accurate erosion rates.

In return, soil erosion affects all the environmental parameters mentioned above (Toy

et al., 2002; Morgan, 2009). Erosion affects the physical and chemical properties of

soils, and at the same time vegetation growth (Toy et al., 2002). The topography can

be changed on long-term due to the loss and mobilization of large amounts of soil.

Finally, climate can also be influenced by erosion on centennial to millennial timescales

due to the potential of erosion to significantly affect global biogeochemical cycles and

plant productivity. This highlights the need to study soil erosion not as a stand alone

process but rather in interaction with the dynamics of vegetation, soil, biogeochemical

cycles and climate, which requires a comprehensive global approach.

The interaction of soil erosion with many components of the Earth system once more
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underpins the fact that even though erosion starts as a local scale phenomenon it can

have global effects. In the next section will be shown that sediment redistribution plays

an important role in this interaction due to its ability of catalyzing the local impacts of

soil erosion to larger scales by the transport of eroded material from land to the ocean.

1.3 Global soil redistribution

Soil redistribution is the complete cycle of soil erosion, transport of eroded material in

the form of sediment by overland flow or wind, and the resulting sediment deposition.

In this study, the focus is only on soil redistribution by rainfall. Soil redistribution does

not always result in a net loss of soil or degraded land, but can also lead to soil forma-

tion and the improvement of soil quality and texture in deposition sites. The mount of

sediment that can be transported by overland flow depends on the transport capacity

of the flow, which is defined as the maximum sediment mass that can be transported

(Notebaert et al., 2006). Deposition in depressions occurs when the transport capacity

of overland flow is lower than the sediment production by erosion. Deposition sites can

be divided into two groups, (1) the foot of hillslopes and natural and man-made barriers

on the hillslopes and (2) floodplains and drainage network (Fig. 1.1). Depending on the

energy of the overland flow, eroded soil particles will be first deposited on the hillslopes

itself, especially when man-made barriers are created by agricultural practices. If the

overland flow is stronger or the shear stress to the overland flow is lower, soil particles

will be transported and deposited at the foot of hillslopes or in floodplains (Fig. 1.1).

Depending on the residence time of soil particles in the floodplains they will eventually

reach the drainage network (Fig. 1.1). The residence time is related to the sediment

connectivity of the catchment, which describes the physical transfer of material from

hillslopes to the floodplain and is mainly determined by the complexity of topography

(Hooke, 2003; Hoffmann, 2015). Land use change can affect this connectivity by local

scale barriers that capture eroded sediment and prevent it from being transported to

the drainage network.

Due to deposition, not all of the eroded material in a catchment reaches the drainage

network. The amount of sediment that does reach the drainage network and is trans-

ported downstream towards the outlet of the catchment is referred to as the sediment

yield (Thapa, 2010). Although measurements of soil erosion on a large spatial scale are

rare, there exists a global database on measured sediment yield from rivers (Peucker-

Ehrenbrink, 2009). Sediment yield can be used to study the net effect of soil redistri-

bution in a catchment.

External forces working on the catchment, such as land use change or climate change,

can significantly alter the soil redistribution in a catchment. However, external forces

do not lead to an immediate change in sediment yield due to a time lag created by the

residence time of the sediments in a catchment. This complicates the investigation of

external forces on soil redistribution from data on sediment yields.



6 Introduction

Therefore, a global model is needed that can simulate sediment fluxes as a result of

soil redistribution on long timescales. In addition, such a model can be used to study

the effects of soil redistribution on the global biogeochemical cycles and the climate,

presented in the following section.

Mineralization losses 

Agriculture 

Forest 

Hillslope 

Dynamic replacement 

Stabilization C:N  
And C : P ratios 

Increase in dissolved 
N &P 

Physical removal C, N & P 

Soil Erosion 

Soil  Deposition 

Sediment Transport 

Yields of 
sediment, C, 
N and P 

Figure 1.1: A simple representation of a landscape showing soil redistribution fluxes (black

arrows) and fluxes from possible interactions with the carbon and nutrient cycles (red arrows).

C, N and P stand for carbon, nitrogen and phosphorus.

1.4 Carbon and nutrient cycles

Soil redistribution affects the carbon cycle primarily through the soil organic carbon

(SOC) pool (Fig. 1.1). The main processes by which soil redistribution interacts with

SOC are (1) disruption of soil aggregates, (2) removal of carbon by overland flow, (3)

on-site mineralization of SOC and (4) mineralization of displaced SOC or SOC that is

transported in the drainage network, and finally (5) re-aggregation of soil in depres-

sions and in the drainage network that buries carbon rich sediments in these places

(Lal, 2003).

For a long time, soil redistribution has been seen as a major source of carbon emissions

due to the mineralization of SOC during soil detachment, transport and deposition.

The effects of soil redistribution on the global carbon cycle have received considerable

attention after the pioneering work of Stallard (1998), who proposed that global soil

redistribution can also result in a sequestration of carbon by soils and in a sink of
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atmospheric CO2.

On the one hand, accelerated soil erosion can promote the uptake of carbon by soils or

reduce carbon emissions from soils. When soil erosion takes place, carbon is removed

from the top soil and carbon-depleted subsoil is exposed. This can reduce the carbon

emissions over eroding sites due to less available carbon for decomposition (Van Oost

et al., 2012). At the same time carbon-depleted soils have usually a larger saturation

deficit of carbon and can therefore potentially take up more carbon than nonerod-

ing sites (Van Oost et al., 2012; Stewart et al., 2007). On the other hand, carbon is

sequestered in soils due to sediment deposition that buries carbon rich sediment in

depressions. This burial of carbon can become a sink for atmospheric CO2 when the

eroded carbon is replaced somewhere else by means of photosynthesis. This is called

dynamic replacement of carbon and usually occurs in agricultural areas. Even when

carbon losses due to soil erosion are high, the use of fertilizers can promote photosyn-

thesis such that the losses are compensated by the production of new carbon that can

be fixed in buried soil. Furthermore, it should be noted that although soil erosion can

be a sink for carbon, this can be temporary (Van Oost et al., 2012). Depending on

the residence time of sediments in the reservoirs of a catchment the sink can become

a source. Van Oost et al. (2012) indicated that carbon may be preserved effectively at

annual to decadal timescales, but can result in losses of the buried carbon at centennial

to millennial timescales. At the same time, the preservation of carbon is complicated

by the fact that human activities can alter the residence times. The magnitude of the

net effect of erosion on SOC is thus determined by the rate at which SOC is replaced

on eroding sites, on the changes of reactivity of SOC as a result of transport and burial,

the preservation of carbon, and the rates of erosion and deposition (Van Oost et al.,

2007).

Very little work has been done on the effects of large scale soil redistribution on nu-

trient cycles such as the nitrogen and phosphorous cycles (Quinton et al., 2010). Soil

redistribution can lead to a significant loss of nutrients from the soil system (Quinton

et al., 2010; Zhang et al., 2004; Pimentel, 2006). Nutrients are in large concentrations

present in clayey and silty soils and in soils with a high percentage of soil organic

matter (SOM). As soil erosion removes first the small grain soil (clay, silt), nutrients

are more prone to soil redistribution. This could promote nutrient limitation that can

be difficult to compensate when the losses are large compared to gain fluxes. Poten-

tially, this could result in productivity loss and on a longer term to a tipping point in

the system where the vegetation cannot be restored to the previous productive state

anymore (Zhang et al., 2004). High concentrations of dissolved nutrients in the water

can also promote algal blooms and phytoplankton productivity that can have negative

effects on the environment.

Beside physical removal of nutrients, soil erosion can also enhance mineralization of

the nutrients by disruption of soil aggregates and the transport of these aggregates

by overland flow, resulting in an increased availability of dissolved nutrients for biota

(Balesdent et al., 2000; Quinton et al., 2010). On long-term this enhanced mineral-
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ization can lead to a general depletion of organic nutrients. The depletion of organic

nutrients in eroding sites can become a source in deposition areas where increased con-

centrations of nutrients can act as fertilizers.

In addition to these general effects of soil redistribution on the nutrient cycles, there

are some effects that are dependent on the nutrient type. Nitrogen, for example, gets

quickly taken up by biota or mineralized during sediment transport. Deposition of

sediment containing nitrogen can therefore lead to an increased carbon to nitrogen

ratio and thus resulting in the stabilization of the nitrogen in the soil. For the phos-

phorus cycle, removal by chemical weathering of exposed subsoil due to soil erosion

can be equally important to the physical removal by soil erosion (Quinton et al., 2010;

Filippelli, 2008). As all these processes act simultaneously, the net effect of soil redis-

tribution on the biogeochemical cycles is difficult to estimate, however, the need for

this estimate is urgent in order to better understand the effects of human activities in

the future.

1.5 Thesis outline

The motivation of this study is to develop methods and tools to simulate long-term

soil redistribution on a global scale using coarse resolution climate and land cover

data. Having the tools to simulate soil distribution on a global scale would open the

possibility to investigate its impact on the global biogeochemical cycles, and on the

soil-vegetation-atmosphere interactions.

The main objective of this study is to derive long-term soil erosion rates and sediment

fluxes on a global scale, and to investigate the effects of land use change and climate

change on these sediment fluxes.

The aim of chapter 2 is to develop an erosion model in the framework of ESMs, to

quantify global soil erosion rates for present day and for the last millennium. The

particular research questions for this chapter are:

1. How can realistic global soil erosion rates be derived for present day, and what

are the main uncertainties?

2. Can global soil erosion rates that are derived from observational datasets be

reproduced with climate and land cover data from Earth System Models?

3. How did soil erosion change during the last millennium and what were the main

drivers behind this change?

The first part of this chapter is published in the journal of Geoscientific Model Devel-

opment (GMD).

The focus of chapter 3 is the newly developed global sediment budget model compat-

ible with ESMs and building on the erosion model of chapter 2. The aim is to use
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this model to quantify the change in global sediment storage and fluxes during the last

millennium, with the following research questions being investigated:

1. How to simulate large-scale sediment storage and fluxes for the long-term (cen-

tennial to millennial timescales)?

2. How did sediment storage change during the last millennium and what were the

main drivers behind this change?

3. How do catchment characteristics influence the change in sediment storage on

the long-term?

Part of this chapter is under review for the journal Earth Surface Dynamics.

Chapter 4 is an outlook chapter on the significance of laterally displaced carbon and

nutrients due to soil erosion. The aim is to point out the importance of studying the ef-

fects of soil redistribution on the biogeochemical cycles, and identify the main processes

that should be modelled in order to quantify the overall effects on the biogeochemical

cycles. The research questions here are:

1. How large are present-day lateral fluxes of carbon and nutrients due to soil erosion

only?

2. How does soil redistribution impact these lateral fluxes of carbon and nutrients?

3. Which approach should be taken to quantify the main effects of soil redistribution

on the carbon and nutrient cycles?

The content of this chapter will be used as a basis for developing the tools to relate

soil redistribution to the carbon and nutrient cycles.

Chapter 5 provides the final summary and discussion of the results as well as the

perspectives for future research on modelling sediment dynamics and biogeochemical

cycles in ESMs.

1.6 Formal remarks

The studies presented in the next three chapters are conducted under supervision

and guidance of Dr. Christian Reick and support of Prof.Dr. Kristof Van Oost, and

others regarding data and technical solutions. In contrast to the introduction and the

summary and conclusions, the next three chapters are therefore written in the first

person plural. I kindly ask the reader to keep this is mind.
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Chapter 2

Accelerated soil erosion - a global

phenomenon1

2.1 Introduction

Currently, there exists a large uncertainty in the global soil erosion rates as can be

seen from recent studies that show rates between 20 and 200 Pg year−1 (Doetterl

et al., 2012). This indicates that modelling soil erosion on a global scale is still a

difficult task due to the very high spatial and temporal variability of soil erosion. Dif-

ferent approaches were previously applied to estimate soil erosion on a large or global

scale. Most of these approaches are based on extrapolated data from agricultural plots,

sediment yield or extrapolated river sediment estimates (Milliman and Syvitski, 1992;

Stallard, 1998; Lal, 2003; Pimentel et al., 1995; Hooke, 2000; Wilkinson and McElroy,

2007).

An alternative approach is based on the use of soil erosion models, in order to be able

to predict soil erosion rates for the past and future. One of the most applied models

to estimate soil erosion on a large spatial scale is the semi-empirical/process-based Re-

vised Universal Soil Loss Equation (RUSLE) model (Renard et al., 1997). This model

stems from the original Universal Soil Loss Equation (USLE) model developed by the

USDA (USA Department of Agriculture), which is based on a large set of experiments

on soil loss due to water erosion from agricultural plots in the USA. These experiments

covered a large variety of agricultural practices, soil types and climatic conditions,

making it a suitable tool on a regional to global scale. The RUSLE model predicts the

average annual soil erosion rates by rainfall and is formulated as a product of a rainfall

erosivity factor, soil erodibility factor, land cover factor, topographical factor, and a

support practice factor. The RUSLE model was first applied on a global scale by Yang

1Part of this study has been published as a research paper in Naipal, V., Reick, C., Pongratz,

J., and Van Oost, K.: Improving the global applicability of the RUSLE model - adjustment of the

topographical and rainfall erosivity factors, Geosci. Model Dev., 8, 28932913, doi:10.5194/gmd-8-

2893-2015, 2015.
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et al. (2003) and Ito (2007) for estimating the global soil erosion potential. Various

limitations were observed when applying this model on global scale. Firstly, the model

is originally developed to be applicable on the agricultural plot scale. This makes the

model incompatible with the coarse spatial scale of global data sets on soil-erosion-

influencing factors such as precipitation, elevation, land use and soil characteristics.

Secondly, the RUSLE and USLE models were parameterized for environmental con-

ditions of the USA and are thus not directly applicable to other areas in the world.

Thirdly, only sheet and rill erosion are considered. Finally, the RUSLE model does not

contain sediment deposition and sediment transport terms, which are closely linked to

soil erosion.

However, the RUSLE model is to our knowledge one of the few erosion models that has

the potential to be applied on a global scale due to its simple structure and empirical

basis. Therefore, it is of key importance to address the above mentioned limitations

first.

To address the first two limitations, Van Oost et al. (2007) presented in their work

a modified version of the USLE model for application on agricultural areas on global

scale. They based their model on large-scale experimental soil erosion data from the

USA (National Resource Inventory, NRI, database of Agriculture (2000)) and Europe

by deriving reference factors for soil erosion on agricultural land and for certain USLE

parameters. They also introduced a procedure to scale slope, which is an important

parameter in the topographical factor of the USLE/RUSLE model. In this scaling pro-

cedure slope was scaled from the GTOPO30 1 km resolution digital elevation model

(Survey, 1996) to the coarser resolution of the erosion model. This method was based

on high resolution OS (Ordnance Survey; 10 m resolution) and SRTM (Shuttle Radar

Topography Mission) data on elevation (90 m resolution, International Centre for Trop-

ical Agriculture, CIAT) for England and Wales.

Doetterl et al. (2012) showed that together with the topographical factor, the rainfall

erosivity factor explain up to 75 % of the erosion variability across agricultural areas

at the large watershed scale. These factors represent the triggers for soil erosion by

providing energy for soil to erode. They can also be seen as the natural components of

the RUSLE model, as they include very little or no modification by human activities

(Angulo-Martinez et al., 2009) apart from indirect effects on precipitation and extreme

events due to anthropogenic climate change. In this way they represent the natural

environmental constraints to soil erosion that are important to capture before the effect

of human activities on soil erosion through land use change can be investigated.

Previous studies on global soil erosion calculated the global rainall erosivity factor

based on the total annual precipitation (Renard and Freimund, 1994). This method is

different from the method presented in the original RUSLE model (Renard et al., 1997),

which is mainly based on 30 min precipitation intensity. The reason for the method

of Renard and Freimund (1994) is the lack of high resolution precipitation intensity

on a global scale. However, high resolution precipitation intensity is an important

explaining parameter of the rainfall erosivity factor and therefore, the applicability of
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the method of Renard and Freimund (1994) is limited.

The main objective of this chapter is to extend the applicability of the RUSLE model

to a coarse resolution at global scale, in order to make the model compatible with

Earth System Models (ESMs). This would enable future studies on the effects of soil

erosion for the past, current and future climate. To this end, we develop generally ap-

plicable methods that improve the estimation of slope and climatic factors from coarse

resolution global data sets. These methods should not only be applicable across agri-

cultural areas as in the studies of Van Oost et al. (2007) and Doetterl et al. (2012) but

also across non-agricultural areas. We adjust the topographical factor to the coarse

resolution of the global scale based on the scaling of slope according to the fractal

method. The adjustment of the rainfall erosivity factor to the global scale is based

on globally applicable regression equations. We derived these regression equations for

different climate zones based on parameters for precipitation, elevation and the simple

precipitation intensity. This approach is validated using several high resolution data

sets on the rainfall erosivity factor. To investigate the effects of these adjustments to

both factors on global soil erosion rates we use climate and land cover data from global

observational datasets for present day. Also, a comparison of the modelled global soil

erosion rates with independent estimates from high resolution and high precision data

sets of Europe and the USA is performed.

Next, the performance of the adjusted RUSLE model is tested when coarse resolution

data from various ESMs is used instead of observational datatsets. For this purpose,

climate and land cover data from five selected ESMs of the Coupled Model Intercom-

parison Project Phase 5 (CMIP5) is used to estimate present-day erosion rates with

the adjusted RUSLE model. These erosion rates are then compared with those derived

from observational datasets and the resulting uncertainties are estimated.

Finally, the global trends in soil erosion and their drivers is investigated during the last

millennium. Additionally, first estimations of uncertainties are provided when mod-

elling soil erosion using coarse resolution data from ESMs on a millennial timescale.

An overview of these uncertainties is important for the prediction of global soil erosion

rates with ESMs.
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2.2 Methods

2.2.1 The RUSLE model

This study uses a modified version of the RUSLE model (based on Renard et al. (1997)),

which calculates mean annual soil loss rates by sheet and rill erosion according to the

following equation

E = R ∗K ∗ C ∗ LS ∗ P (2.1)

where E is the average annual soil loss (t ha−1 year−1), R is the rainfall erosivity factor

(MJ mm ha−1 h−1 year−1), K is the soil erodibility factor (t ha h ha−1 MJ−1 mm−1), C is

the land cover factor (dimensionless), LS is the slope length and slope steepness factor

(dimensionless), and P is the support practices factor (dimensionless).

The R factor is described by Hudson (1971) and Wischmeier and Smith (1978) as the

result of the transfer of kinetic energy of raindrops to the soil surface. This causes

a detachment of soil and the downslope transport of the soil particles, depending on

the amount of energy, rainfall intensity, soil type and cover, topography and manage-

ment (Da Silva, 2004). The original method of calculating erosivity is described by

Wischmeier and Smith (1978) and Renard et al. (1997) as

R =
1

n

n∑
j=1

mj∑
k=1

(EI30)k , (2.2)

where n is the number of years of records, mj is the number of storms of a given year

j, and EI30 is the rainfall erosivity index of a storm k. The event’s rainfall erosivity

index EI30 (MJ mm ha−1 h−1) is defined as

EI30 = I30

m∑
r=1

ervr, (2.3)

where er and vr are, respectively, the unit rainfall energy (MJ ha−1 mm−1) and the

rainfall depth (mm) during a time period r, and I30 is the maximum rainfall intensity

during a time period of 30 min (mm h−1). The unit rainfall energy, er, is calculated for

each time period as

er = 0.29
(
1− 0.72e−0.05ir

)
, (2.4)

where ir is the rainfall intensity during the time period (mm h−1).

The topographical factor of RUSLE, which is the LS factor, is composed of the slope

length factor (L) and the slope steepness factor (S). The L factor is computed according

to Renard et al. (1997) by the following equation
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L =

(
l

22.13

)m
, (2.5)

where

m =
F

1 + F
and F =

(sin θ/0.0896)(
3 (sin θ)0.8 + 0.56

) , (2.6)

in which θ is the slope and l is the slope length in meters.

The S factor is generally computed by the continuous function of Nearing (1997)

S = 1.5 +
17

1 + e(2.3−6.1∗sin θ)
. (2.7)

The K factor is a lumped parameter that accounts for the reaction of the integrated

annual soil profile to the process of soil detachment, and transport by raindrops and

surface flow (Renard et al., 1997). TheK factor can be calculated according the method

of Torri et al. (1997), where K is a function of the texture, which is represented by the

silt (fsilt), clay (fclay) and sand (fsand) fractions, and the organic matter content (OM

in percent)

K = 0.0293(0.65−Dg + 0.24Dg2) ∗ e(−0.0021
OM
fclay

−0.00037( OM
fclay

)2−4.02fclay+1.72f2
clay) (2.8)

where Dg is defined as:

Dg = −3.5fsand − 2fsilt − 0.5fclay (2.9)

The C factor is mainly determined by the vegetation and computed using biophysical

attributes such as the vegetation cover density. In this study we use the Normalized

Difference Vegetation Index (NDV I) to calculate the C factor according to the method

of De Jong et al. (1998)

C = e{−α∗
NDV I

β−NDV I } (2.10)

where the parameters α and β are set to respectively 2 and 1.

The P factor takes into account the effect of contouring, terracing, and subsurface

drained areas (Renard et al., 1997).
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2.2.2 Improving the global applicability of the RUSLE model

2.2.2.1 Adjustment of the topographical factor

As seen in Eqs. (2.6)–(2.7), slope is a crucial parameter and thus an accurate estimation

is essential in deriving accurate estimates of the L and S factors and soil erosion rates.

For an accurate estimation of the slope, input elevation data from digital elevation

models (DEMs) should capture the detailed spatial variability in elevation. However,

global DEMs are often too coarse to capture the detailed topography because of the

surface smoothening effect. To account for this problem it is assumed that topography

is fractal. Following Klinkenberg and Goodchild (1992) and Zhang et al. (1999), slope

can be expressed as a function of the spatial scale by applying the variogram equation.

The variogram equation is used to approximate the fractal dimension of topography

and is expressed as follows:

(Zp − Zq)2 = kd4−2Dpq , (2.11)

so that
|Zp − Zq|

dpq
= αd1−Dpq , (2.12)

where Zp and Zq are the elevations at points p and q, dpq is the distance between p and

q, k is a constant, α = k0.5, and D is the fractal dimension. Because the left side of

Eq. (2.12) represents the slope, it can be assumed that the slope (θ) is related to the

spatial scale or the grid size (d) in

θ = αd1−D. (2.13)

This result implies that by calculating the fractal properties (D and α) Eq. (2.13) can

be used to calculate slope at any specified d. The local fractal dimension (D) describes

the roughness of the topography while the local value of α is related to the concept

of lacunarity, which is a measure of the size of “gaps” (valleys and plains) in the

topography (Zhang et al., 2002). To estimate the spatial variations of D and α, Zhang

et al. (1999) proposed to relate these parameters to the standard deviation of elevation.

Hereby it is assumed that the standard deviation of elevation does not change much

with the DEM resolution. D is then calculated as a function of the standard deviation

(σ) in a 3 pixel× 3 pixel moving window, as proposed by Zhang et al. (1999):

D = 1.13589 + 0.08452 lnσ. (2.14)

To estimate α we used the modified approach by Pradhan et al. (2006). They derived

α directly from the steepest slope in a 3 pixel× 3 pixel moving window, called αsteepest

in the following. Having obtained αsteepest and D from a grid at a given resolution, the

scaled slope (θscaled) for a target grid resolution (dscaled) is obtained by

θscaled = αsteepestd
1−D
scaled. (2.15)
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Pradhan et al. (2006) also showed that in their case study the ideal target resolution for

downscaling slope was 150 m. This is due to the breakdown of the unifractal concept at

very fine scales, which was shown to happen at a scale of 50 m. Altogether, this fractal

method shows that a high resolution slope can be obtained from a low resolution DEM

as is needed by the RUSLE model.

In this study, we investigate the performance of the fractal method on a global scale

using different global DEMs as a starting point. The target resolution of downscaling

is put to 150 m (about 5 arcsec) according to Pradhan et al. (2006). It should be noted

that the spatial scale on which the original RUSLE and USLE models are operating is

usually between 10 and 100 m, which indicates that the 150 m target resolution may

be still too coarse for a correct representation of slope. The DEMs that are used here

are given in Appendix A.1.

Figure 2.1: Global average unscaled slope estimated from different coarse resolution digital

elevation models (DEMs) as function of their resolution (blue), and global average scaled

slope from the same DEMs as function of their resolution (red).

As reported in previous studies (Zhang et al., 1999; Chang and Tsai, 1991; Zhang and

Montgomery, 1994), the average slope decreases with decreasing DEM resolution. This

confirms the expectation of loss of detail in topography at lower DEM resolutions. A

large difference is found between the unscaled global average slope from the 5 arcmin

and the 30 arcsec DEMs, which is in the order of 0.017 m m−1 or 74 % (Table 2.1).

After applying the fractal method, the scaled slopes at 150 m target resolution from

all DEMs increased significantly compared to the unscaled slopes (Fig. 2.1). However,

there is still a difference of about 0.05 m m−1 or 8.5 % between the scaled slopes from
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Table 2.1: Fractal parameters and the resulting mean global slopes before and after applying

the fractal method on the different DEMs. Increase of slope means the increase of the

average global slope of a DEM after applying the fractal method; difference after scaling =
θscaled(DEM)−θscaled(GTOPO30)

θscaled(GTOPO30)
∗ 100; difference before scaling =

θ(DEM)−θ(GTOPO30)

θ(GTOPO30)
∗ 100.

DEM Resolution Standard deviation Mean D Mean θ θscaled Increase Difference Difference

of elevation αsteepest of θ after scaling before scaling

arcmin m m m−1 m m−1 % % %

GTOPO30 0.5 570 1.32 0.99 0.023 0.059 61 0 0

ETOPO1 1 530 1.35 1.08 0.016 0.057 71.9 −3.4 −30.4

ETOPO2 2 549 1.37 1.17 0.011 0.055 80 −6.8 −52.2

ETOPO5 5 562 1.42 1.25 0.006 0.054 88.9 −8.5 −73.9

the 5 arcmin and the 30 arcsec DEMs (Table 2.1). This difference can be attributed

to several factors. One factor could be the underlying assumption that the standard

deviation of elevation (σ) is independent of the DEM resolution. Although σ does not

change much when considering different resolutions, there is still a general decrease in

mean global σ when going from the 5 arcmin to the 30 arcsec DEM (Table 2.1). Due

to the dependence of the fractal dimension (D) on σ (Zhang et al., 1999), a decrease of

σ leads to a decrease in D and therefore an increase in the scaled slope. Other factors

that could play a role here are the dependence of αsteepest on the steepest slope, and the

breakdown of the fractal method at certain scales and in certain environments. Zhang

et al. (1999) mentioned that the scaling properties of slope are affected in very coarse

resolution DEMs if σ changes considerably. On the other hand, Pradhan et al. (2006)

mentioned the breakdown of the fractal method at very fine scales. This can indicate

that the 150 m target resolution is not appropriate for some topographically complex

regions in the world or, as addressed by Zhang et al. (1999), the DEMs used in this

study are too coarse to scale down the slope to 150 m accurately for these regions.

After applying the fractal method on a 30 arcsec resolution DEM, the scaled slope

shows a clear increase in detail, while the unscaled slope shows a strong smoothening

effect (Fig. 2.2a, b). It is found that, after scaling, the slope values range from 0 to

85 degree and are less than 2 degree in 80% of the area. In contrast, all slope values are

less than 45 degree and range between 0 and 2 degree in 89% of this area when slope is

computed directly from the 30 arcsec DEM. The scaled slope from the 30 arc-second

DEM will be used in this study to estimate the global soil erosion rates by the RUSLE

model.



2.2 Methods 19

Figure 2.2: (a) A global map of the scaled slope derived from the 30 arcsec DEM using a

target resolution of 150 m. (b) A global map showing the difference between the unscaled

and scaled slopes (in degrees), where bluish colours show an underestimation by the unscaled

slope when compared to the scaled slope and reddish colours show and overestimation.

2.2.2.2 Adjustment of the rainfall erosivity factor

The information needed to calculate the R factor according to the method of Wis-

chmeier and Smith (1978) is difficult to obtain on a large spatial scale or in remote

areas. Therefore, different studies have been done on deriving regression equations for

the R factor (Angulo-Martinez et al., 2009; Meusburger et al., 2012; Goovaerts, 1999;

Diodato and Bellocchi, 2010). Most of these studies, however, concentrate on a specific

area and can therefore not be implemented on the global scale. Studies on global soil

erosion estimation by the RUSLE model or a modified version of it (Doetterl et al.,

2012; Van Oost et al., 2007; Montgomery, 2007; Yang et al., 2003) have all used the

method of Renard and Freimund (1994). Renard and Freimund (1994) related the

R factor to the total annual precipitation (P , mm) based on erosivity data available

for 155 stations in the USA, shown in the following equations
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R = 0.0483P 1.61, P ≤ 850 mm

R = 587.8− 1.219P + 0.004105P 2, P ≥ 850 mm.
(2.16)

To test how this method performs globally, we calculated the R factor according to the

method of Renard and Freimund (1994) (Eq. 2.16) first. Here we used the 0.25 degree

resolution annual precipitation data from the Global Precipitation Climatology Centre

(GPCC) product (in Appendix A.1). Then, we selected three regions to validate the

resulting R values and their variability: the USA United States Environmental Pro-

tection Agency (2001), Switzerland (Meusburger et al., 2012), and the Ebro Basin in

Spain (Angulo-Martinez et al., 2009). For these regions, high resolution erosivity data

are available from pluviographic data of local meteorological stations across the whole

region.

Figure 2.3 shows that the R values computed with the Renard and Freimund (1994)

method strongly overestimate R when compared to the high resolution R data of the

selected regions. For the USA the R factor of Renard and Freimund (1994) shows an

overall overestimation for the western USA and for a large part of the eastern USA

when compared to the high resolution R factor (Table 2.5, Fig. 2.3a). In particular, a

strong overestimation is seen for the north-west coast of the USA. This region is known

to have complex rainfall patterns due to the presence of mountains and high local pre-

cipitation intensities with frequent snow fall (Cooper, 2011). It should be noted that

the USA is not the best suited case study for testing the R values computed with the

Renard and Freimund (1994) method, as this method is based on climate data from

stations in the USA. The available high resolution or observed data on the R factor

from Switzerland and the Ebro Basin are better suited for an independent validation.

For Switzerland, which has a complex precipitation variability influenced by the relief

of the Alps (Meusburger et al., 2012), the R factor of Renard and Freimund (1994)

shows a strong overall overestimation when compared to the high resolution R values

(Table 2.5, Fig. 2.3b). For the Ebro Basin, located in Spain, the observed R data were

available for the period 1997–2006 from Angulo-Martinez et al. (2009). Also here the

method of Renard and Freimund (1994) overestimates the R factor and is not able to

reproduce the high spatial variability of the R data (Table 2.5, Fig. 2.3c).

To better represent the R factor on a global scale, the R estimation was based on the up-

dated Köppen–Geiger climate classification (Table 2.2, Fig. 2.4). The Köppen–Geiger

climate classification is a global climate classification and is based on the vegetation

distribution connected to annual cycles of precipitation and temperature (Lohmann

et al., 1993). The reason for this approach is that this classification system includes

annual cycles of precipitation and is thus indirectly related to precipitation intensity.

Based on this, it is possible to derive regression equations for the R factor that are

applicable for each individual climate zone of the classification. This provides a basis

to calculate the R factor with coarse resolution data on a global scale.
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(a  ) (b  ) 

(c  1 ) 
(c  2) 

Figure 2.3: Spatial difference plots showing the difference between the high resolution R values

and R values calculated with the method of Renard and Freimund (1994) for (a) the USA,

(b) Switzerland and (c) the Ebro Basin in Spain; in panels (a) and (b) the blue colours

show an underestimation of the calculated R factor when compared to the high resolution

R values, while the red colours show an overestimation; the Ebro Basin serves here as an

independent validation set and it has two graphs: (c1) a spatial plot of erosivity according

to Renard and Freimund (1994) and (c2) the high resolution R values from Angulo-Martinez

et al. (2009) (all values in the graphs are in MJ mm ha−1 h−1 year−1).
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Figure 2.4: The Köppen–Geiger climate classification global map at a resolution of 5 arcmin

(Peel et al., 2007).

Table 2.2: Description of Köppen climate symbols and defining criteria (from Peel et al.

(2007).

First Second Third Description Criteria∗

A Tropical Tcold ≥ 18

f – rainforest Pdry ≥ 60

m – monsoon Not (Af) & Pdry ≥ 100–MAP/25

w – savannah Not (Af) & Pdry< 100–MAP/25

B Arid MAP< 10Pthreshold

W – desert MAP< 5Pthreshold

S – steppe MAP≥ 5Pthreshold

h – hot MAT≥ 18

k – cold MAT< 18

C Temperate Thot >10 & 0<Tcold< 18

s – dry summer Psdry< 40 & Psdry<Pwwet/3

w – dry winter Pwdry<Pswet/10

f – without dry season Not (Cs) or (Cw)

a – hot summer Thot≥ 22

b – warm summer Not (a) & Tmon10≥ 4

c – cold summer Not (a or b) & 1≤ Tmon10< 4

D Cold Thot> 10 & Tcold≤ 0

s – dry summer Psdry< 40 & Psdry<Pwwet/3

w – dry winter Pwdry<Pswet/10

f – without dry season Not (Ds) or (Dw)

a – hot summer Thot≥ 22

a – warm summer Not (a) & Tmon10≥ 4

c – cold summer Not (a, b or d)

d – very cold winter Not (a or b) & Tcold≤ −38

E Polar Thot< 10

T – tundra Thot> 0

F – frost Thot<−0

∗ MAP: mean annual precipitation, MAT: mean annualtemperature, Thot: temperature of the hottest month,Tcold: temperature of the

coldest month, Tmon10: number of months where thetemperature is above 10, Pdry: precipitation of the driest month,Psdry: precipitation

of the driest month in summer, Pwdry: precipitation of the driest month in winter, Pswet: precipitation of the wettest month in summer,

Pwwet: precipitation of the wettest month in winter, Pthreshold: varies according to the following rules (if 70 % of MAP occurs in winter

then Pthreshold = 2 MAT, if 70 % of MAP occurs in summer then Pthreshold = 2 MAT + 28, otherwise Pthreshold = 2 MAT + 14). Summer

(winter) is defined as the warmer (cooler) 6-month period of AMJJAS (ONDJFM).
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As a basis for deriving the regression equations for the R factor we used high resolution

R maps of the USA from the United States Environmental Protection Agency (2001).

The USA covers most of the world’s climate zones and is also the largest region with

available high resolution R data. Linear multiple regression was used to adjust R:

log(Ri) = β0 +
n∑
j=1

βij log
(
Xij

)
+εi,

for i = 1, 2, . . . , n, (2.17)

where X is the independent explanatory variable, j is the number of explanatory vari-

ables, β is a constant and ε is the residual.

The regression operates on one or more of the following parameters (Xj): total annual

precipitation (GPCC 0.25 degree product), mean elevation (ETOPO 5 DEM), and the

simple precipitation intensity index, SDII. It should be mentioned that the SDII was

only available on a very coarse resolution of 2.5 degree for certain regions on Earth,

such as parts of Europe and the USA. The SDII is calculated as the daily precipita-

tion amount on wet days (≥ 1 mm) in a certain time period divided by the number of

wet days in that period. Previous studies that performed regression of R showed that

precipitation and elevation were in most cases the only explanatory variables (Meus-

burger et al., 2012; Mikhailova et al., 1997; Goovaerts, 1999; Diodato and Bellocchi,

2010; Angulo-Martinez et al., 2009). Here, we added to the regression the SDII as

it is a simple representation of precipitation intensity, which is an important explain-

ing variable of the R factor. The precipitation and SDII data sets were rescaled to a

5 arcmin resolution (corresponding to 0.0833 degree) to match the Köppen–Geiger cli-

mate classification data that was available at the resolution of 6 arcmin (corresponding

to 0.1 degree).

Furthermore, high resolution erosivity data from Switzerland (Meusburger et al., 2012)

and annual precipitation from the GPCC 0.5 degree product were used to derive the

regression equations for the R factor for the polar (E) climate zones. These climate

zones are not present in the USA. For the rest of the climate zones that are not present

in the USA it was difficult to obtain high resolution erosivity data. Therefore, we main-

tained the method of Renard and Freimund (1994) for those climate zones to calculate

erosivity.

Also, we kept the R factor of the Renard and Freimund (1994) method if no clear

improvement of the R factor was found when using the new regression equations for

a specific climate zone. Here, we mainly used the r2 combined with the residual stan-

dard error to evaluate if the new regression equations showed a clear improvement

in the R factor. The Renard and Freimund (1994) R factors where kept for the hot

arid climate zone (BWh) and the temperate climate zone with a hot summer (Csa) in

the USA. These are just two climate zones out of the 17 evaluated ones, which show

that the Renard and Freimund method performs as good as or slightly better than the

regression method. All data sets for deriving the R factor are described in Appendix

A.1.
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Table 2.3: Linear multiple regression equations for different climate zones, relating high

resolution R factor from the USA with one or more significant parameters: annual total

mean precipitation, P (mm), mean elevation, z (m), and the simple precipitation intensity

index, SDII (mm day−1).

Climate Explaining Regression function – optimal R2 Residual

zone parameters standard error

BWk P, SDII R = 0.809P 0.957 + 0.000189SDII6.285

BSh P, SDII logR = −7.72 + 1.595 logP + 2.068 log SDII 0.97 0.22

BSk P, SDII, Z logR = 0.0793 + 0.887 logP + 1.892 log SDII− 0.429 logZ 0.89 0.35

Csb P R = 98.35 + 0.000355P 1.987 0.16

Cfa P, SDII, Z logR = 0.524 + 0.462 logP + 1.97 log SDII− 0.106 logZ 0.89 0.11

Cfb P, SDII logR = 4.853 + 0.676 logP + 3.34 log SDII 0.97 0.21

Dsa Z, SDII logR = 8.602− 0.963 log SDII− 0.247 logZ 0.51 0.05

Dsb P logR = 2.166 + 0.494 logP 0.45 0.25

Dsc SDII logR = 6.236− 0.869 log SDII 0.51 0.02

Dwa P logR = −0.572 + 1.238 logP 0.99 0.02

Dwb P, SDII logR = −1.7 + 0.788 logP + 1.824 log SDII 0.98 0.02

Dfa P, SDII logR = −1.99 + 0.737 logP + 2.033 log SDII 0.9 0.16

Dfb P, SDII, Z logR = −0.5 + 0.266 logP + 3.1 log SDII− 0.131 logZ 0.89 0.32

Dfc SDII logR = −1.259 + 3.862 log SDII 0.91 0.23

ET P logR = −3.945 + 1.54 logP 0.14 0.42

EF + EFH P logR = 16.39− 1.286 logP 0.6 0.13

ETH P, SDII logR = 21.44 + 1.293 logP − 10.579 log SDII 0.52 0.53

Table 2.4: Linear multiple regression equations for different climate zones for regions that

have no data on the simple precipitation intensity index, SDII (mm day−1). The regression

equations relate high resolution erosivity from the USA to the annual total mean precipitation,

P (mm), and/or the mean elevation, z (m).

Climate Optimal regression function R2 Residual

zone (when SDII is not available) standard error

BWk Method Renard and Freimund (1994)

BSh logR = −8.164 + 2.455 logP 0.86 0.5

BSk logR = 5.52 + 1.33 logP − 0.977 logZ 0.76 0.52

Cfa logR = 3.378 + 0.852 logP − 0.191 logZ 0.57 0.23

Cfb logR = 5.267 + 0.839 logP − 0.635 logZ 0.81 0.5

Dsa logR = 7.49− 0.0512 logP − 0.272 logZ 0.48 0.06

Dsc logR = 4.416− 0.0594 logP 0.015 0.03

Dwb logR = 1.882 + 0.819 logP 0.81 0.08

Dfa logR = −2.396 + 1.5 logP 0.65 0.29

Dfb logR = 1.96 + 1.084 logP − 0.34 logZ 0.74 0.48

Dfc logR = −3.263 + 1.576 logP 0.56 0.49

ETH logR = −10.66 + 2.43 logP 0.4 0.59



2.2 Methods 25

Tables 2.3 and 2.4 show the resulting regression equations for climate zones for which

we found initially a low correlation between the R values calculated by the method

of Renard and Freimund (1994) and the high resolution R values from the United

States Environmental Protection Agency (2001) and Meusburger et al. (2012). Fig-

ure 2.5 shows for each addressed climate zone how the method of Renard and Freimund

(1994) and the new regression equations compare to the high resolution R of the USA.

For the cold climate zones with a dry summer (Ds), the new regression equations show

only a slight improvement as compared to the method of Renard and Freimund (1994).

Also for the polar climate zones (E) the new regression equations still show a signif-

icant bias. However, they perform much better compared to the method of Renard

and Freimund (1994). For most of the addressed climate zones the SDII explains a

large part of the variability in the R factor. The elevation plays a smaller role here.

Elevation can be an important explaining variable in regions with a high elevation

variability, which then affects the precipitation intensity.

From tables 2.3 and 2.6 it can be concluded that the R factor in climate zones without

a dry season (f) can be easily explained by the total annual precipitation and the SDII.

Dry climate zones, especially dry summer climate zones, showed a weaker correlation.

This is most likely due to the fact that the SDII is too coarse to explain the variability

in the low precipitation intensity in the summer. It is also interesting to see that even

though the SDII was derived from a very coarse resolution data set, it turned out to

be still important for deriving more accurate R values.

We also show for each addressed climate zone a comparison of the newly computed

average R factor with the average high resolution R factor, and the uncertainty range

(Table 2.6). The uncertainty range was computed by taking into account the standard

deviation of each of the parameters in the regression equations. As mentioned before,

the polar climate zones showed the largest uncertainty range.

The new regression equations significantly improved the R values and spatial variability

in the western USA and lead to an average R factor that was closer to the data mean

(Table 2.5, Fig. 2.6a). Although the new regression equations show a bias for the polar

climate zones (the minimum and maximum R values are not captured), the resulting

mean R values for Switzerland show a strong improvement (Table 2.5, Fig. 2.6b).

Furthermore, the variability in the estimated R factor compares well with the vari-

ability of the high resolution R factor. It should be noted that Switzerland is not an

independent case study for the polar climate zones, as the high resolution R values

from this case study were used in our regression analysis. However, the Ebro Basin

case study confirms the strong improvement for the polar climate zones (Fig. 2.6c).

As the high resolution R values of the USA and Switzerland were used to derive the

regression equations, the third case study, the Ebro Basin in Spain, provided an im-

portant independent validation. For the Ebro Basin, the new regression equations not

only improve the overall mean but also capture the minimum R values better. This

resulted in an improved representation of the R variability (Table 2.5, Fig. 2.6c). In

Fig. 2.6c, however, there is a clear pattern separation in the newly computed R values,
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which is due to the fact that the SDII data are not available for part of the Ebro Basin.

Figure 2.5:
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Figure 2.5: Comparison of high resolution R factor data and predicted R values from (1) the

Renard and Freimund (1994) method and (2) the new regression equations, for various climate

zones; the red line is the 1-to-1 line and does not appear in some graphs because predicted

R values are overestimated.

As mentioned before, SDII is an important explaining parameter in the regression

equations for most of the addressed climate zones.

Figure 2.7a shows the global patterns of the estimated R factor with the new regression

equations. Figure 2.7b shows a difference plot between the estimated R factor with

the method of Renard and Freimund (1994) and the R factor estimated with the new

regression equations.
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(a  ) (b  ) 

(c  1) 
(c  2) 

Figure 2.6: Spatial difference plots showing the difference between the high resolution R values

and R values calculated with the new regression equations for (a) the USA, (b) Switzerland

and (c) the Ebro Basin in Spain; in panels (a) and (b) the blue colours show an underesti-

mation of the calculated R values when compared to the high resolution R values, while the

red colours show an overestimation; the Ebro Basin serves here as an independent validation

set and it has two graphs: (c1) a spatial plot of the R factor according to the new regression

equations, and (c2) the high resolution R values from Angulo-Martinez et al. (2009) (all

values in the graphs are in MJ mm ha−1 h−1 year−1).

The new regression equations significantly reduced the R values in most regions. How-

ever, the tropical regions still show unrealistic high R values (maximum R values go

up to 1 × 105 MJ mm ha−1 h−1 year−1). This is because the R factor was not adjusted

for the tropical climate zones due to the lack of high resolution R data. Oliveira et al.

(2013) found for the R factor in Brazil that the maximum R values for the tropical

climate zones reach 22 452 MJ mm ha−1 h−1 year−1. We find R values in Brazil that

exceed this maximum R value found by Oliveira et al. (2013).

Finally, it should be noted that the purpose of the adjusting methods for the S and

R factors in this study is to capture more accurately the large-scale mean erosion rates

rather than the extremes. Therefore, even though the new regression equations are still

not accurate enough for certain climate zones, it is important that the average R factor

is represented well. The approach for adjusting the R factor also showed that although
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Figure 2.7: (a) Global distribution of the new modelled R values according to the new regres-

sion equations; and (b) a difference map between R values calculated according to the method

of Renard and Freimund (1994) and the new modelled R values (MJ mm ha−1 h−1 year−1),

where blue colours indicate lower R values by Renard and Freimund (1994) compared to the

new modelled R values, while reddish colours indicate higher R values; map resolution is

5 arcmin.

there is no high temporal resolution precipitation intensity data available on a global

scale, the R factor can still be represented well for most climate zones on a large spatial

scale. This can be done by using other parameters, such as elevation, and especially

one representative of precipitation intensity, such as the SDII. The SDII played an

important role here as it improved the estimation of the R factor significantly, even

though data was only available at a very low resolution as compared to the other data

sets of precipitation, elevation and climate zone classification.
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Table 2.6: Mean high resolution R values (MJ mm ha−1 h−1 year−1) from the USA and

Switzerland and mean modelled R values with uncertainty range for each addressed climate

zone.

Climate Observed Renard and Freimund Adjusted Adjusted

method method method

R mean R mean R mean uncertainty range

BWk 284 533 291 158–495

BSh 2168 1356 2207 1723–2828

BSk 876 884 885 749–1046

Csb 192 1136 192 133–292

Cfa 5550 5607 5437 4830–6123

Cfb 1984 5359 1971 1431–2715

Dsa 172 445 171 86–340

Dsb 175 896 168 151–187

Dsc 115 374 115 91–145

Dwa 1549 1444 1551 1280–1879

Dwb 1220 1418 1214 1057–1395

Dfa 2572 2983 2582 2346–2843

Dfb 1101 1798 1124 922–1371

Dfc 483 701 483 423–552

ET 1352 6257 1249 23–68 088

EF + EFH 1468 5469 1450 16–132 001

ETH 945 5580 832 0–6 314 918

2.2.3 Parameter estimations based on observed data

In order to demonstrate the consequences of the new parameterizations of the S and

R factors for global soil erosion rates, we have to compute the other individual RUSLE

factors, the K and C factors. Estimations of the K factor were based on soil data from

the gridded 30 arcsec Global Soil Data set for use in Earth System Models (GSDE).

GSDE is based on the Harmonized World Soil database (HWSD) and various other

regional and national soil databases (Shangguan et al., 2014). We used the method

of Torri et al. (1997) to estimate the K factor as described in section 2.2.1, and gave

volcanic soils a K factor of 0.08 t ha h ha−1 MJ−1 mm−1. This is because these soil types

are usually very vulnerable to soil erosion, and the observed K values are beyond the

range predicted by the method of Torri et al. (1997) (Van der Knijff et al., 1999). To

account for the effect of stoniness on soil erosion we used a combination of the methods

by Cerdan et al. (2010) and Doetterl et al. (2012), who based their methods on the

original method of Poesen et al. (1994). For non-agricultural areas we used the method

of Cerdan et al. (2010), where they reduced the total erosion by 30 % for areas with

a gravel percentage larger or equal to 30 %. For agricultural and grassland areas we
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used the method of Doetterl et al. (2012), where erosion was reduced by 80 % in areas

where the gravel percentage exceeded 12 %.

We calculated the C factor according to the method of De Jong et al. (1998), using

0.25 degree NDVI and land use data for the year 2002. An important limitation of this

method is the fact that in winter the C factor is estimated too high (Van der Knijff

et al., 1999). This is because the method does not include the effects of mulch, decaying

biomass and other surface cover reducing soil erosion. To prevent the C factor from

being too high, maximum C values for forest and grassland of 0.01 and 0.05 for pasture

were used.

Doetterl et al. (2012) showed that the L and P factors do not contribute significantly

to the variation in soil erosion at the continental scale to global scale, when compared

to the contribution of the other RUSLE factors (S, R and C). However, this does

not mean that their influence on erosion should be ignored completely. They may

play an important role in local variation of erosion rates. In our erosion calculations

we do not include these factors because we have too little or no data of these factors

on a global scale. Including them in the calculations would only add an additional

large uncertainty to the erosion rates. This would make it more difficult to judge the

improvements we made to the S and R factors.

2.2.4 Parameter estimation based on CMIP5 model data

To estimate global soil erosion rates for the last millennium (850-2005AD) climate

and land cover data from existing ESM simulations performed under the framework of

CMIP5 were used. (Hurrell and Visbeck, 2011; Taylor et al., 2009). Here, simulations

from the following ESMs were selected: MPI-ESM, IPSL-CM5A, CCSM4, MIROC-

ESM and bbc-csm1-1 (Table 2.7). For consistency reasons related to the next chapter

the low-resolution version of all models will be used for the complete time period (850-

2005AD), even though in some cases there was a medium-resolution version available for

present-day (1850-2005AD). For present-day the historical experiment (1850-2005AD)

was used, for which IPSL-CM5A and CCSM4 provided each a set of six ensemble

simulations, and the other models provided each a set of three ensemble simulations.

For the total period of the last millenium we combined the past1000 experiment (850-

1850AD) with the historical experiment.

For the past1000 experiment each model provided only one simulation. From each

model the monthly land cover fractions, leaf area index (LAI) and daily and monthly

total precipitation rates, were extracted if available (Table 2.7). The low resolution

version of the CCSM4 and bbc-csm1-1 had no available land cover fractions. We

therefore used the land cover fractions and LAI from MPI-ESM for the CCSM4 model,

and the land cover fractions and LAI from MIROC-ESM for the bbc-csm1-1, as the

last two models were similar in their resolution. Due to the resolution of 5 arcmin of

the adjusted RUSLE model the processed data of the CMIP5 models was remapped
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Table 2.7: List of ESMs used in this study. Data is taken from CMIP5. Tm is monthly

temperature, Pm is monthly precipitation, Pd is daily precipitation.‘y’ stands for yes, data

exists, while ‘n’ stands for no, data is missing.

model group resolution Tm Pm Pd LAI Tree Crop Grass Shrub Pasture Baresoil

fraction fraction fraction fraction fraction fraction

MPI-ESM-LR Max Planck Institute for Meteorology 1.875 y y y y y y y y y y

IPSL-CM5A-LR Institute Pierre-Simon Laplace 3.75 y y y y y y y n n y

CCSM4 National Center for Atmospheric Research 1.25 y y y y n n n n n n

MIROC-ESM Japan Agency for Marine-Earth Science Technology, 2.8125 y y y y y y y n y y

Atmophere and Ocean Research Institute

(University of Tokyo),

and National Institute for Environmental Studies

bcc-csm1-1 Beijing Climate Center 2.8125 y y y n n n n n n n

to this specific resolution.

Due to the lack of data on the NDVI, the method as presented in the previous section

for estimation of the C factor was not used here. Instead, a new method was developed

based on the C values provided by Panagos et al. (2015) for Europe, combined with

land cover fractions and LAI from the selected CMIP5 model data. The LAI is used

to estimate the percentage vegetation cover (cf), which has been shown to influence

the overall value of the C factor for a specific land cover type (of Agriculture, 1978).

The cf is estimated according to Beer’s Law approximation:

cf = 1− e{−LAI/2} (2.18)

Four cf classes are distinguished: ≤ 0.2, 0.2 to 0.45, 0.45 to 0.75, and > 0.75. The

range in C factors for the different land cover types used in this study is given in table

2.8. If the cf was smaller than 0.22 all landcover types, except bare soil, were given a

maximum value of 0.45. This value corresponds to the maximum C values found by

of Agriculture (1978) and Panagos et al. (2015). For bare soil the maximum C value

was somewhat higher in comparison to the other land cover types according to Panagos

et al. (2015).

For the estimation of the R factor the new regression equations presented in section

2.2.2.2 were used here. First, climate classification maps were derived based on the

criteria from Peel et al. (2007) for each 100 year time period starting from 850AD till

1950AD, and for present day (1950-2005AD). The derivation of climate classification

maps for the last millennium based on CMIP5 data is a new aspect of this study.

These maps may differ from the map of Peel et al. (2007) for present day for certain

regions such as western Europe, where the models show biases in precipitation amounts.

However, the main global variability in the climate zones is captured. To estimate the

SDII the daily precipitation rates from the ESM data was used. In combination with

the 5 arcmin mean elevation the mean R maps for the 100 year time periods between

850 and 1950AD and present day (1950-2005AD) were derived.

For present day erosion rates with the adjusted RUSLE model were calculated as

described previously for each of the ensemble simulations of the CMIP5 models. For

the last millennium three main simulations were performed to estimate erosion rates
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based on data from the CMIP5 models. The three simulations are: (1) The climate

change simulation: Here, the land cover was fixed to the mean conditions of the period

850-950AD during the last millennium, while the climate was variable, (2) The land

use change simulation: Here, the climate was fixed to the mean conditions of the

period 850-950AD during the last millennium, while the land cover was variable, (3)

The default simulation: Here, both land cover and climate vary throughout the last

millennium.

Table 2.8: C values for different land cover types and cf classes.

cf Forest Shrubs Grass Pasture Crops Bare soil

> 0.75 0.0001 0.003 0.01 0.05 0.03 0.1

0.6 – 0.75 0.00089 0.029 0.029 0.077 0.14 0.2

0.45 –0.6 0.00168 0.0559 0.048 0.1 0.26 0.29

0.2 – 0.45 0.003 0.1 0.08 0.15 0.45 0.45

≤ 0.2 0.45 0.45 0.45 0.45 0.45 0.55

2.3 Results and discussion

2.3.1 Present day

2.3.1.1 Global erosion rates based on observed data

We applied the RUSLE model with the settings mentioned in the previous sections at

a 5 arcmin resolution on a global scale for present day (see time resolutions of data sets

in Appendix A.1). We calculated global soil erosion rates with four different versions

of the RUSLE model: (a) the unadjusted RUSLE, (b) RUSLE with only an adjusted

S factor, (c) RUSLE with only an adjusted R factor, and (d) the adjusted RUSLE (all

adjustments included).

We found a global average soil erosion rate for the adjusted RUSLE of 6.5 t ha−1 year−1

(Fig. 2.8a). When including the uncertainty arising from applying the linear mul-

tiple regression method, the mean global soil erosion rate differs between 5.3 and

15 t ha−1 year−1. Furthermore, the RUSLE version with only an adjusted S factor

shows the highest average global soil erosion rate, while the lowest rate is found for

the RUSLE version with only the adjusted R factor (Table 2.9). Figure 2.8c shows

the difference between the erosion rates of the S-adjusted RUSLE and the unadjusted

RUSLE versions. The erosion rates are in general increased here and mostly pronounced

in mountainous regions. This feature is “dampened” when adjusting the R factor.

The difference between the R-adjusted RUSLE and unadjusted RUSLE versions

(Fig. 2.8d) shows that the erosion rates are overall decreased in regions where the
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Figure 2.8: (a) Global yearly averaged erosion rates according to the fully adjusted RUSLE

model; (b) a difference map between the fully adjusted and unadjusted RUSLE model; (c) a

difference map between the adjusted S-RUSLE model and the unadjusted RUSLE model; (d)

a difference map between the adjusted R-RUSLE model and the unadjusted RUSLE model.

In panels (b), (c) and (d) the reddish colours show an overestimation of the adjusted RUSLE

model and yellow to bluish colours show an underestimation (resolution of all maps is 5 arcmin

and all units are in t ha−1 year−1).

adjustments are made. When the erosion rates of the unadjusted RUSLE model are

subtracted from the fully adjusted RUSLE model (Fig. 2.8b), we find that erosion rates

are slightly decreased in areas where the R factor is adjusted. However, for the tropics

an increase in erosion rates is found in the fully adjusted RUSLE due to the lack of

adjusting the R factor there. This indicates that these two factors balance each other,

and that it is important to have a correct representation of all the RUSLE factors on

a global scale in order to predict reliable erosion rates.

Table 2.9: Comparison of the global erosion rates (t ha−1 year−1) and percentiles between

different versions of the RUSLE model.

Mean 25th percentile 50th percentile 75th percentile 90th percentile

RUSLE unadjusted 4.5 0.2 0.7 2.4 7.5

RUSLE adjusted with S 9.8 0.3 1.0 3.8 13.5

RUSLE adjusted with R 3.2 0.1 0.5 1.7 5.7

RUSLE adjusted with S and R 6.5 0.1 0.7 2.7 9.6
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2.3.1.2 Comparison to observations

In this study the K and C factors are not tested and adjusted for a coarse resolution

at global scale and thus validation with existing empirical databases on soil erosion

is not fully justified. However, to test if the global erosion rates are in an acceptable

range, they are compared to erosion estimates from the NRI database for the USA and

erosion estimates from the study of Cerdan et al. (2010) for Europe. These are to our

knowledge the only large-scale high resolution empirical databases on soil erosion.

Table 2.10: Statistics of the observed and modelled erosion rates from the unadjusted and

adjusted versions of the RUSLE for the USA and Europe (t ha−1 year−1).

Region Source Observations Adjusted RUSLE Unadjusted RUSLE

Range Mean Standard Range Mean Standard Range Mean Standard

deviation deviation deviation

Europe (aggregation Cerdan et 0.1–2.6 0.9 0.7 0.1–7 2.3 2.1 0–14 2.8 3.6

country level) al. (2010)

no small countries

USA NRI 0–11 1.6 2.1 0.2–13 1.6 1.9 0–14 1.4 1.8

(aggregation database

HUC4 level)

The NRI database contains USLE erosion estimates for the year 1997, which are avail-

able at the Hydrologic Unit Code 4 (HUC4) watershed level. We aggregated the re-

sulting erosion rates from the adjusted and unadjusted RUSLE models to the HUC4

watershed level. The results show that the average erosion rates from the adjusted

RUSLE model come closer to that of the NRI database (Table 2.10, Fig. 2.9a and b).

However, the maximum average HUC4 soil erosion rate from the adjusted RUSLE is

somewhat higher compared to the NRI database. From these results we can conclude

that the erosion rates of the adjusted RUSLE fall in the range of observed values but

that there are still some local overestimations. Some of these overestimations can be

found in the south-west of the USA where the adjusted RUSLE shows a slightly worse

performance compared to the unadjusted RUSLE. The R factor in this region was not

changed as it was already estimated well by the method of Renard and Freimund (1994),

however, the S factor increased due to the hilly terrain. Without adjusting the other

RUSLE factors (K and C), this resulted in an overall increase in soil erosion rates.

This indicates that the other RUSLE factors may play an important role in this region.

Furthermore, we see that along the west coast of the USA the erosion values are not

much improved with the adjusted RUSLE model. This is mainly because some climate

zones such as the temperate climate zone with a dry and warm summer (Csb) prevail

in this region, for which the R factor is still difficult to estimate in a correct way (Ta-

ble 2.3).

For Europe, Cerdan et al. (2010) used an extensive database of measured erosion rates

on plots under natural rainfall. They extrapolated measured erosion rates to all of Eu-

rope (European Union area) and adjusted them with a topographic correction. This

correction was based on the L and S factors of the RUSLE model. They also applied
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Figure 2.9: (Top) Difference plots between soil erosion estimates from the NRI database

for the USA and estimates of (a) the unadjusted RUSLE model, and of (b) the adjusted

RUSLE model, all aggregated at HUC4 watershed level. (Bottom) Difference plots between

soil erosion estimates from the database of Cerdan et al. (2010) for Europe and estimates of

(c) the unadjusted RUSLE model and of (d) the adjusted RUSLE model, all aggregated at

country level. Reddish colours represent an overestimation (t ha−1 year−1) while the bluish

colors represent and underestimation (t ha−1 year−1) compared to the erosion values from the

databases.

a correction to account for soil stoniness. For comparison, the soil erosion rates from

Cerdan et al. (2010) and the RUSLE estimates in our study are aggregated at country

level. The performance of the adjusted RUSLE model was not as good for Europe as

compared to the USA. This is not surprising as the RUSLE model is based on soil ero-

sion data of the USA. However, also on the European scale the adjusted RUSLE model

performed better than the unadjusted RUSLE model (Table 2.10, Fig. 2.9c and d). In

particular, the large erosion rates in the south of Europe as observed in the results of

the unadjusted RUSLE model are less extreme in the adjusted RUSLE model. Still,

the overall average erosion rate for Europe is overestimated by approximately 2 times

(Table 2.10).

The biases in erosion rates as seen for the south-west of the USA and southern Europe

can be attributed to several factors. As mentioned before, the other RUSLE factors

(K and C) and the way they interact with the R and S factors are not adjusted to the

coarse resolution at global scale. We found no clear signal for the land cover types with

which the adjusted RUSLE performs better or worse. In general, we can see that the
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adjusted RUSLE model still overestimates erosion rates for most land cover types. A

short analysis for Europe showed that the largest biases are found for shrubs and the

lowest for grassland. However, a more explicit analysis is needed to find out how we

can improve the contribution of land cover and land use to erosion rates in the RUSLE

model. Explicitly including the interaction between the C and R factor on a monthly

timescale could be crucial. This is very important for example in areas with agriculture

and areas with a strong seasonal character. Another aspect related to improving the

C factor is looking at the location of land use in a certain grid cell. If the land use

in a grid cell is located on steep slopes, the resulting erosion in that grid cell would

be higher than when it was located in the flatter areas. In this study, however, only

mean fractions of land cover and the NDVI are used for each grid cell. This can lead

to possible biases in the resulting erosion rates.

Furthermore, land management is not accounted for in this study, which could intro-

duce an important systematic bias in the soil erosion rates especially for agricultural

areas. Land management is represented by the P factor in the original USLE; however,

it is partly also incorporated in the C factor for agricultural land use through plant

residues, cover crops and tillage. A limitation of the NDVI approach to estimate the C

factor lies therefore in the inability to estimate this land management effect. Applying

this method also limits the interaction between the R and C factors on a monthly to

seasonal scale, because this interaction is partly based on land management.

Furthermore, uncertainties in the coarse resolution land cover/land use, soil and pre-

cipitation data sets that are not accounted for can lead to the model biases. Also,

better adjustment of the R factor for climate zones such as the polar climates could

help improve the overall results. Some biases in the erosion rates can also be attributed

to the fact that stepped relief, where flat plateaus are separated by steep slopes, is not

well captured by the 150 m target resolution used in the fractal method to scale slope.

In this way erosion would be overestimated in these areas. Finally, errors and limi-

tations in the observational data sets can also contribute to the differences between

model and observations. The study of Cerdan et al. (2010) on Europe, for example,

used extrapolation of local erosion data to larger areas, which could introduce some

biases. Also, the underlying studies on measured erosion rates used different erosion

measuring techniques that can be linked to different observational errors.

2.3.1.3 Global erosion rates based on CMIP5 model data

Here the global soil erosion rates for present day from CMIP5 data are compared with

those calculated with the adjusted RUSLE model from observational datasets. Here,

erosion rates calculated from observational datasets are referred to as ‘observed data’,

though it should not be confused with actual observed erosion rates. Erosion rates from

observed climate and land cover fractions also contain biases and are not the real ob-

served erosion rates, which could be different from the estimates of the adjusted RUSLE

model. Additionally, The maximum soil erosion rates are limited to 1000 t ha−1 year−1,



2.3 Results and discussion 39

to stay in a realistic range.

Result show that the CMIP5 models differ significantly among each other with respect

to the average global soil erosion rates for present day. The spatial correlation between

the erosion rates from CMIP5 data and observed data is overall low (Table 2.11), with

MIROC-ESM showing the highest correlation and lowest RMSE. Furthermore, present-

day mean and median global soil erosion rates of 9.15 and 0.53 t ha−1 year−1, respec-

tively, from the CCSM4 model are found to be closest to the mean and median erosion

rates of 6.07 and 0.72 t ha−1 year−1, respectively, from observed data (Table 2.11).

Studying the difference between the models for different regions shows that most of the

models agree on the mean soil erosion rate for Europe, Africa and Australia (Fig. 2.10).

For these continents the mean erosion rates from the models are also closest to the ob-

served erosion rates. The strongest disagreement is found for Asia, North-America

and Central-America. However, for North-America and Asia the uncertainty in the

mean erosion rates from observed data is also large. This uncertainty is a result of the

regression of the R factor for different climate zones in the adjusted RUSLE model.

Table 2.11: Statistics of present day global soil erosion rates based on CMIP5 data and

observed data. The r-value represents the Pearson correlation coefficient and the RMSE is

the root mean square error. Units are in t ha−1 year−1. NA stands for ‘not available’.

model 25th percentile 50th percentile 75th percentile 90th percentile mean standard uncertainty RMSE r-value

deviation range

MPI-ESM-LR 0.10 0.43 2.32 11.18 10.15 62.58 9.97 – 10.39 63.37 0.18

IPSL-CM5A-LR 0.05 0.30 1.16 3.92 3.03 22.67 3.00 – 3.12 33.59 0.15

CCSM4 0.12 0.53 2.39 10.10 9.15 57.19 8.52 – 9.43 57.09 0.22

MIROC-ESM 0.05 0.21 0.94 3.80 3.40 24.97 2.72 – 3.79 32.93 0.26

bcc-csm1-1 0.03 0.15 0.66 2.71 3.25 28.42 3.10 – 3.42 34.02 0.23

observed 0.15 0.72 2.68 9.62 6.07 30.49 5.20 – 11.62 NA NA

Spatial maps of the biases for CMIP5 models with respect to observed data for present

day show that most models underestimate erosion rates in the entire or parts of the

Amazon region (Fig. 2.11). Most models except for the CCSM4 model also underesti-

mate erosion rates for Australia and some parts of Africa. Furthermore, erosion rates in

Europe are generally overestimated. These patterns are found to be strongly correlated

with biases related to precipitation rates in the models (Mehran et al., 2014). Although,

the overall variability in erosion rates is always the result of an interplay between pre-

cipitation and land use, it is expected that here the estimation of precipitation rates

plays the main role. In the previous sections it is shown that precipitation strongly

impacts the erosion rates. Erosion is, therefore, more sensitive to precipitation changes

in the adjusted RUSLE model than to changes in land cover or land use. Furthermore,

as the same land cover for the CCSM4 is used as for MPI-ESM, the differences in sim-

ulated erosion rates between these models are a result of a different underlying climate

representation. MPI-ESM overestimates erosion rates in West-Europe, North-America,

Central-Asia and North-China. This model also underestimates erosion for Australia,

and parts of Africa and South-America. These biases in erosion rates from MPI-ESM

model should be kept in mind when the model will be used to estimate global sediment
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redistribution in the next chapter.

Figure 2.10: Present-day mean global soil erosion rates per region (units are in t ha−1 year−1)

as estimated based on data from CMIP5 models (circles) and on observed data (stars). The

vertical bars for the CMIP5 models show the uncertainty range due to different ensemble

members, while the vertical bars for the observed data show the uncertainty range due to the

linear regression for the rainfall erosivity. The regions are Europe (EU), Asia (AS), Africa

(AF), Australia (AU), South-America (SA), North-America (NA), Central-Americal (CA).
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Figure 2.11: Biases (ratios) between erosion rates based on data from different CMIP5 models

and the observed data for present day. Bluish colours indicate an underestimation of erosion

rates from model data, while reddish colours indicate an overestimation.
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2.3.2 Last millennium

2.3.2.1 Trends in global erosion rates based on CMIP5 model data

Figure 2.12: Mean (left) and median (right) global erosion rates during the last millennium

based on data from different CMIP5 models.

Also for the last millennium a disagreement between the CMIP5 models on the mean

and median global soil erosion rates is observed (Fig. 2.12). On the one hand, a

significant increase of 2 and 0.9 t ha−1 year−1, respectively, is found in the mean global

soil erosion rates during the last millennium by MPI-ESM and CCSM4 (Fig. 2.12 and

Fig. 2.13). The increasing trend is mainly a result of the strong increase in land use

change simulated by these models (Fig. 2.13). Climate change contributes to this

increase only after 1850AD.

On the other hand, IPSL-CM5A shows a significant decrease in the mean global soil

erosion rate during the last millennium of 0.7 t ha−1 year−1 (Fig. 2.12 and Fig. 2.13).

Here, climate change is the main driver behind the decreasing trend, while land use

change contributes to this trend only in the period 1850-2005AD (Fig. 2.13). For the

other models no significant trend during the last millennium is found.

However, from figure 2.12 one can observe significant changes in the median soil erosion

trends for all models, starting from 1800AD. These signals, although not clear, can be

related to the strong land use changes occuring in large regions on earth, for example

in the Amazon region. These signals are not as clearly visible from the mean erosion

rates in figure 2.12.

Furthermore, we found that most models agree on an increase in erosion rates during

the last millennium for Europe, North- and Central-America. For the other regions

the models strongly disagree among each other. This is partly due to uncertainties

in the simulated land use and climate. Figures on soil erosion trends during the last

millennium from CMIP5 models for the different continents are given in Appendix A.1.
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Figure 2.13: Mean global soil erosion rates for the last millennium for the climate change

scenario, CC (blue), land use change scenario, LUC (green) and default scenario, All (black),

based on data from different CMIP5 models. Units are in t ha−1 year−1.



44 CHAPTER 2 GLOBAL SOIL EROSION

2.3.3 Limitations of the modelling approach

As mentioned earlier, the other RUSLE factors such as the K and C factors should be

adapted to a coarse resolution on global scale, and the seasonal interaction between the

C and R factors should be improved. The absence of this can cause biases in regions

with a strong seasonal behavior or in agricultural areas that use crop rotation tech-

niques. Also the land management and (P factor) and slope length (L factor) should

be incorporated in the global estimation of erosion rates, as these two factors play an

important role for agricultural areas. The fact that we ignore these factors on the

global scale can cause biases in agricultural areas and could be one of the explanations

for the too high erosion rates in these areas.

The adjusted RUSLE model with the new method for C factor calculation cannot be

used for estimating high resolution local scale soil erosion rates. The model has been

calibrated for a large spatial scale, as the resolution of the model is 5 arcmin. The new

method for C factor calculation may limit the applicability of the model in regions with

a high diversity of land cover types and a complex landscape. In the latter case slope

fractions may be needed to improve the estimation of the C factor. We found that on a

large spatial scale the inclusion of slope fractions does not improve the overall erosion

rates much.

Furthermore, the adjusted RUSLE model does not simulate extreme soil erosion events,

but rather average long-term erosion rates. This means that the adjusted RUSLE model

cannot be used to predict extreme soil erosion events in the past or future. Extreme

soil erosion events that also include gully erosion, land slides and stream-bank erosion,

that can be important on the long-term, especially in steep landscapes.

Also, in order to estimate erosion rates for time periods that go back further than

850AD, the method for calculating the R factor may not be valid anymore due to a

different climate. This means that we will need to adapt the criteria for the climate

classification maps for the far past.

Concerning the estimations of lateral fluxes of carbon and nutrients, the erosion esti-

mates from the adjusted RUSLE model can only predict the gross lateral fluxes and

not the overall net fluxes due to the absence of sediment deposition and transport.

2.4 Conclusions

In the first part of this study we introduced specific methods to adjust the topograph-

ical and rainfall erosivity factors to improve the application of the RUSLE model on

global scale, using coarse resolution input data.

Our results show that the fractal method by Zhang et al. (1999) and Pradhan et al.

(2006) can be applied on coarse resolution DEMs to improve the resulting slope. Al-

though the slope representation improved after applying this method, the results still

show a slight dependence on the original grid resolution. This is attributable to several
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factors such as the underlying assumption that the standard deviation of elevation (σ)

is independent of the DEM resolution and to the breakdown of the fractal method at

certain scales.

We compared the rainfall erosivity calculated by the method of Renard and Freimund

(1994) to available high resolution or observed erosivity data of the USA, Switzerland

and the Ebro Basin. We find that this method results in overall significant biases in

erosivity. Therefore, we implemented a linear multiple regression method to adjust

erosivity for climate zones of the Köppen–Geiger climate classification system in the

USA. Using precipitation, elevation and the simple precipitation intensity index as

explaining parameters, the resulting adjusted erosivity compares much better to the

observed erosivity data for the USA, Switzerland and the Ebro Basin. Not only are

the mean values improved but also the spatial variability in erosivity. It was surprising

to notice that using the rather coarse resolution simple precipitation intensity index in

the regression analysis made it possible to explain much of the variability in erosivity.

This, once more, underpins the importance of precipitation intensity in erosivity esti-

mation.

After calculating the newly adjusted erosivity on a global scale, it is apparent that the

tropical climate zones, for which erosivity was not adjusted, show strong overestima-

tions in some areas. This shows that adjusting erosivity for the tropical climate zones

should be the next step. The challenge is to find enough reliable long-term and high

resolution erosivity data for those regions.

To investigate how the adjusted topographical and rainfall erosivity factors affect the

global soil erosion rates, we applied the adjusted RUSLE model on a global scale. We

found an average global soil erosion rate of 6.5 t ha−1 year−1. It is, however, difficult

to provide accurate uncertainty estimates to these global erosion rates and to provide

a good validation with observations. This is due to lack of high resolution data on

other individual RUSLE factors such as the land cover, soil erodibility, slope length

and support practice. These RUSLE factors are therefore not adjusted for application

at coarse resolution on a global scale. We argue that it is important to focus on ad-

justing the other RUSLE factors for an improved application of the RUSLE model on

global scale.

The next step would be to better capture the anthropogenic contribution to global soil

erosion. This can be done by adjusting first of all the land cover factor to a coarse res-

olution application and focusing on the interaction of this factor with rainfall erosivity

on a monthly to seasonal basis. This is important because the land cover factor has

strong interactions with the rainfall erosivity factor and includes the effect of human

activities on erosion through agricultural activities and land management.

To test if the soil erosion rates from the adjusted RUSLE model are in a realistic

range, we compared the results to the USLE erosion estimates for the USA from the

NRI database and the erosion estimates for Europe from the study of Cerdan et al.

(2010). The adjusted RUSLE soil erosion rates, which we aggregated to the watershed

level, show a better comparison with the NRI USLE estimates than the unadjusted
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RUSLE erosion rates. For Europe, the comparison of the adjusted RUSLE soil erosion

rates to the study of Cerdan et al. (2010) were not as good as for the USA. This is not

surprising due to the fact that the parameterizations of the RUSLE model are based

on soil erosion data of the USA. However, also for Europe, the adjusted RUSLE model

performs better than the unadjusted RUSLE model.

We find overestimations by the adjusted RUSLE model for hilly regions along the west

coast of the USA and for southern of Europe. We argue that, besides the reasons

mentioned before, these biases are due to the fact that the topographical detail may

not be enough in some regions to capture the true variability in soil erosion effects by

topography. Also, erosivity could not be adjusted for some climate zones that are not

present in the USA or Switzerland and needs to be further improved for climate zones

such as the polar climate zones.

In the second part of this study the behavior of the adjusted RUSLE model is inves-

tigated when using coarse resolution input data from CMIP5 models. First, a new

method for calculating the C factor of the RUSLE model is derived based on the land

cover fractions and the LAI, as most ESMs have no data on the NDVI. Second, climate

and land cover data from multiple ensemble simulations from five different ESMs of the

CMIP5 experiment were selected to calculate soil erosion for present day. The different

ensemble simulations provide the uncertainty in the resulting erosion rates due to un-

certainty in the model data on climate and land cover. The global erosion rates based

on data from the CMIP5 models were then compared with the erosion rates based on

observed data of environmental factors.

With respect to the overall values of global soil erosion rates, only the mean rates

calculated with the data from MPI-ESM and CCSM4 models fall into the uncertainty

range of erosion rates based on observed data. Furthermore, only two models (CCSM4

and MIROC-ESM) show a similar continental variability in soil erosion rates as from

observed data. However, none of the selected ESMs shows a similar grid-scale variation

in global soil erosion rates as from observed data. Furthermore, we found that models

and observations generally agree on the mean erosion rates for Australia, Europe and

Africa, while strongly disagree for the America’s and Asia. Maps showing grid-scale

biases between the ESMs and observed data show that for most of the models an over-

estimation of erosion rates in mountainous areas, West-Europe, North-West China and

North-East Africa is found. At the same time an underestimation of erosion rates is

found for most models in large parts of the Amazon and some regions above 60 degrees

North.

These results indicate that the adjusted RUSLE model is very sensitive to the climate

and land cover data from ESMs. It is expected that especially biases in precipitation

rates from models play an important role, as precipitation is the main driver of soil

erosion besides topography.

In the final part of this study three simulations on soil erosion were performed for

the last millennium based on data from the CMIP5 models. Here, the purpose was

to investigate the contribution of land use change and climate change on soil erosion
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during the last millennium. For the climate change simulation the land cover was fixed

to the conditions between 850 and 950AD during the last millennium, while for the

land use change simulation the climate was fixed to the conditions between 850 and

950AD. The third simulation is the default simulation where both climate and land

cover were changing during the last millennium.

Results show that the models disagree on the global trend of erosion during the last

millennium. MPI-ESM and CCSM4 show a significant increase in global soil erosion

rates during the last millennium, which is mainly related to a strong land use change

in most parts of the world. IPSL-CM5A model shows a decreasing trend mainly due

to strong precipitation decrease in the tropics, especially in South-America. The other

models do not show a significant increase or decrease in the mean erosion trend during

the last millennium. However, the median global soil erosion trends from all models

show a significant signal related to land use change starting from 1800AD.

We conclude that though there is still much improvement possible to the RUSLE model

with respect to topography and erosivity, the methods proposed in this study seem to

be promising tools for improving the global applicability of the model. However, when

using climate and land cover data from ESMs to drive the model, we found that the

performance of the model is strongly affected by the representation of the coarse res-

olution climate and land cover data in ESMs. In order to better estimate soil erosion

with ESMs it is thus essential that precipitation, as one of the drivers of soil erosion,

is represented well by the ESMs.
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Chapter 3

Land use change as the main driver

of the change in sediment storage

during the last millennium

3.1 Introduction

An accurate quantification of large-scale soil redistribution is essential to better quan-

tify and constrain the impact of human activities on the biogeochemical cycles. How-

ever, data on large to global scale soil redistribution rates are scarce to non-existing.

There exist several modelling approaches to estimate global soil erosion rates (Yang

et al., 2003; Ito, 2007; Montgomery, 2007; Doetterl et al., 2012; Naipal et al., 2015).

These modelling approaches mainly address the soil detachment process only, and do

not simulate the dynamics of sediment by ignoring processes such as sediment deposi-

tion and transport. There is, to our knowledge, no globally applicable model that can

explicitly simulate soil redistribution, which is a result of the sediment dynamics in a

landscape, for the past, present and future. The lack of such kind of large-scale models

on soil redistribution substantially limits the understanding of the relative importance

of the various effects of soil erosion and related processes on the global biogeochemical

cycles.

The holistic understanding of the interaction and linkages between soil erosion, de-

position and transport that comprise soil redistribution, can be addressed using the

sediment budget approach (Walling and Collins, 2008). Slaymaker (2003) defined the

sediment budget as a mass-balance-based approach where the mass of sediments, water

or nutrients is conserved in the considered system so that the net increase in storage

is equal to the excess of inflow over outflow of the conserved quantity. However, long-

term large-scale sediment budgets are very scarce to non existing. Sediment budgets

that have been constructed previously range from small catchments (Verstraeten and

Poesen, 2000; Walling et al., 2001) to large river catchments (Milliman and Meade,
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1983; Ludwig and Probst, 1998; Syvitski et al., 2003; Slaymaker, 2003). However,

these sediment budgets are usually for present-day only as they are mostly based on

measurements using methods such as sediment tracing or fingerprinting. Also, most of

these studies only focus on the sediment delivery from a catchment. These studies are

therefore of limited use for assessing the spatial distribution of sediment sources and

storage or in predicting long-term sediment yields. Considering explicitly the spatial

distribution of these variables within a catchment is not only essential for a proper

land management strategy to combat land degradation, but also for a detailed assess-

ment of how erosion and sediment transport interact with the carbon and nutrient

cycles. For example, it is important to distinguish between sediment related processes

in floodplain and hillslope systems (Hoffmann et al., 2013). Human activities usually

lead to a stronger increase in sediment deposits on hillslopes compared to floodplains,

and an overall decreased export of sediment out of a catchment, despite increased soil

erosion (de Moor and Verstraeten, 2008). In this way, sediment stored in floodplains

and on hillslopes over long timescales can significantly delay or alter the human induced

changes to the carbon and nutrient cycles (Hoffmann et al., 2013). This indicates that

there is a need for long-term sediment budgets, as they can provide essential informa-

tion on the forces behind sediment, carbon and nutrient fluxes in a catchment such as

human activities and climate change.

There is thus a need for spatially explicit models that can simulate long-term sediment

budgets. There exist different spatial models of suspended sediment flux that also con-

sider the soil redistribution or sediment dynamics in a catchment (Merritt et al., 2003;

de Vente and Poesen, 2005; Ward et al., 2009). However, many of them are developed

to simulate single events or require input data that is not available for large spatial

scales (Wilkinson et al., 2009). There are also partly empirical models which can oper-

ate on catchment scale such as the WATEM/SEDEM model, which is used to predict

hillslope sediment storage and sediment yields (de Moor and Verstraeten, 2008; Nadeu

et al., 2015). Or such as the suspended sediment model from Wilkinson et al. (2009)

that also simulates some other processes such as floodplain deposition, gully and river-

bank erosion. However, these models are not compatible for a global scale application

as they require parameters for which data is not available on a global scale and these

type of models also need to be calibrated to measured sediment yields of the studied

area (Van Rompaey et al., 2001). Pelletier (2012) proposed a global applicable model

for long-term suspended sediment discharge, where he used various environmental con-

trolling parameters to simulate soil detachment and sediment transport. However, in

his study he mainly focuses on the sediment discharge and delivery of catchments and

his model does not take into account the full dynamics of sediment in a catchment,

which would also include the spatial distribution of sediment deposition and storage

in the different reservoirs of a catchment. Furthermore, he does not consider land use

change and thus his approach is limited to natural catchments only.

In this framework we present a new large-scale sediment budget model that is able to

simulate spatial patterns in soil erosion, deposition and transport, according to climate
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and land use. The overall objective of this study is to present and evaluate the new

model for the non-Alpine part of the Rhine catchment first, and then test its appli-

cability on a global scale using the environment of ESMs. The choice of the Rhine

catchment is based on the fact that it is the only large catchment with a long land use

history for which we had long-term sediment storage data available. For the validation

of the model we used scaling relationships between sediment storage and catchment

area found from observations for the non-Alpine part of the Rhine catchment by Hoff-

mann et al. (2013). The scaling relationships are an important criteria for the sediment

budget model, as they represent the overall main behavior of sediment in a catchment

as function of catchment area. These relationships can thus function as a simple test for

the spatial variability of stored sediment that is modelled with a large-scale coarse res-

olution sediment budget model. We use the model to quantify the spatial variability of

floodplain and hillslope sediment storage for the Rhine catchment, and its dependence

on climate change and land use change during the last millennium (850-2005AD). We

also apply the model on a global scale and investigate the response of 20 different large

catchments to the climate and land use change during the last millennium. We also aim

to investigate which catchment characteristics determine the spatial variability and the

overall change of sediment storage, and how these characteristics influence the effects

of land use change on soil redistribution during the last millennium.

3.2 Methods

3.2.1 Basic model concept

The main purpose of the sediment budget model presented here, is to estimate large-

scale long-term floodplain and hillslope sediment storage and lateral fluxes of sediment.

The model should therefore be spatially explicit and capable of estimating erosion,

deposition and sediment transport processes. Furthermore, we want to differentiate

between floodplain and hillslope sediment storage for a better quantification of the

impact of human activities in a catchment. Therefore, we use a grid cell based approach

where we assume that each grid cell contains a floodplain and hillslope reservoir. Before

we can define a model that satisfies the above mentioned conditions we have to make

some basic assumptions first. Firstly, as it is difficult to disentangle the floodplains

and hillslopes in available soil data sets, we assume that each grid cell contains both a

hillslope and a floodplain reservoir. When estimating large-scale sediment storage with

the aim of predicting fluxes of carbon in the future, the focus is to get the large-scale

spatial patterns right, rather than the precise estimates of sediment storage. Secondly,

we assume that the deposition and sediment transport behave differently between the

floodplain and hillslope reservoirs on the timescale of the last millennium. Thirdly,

erosion is considered to mainly take place on hillslopes, where part of the eroded

sediment is directly transported from hillslopes and deposited in the floodplains.
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(a)

(b)

Figure 3.1: Model scheme (a) with multiple flow routing (b). d is the grid size, i counts grid

cells in the latitude direction, while j counts grid cells in the longitude direction. The red

arrows represent the possible sediment flow directions.



3.2 Methods 53

The underlying model framework (Fig. 3.1a) that consists out of the erosion, deposition

and sediment transport modules, is based on the sediment mass-balance method. Here

the change in sediment storage (M) within a certain unit of time and space is given

by the difference between sediment input and sediment output (Slaymaker, 2003). For

sediment stored in floodplains (Ma), this leads to

dMa

dt
= Da − L (3.1)

This can be approximated by the following as function of time:

dMa

dt
= Da(t)− k ∗Ma(t) (3.2)

where Da(t) is the time-dependent input rate in the model, which is independent from

Ma(t). k ∗Ma(t) is the loss term in the floodplain reservoir, and k is the specific rate

for floodplains.

The specific rate is the inverse of the residence time (1/τ) for floodplain sediment,

which is defined as the number of years a soil particle stays in the floodplain reservoir

of a certain grid cell. τ is assumed to be independent of time for timescales in the order

of several thousands of years, and is assumed to increase exponentially with catchment

area, where the catchment area is represented by the weighted flow-accumulation

τ = e

(FlowAcc− aτ )
bτ (3.3)

aτ and bτ are residence time constants and FlowAcc is the flow-accumulation. Flow-

accumulation is defined as the number of grid cells upstream that flow into a certain

grid cell. As each grid cell represents a certain catchment area, the value of τ will be

dependent on the location of the grid cell in the catchment. The presented relationship

between τ and catchment area in Eq.(3.3) is based on the fact that large catchment

areas are usually characterized by low slopes which mainly result in a low connectivity

that makes the system capable of storing sediment for a long time. The opposite is

true for small catchment areas, where the connectivity is usually high and the sediment

in these systems will therefore have short residence times (Hoffmann, 2015). It should

be noted that Eq.(3.3) is dependent on the grid resolution of the model.

The deposition rate (Da) in the floodplain reservoir is defined as a certain fraction of

the erosion rate in a grid cell. Eq.(3.2) can be rewritten as:

dMa

dt
= f(t) ∗ E(t)− Ma(t)

τ
(3.4)

The erosion rate, E (t ha−1 year−1), is computed according to the adjusted RUSLE

model, which computes annual averaged rill and interril erosion rates and is formulated
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as a product of a rainfall erosivity factor (R, MJ mm ha−1 h−1 year−1), a slope steepness

factor (S,dimensionless), a soil erodibility factor (K, t ha h ha−1 MJ−1 mm−1), and a

crop cover factor (C,dimensionless) (chapter 2).

Where f is the dimensionless floodplain deposition fraction ranging between 0 and 1.

The floodplain deposition fraction is calculated by a simple growth function where

deposition is a function of the mean topographical slope and the main land cover type

in a grid cell:

f = af ∗ e
{bf∗

θ

θmax
}

(3.5)

where af and bf are constants for deposition and dependent on the land cover type,

and θ is the average percent slope on a 5 arcmin resolution grid. θmax is the maximum

percent slope. An increase in the overall average slope of a grid cell leads to a larger

transport of eroded soil from the hillslopes to the floodplains. This results in an increase

in the deposition rate to the floodplain reservoir of that specific grid cell. Hereby we

consider in Eq.(3.5) that this increase is exponential. For a natural landscape we

assume a good ‘sediment connectivity’ between hillslopes and the floodplain in a grid

cell. In natural landscapes the sediment connectivity is largely based on the vegetation

density and morphological structures (Gumiere et al., 2011; Bracken and Croke, 2007).

To keep the model simple we do not adapt these parameters to the complexity of

natural landscapes, but rather differentiate between the deposition rates in natural and

agricultural landscapes, assuming that the sediment connectivity differs fundamentally

between these landscapes. Several recent studies (Hoffmann et al., 2013; de Moor

and Verstraeten, 2008; Gumiere et al., 2011) showed that a lot of eroded sediment is

deposited and stored directly on the hillslopes where agricultural activities take place.

Agricultural activities that use anthropogenic structures, reduce the sediment transport

from hillslopes to the floodplain (Gumiere et al., 2011). In this way, the stored hillslope

sediment is disconnected from the fluvial system on timescales of 100 to a few 1000

years. Based on this, we assume that for agricultural land (crop and pasture) and

grassland the sediment connectivity is disturbed. A bad sediment connectivity will

result in a larger fraction of eroded soil that stays on the hillslopes compared to the

fraction that flows along the hillslopes and is deposited in the floodplain. For natural

landscapes we assume a better sediment connectivity, meaning that a larger fraction of

the eroded soil will be deposited in the floodplains compared to the fraction that stays

on the hillslope. Here we ignore morphological conditions that can cause deconnectivity

in the landscape.

After calculating erosion and deposition, the sediment is transported between the grid

cells based on a multiple flow sediment routing scheme such as presented by Quinn et al.

(1991) (Fig. 3.1b). In the multiple flow routing scheme the weight (W , dimensionless),

which specifies the part of the flow that comes in from a neighboring grid cell, is

calculated as:
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Wk,l(i, j) =
θk,l(i, j) ∗ ck,l(i, j)∑1

k,l=−1[θk,l(i, j) ∗ ck,l(i, j)]
(3.6)

where c is the contour length and is respectively, 0.5 in the cardinal direction and 0.354

in the diagonal direction. (i, j) is the grid cell in consideration where i counts grid cells

in the latitude direction and j in the longitude direction. i + k and j + l specify the

neighboring grid cells where k and l can be either -1, 0 or 1. θ is calculated here as:

θk,l(i, j) =
h(i, j)− hk,l(i, j)

d
(3.7)

where, h is the elevation in meters derived from a digital elevation model, d is the grid

size in meters.

The floodplain sediment storage rate, Ma (t ha−1 year−1), of a grid cell (i, j) is then a

function of the deposition rate in that grid cell, the loss from that grid cell and the

incoming sediment from the neighboring grid cells, and is calculated at each time step

t as:

Ma(i, j, t+ 1) = Ma(i, j, t) + [f(i, j, t+ 1) ∗ E(i, j, t+ 1)− Ma(i, j, t)

τ(i, j)
]+
∑1

k,l=−1[
Mak,l(i, j, t)

τk,l(i, j)
∗Wk,l(i, j)] (3.8)

Here t is discretized to years.

For hillslopes the change in sediment storage is assumed to be equal to the input rate,

because we assume that the stored hillslope sediment has an infinite residence time on

the timescale of the last millennium (Eq.3.9). This means that the hillslope sediment

storage will increase linearly with time (Eq.3.10). The hillslope sediment deposition

rate (Dc) is here defined as the remaining part of the eroded soil that has not be been

transferred to the floodplain directly (1-f). The equations for the hillslope sediment

storage rate (Mc, t ha−1 year−1) are represented by:

dMc

dt
= Dc = (1− f) ∗ E (3.9)

Mc(i, j, t+ 1) = Mc(i, j, t) + (1− f(i, j, t+ 1)) ∗ E(i, j, t+ 1) (3.10)

3.2.2 Model implementation and parameter estimation

As mentioned in the introduction of this study, we first implement the sediment budget

model on the Rhine catchment to investigate its behavior and validate and calibrate

the model with existing data on sediment storage. After validating and calibrating the

model for the Rhine catchment we apply the model on a global scale.
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The resolution of the sediment budget model is 5 arcmin. We chose this particular

model resolution, because we assume that this is the optimal resolution when consid-

ering that each grid cell contains a floodplain and hillslope fraction. Here, a higher

resolution could lead to cases where this assumption is not met. Also, the 5 arcmin

resolution fits well with the resolution of the adjusted RUSLE model. The sediment

budget model uses climate and land cover data from simulations of MPI-ESM that

have been performed under the CMIP5 framework (chapter 2). As this data was given

at a resolution of 1.875 degrees, we had to downscale the data to the resolution of the

sediment budget model. For the period 1850-2005AD three ensemble members from

MPI-ESM (r1i1p1, r2i1p1, r3i1p1) were available, while for the period 850-1850AD

only one ensemble member (r1i1p1) was available. This data existed on a 6 hourly,

monthly or yearly time step for the last millennium.

The R factor of the adjusted RUSLE model is calculated according to the new regres-

sion equations described in chapter 2. The S, C and K factors are also estimated as

described in chapter 2. For the application of the sediment budget model on the Rhine

catchment we did an additional adjustment to the R factor in order reduce biases in

soil erosion rates and to better test the performance of the model as a whole. When

using climate data of MPI-ESM, we found that the R values for the Rhine catchment

are overestimated by a factor of 5, compared to the modelled R values from observed

climate data for present day. This is due to strong overestimation in precipitation rates

for West-Europe by MPI-ESM. Therefore, we introduced a correction factor based on

the R values calculated from observational datasets for the period 1950-2000AD. This

adjustment is not performed for the global application of the model. Furthermore,

due to the overestimation of erosion rates by the adjusted RUSLE model in the Alps,

we defined a mean soil erosion rate of 20 t ha−1 year−1 for this region based on high

resolution erosion data from (Bosco et al., 2008). For the global application we fixed

the maximum soil erosion rates to 50 t ha−1 year−1.

Furthermore, we chose the floodplain deposition fraction to range between 0.5 and 0.8

for natural landscapes that consist out of mainly forest, and between 0.2 and 0.5 for

agricultural lands. According to Eq.(3.5), f increases exponentially with slope. Based

on this we calculated af and bf to be respectively 0.5 and 0.47 for natural landscapes

and 0.2 and 0.917 for agricultural land. This means that for low slopes (<±0.2 %) in

a natural landscape an equal amount of sediment is deposited in the floodplain as on

the hillslope, while for agricultural land only 20 % of the eroded soil from the hillslope

will reach the floodplain.

The floodplain residence time is made to range between the median and maximum res-

idence time of floodplain sediment in the Rhine catchment of respectively 260 and 1500

years (personal communication with Dr.T.Hoffmann). Wittmann and von Blancken-

burg (2009) found a residence time of 600 years for floodplain sediments at Rees in the

Rhine catchment, which falls in the range of the floodplain residence times of our study.

According to Eq.(3.3), τ increases exponentially with flow-accumulation. As the max-

imum flow-accumulation is different for different catchments, we used the maximum
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flow-accumulation of a continent to determine the aτ and bτ (Eq.3.3) for catchments

in that continent. The exact values for aτ and bτ are given in Appendix A.2.

Finally, to get accurate flow directions we used the digital elevation model (DEM)

and flow-accumulation on 30 arcsec from the HydroSHEDS (Hydrological data and

maps based on SHuttle Elevation Derivatives at multiple Scales) database (Lehner

et al., 2006). The HydroSHEDS DEM is based on SRTM and GTOPO30 data. The

HydroSHEDS flow-accumulation data for the Rhine catchment was aggregated to 5

arcmin, and the inverted upscaled flow-accumulation values were then used as input

for the multiple flow routing scheme. It should be mentioned that using a coarser

resolution DEM for the sediment routing results in strongly biased flow directions.

3.2.3 Criteria for model evaluation

Figure 3.2: The Rhine catchment (Hoffmann et al., 2013)

A large-scale spatial model like the one we presented is difficult to validate due to the

lack of large-scale and long-term observational data. Hoffmann et al. (2013) compiled

published data on sediment storage for regions in Central Europe, mainly for the Rhine
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catchment, where human induced soil erosion took place in the past 7500 years. Com-

bined with a long land use history, where agricultural activities go back till about 7500

years ago (Houben et al., 2006; Hoffmann et al., 2007), the Rhine catchment serves as a

good case study to investigate the impact of human activities on erosion and sediment

yields through history. The Rhine catchment (Fig. 3.2) has a size of (∼ 185000 km2)

with a main river channel length of (∼ 1320) km and drains large parts of the area

between the European Alps and the north sea. It has a complex topography where the

elevation ranges between -180 and 1967 m with a mean topographical percent slope of

0.07, where percent slopes can go up to 1.2. It consists out of two large sedimentary

catchments (ie, upper Rhine Graben and the lower Rhine Embayment-Southern North

Sea Basin) that serve as large floodplain sinks for sediment, and some upland areas,

such as the Black Forest and the European Alps that serve as major sediment produc-

tion areas.

From the observed sediment storage Hoffmann et al. (2013) derived scaling relation-

ships between storage S (109 kg = 1 Mt) and catchment area A (km2) for floodplains

and hillslopes. They found that for floodplains the sediment storage increases exponen-

tially with catchment area, while hillslope sediment storage shows a different behavior

and increases almost linear with catchment area. The scaling relationships, given by

Eq.(3.11) for hillslopes and Eq.(3.12) for floodplains, will be used as the main validation

for our sediment budget model.

S = (364± 168)106(A/Aref )(1.06±0.07) (3.11)

S = (184± 24)106(A/Aref )
(1.23±0.06) (3.12)

Here, Aref is an arbitrary chosen reference area, in this case 103 km2. The observation

data contains 41 hillslope and 36 floodplain sediment storage values, derived from a

large number of auger and bore holes that are used to measure sediment thickness

related to human induced soil erosion.

Furthermore, Hoffmann et al. (2007) established a Holocene sediment budget for sedi-

ments in the floodplains and the delta of the non-Alpine part of the Rhine catchment.

They derived sediment thickness of Holocene deposits from borehole data that consists

out of 563 drillings and available geological maps. This was then multiplied with flood-

plain areas to calculate floodplain volumes. Sediments on hillslopes were not addressed

in this study. A total floodplain sediment mass of 53.5± 12.4× 109 t was found for the

whole Rhine catchment, of which 50 % is stored in the Rhine Graben and the delta.

The spatial variability of the observed sediment storage will be a second validation test

for out model.

Finally, Hoffmann et al. (2007) found an average erosion rate of 0.55±0.16 t ha−1 year−1

for the last 10000 years, with extreme minimum and maximum values of 0.3 and

2.9 t ha−1 year−1. However, Hoffmann et al. (2013) included also hillslope sediment
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storage and calculated a total sediment storage of 126 ± 41 Gt for the Rhine catch-

ment, which requires a minimum Holocene erosion rate of approximately 1.2 ±
0.32 t ha−1 year−1. This shows that hillslopes are not only the main sources of eroded

sediment but can be major millennial-scale sinks for eroded sediment from agriculture.

We will compare erosion rates for the Rhine catchment from our sediment budget model

also with the above presented values from the studies of Hoffmann et al. (2007) and

Hoffmann et al. (2013).

3.2.4 Simulation setup

In order to model the sediment storage for a certain catchment, an initial state has to be

assumed. Here we assume the initial state to be the equilibrium state of a catchment,

defined as the state of a catchment where the sediment input is equal to the sediment

output, and thus the sediment yield at the outlet of the river should be constant in time.

External forces working on a catchment such as land use activities or deglaciation can

bring the catchment out of equilibrium in a transient state. In the case of the Rhine

catchment the period directly after the Last Glaciation Maximum (LGM) could be

of importance due to strong erosion that was triggered by the retreating ice sheets.

From today’s observations on sediment budgets or erosion rates we cannot determine

when the Rhine catchment was in an equilibrium state. Additionally, there are no

observations of sediment storage before the start of agricultural activities in the Rhine

catchment, which date back to 7500 years ago. This poses a problem in simulating and

interpreting the present-day absolute values of sediment storage and yields with our

sediment budget model.

In order to still being able to interpret the simulated sediment storage for the Rhine

catchment and globally, we will not focus on the absolute values of sediment storage.

We will only focus on the change in sediment storage due to land use and climate change

since 850AD. An exception is made in section 3.3.2.4, where we will use the absolute

values of simulated sediment yields, and not the change during the last millennium, to

validate the sediment budget model with observed yields on a global scale. Considering

mainly the changes induced by external forcing, it is not necessary to know if the system

was in an equilibrium or transient state at 850AD. Based on this reasoning, we take the

environmental conditions of 850AD to determine the equilibrium state of the model.

In the rest of this study, we will refer to 850AD as the ’default equilibrium state’ that

we define based on the mean climate and land cover conditions at 850AD, while one

should keep in mind that this is not the ‘real’ equilibrium state of the catchment.

850AD is used here as the equilibrium state due to reasons related to data availability,

and because human impact in this time period is still small compared to present day.

Hence, our simulation setup structure is generally defined by an equilibrium simulation

based on the conditions of 850AD, followed by a transient simulation for the last

millennium (850-2005AD).

We used climate and land cover data from different simulations of MPI-ESM that were
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Table 3.1: Simulation specifications for the application of the sediment budget model for the

Rhine catchment and globally. For each experiment with the sediment budget model the

type of simulation (equilibrium or transient), the time period, and the initial conditions on

which the simulation is based on, are given. Furthermore, we also provide the number of

simulations we made with the model for a certain type of simulation, and the experiment

from MPI-ESM that we used to derive the input data to force the sediment budget model.

Application Experiment Simulation Time period Initial Experiment number

conditions MPI-ESM-LR of simulations

Rhine-cathment equilibrium 850-950AD last millennium 1

equilibrium 6000 BP mid-Holocene 2

default transient-part1 850-1850AD 850-950AD last millennium 1

default transient-part2 1850-2005AD transient-part1 historical 3

default transient-part1 850-1850AD 6000 BP last millennium 2

default transient-part2 1850-2005AD transient-part1D historical 2

climate change transient-part1 850-1850AD 850-950AD last millennium 1

climate change transient-part2 1850-2005AD transient-part1 historical 1

land use change transient-part1 850-1850AD 850-950AD last millennium 1

land use change transient-part2 1850-2005AD transient-part1 historical 1

Global equilibrium 850-950AD last millennium 1

default transient-part1 850-1850AD 850-950AD last millennium 1

default transient-part2 1850-2005AD transient-part1 historical 1

climate change transient-part1 850-1850AD 850-950AD last millennium 1

climate change transient-part2 1850-2005AD transient-part1 historical 1

land use change transient-part1 850-1850AD 850-950AD last millennium 1

land use change transient-part2 1850-2005AD transient-part1 historical 1

available from the CMIP5 experiment to force the sediment budget model. For the

global application of the sediment budget model we performed one equilibrium simu-

lation based on the mean climate and land cover conditions of the period 850-950AD

from the last millennium experiment of the MPI-ESM. For the Rhine catchment we

performed three equilibrium simulations, one based on the mean climate and land

cover conditions of the period 850-950AD, and the two others based on the mean cli-

mate and land cover conditions of the mid-Holocene period (6000 years ago) from the

mid-Holocene experiment of the MPI-ESM (Table 3.1). The reason for performing

an equilibrium simulation for the mid-Holocene period is to investigate how different

initial conditions for climate and land cover would influence the overall sediment stor-

age change during the last millennium. In the equilibrium simulations the erosion and

deposition rates are kept constant and the model is run with a yearly time step till the

total floodplain sediment storage of a catchment does not change more than 1 ton per

year.

The floodplain and hillslope sediment storage at equilibrium were then used as a start-

ing point for the transient simulation that covers the period 850 - 2005AD. In the

transient simulation erosion and deposition rates are averaged over time steps of 100

and 50 years, based on the time resolution of the rainfall erosivity factor (R) that is

part of the erosion module.

For the global application we performed three main transient simulations, to investi-

gate the individual contribution of land use change and climate change on sediment

storage (Table 3.1). In the ‘default’ transient simulation both land cover and climate



3.3 Results and discussion 61

were variable throughout the last millennium. In the climate change simulation we

kept the land cover conditions fixed to the period 850-950D throughout the last mil-

lennium, while in the land use change simulation we kept the climate conditions fixed

to the period 850-950D.

For the Rhine catchment we performed 5 ‘default’ transient simulations, two based on

the mid-Holocene equilibrium states, and three others based on the equilibrium state

of the period 850 - 950AD. The different ensemble simulations were used to investigate

the uncertainty in the resulting sediment storage due to the input data of MPI-ESM.

Additionally, we also performed a climate change and land use change simulation based

on the equilibrium state of the period 850 - 950AD (Table 3.1).

3.3 Results and discussion

3.3.1 The Rhine catchment

3.3.1.1 Scaling test

In order to validate the sediment budget model we tested if the model can reproduce

the scaling relationships found by Hoffmann et al. (2013) for the non-Alpine part of

the Rhine catchment (Eq.3.11 and 3.12). For this we chose the grid cells in the Rhine

catchment that correspond to the observation points from Hoffmann et al. (2013). Ob-

servation points that fell outside the Rhine catchment, were not considered. When

considering only the selected grid cells and applying the same scaling approach as in

the study of Hoffmann et al. (2013), we found an average scaling exponent for flood-

plains of 1.2 ± 0.04 and for hillslopes of 1.05 ± 0.07 (Table 3.2). These values fall in

the range of floodplain and hillslope scaling exponents of 1.23 ± 0.06 and 1.08 ± 0.07

respectively found by Hoffmann et al. (2013). The uncertainty in the scaling expo-

nents is mainly due to the regression, while the uncertainty due to different ensemble

simulations is very small (Table 3.2). Our model also reproduces the characteristic

differences in scaling between floodplains and hillslopes as found by Hoffmann et al.

(2013) (Fig. 3.3a and b). One should note that the grid resolution of the model limits

the prediction of sediment storage to grid points with a catchment area ≥ 102 km2.

When considering all the grid cells of the Rhine catchment we derived a scaling ex-

ponent for floodplain storage of 1.33 ± 0.02, (Table 3.3), which is somewhat higher

than the value found when only the selected grid cells are used. This may be due to

the inclusion of grid cells that lie in the Alpine region of the Rhine catchment. In-

cluding the Alpine region leads then to a stronger gradient in sediment storage and

catchment area between the Alps and the Rhine delta. In the Alpine region the model

predicts much less sediment storage due to the low residence time and high sediment

connectivity, while for the Rhine delta the sediment storage is large due to the high

flow-accumulation and high residence times. For hillslope storage the scaling exponent
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(a) Floodplains

(b) Hillslopes

Figure 3.3: Scaling of floodplain (a) and hillslope (b) sediment storage from the transient

simulation in the non-Alpine part of the Rhine catchment. The black dots and black trend

line correspond to the observed sediment storage values from Hoffmann et al. (2013). The

blue dots and blue trend line correspond to modelled sediment storage values that

correspond to the observation points from Hoffmann et al. (2013) and fall into the borders

of the Rhine catchment.

is also slightly higher when including all grid cells in the scaling approach (Table 3.3).

This can also be explained by including the Alpine region, where the model predicts

more sediment storage on hillslopes, compared to the rest of the Rhine catchment due

to the high erosion rates in this region.

Furthermore, when including all grid cells in the scaling approach there is more spread

in the data, which is clear from the lower r-value of the regression. The small difference
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between the scaling exponents when considering all grid cells and the scaling exponents

when considering only selected grid cells indicates that the selected observation points

from Hoffmann et al. (2013) are robust and representative for the catchment. The

relatively small difference can be partly attributed to biases in simulated erosion and

deposition rates and the floodplain residence times.

Table 3.2: Summary of regression results of sediment storage scaling at the end of the equi-

librium and transient simulations. Here we consider only the grid cells that correspond to

the observation points from Hoffmann et al. (2013) and fall into the borders of the Rhine

catchment. The r-value is the Pearson correlation coefficient, and the slope and intercept are

the scaling parameters.

Floodplains Hillslopes

slope intercept r-value slope intercept r-value

Equilibrium 1.659± 0.037 3.123± 0.130 0.99 1.085± 0.060 6.429± 0.180 0.94

Transientensemble1 1.198± 0.038 3.877± 0.133 0.98 1.050± 0.064 4.963± 0.193 0.93

Transientensemble2 1.202± 0.038 3.853± 0.133 0.98 1.048± 0.065 4.971± 0.194 0.93

Transientensemble3 1.203± 0.038 3.85± 0.133 0.98 1.048± 0.065 4.972± 0.194 0.93

Hoffmann et al. (2013) 1.230± 0.060 4.450 0.96 1.080± 0.070 5.380 0.96

Table 3.3: Summary of regression results of sediment storage scaling after the equilibrium

and transient simulations. Here we consider all grid cells in the Rhine catchment area. The

r-value is the Pearson correlation coefficient, and the slope and intercept are the scaling

parameters.

Floodplains Hillslopes

slope intercept r-value slope intercept r-value

Equilibrium 1.685± 0.015 2.827± 0.039 0.80 1.118± 0.016 6.327± 0.040 0.62

Transient ensemble 1 1.330± 0.017 3.406± 0.042 0.67 1.111± 0.015 4.741± 0.039 0.63

Transient ensemble 2 1.332± 0.017 3.401± 0.042 0.67 1.112± 0.015 4.740± 0.039 0.63

Transient ensemble 3 1.332± 0.017 3.400± 0.042 0.67 1.112± 0.015 4.741± 0.039 0.63

Finally, we found that keeping either the climate or land cover constant throughout the

last millennium had very little impact on the scaling exponent for floodplains. Here,

the climate change simulation resulted in a slightly higher and the land use change

simulation in a slightly lower scaling exponent. The different forcings had a stronger

impact on the scaling for hillslopes, as hillslope sediment storage is only dependent on

erosion and deposition rates. For the climate change simulation the scaling exponent for

hillslopes increased by 3.8 %, while for the land use change simulation a small decrease

of 0.1 % was found. This decrease could result from the fact that most land use change

took place in the lower parts of the Rhine catchment resulting in an increased sediment

storage there. In contrast, the conditions in the Alpine region did not change that

rapidly, resulting in a decreased difference in sediment storage on hillslopes between

the upper and lower areas in the catchment.

The above results indicate that the scaling relationships are a general feature for the

entire Rhine catchment and are independent of the selected observation points. As the
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Rhine catchment is a large catchment with a complex topography, this result indicates

that the scaling relationships might be also applicable for other large river catchments.

3.3.1.2 Origin of scaling between sediment storage and catchment area

We also performed a sensitivity study to test the robustness of the scaling relationships

of the model. For this we investigated the dependence of the scaling on the three main

variables of the model, namely, the residence time, erosion and deposition. First, we

investigated the dependence of the scaling exponent of floodplains on the residence

time. To do this we chose different median residence times of floodplain sediment in

the Rhine catchment, while keeping the maximum residence time fixed. Changing the

median residence time by a factor of 10, from 50 to 500 years, results in a decrease

of 21.8 % in the scaling exponent for floodplain storage for the transient simulation

(Table 3.4). When the median floodplain residence time is increased, the range in the

residence time decreases. This leads to less difference between grid cells with small and

large catchment areas in terms of the sediment loss, and consequently to a decrease

in the scaling exponent. We found that when the residence time is increased by 5.2 %

(from 50 to 260 years) the scaling exponent decreases by 18.2 %, while an increase in

the residence time of 1.9 % (from 260 to 500 years) results only in a decrease of the

scaling exponent of 4.4 %. This indicates that the scaling exponent of floodplain stor-

age does not change linearly with the residence time, and points out that the model

shows a non-linear behavior. The equilibrium simulation shows the same behavior for

the scaling exponent when the residence time is changed. However, here the 10 fold

change in the residence time leads to a slightly larger change in the scaling exponent.

Next, we investigated the dependence of the scaling exponents of floodplains and hill-

slopes on erosion. We substituted the correction factor for the R values (see section

3.2.2) by a non-constant variable, which changed the spatial distribution of erosion in

the Rhine catchment. We estimated this correction factor by dividing the R values

based on data from MPI-ESM by the R values based on observational datasets. The

new correction factor increased the R values in the Alpine region and decreased the R

values in the rest of the catchment. This resulted in a larger difference between the

sediment storage in small catchment areas and sediment storage in large catchment

areas. Although the resulting scaling exponent for floodplains was still much higher

than the scaling exponent for hillslopes, both scaling exponents increased significantly.

For the deposition we found a minor to neglecting effect on the scaling parameters.

Overall we found that changing erosion and residence time does not change the basic

property of the scaling, which is that floodplain storage grows strongly with catchment

area while hillslope storage shows a linear scaling with catchment area. As the resi-

dence time is determined by flow-accumulation and flow-accumulation determines the

spatial variability of floodplain sediment storage, we expect that the scaling parameters

of floodplain sediment storage are also mainly determined by flow-accumulation. Ero-

sion is mainly determined by the slope, and slope determines the spatial variability of
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hillslope sediment storage. We expect, therefore, that the slope determines the scaling

parameters of hillslope sediment storage. Based on this we speculate that the scaling

for both floodplain and hillslope storage is an emergent property of the model and that

the scaling parameters are controlled by the underlying topography.

Table 3.4: Summary of regression results of the sensitivity analysis on floodplain sediment

storage scaling. Here we consider only the previously mentioned selected grid cells in the

Rhine catchment area. The r-value is the Pearson correlation coefficient, and the slope and

intercept are the scaling parameters.

slope intercept r-value

Equilibrium

τ median = 50 years 1.787± 0.041 2.143± 0.143 0.99

τ median = 260 years 1.659± 0.037 3.123± 0.130 0.99

τ median = 500 years 1.616± 0.037 3.496± 0.128 0.99

Transient

τ median = 50 years 1.464± 0.055 2.59± 0.193 0.97

τ median = 260 years 1.198± 0.038 3.877± 0.133 0.98

τ median = 500 years 1.145± 0.035 4.128± 0.122 0.98

3.3.1.3 Last millennium sediment storage change

We estimated an average soil erosion rate of 2.8±0.002 t ha−1 year−1 for the last millen-

nium (850 - 2005AD) for the entire Rhine catchment. We find that this value is twice

as high as the 1.2 ± 0.32 t ha−1 year−1, which was estimated as the minimum average

soil erosion rate for the Holocene by Hoffmann et al. (2013).

The average soil erosion rate for the last millennium resulted in a mean floodplain and

hillslope sediment storage change of 11.95± 0.01 and 29.68± 0.03 Gt, respectively, for

the last millennium (Table 3.5). Altogether, floodplain and hillslope storage result in

41.63 ± 0.02 Gt of sediment, which can be considered as the contribution of climate

and land use change to sediment storage in the last millennium. It is, however, hard

to say what the range in the change of sediment storage should be for this period, as

there are no related studies for this specific time period. Hoffmann et al. (2007) found

a total sediment storage of 126± 41 Gt for the Holocene in the Rhine catchment. Our

values are lower than this range found by Hoffmann et al. (2007), due to the fact that

we only consider the impact of last millennium on the sediment storage and not the

last 7500 years. Our results show that the sediment storage of the last millennium form

25 to 50 % of the total sediment storage of the last 7500 years. This indicates that the

average sediment storage rate during the last millennium is higher than the average

rate during the last 7500 years. This supports the findings from previous studies (Bork,

1989; Notebaert et al., 2011), which show that land use change has a significant and

long-term impact on erosion and sediment mobilization.
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Table 3.5: Summary of sediment storages M (Gt), erosion (E) and deposition (D) rates in

t ha−1 year−1, and the related uncertainty ranges for the Rhine catchment for the period

850-2005AD. The uncertainty values represent the range in the mean values due to different

ensemble simulations.

Mean M Ensemble uncertainty M Mean E Ensemble uncertainty E Mean D Ensemble uncertainty D

Floodplains 11.95 0.01 2.787 0.0015 1.296 0.0005

Hillslopes 29.68 0.03 2.787 0.0015 1.491 0.0015

Whole Rhine catchment 41.63 0.02 2.787 0.0015 2.787 0.0015

Furthermore, Hoffmann et al. (2013) found a floodplain to hillslope ratio of about

0.88, indicating that during the Holocene more sediment was stored on hillslopes than

in floodplains. We find with our model a floodplain to hillslope ratio of about 0.46,

confirming that more sediment is stored on hillslopes.

We also analyzed the spatial variability of the modelled sediment storage, and found

that the model reproduces the spatial variability well when compared to the observed

values from Hoffmann et al. (2007) for the Holocene (Fig. 3.4). Here we found a

correlation coefficient of 0.76, where sediment storage in floodplains increased with the

catchment area. Furthermore, we found that most floodplain sediment is stored in

the Mosel sub-catchment, in contrast to the observations that show that most of the

sediment is stored in the Upper-Rhine sub-catchment (Table 3.6). This can be related

to the fact that different dynamical processes play a role in the Upper-Rhine catchment,

which are triggered by the Alps. Melting ice sheets for example can produce a lot of

erosion that is not captured by our model and in this way the total stored sediment in

the catchment could be underestimated. Furthermore, the Mosel sub-catchment has a

highly complex topography, which can indicate that our sediment budget model is too

coarse for an accurate representation of floodplain storage for this catchment.

For hillslope sediment storage we found a similar spatial trend as for the floodplain

sediment storage, with some more variation between the minimum and maximum values

(Table 3.6).

Also here, the Mosel catchment has the most sediment stored. Furthermore, when

comparing floodplain to hillslope sediment storage we find that the floodplain to hill-

slope ratio varies significantly between the various sub-catchments. The highest ratio

of 0.48 is found for the Lower Rhine sub-catchment, while the lowest ratio of 0.14 is

found for the Emscher sub-catchment. The ratios seem not to be correlated with slope

or catchment area and can be assumed as independent features of the model.

The sediment budget model presented here, has been developed to simulate long-term

historical trends and to determine the main drivers behind these trends. Figure 3.5

shows the land use change and the 10 year-mean precipitation timeseries averaged

over the Rhine catchment for the last millennium. There are two interesting peri-

ods, respectively, 1350-1400AD and 1750-1950AD that show increased precipitation

amounts correlating with a sudden increase in land use change (increase in crop and

pasture). Both periods lead to maxima in the erosion timeseries of 2.8 t ha−1 year−1
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Figure 3.4: Observed versus modelled relative floodplain sediment storage change for Rhine

sub-catchments. The observed sediment storage change is with respect to 7500 years ago,

while the modelled sediment storage change is with respect to 850AD. Data on the observed

sediment storage is taken from Hoffmann et al. (2007).

Table 3.6: Observed versus modelled sediment storage change (Gt) for Rhine sub-catchments.

The catchment area is given in km2. Data on the observed sediment storage is taken from

Hoffmann et al. (2007).

Catchment Catchment area Observed floodplain storage Modelled floodplain storage Modelled hillslope storage

Lippe 4858 1.62 0.03 0.07

Lower Rhine 404 0.99 0.07 0.14

Emscher 806 0.29 0.005 0.03

Ruhr 4477 1.10 0.21 0.68

Wupper 838 0.18 0.02 0.06

Erft 1819 0.63 0.07 0.22

Sieg 2870 0.73 0.11 0.38

Lahn 5916 1.57 0.36 1.15

Wied 745 0.16 0.02 0.13

Ahr 911 0.19 0.05 0.15

Middle Rhine 1046 0.66 0.30 0.87

Main 27307 7.75 0.73 2.66

Mosel 28227 8.75 1.64 4.93

Nahe 4070 1.17 0.30 1.11

Upper Rhine 3006 10.77 0.90 2.69

Neckar 13971 4.19 0.38 1.93

Ill 4858 4.66 0.65 2.28

and 4.3 t ha−1 year−1, respectively (Fig. 3.6a and 3.6b). This corresponds to increased

erosion rates during the 14th and 18th century found by (Bork, 1989; Lang et al., 2003)
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Figure 3.5: Land cover and precipitation variability averaged over the Rhine catchment for

the last millennium. The red line is the 10 year mean total precipitation for the Rhine

catchment. The background colors are land cover types, starting from the darkest grey to

the lightest: forest, bare soil, grass, crop and pasture. Land cover and precipitation data is

from MPI-ESM.

for Germany.

We find the strongest increase in the sediment storage rate for floodplains during the

period 1750-1850AD, while for hillslopes during the period 1850-1950AD. For hillslopes

this maximum sediment storage rate corresponds to a maximum increase in the de-

position rate, which is a result of a maximum increase in land use change and a high

erosion rate.

Land use change leads to a sediment disconnectivity in the landscape, which prevents

the sediment stored on hillslopes of reaching the fluvial system on the timescale of

the last millennium. In contrast to hillslopes, the maximum sediment storage rate

for floodplains is a result of the interplay between deposition and sediment loss from

the catchment. In the period 1750-1850AD land use change started to increase in the

Alpine region, which did not experience such a strong change in land-use as the lower

parts of the catchment before this time period. During this period, the deposition to

floodplains increased significantly due to the increased erosion rates as a result of land

use change. Also, land use change started to impact the Alpine region, where areas

with steep slopes and short residence times lead to a strong sediment flux downstream.

However, due to the long residence time of the areas located downstream, the sediment

loss from the catchment did not increase as much, leading to an increased sediment
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storage in the floodplains. This is in accordance with the findings of Asselman et al.

(2003), who found that due to an inefficient sediment delivery, an increase in soil erosion

in the Alps will have a little effect on sediment load downstream the Rhine catchment.

Furthermore, if we disentangle the effects of land use and climate on the sediment stor-

age for floodplains and hillslopes, we can see that land use change explains most of the

change in sediment storage. For floodplains climate change also has a non-negligible

impact on the temporal variability of sediment storage. For example in the periods

1350-1400AD and 1750-1950AD, the sediment storage rate is increased due to increased

precipitation that leads to a strong sediment flux downstream from upstream areas. If

the land use change conditions of the period 850 and 950AD were kept constant, the

total change in sediment storage in floodplains and hillslopes during the last millen-

nium would be 2.9 and 15.4 Gt, respectively. This is four and two times, respectively,

less than the change in floodplain and hillslope sediment storage when land use change

is variable (Fig. 3.7a and 3.7b). When the land cover is kept constant, the overall

sediment storage still increases for the climate change scenario due to the overall in-

creased trend in precipitation during the last millennium. If only the climate change

conditions are kept constant, the resulting change in sediment storage in floodplains

and hillslopes would be 10 and 27.4 Gt, respectively.
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(a) Floodplains

(b) Hillslopes

Figure 3.6: (a) Timeseries of simulated average erosion (black line), average deposition

(green line) and the total change in sediment storage (blue line) with respect to 850AD for

floodplains in the last millennium in the Rhine catchment. (b) Timeseries of simulated

average erosion (black line), average deposition (green line) and the total change in

sediment storage (red line) with respect to 850AD for hillslopes in the last millennium in

the Rhine catchment.
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(a) Floodplains

(b) Hillslopes

Figure 3.7: Simulated change in (a) floodplain and (b) hillslope sediment storage for the

Rhine catchment during the last millennium. Shown are the sediment storage for the

climate change scenario, where land cover is set to the conditions of the period 850-950AD

(CC - blue line), the sediment storage for the land use change scenario, where the climate is

set to the conditions of the period 850-950AD (LUC - red line), and the sediment storage

where both climate and land cover change during the last millennium (CC and LUC - black

line).
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3.3.1.4 Uncertainty assessment

As shown in the previous sections, the average erosion rate for the Rhine catchment is

found to be overestimated when compared to the erosion rate for the Holocene from the

study of Hoffmann et al. (2013). As we consider in this study only the last millennium,

where human impacts through land use change are strongest pronounced, it is logical

that our estimated average soil erosion rate is higher. For present day, we found an

average soil erosion rate of 3.3 t ha−1 year−1 for the non-Alpine part of the Rhine catch-

ment, which is also overestimated when compared to other studies. Cerdan et al. (2010)

found for the non-Alpine part of the Rhine catchment a value of 1.5 t ha−1 year−1, while

Auerswald et al. (2009) found for Germany a value of 2.7 t ha−1 year−1.

Comparing the spatial variability of erosion rates for present day with the high resolu-

tion estimates from Cerdan et al. (2010), we find that erosion is overestimated for the

whole Rhine catchment. We expect that the overestimation in the modelled erosion

rates is mainly due to uncertainties related to the coarse input datasets on climate and

land cover, and biases in the adjusted RUSLE model.

As discussed before, precipitation is overestimated by MPI-ESM for the Rhine catch-

ment. Even after introducing a correction factor, which partly adjusted the R value

estimation to values from observational datasets, biases related to the R factor remain.

Additionally, coarse resolution land cover fractions and LAI from MPI-ESM also affect

the total erosion rates. Using coarse resolution data to calculate the C factor of the

adjusted RUSLE model results in discrepancies between the C and S factors. For ex-

ample, consider a large grid cell with a complex topography where cropland is allocated

in flat areas and forest in the steeper areas. Even though the C factor is calculated

correctly as combination of cropland and forest fractions, it is applied to the whole

grid cell. This leads to an overestimation of erosion rates for flat areas, as erosion is in

the first order controlled by the slope through the S factor. We attempted to correct

this by introducing slope classes for each coarse grid cell with resolution of MPI-ESM

(1.875 degrees). The cropland was then allocated to the flatter areas, while in the

steeper areas more of the other land cover types was allocated. However, this only had

a minor effect on the overall erosion rates, indicating that this is not the major source

for the overestimated erosion rates.

Neglecting the support practice (P ) and slope-length (L) factors also affect the erosion

rates as described in chapter 2. As the Rhine catchment has a long land use history,

land management strategies were implemented historically, to decrease soil erosion

rates. We partly captured the effects of land management in the C factor, however, we

expect that introducing the P and L factors in the model will reduce the soil erosion

rates in cropland.

Finally, biases in the adjusted RUSLE model, such as the unadjusted C and K factors

and the low performance of the model in mountainous areas, have an equally important

effect on the total erosion rates.

Another large uncertainty in our sediment budget model, besides the biases in erosion
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rates, is the choice of the equilibrium state. We found a decreasing trend in the flood-

plain sediment storage in the transient simulation when using the equilibrium state

based on the mean conditions of 6000 BP. This can be attributed to the different spa-

tial distribution of erosion and the average high erosion rate for the mid-Holocene of

7.8 t ha−1 year−1. When switching from the equilibrium state to the transient state, the

erosion rates drop and the spatial distribution changes significantly. This leads to a de-

creased sediment flux from upstream areas and overall decreased sediment production

rates that result in a drop in sediment storage in the floodplains. For the hillslopes

we found that the equilibrium state has minimal to no influence on the total sediment

storage for the last millennium.

The initial conditions determine the amount and spatial distribution of erosion in the

catchment during the time that the model runs to equilibrium. Therefore, the equilib-

rium state that is then reached, largely determines the spatial distribution, trend, and

amount of the sediment storage during the transient period.

Finally, the different ensemble simulations for the period 1850-2005AD do not differ

strongly in precipitation and land cover/land use change, and therefore do not con-

tribute much to the uncertainty in the overall erosion rates and sediment storage. This

period is also too short to find significant effects on the sediment storage from different

ensemble simulations.

3.3.2 Global application

3.3.2.1 Scaling test

For the global application of the sediment budget model we chose to investigate 20

large river catchments spread over different regions in the world (Table 3.7). The

main reason behind the choice of these catchments, is the fact that they belong to

the largest catchments of the world. This is important in order to minimize biases

due to the structure of our model that operates on a coarse resolution and uses coarse

resolution input data from ESMs. Also, it facilitates our aim, which is to capture the

large-scale variability in sediment storage and yields. Additionally, we made sure that

we include catchments with a strong human impact and others that are more or less

in a pristine condition. Finally, for a global assessment we chose catchments from all

continents of the world, with different underlying environmental parameters such as

climate, topography, soils, and vegetation.

For each of the catchments we performed the same scaling exercise as for the Rhine

catchment, including all grid cells in a catchment in the analysis of the scaling pa-

rameters. Table 3.8 shows the results for the scaling parameters for hillslopes and

floodplains for each catchment. We found that the scaling exponent for floodplains

varies between 1.41 and 1.81 with an average r-squared value of 0.92. For hillslopes we

found that the scaling exponent ranges between 1.0 and 1.32 with an average r-squared

value of 0.83. The high r-squared values show that the scaling relationships are valid
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Table 3.7: Selected global river catchments and their properties. The climate is divided into

the following types (1) polar: Tmean < 0◦C, (2) cold temperate: 0 ≤ Tmean < 10◦C and

latitude > 30 degrees, (3) warm temperate: 10 ≤ Tmean < 25◦C and latitude > 30 degrees,

(4) tropics: latitude < 30 degrees. Here, ‘Tmean’ is the catchment average temperature.

‘Land use 850AD’ is the percentage area of the catchment classified as crop and pasture

in the year 850AD, as simulated by MPI-ESM. ‘LUC strength’ is the increase in crop and

pasture area during the last millennium as percentage of the total catchment area.

Catchment Continent Climate Land use 850AD (%) LUC strength (%) Catchment area (km2) Mean slope (m km−1)

Amazon South-America tropical 0.31 9 5912482 40

Congo Africa tropical/warm temperate 1.36 14 3705035 30

Mississippi North-America warm/cold temperate 0.01 74 3179211 33

Nile Afric tropical 3.85 35 2916242 39

Parana South-America warm temperate/tropical 0.06 45 2593919 28

Niger Africa tropical 2.93 39 2098311 16

Ganges Asia warm temperate/tropical 12.25 35 1574326 137

Volga Europe cold temperate 2.54 50 1404073 28

Nelson North-America cold temperate 0 51 1004359 36

Orinocco South-America tropical 0.04 25 938370 57

Danube Europe cold temperate 11.25 47 786434 81

Murray-Darling Australia warm temperate 0.48 49 774914 28

Mekong Asia tropical 2.29 19 774141 92

Yellow Asia cold temperate 6.4 53 761182 65

Ob Asia cold temperate/polar 0.88 22 704370 37

Mackenzie North-America cold temperate/polar 0 11 596699 90

Dnieper Europe cold temperate 3.62 67 509776 0.9

Don Europe cold temperate 3.58 82 437290 15

Rhine Europe cold temperate 5.79 44 163029 99

Elbe Europe cold temperate 5.37 46 138370 28

for all the catchments. The results of the scaling exponents indicate that the scaling

behavior between sediment storage and catchment area are indeed a global feature.

Although, we found for the Rhine catchment that for hillslopes the sediment storage

scales linearly with catchment area, the global analysis for hillslopes indicates that this

relationship can change to a power relationship in certain cases. However, we noticed

that if the sediment storage increases stronger with catchment area for hillslopes, this

will be also the case for floodplains. In this way sediment storage in floodplains always

increases stronger with catchment area compared to sediment storage on hillslopes.

We also derived the overall global scaling exponents considering each of the selected

river catchments as a whole catchment rather than a collection of grid cells. We found

a scaling exponent of 1.46± 0.26 for floodplains with an r-squared value of 0.64, and a

scaling exponent of 1.22± 0.21 for hillslopes with an r-squared value of 0.66 (Fig. 3.8a

and 3.8b). For floodplains there are clearly two outliers, the Dnieper and the Don

catchments which can be considered as flat catchments and show a lower gradient in

sediment storage between small and large sub-catchments in the respective catchments.

To investigate why the scaling properties differ between the catchments and why in

some cases the sediment storage does not scale linearly with catchment area for hill-

slopes, we group the catchments based on their relief and catchment area. The classi-

fication is described in figure 3.14 in section 3.3.2.3.

We find for small flat areas the lowest scaling exponents on average (1.58 for floodplains

and 1.1 for hillslopes), as expected, due to the high residence time of floodplain sediment
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(a) Floodplains

(b) Hillslopes

Figure 3.8: Scaling relationships between sediment storage and catchment area for (a)

floodplains and (b) hillslopes, using selected global catchments.

and lower sediment connectivity. The largest scaling exponents we find for small steep

areas (1.68 for floodplains and 1.16 for hillslopes), which have in general better sediment

connectivity. We find not much difference in the scaling exponents between small steep

catchments or large steep catchments. This is partly due to the fact that we have only
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Table 3.8: Parameters of the scaling relationships between catchment area and sediment

storage for floodplains and hillslopes for selected global catchments. The r-value represents

the Pearson correlation coefficient, and the slope and intercept are the scaling parameters.

Floodplains Hillslopes

Catchment exponent intercept r-value exponent intercept r-value

Amazon 1.67 2.62 0.94 1.13 6.88 0.87

Congo 1.56 2.80 0.95 1.07 6.78 0.86

Mississippi 1.53 3.27 0.95 1.07 7.28 0.90

Nile 1.81 1.94 0.84 1.32 5.86 0.64

Parana 1.59 2.81 0.92 1.09 6.97 0.83

Niger 1.61 2.47 0.89 1.09 6.50 0.68

Ganges 1.61 3.67 0.84 1.16 7.10 0.70

Volga 1.54 2.85 0.96 1.04 6.73 0.92

Nelson 1.65 2.43 0.93 1.13 6.53 0.87

Orinoco 1.75 2.80 0.92 1.16 7.20 0.86

Danube 1.65 3.16 0.93 1.13 7.06 0.88

Murray-Darling 1.70 2.37 0.93 1.15 6.72 0.85

Mekong 1.77 2.87 0.91 1.23 6.68 0.82

Yellow 1.64 3.39 0.89 1.18 7.15 0.81

Ob 1.75 2.28 0.90 1.22 5.98 0.81

Mackenzie 1.78 2.58 0.88 1.19 6.61 0.78

Dnieper 1.42 2.96 0.98 1.02 6.52 0.91

Don 1.41 3.02 0.97 1.00 6.98 0.93

Rhine 1.52 4.16 0.95 1.09 7.80 0.89

Elbe 1.62 3.33 0.93 1.13 7.16 0.88

one large steep catchment, but it could also indicate that the catchment area is of lesser

importance than the relief or steepness of the landscape for the scaling relationships.

The catchments for which storage on hillslopes does not scale linearly with catchment

area are usually small steep catchments such as the Yellow catchment, or large flat

catchments such as the Nile catchment. Again, this is strongly related to the sediment

connectivity in a catchment and the spatial variability of slopes. To have a nonlinear

scaling relationship between sediment storage and catchment area for hillslopes, it is

required that a lot of sediment is stored in small steep areas, while less sediment is

stored in large flat areas. This can happen if agriculture for example is abundant

in steeper areas, trapping a large part of the eroded sediment on the hillslopes and

reducing the sediment connectivity in the catchment. Most of the catchments that

show a nonlinear scaling relationship for hillslopes have abundant land use change and

a strong land use history (Yellow, Nile, Mekong catchments). However, sediment can

also be trapped on hillslopes in small catchments when the topography is very complex

and reduce the sediment connectivity.
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3.3.2.2 Last millennium sediment storage change

Figure 3.9 shows the mean erosion rates during the last millennium, while figure 3.10

shows the resulting sediment storage change during the last millennium for the selected

global catchments. We find that the Ganges catchment has the highest mean erosion

rate of about 16.8 t ha−1 year−1, and also the highest total sediment storage of 1777

Gt. However, we can see that high mean erosion rates do not always lead to a large

sediment storage change and otherwise, a large sediment storage change is not always

a result of high erosion rates. This is due to the fact that sediment storage is a result

of a combination of factors such as, the extend of the catchment area, the complexity

of topography and the intensity of external forces such as land use change or climate

change.

Figure 3.9: Catchment mean soil erosion rates averaged over the last millennium for se-

lected global catchments. The uncertainty in the erosion rates (red bars) are due to different

ensemble simulations of the MPI-ESM.

We find that for most catchments land use change is the main driver behind the change

in sediment storage (Fig. 3.12). For example, land use change explains most of the

sediment stored in the Ganges catchment, leading to increased sediment storage on

hillslopes and in floodplains during the last millennium (Fig. 3.11). Although, the

erosion rates in this catchment are naturally high due to the steep topography and

intense precipitation, human activities have strongly accelerated these erosion rates

across the whole catchment. In combination with a large catchment area, accelerated

erosion rates resulted in the large change in hillslope and floodplain sediment storage

during the last millennium.

For a small percentage of the catchments climate change plays an equal or even larger

role as land use change in explaining the total change in sediment storage during the

last millennium (Fig. 3.12). A clear example is the Amazon catchment, which has
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Figure 3.10: The total change in sediment storage (Gt) during the last millennium for selected

global catchments.

Figure 3.11: Total sediment storage change in floodplains (black) and on hillslopes (gray)

during the last millennium for selected global basins.

the second largest total sediment storage of 720 Gt (Fig. 3.10 and 3.11). The large

change in sediment storage is mainly due to the fact that the Amazon catchment has

the largest catchment area globally. The high precipitation rates in the tropics and the

mountainous area in the west of the catchment add to this large amount of sediment

storage. The land use change, however, plays a much less important role here. Figure

3.12 shows that climate change results in more sediment storage than land use change
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Figure 3.12: Total sediment storage change due to climate change only (blue), due to land use

change only (red), and due to climate and land use change (green) during the last millennium

for selected global catchments.

in this catchment, confirming that climate change explains most of the sediment stor-

age. Figure 3.11 shows that the total sediment storage in floodplains of the Amazon

during the last millennium decreased (negative values) compared to the year 850AD,

which indicates that the overall erosion rates during the last millennium decreased.

This decreased erosion is due to the decrease in precipitation and at the same time the

absence of significant land use change till some few centuries ago.

It should be noted that the results we found are also dependent on the way climate

and land cover is simulated by MPI-ESM. For example, erosion rates are sensitive to

the climate and land cover data as has been shown in chapter 2.

As we found that land use change is the main driver behind the change in sediment

storage for most catchments, we investigated how the land use change strength effects

the sediment storage in the catchments. We defined the land use change strength in a

catchment as the total increase of crop and pasture area relative to the total area of a

catchment. The land use change strength during the last millennium for the different

catchments is given in table 3.7.

We found no significant correlation between the land use change strength in the catch-

ments and the sediment storage change per unit area. We expect this to be due to

the influence of catchment characteristics, such as slope, sediment connectivity, climate

and the spatial distribution of land use in a catchment. For example, land use change

intensifies most on areas with low slopes. On the one hand, low slopes result in lower
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sediment production by erosion and thus a lower sediment storage overall. On the

other hand, sediment storage increases if land use change intensifies. However, this

intensification is again dependent on the slope, as steep slopes are stronger affected by

land use change in comparison to low slopes. Furthermore, sediment connectivity plays

an important role in the transport of the stored sediment to the outlet of the basin

(Hoffmann, 2015; Gumiere et al., 2011). If the sediment connectivity is high, land use

change intensification will not have a strong impact on the change in sediment storage,

but rather on the sediment yield. Additionally, the spatial distribution of land use

is also essential in buffering or intensifying the effects of land use on sediment stor-

age. If land use takes place on steep slopes this can result in substantial erosion and

subsequently in more sediment storage depending on the sediment connectivity of a

catchment. Finally, all these effects could be buffered or intensified by climate change.

To see if we can still find a signal between the land use change strength and the sedi-

ment storage, we look at the ratio of sediment storage versus total erosion. This makes

it possible to partially get rid of the effects of slope mentioned before. By doing this we

find a significant increasing trend in the ratio of sediment storage versus erosion with

increasing land use change strength (Fig. 3.13). This shows that overall more sediment

is stored relative to the total erosion in a catchment if the land use change intensifies.

This relation can be strengthened or weakened depending on the catchment character-

istics such as slope, sediment connectivity, climate and the spatial distribution of land

use.

Figure 3.13: The ratio between sediment storage and erosion versus the land use change

(LUC) strength for the selected global river catchments.
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3.3.2.3 Catchment characteristics

As seen in the previous section, catchment characteristics play an important role in

buffering or amplifying the change in erosion due to climate change or land use change

on the resulting sediment storage.

Therefore, we investigated the dependence of sediment storage on catchment character-

istics, such as the mean topographical slope and catchment area. For this purpose we

classified the catchments based on the mean slope and total catchment area, according

to Syvitski et al. (2003). When the area of a catchment is equal or larger than 106

km2 the catchment is classified as large, otherwise the catchment is classified as small.

When the mean slope of a catchment is equal or larger than 5 percent, the catchment

is classified as steep, otherwise the catchment is classified as flat.

Although, we investigate only 20 catchments, of which only one catchment falls into

the category of large and steep catchment, we find that catchments with a small area

and steep slopes show a comparable sediment storage as catchments with a large area

and low slopes (Fig. 3.14). This can be explained by the fact that slope mainly controls

the rate of sediment storage, while catchment area controls the total sediment storage

(Appendix A.2). This indicates that low slopes usually encompass large areas that can

result in an equal or even larger total soil erosion and related sediment storage in com-

parison to steep areas. This is in accordance with the findings of Syvitski et al. (2003)

and Willenbring et al. (2013), where they show similar results for sediment yields and

the total sediment production by denudation.

Figure 3.14: Sediment storage categorized based on the catchment properties area and relief.

Small & flat: area < 106 km2 and slope < 5%, small & steep: area < 106 km2 and slope ≥
5 %, large & flat: area ≥ 106 km2 and slope < 5%, large & steep: area ≥ 106 km2 and slope

≥ 5 %.
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3.3.2.4 Comparison to observed sediment yields

Figure 3.15: Present day observed versus modelled sediment yields for the selected global

catchments. The horizontal bars respresent the uncertainty range in observed sediment yields

from the Land2Sea database (Peucker-Ehrenbrink, 2009). The red line is the 1 to 1 line, and

the black line is the trend line.

It is difficult to validate the model on global scale due to the absence of data on sed-

iment storage globally. One possible way to investigate if the model shows a valid

behavior is to compare the modelled sediment yields to observed suspended sediment

yields from global rivers. It should be noted however, that a fair comparison is not

possible here as the equilibrium state in the model is based on the conditions of 850AD

and we only model sediment redistribution during the last millennium. In order to be

able to derive the real sediment yields we need to look at a much longer period, and

we need to know approximately when and if the different river catchments were in an

equilibrium state. As this is currently not feasible we instead investigate if the global

variability in modelled large scale sediment yields is in the right order.

For this, we used the Land2Sea database (Peucker-Ehrenbrink, 2009) which provides

data on the sizes of 1519 exorheic river drainage catchments (79 % of the exorheic

land area), annual suspended sediment fluxes (593 rivers, 63 % of the exorheic land

area), and water discharges (1272 rivers, 76% of the exorheic land area) that have been

compiled from a variety of sources. We compare here our modelled sediment yields

from the default scenario with predam estimates (Fig. 3.15).
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We find that our model generally overestimates the sediment yields when compared

to the observed median sediment yields from the Land2Sea database (Fig. 3.15). The

overestimation of sediment yields by our model is, first of all, a result of the fact that we

used the conditions from the period 850-950AD as an equilibrium state in the model.

As in this period land use change already started in most catchments (Table 3.7),

the modelled sediment yields will be usually higher than normal. For example, in

the Ganges catchment where land use change already occupied 12% of the total area

around 850AD, the sediment yield is significantly overestimated by the model.

Secondly, overestimation of erosion rates by the adjusted RUSLE model in mountainous

regions also contribute to the overestimation of sediment yields from steep catchments,

such as the Ganges and the Rhine catchments.

Thirdly, the sensitivity of the erosion rates and resulting sediment dynamics to the

climate and land cover data from MPI-ESM, significantly affects the overall sediment

yields. For example, we find a strong underestimation of the sediment yield for the

Amazon catchment by the sediment budget model, although, the land use was minimum

in 850AD and the catchment is for a large part flat. We expect this underestimation to

be a result of the underestimation in precipitation by MPI-ESM (Joetzjer et al., 2013).

The other example is the Rhine catchment, discussed in the previous sections, where

the precipitation rates are overestimated by MPI-ESM, resulting in high erosion rates

and an overestimated sediment yield. This is also the case for the Elbe catchment,

as these catchments have a similar climate. For the African catchments, such as the

Congo and Niger, we also find overestimated sediment yields by the sediment budget

model. Although, observations on sediment yield (Peucker-Ehrenbrink, 2009) and ero-

sion (Stocking, 1984) show that these parameters are quite low for these catchments

due to the low relief. We expect that the overestimated erosion rates and the resulting

sediment yields in these catchments are due to the high precipitation rates simulated

by MPI-ESM (Mehran et al., 2014).

Another possible reason for the biases in sediment yields is the fact that the parameters

of the sediment budget model are calibrated based on data from the Rhine catchment.

The Rhine catchment can be categorized as a warm temperate region. This can lead

to biases for catchments with different environmental parameters, such as catchments

with a different climate.

Furthermore, although, we find a low correlation (correlation coefficient of 0.42) be-

tween the modelled and observed median sediment yields, the correlation is significant

(Fig 3.15). This indicates that the sediment budget model is capable of reproducing the

spatial variability in sediment yields for large catchments globally. One should notice

that the range in observed sediment yields for several catchments (Amazon, Yellow,

Mississippi, Ganges) is quite large. When we compare the minimum observed sediment

yields with our estimates we find an improved correlation coefficient of 0.8. When we

compare our estimates to the maximum observed sediment yields we find an even more

improved correlation with a coefficient of 0.9. This indicates that it is hard to compare

the modelled yields with the observed ones due to the large uncertainty in observed
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sediment yields.

Finally, we found that the contribution of climate and land use change during the last

millennium has a minimal effect on the total sediment yield in the catchments we in-

vestigated. This is mainly due to the long residence time of sediment in floodplains,

which is especially true for large catchments with a low relief. These large catchments

thus buffer the effect of land use change on the sediment yield. Additionally, land use

change results in more sediment storage on hillslopes than in floodplains, leading to

a reduced sediment yield on the timescale of the last millennium. This result is in

accordance with the findings of Syvitski et al. (2005), where they pointed out that

humans have increased the sediment transport by global rivers, but reduced the flux

of sediment reaching the world’s coasts.

Furthermore, the change in sediment yield at the outlet of the catchments is an inter-

play between the intensity of land use or climate change and the sediment connectivity.

The catchments for which we found a clear increase in sediment yield during the last

millennium are the Congo, Mekong, Yellow, Elbe and Ganges catchments. It is difficult

to disentangle the effect of climate or land use change and the sediment connectivity on

the sediment yield change. However, for all the catchments with a significant change

in sediment yield the land use change plays an important role. Combined with a good

sediment connectivity this leads to a substantial change in sediment yields during the

last millennium.

3.3.3 Limitations of the modelling approach

Firstly, the model is designed to simulate large-scale sediment fluxes and its spatial

variability, and not to calculate the exact sediment storage values and sediment yields

on a local scale. Due to this fact, and the fact that spatial resolution of input data on

climate and land cover on centennial to millennial timescales is coarse, the model is

limited to catchments larger than 100 km2.

Secondly, the current setup of the model is limited in estimating sediment storage for a

few thousands of years. This is due to the fact that the residence time does not change

with time in our model. In reality, the residence time should change temporarily due to

changes in the surface slope after sediment redistribution. We assume in our model that

the changes to the surface slope on the timescale of the last millennium are minimal.

Thirdly, the present-day sediment yield cannot be estimated correctly when the initial

state of a catchment is unknown. The sediment budget model can only provide the

change in sediment storage and yields compared to a reference state.

Furthermore, the sediment budget model does not take into account soil redistribution

due to landslides, gullying, glacial retreat and tectonic uplift. These processes can

have a significant impact on the soil redistribution on different timescales, from short

timescales related to extreme events, to millennial and longer timescales. Finally, all

limitations mentioned in chapter 2 for the estimation of global soil erosion rates with

the adjusted RUSLE model are also valid for the global sediment budget model.
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3.4 Conclusions

In this study we introduced a new model to simulate long-term, large-scale soil re-

distribution based on the sediment mass-balance approach. The main objective here

was to develop a sediment budget model that is compatible with Earth System Models

(ESMs), to simulate large-scale spatial patterns of soil erosion and redistribution for

floodplains and hillslopes following climate change and land use change. We applied

this sediment budget model on the Rhine catchment as a first attempt to investigate its

behavior and validated the model with observed data on sediment storage and erosion

rates.

We show that the model reproduces the scaling relationships between catchment area

and sediment storage found in observed data from Hoffmann et al. (2013). These scal-

ing relationships show that the floodplain storage increases significantly with catchment

area while the hillslope storage scales linearly with catchment area. The scaling expo-

nents can be modified by changing the spatial distribution of erosion or by changing the

residence time for floodplains. However, the main feature of the scaling relationships,

which is that floodplain storage increases stronger with catchment area as hillslopes, is

not changed. Based on this we conclude that the scaling relationships are an emergent

feature of the model and mainly dependent on the underlying topography.

We found a mean soil erosion rate of 2.8 ± 0.002 t ha−1 year−1 for the last millennium

(850 - 2005AD). This is an overestimation when compared to the minimum Holocene

erosion rate of 1.2 ± 0.32 t ha−1 year−1 from Hoffmann et al. (2013). Also for present

day the erosion rates from our model are overestimated. We argue that this is mainly

due to the coarse resolution input data on climate and land cover, and the fact that

the land cover factor of the erosion model is not adjusted for a coarse resolution appli-

cation. Biases of the adjusted RUSLE model and the neglection of other factors, such

as land management and slope-length for agricultural areas, also play a role. Based on

this, we conclude that the most important step in improving global soil erosion rates in

a coarse resolution model is by adjusting the R factor for a large-scale coarse resolution

application. And if possible, add seasonality in the C factor to improve the interaction

with the R factor. However, we aim with the sediment budget model to distinguish be-

tween the floodplain and hillslope sediment storage, simulate their long-term behavior,

and more specifically estimate the spatial distributions rather than the total amounts.

For this objective a coarse estimation of erosion is sufficient.

The erosion rates we found resulted in a change in floodplain and hillslope sediment

storage during the last millennium of 11.95 ± 0.03 and 29.68 ± 0.01 Gt, respectively.

Based on this and the observed data we estimate that the climate and land use changes

during the last millennium contribute between 25 - 50% to the total sediment storage

for the past 7500 years.

Disentangling the contribution from climate change and land use change on the change

in sediment storage during the last millennium for the Rhine catchment, we find that

in the climate change only scenario, the total change in sediment storage in floodplains
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and hillslopes is 2.9 and 15.4 Gt, respectively. While in the land use change only sce-

nario, the total change in sediment storage in floodplains and hillslopes is 10 and 27.4

Gt, respectively. This shows that land use change contributes most to the change in

sediment storage during the last millennium for the Rhine catchment.

Furthermore, the model is capable of reproducing the overall spatial distribution of

floodplain sediment storage of the last millennium. However, there are some outliers,

such as the Mosel catchment for which the model simulates a too high sediment stor-

age. This could be a result of biases in the erosion rates and the fact that our model

is limited to the last millennium. We also found that the hillslope storages of the

sub-catchments show a similar spatial pattern as the floodplain storage.

When analyzing the timeseries of erosion rates during the last millennium we found

that the model reproduces the timing of the maxima in erosion rates as found in the

study of Bork (1989). We also find that land use change is the main driver behind

the trends in erosion and sediment storage for both floodplains and hillslopes. For

floodplains, however, climate change has a non-negligible impact on the temporal vari-

ability of sediment storage. When keeping the land cover constant to the conditions in

the period 850 to 950AD, we find that the sediment storage still increases due to an

increased trend in precipitation in the last millennium.

A global application of the model indicates that the scaling behavior between sediment

storage and catchment area for floodplains and hillslopes is a global feature. The hill-

slope sediment storage can in some occasions also scale exponentially with catchment

area if the catchment consists out of an complex relief or if land use change is significant

in steep areas. We conclude that the scaling exponents are mainly determined by the

flow-accumulation for floodplains and by the slope distribution for hillslopes.

Furthermore, we found that for most of the investigated catchments in this study land

use change is the main driver behind the change in sediment storage during the last

millennium. Additionally, intensification of land use change results in a larger change

in sediment storage relative to the change in the total erosion in a catchment.

For some catchments, such as the Amazon catchment, where land use change was small

during the last millennium, climate change was the main driver behind the change in

sediment storage during the last millennium.

However, these results may also depend on the way climate and land cover is simu-

lated by MPI-ESM. Therefore, a comparison with data from other ESMs should be

performed in the future.

The difference between the catchments in the sediment storage change during the last

millennium is also controlled by the catchment characteristics. Catchments with steep

slopes and small areas show a similar change in sediment storage as catchments with

low slopes and large areas. The steepness of the landscape proves thus to be as impor-

tant as the size of the catchment with respect to sediment storage.

In order to test the validity of the model on global scale, we used data on observed

sediment yields from global river catchments. We found that although the sediment

budget model cannot simulate the absolute present-day sediment yields based on data
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of the last millennium, the spatial distribution of the sediment yields was comparable

to the observed ones when the uncertainty in the observed yields was taken into ac-

count.

We conclude that our sediment budget model is a promising tool for estimating large-

scale long-term sediment redistribution. An advantage of this model is its capability

to use the framework of ESMs to predict trends in sediment storage and yields for the

past, present and future.

There are also some limitations to the model. The sediment yield cannot be repro-

duced for catchments where the initial state of the catchment is uncertain. However,

with correct data input on climate and land cover, the model can be made applicable

for tropical catchments on the timescale of the last millennium, after adjusting the

model parameters for these catchments. This is because we expect the effect of the last

glaciation to be minimal on tropical catchments. In combination with low human ac-

tivities in 850AD assuming an equilibrium state for these catchments in 850AD seems

reasonable.

Furthermore, a more concrete parameterization for the residence time and deposition

of floodplain sediment, and a possible new parameterization for the residence time of

hillslope sediment could lead to an improvement of the model. Finally, more validation

with long-term sediment storage from other catchments, especially tropical catchments,

would be an important contribution in making the model better applicable on a global

scale.
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Chapter 4

Significant lateral fluxes of carbon

and nutrients due to soil erosion:

Outlook

4.1 Introduction

The interaction between soil redistribution and the global biogeochemical cycles is a

new aspect in climate science and not many studies have been performed to quantify

this interaction and the anthopogenic modifications to the biogeochemical cycles due

to soil redistribution.

Studies on the effect of soil erosion on the carbon cycle indicate that soil erosion can

result in significant lateral fluxes of soil organic carbon (SOC). Ito (2007), for example,

coupled an empirical erosion model to a terrestrial carbon cycle model to estimate

lateral displacement of SOC due to soil erosion. He estimated a significant lateral flux

of 1.6 ± 0.1 Pg C year−1 for the period 1900 - 2100AD. Doetterl et al. (2012) coupled

estimates of global soil erosion to SOC concentrations in the soil, and calculated a SOC

flux of 0.4± 0.2 Pg C year−1 for the period 2000-2050AD on agricultural areas globally.

Chappell et al. (2015) derived a relation between soil erosion and SOC erosion rates for

agricultural lands and extrapolated this relation to other regions on the global scale.

They found a total global SOC erosion flux between 0.35 and 1.27 Pg C year−1. How-

ever, these studies discuss that estimating lateral fluxes of carbon due to soil erosion

only is not sufficient to quantify the net effects on the carbon budget. Instead, the in-

tegrated effect of the interacting processes behind soil redistribution should be studied

and quantified.

A large part of the laterally displaced SOC is emitted as CO2 during all stages of

soil redistribution. The total global carbon emissions due to soil redistribution were

estimated to range between 0.8 - 1.2 Pg C year−1 globally, which is already 10 to 15

% of the yearly global fossil fuel emission (Lal, 2003). This rate is comparable to the
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1.8±0.25 Pg C year−1 that is outgassed by streams and rivers globally (Raymond et al.,

2013). This indicates that although large amounts of displaced SOC are buried in flood-

plains and on hillslopes (Hoffmann et al., 2013; Doetterl et al., 2012), CO2 emissions

due to soil erosion can be substantial. However, the above mentioned rates of CO2

emission due to soil redistribution are uncertain, as it is not clear how decomposition

rates of SOC will change at sites of deposition as a result of land use change, climate

change, re-excavation by accelerated soil erosion, and dynamics of SOC replacement

at eroding sites (Van Oost et al., 2007).

The interplay between soil erosion and deposition can also be a sink for atmospheric

CO2 as indicated by several studies (Harden et al., 1999; Liu et al., 2003; Van Oost

et al., 2007; Berhe et al., 2007). This is not only a result of the dynamic replacement

of carbon, but also due to the fact that soil erosion exposes low carbon-bearing soils

that have a greater potential for carbon uptake (Van Oost et al., 2012). Berhe et al.

(2007) estimated that soil erosion can lead to a yearly carbon sink that offsets up to

10 % of the global fossil fuel emissions. This is in the same order as the estimated car-

bon emissions due to soil redistribution. Van Oost et al. (2007) used caesium-137 and

carbon inventory measurements from 10 watersheds in Europe and the USA, together

with available global maps on SOC and environmental parameters, to estimate the net

effect of soil erosion on the carbon cycle for agricultural soils. They found a global

carbon sink of 0.12 Pg C year−1.

Considering the results of the above mentioned and other recent studies on the net flux

of SOC due to soil redistribution we find a range from a source of 0.37 to 1 Pg C year−1

to a net uptake or sink of 0.56 to 1 Pg C year−1 (Van Oost et al., 2007). There exists

thus a large uncertainty in the role of soil redistribution in the present-day global car-

bon budget. Furthermore, although, these studies have increased the understanding

of the present-day short-term response of carbon dynamics to soil redistribution, past

and future long-term effects have not been quantified yet (Van Oost et al., 2012).

Regarding other biogeochemical cycles such as the phosphorus and nitrogen cycles,

studies on the global scale related to soil redistribution are very scarce. Quinton et al.

(2010) estimated fluxes of nitrogen and phosphorus due to soil erosion on agricultural

areas on a global scale for present day. They found yearly lateral fluxes of about 23-42

Tg of nitrogen, 2.1-3.9 Tg of organic phosphorus and 12.5-22.5 Tg of inorganic phos-

phorus.

Present-day river fluxes of total nitrogen to the world oceans are estimated to range

between 45 Tg per year (Mayorga et al., 2010) and 60 Tg per year (Howarth, 2008), of

which a large part can be explained by the strong fertilizer use. The total lateral flux

by soil erosion for agricultural areas only, estimated by Quinton et al. (2010), is close

to these riverine fluxes of nitrogen.

Few recent studies exist on the total phosphorus flux from the world’s rivers. Mayorga

et al. (2010) found a total yearly phosphorus flux of 9 Tg, while other studies found

higher yearly estimates (11 Tg by Seitzinger et al. (2005), 20 Tg by Howarth et al.

(1995)). The lateral fluxes of total phosphorus found by Quinton et al. (2010) are
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larger than the estimated phosphorus export from the world’s rivers to the ocean.

This indicates that soil erosion on agricultural areas has a significant effect on the

lateral fluxes of nitrogen and phosphorus. However, also other land cover types should

be taken into account to estimate the global effect of soil redistribution on the lateral

fluxes of carbon and nutrients. Furthermore, other processes such as mineralization

or burial of these nutrients during soil redistribution should be considered as they can

strongly influence these lateral fluxes.

The objective of this study is to provide an outlook on the significance of laterally

displaced carbon and nutrients due to soil erosion, and to identify the main processes

that should be modelled in order to quantify the overall effects of soil redistribution on

the biogeochemical cycles. For this purpose we couple the global erosion rates from the

adjusted RUSLE model to concentrations of carbon, nitrogen and phosphorus in the

soils from a global soil database to estimate present-day lateral fluxes of carbon, ni-

trogen and phosphorus. This study does not only take into account agricultural areas,

but provides a global picture of laterally displaced carbon and nutrient fluxes due to

soil erosion. Additionally, we compare SOC erosion rates derived from data of ESMs

with those derived from observational datasets on environmental parameters.

4.2 The global carbon cycle

4.2.1 Lateral displacement of soil organic carbon due to soil

erosion for present day based on observed data

SOC data from the gridded 30 arcsec GSDE and soil erosion rates from the adjusted

RUSLE model are used to estimate the lateral displacement of SOC for present day.

The SOC percentage in the soil was available up to 2.3 m depth. Here, we only used

the SOC content (%) for the top 0.2 m of the soil as soil erosion usually operates on

the first few centimeters of the soil (Van Oost et al., 2007; Doetterl et al., 2012). The

amount of soil erosion was then converted into carbon erosion by multiplying the total

area-weighted SOC content (%) with the erosion rate. To estimate carbon erosion for

different land cover types we multiplied the total area-weighted SOC content (%) with

the land cover area (% of the area of a grid cell) and the erosion rate.

We found a global mean SOC erosion rate for present-day of 37.3 g m−2 year−1, with an

uncertainty range of 32.9 to 61.4 g m−2 year−1 based on the uncertainty in the estimated

erosion rates. This corresponds to a total amount of eroded SOC of 5.1 Pg year−1 with

an uncertainty range of 4.7 to 7 Pg year−1 (Table 4.1). This global SOC flux is five

times larger than the maximum global flux of 1.2 Pg year−1 found by (Chappell et al.,

2015). In their study they estimated the total global soil erosion to be much lower

than our estimates. Furthermore, Chappell et al. (2015) extrapolated the relationship

they found between soil erosion and SOC erosion for agricultural lands on the global

scale. As agricultural lands have a much lower erosion and SOC erosion rate than for
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Figure 4.1: Present-day global SOC fluxes (g m−2 year−1) due to soil erosion.

example mountainous regions, it is expected that their estimation will be lower than

the findings of this study.

For agricultural land we found a mean SOC erosion rate of 34.8 g m−2 year−1, with

an uncertainty range of 32.9 to 38.4 g m−2 year−1. Our estimates for agricultural land

are up to two times higher than the 15.5 g m−2 year−1 from Van Oost et al. (2007)

and the 23.3 g m−2 year−1 from Doetterl et al. (2012). This difference is related to the

different soil database used in comparison to the other studies, and to uncertainties in

the erosion rates related to the unadjusted factors in the RUSLE model, such as the

C factor. Estimates of eroded SOC for other land use/ land cover types is provided in

Appendix A.3.

Figure 4.1 shows the global SOC erosion rates for present day showing the highest

rates in mountainous areas, which is related to the high erosion rates. Furthermore,

significant SOC erosion rates (> 50 g m−2 year−1) can be found in the tropics and in

agricultural areas (China and India) where SOC stocks in the topsoil are large. Looking

at the difference between the regions, we find the highest total eroded SOC for Asia

and South-America (Table 4.1). This is in agreement with the total exported river

particulate organic carbon (POC) from Mayorga et al. (2010) simulated by the Global

Nutrient Export from Watersheds 2 (NEWS 2) model.

The eroded SOC reaches the rivers and streams mainly in the form of particulate

organic carbon (POC). The POC flux to the global ocean is estimated at 0.157 Pg

year−1 (Galy et al., 2015), while our total estimated accelerated SOC erosion is in the

order of 5.1 Pg year−1 (Table 4.2). This makes the POC flux only 3 % of the total eroded
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SOC, indicating that most of the eroded SOC is either emitted to the atmosphere or

buried on hillslopes or in floodplains. Assuming that approximately 20% of the total

eroded SOC is emitted to the atmosphere (Lal, 2003; Chappell et al., 2015), we find

that about 1 Pg year−1 of carbon is emitted as CO2 to the atmosphere due to soil

redistribution (Table 4.2). This value is similar to the range of 0.8 – 1.2 Pg carbon

year−1 found by Lal (2003), and the range of 0.3 – 1 Pg carbon year−1 found by Chappell

et al. (2015). Furthermore, the estimated emissions of CO2 due to soil redistribution are

13% of the total global fossil fuel emissions (7.8 Pg year−1). However, we can conclude

that most of the eroded SOC is buried and stored in terrestrial deposition zones, such as

wetlands, reservoirs, floodplains and colluvial soils (Doetterl et al., 2012). Additionally,

soil erosion also results in an extra uptake of CO2 from the atmosphere by dynamic

replacement, which is unquantified on the global scale.

Table 4.1: Estimates of global soil erosion (E) and linked SOC fluxes for present day per

region. Erosion and SOC fluxes are in Pg year−1.

E mean E uncertainty SOC mean SOC uncertainty

Europe 4.00 3.39 – 8.18 0.16 0.12 – 0.42

Asia 35.02 31.44 – 43.90 2.14 1.95 – 2.49

Africa 14.48 13.83 – 15.41 0.60 0.58 – 0.63

Australia 2.09 1.82 – 2.45 0.05 0.04 – 0.06

North-America 7.39 5.09 – 24.10 0.46 0.34 – 1.15

South-America 9.44 9.08 – 10.70 1.18 1.13 – 1.53

Central-America 1.99 1.93 – 2.06 0.20 0.19 – 0.20

Global average 81.12 72.62 – 120.28 5.14 4.70 – 7.00

Table 4.2: Global carbon fluxes (Pg year−1) from (Ciais et al., 2014) in relation to our esti-

mates of displaced and mineralized carbon due to soil erosion.

Flux Mean carbon gains (+)

and losses (-)

Fossil fuels (-) 7.8

Net land use change (-) 1.1

Gross photosynthesis (+) 123

Total respiration + fire (-) 118.7

Volcanism (-) 0.1

Freshwater outgassing (-) 1

Rock weathering (+) 0.3

Burial in lakes (+) 0.2

River flux land to ocean (POC+DOC+DIC) (-) 0.9

POC river flux (Galy et al., 2015) (-) 0.16

Eroded SOC 5.1

Erosion induced SOC mineralization (-)1.0
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4.2.2 Lateral displacement of soil organic carbon due to soil

erosion for present day from CMIP5 model data

The same ESMs from CMIP5 as presented in chapter 2 are used here to investigate the

SOC erosion rates from ESMs for present day. First we test how the models perform

with respect to the total SOC stocks and the spatial variability in the SOC content in

soils. For this purpose, data on the SOC content from the historical simulations of the

models, and SOC data from GSDE for three different soil depths are used. The carbon

stocks in the soil were calculated according to Batjes (1996):

SOCd =
k∑

n−1

OCi ∗BDi ∗Di ∗ (1−GRAVi) ∗ A (4.1)

where SOCd is the total amount of organic carbon (t) above a certain depth (d), OCi
represents the concentration of organic carbon (%) in layer i, BDi is the bulk density

of layer i (g cm−3), Di is the thickness of this layer (cm), GRAVi is the volume (%) of

gravel in layer i, and A is the grid cell area (ha).

As the models do not report the depth of SOC in the soil profile, it is assumed that

the SOC simulated by the models represent the SOC content in the upper 0.2 m of

the soil. It should be mentioned that many soil models were originally developed to

simulate carbon dynamics to a soil depth of 0 to 0.2 m (Todd-Brown et al., 2013).

Results show that the global total SOC stocks differ significantly between the models

(Table 4.3). MPI-ESM overestimates the observed SOC stocks for all soil depths. The

SOC stocks from the other models are comparable to the observed SOC stocks for one

of the three soil depths. When considering the 0.2 m soil depth, the total SOC stock

from the CCSM4 model is closest to the observed SOC stock, while all other models

strongly overestimate the total SOC stock for this depth.

Table 4.3: Observed versus modelled present-day total SOC stocks (Gt). The observed SOC

data is given for three soil depths (0.2 m, 1 m and 2.3 m).

SOCd total SOCd uncertainty

MPI-ESM-LR 2767 2736 – 2799

IPSL-CM5A-LR 1385 1365 – 1406

CCSM4 561 556 – 566

MIROC-ESM and 2097 2042 – 2153

bcc-csm1-1

observed (0.2 m) 471 -

observed (1 m) 1450 -

observed (2.3 m) 1897 -

With respect to the spatial correlation between the models and the observations for

the different depths, the highest correlation coefficients and lowest RMSE errors are
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found for the 0.2 m soil depth (Table 4.4). However, the general performance of the

models with respect to the spatial variability and overall values of the observed SOC

content is poor. The largest biases are found for MPI-ESM, and the smallest biases

are found for the MIROC-ESM. This is in accordance with the findings of Todd-Brown

et al. (2013), who examined similar models, however, used higher resolution versions of

the models. They concluded that most ESMs cannot reproduce the grid-scale spatial

variation in SOC and maybe be missing key processes.

The resulting global mean SOC erosion rates using data from the CMIP5 models on

climate, land use and SOC content are presented in figure 4.2. SOC erosion rates

calculated using data derived from observation databases on climate, land use and

soil, will be referred to as observed SOC rates. If SOC erosion is calculated using soil

erosion estimates from CMIP5 data and SOC content from observations, we find that

the resulting mean global SOC erosion rates from CMIP5 data come closer to the mean

observed SOC erosion rate. However, if both the soil erosion and SOC estimates are

used to compute SOC erosion rates, we find that the models show an overestimation

by two to ten times in the mean SOC erosion rate. These biases in the SOC erosion

rates are a result of uncertainties in the climate, land cover, and the SOC content of

the selected CMIP5 models. Therefore, future studies on estimating SOC erosion rates

and other effects of soil redistribution on the carbon cycle using ESMs need to take

these uncertainties into account.

Figure 4.2: Present-day mean global soil erosion rates from observed data and CMIP5 data

(blue bars), and related SOC erosion rates based on SOC data from GSDE (red bars) and

CMIP5 models (green bars). All units are in t ha−1 year−1.



96 CHAPTER 4 CARBON AND OTHER NUTRIENT CYCLES

Table 4.4: Statistics of modelled versus observed present-day SOC content (t ha−1) for three

soil depths (0.2 m, 1 m and 2.3 m). The r-value is the Pearson correlation coefficient and

RMSE is the root mean square error.

Observed (0.2 m) Observed (1 m) Observed (2.3 m)

RMSE r-value RMSE r-value RMSE r-value

MPI-ESM-LR 229 -0.05 246 -0.04 292 -0.03

IPSL-CM5A-LR 86 0.39 164 0.34 241 0.31

CCSM4 51 0.12 204 0.07 279 0.07

MIROC-ESM and 199 0.44 187 0.39 234 0.36

bcc-csm1-1

4.3 The global nitrogen and phosphorus cycles

Data on the total nitrogen and phosphorus content in the soils from the gridded

30 arcsec GSDE and soil erosion rates from the adjusted RUSLE model are used to

estimate the lateral displacement of these nutrients for present day. This includes both

organic and inorganic nitrogen and phosphorus. Also here, only the nitrogen and phos-

phorus contents in the top 0.2 m of the soil are used. The same approach as for the

SOC was applied to convert soil erosion into nitrogen and phosphorus erosion.

We found a global mean nitrogen erosion rate for present day of 2.4 g m−2 year−1 with

an uncertainty range of 2.1 to 3.9 g m−2 year−1. This corresponds to a total amount of

eroded nitrogen of 336 Tg year−1, with an uncertainty range of 306 to 444 Tg year−1

(Table 4.5). For phosphorus erosion we found a global mean rate of 0.8 g m−2 year−1,

with an uncertainty range of 0.7 to 1.1 g m−2 year−1. This corresponds to a total

amount of eroded phosphorus of 94 Tg year−1, with an uncertainty range of 84 to 120

Tg year−1 (Table 4.5).

For agricultural land we found a total flux of eroded nitrogen of 50 Tg year−1, with an

uncertainty range of 47.9 to 54.8 Tg year−1. The total flux of eroded phosphorus on

agricultural land was estimated at 16.6 Tg year−1, with an uncertainty range of 15.6

to 18.1 Tg year−1. The total flux of nitrogen on agricultural land is somewhat higher

compared to the flux found by Quinton et al. (2010), while the total flux of phosphorus

lies in the range found by Quinton et al. (2010). Estimates of eroded nitrogen and

phosphorus for other land use/land cover types are provided in Appendix A.3.

Results show that the present-day spatial distribution of SOC, nitrogen and phos-

phorus erosion rates are comparable on the global scale, with the highest rates in the

mountains, tropics and agricultural areas (Fig. 4.1, 4.3a and b). This indicates that the

spatial variability in soil erosion, which is mainly affected by the precipitation, runoff,

relief and human activities, determines the spatial distribution of SOC, nitrogen and

phosphorus erosion rates.

The spatial distribution of the SOC, nitrogen or phosphorus contents in the soils is of

secondary importance. This is consistent with the findings of Mayorga et al. (2010),
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(a)

(b)

Figure 4.3: Present-day (a) global nitrogen and (b) phosphorus fluxes (g m−2 year−1) due to

soil erosion.

where they show that the river export of total organic carbon, nitrogen and phosphorus

are mainly determined by a combination of runoff, relief and human activities. They

also point out that areas with a high runoff, such as the humid tropics, can lead to high

exports of carbon and nutrients even though the human pressures in these areas can be

low and depletion of nutrients can be substantial. For example, it is well-known that

tropical areas are extremely phosphorus limited (Goll, 2013). Still, the phosphorus

erosion rates in some tropical regions, such as the Amazon, are high due to the strong

soil erosion rates (Fig. 4.3b).
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Looking at the difference between the regions, the highest eroded nitrogen and phospho-

rus erosion fluxes are found for Asia, followed by Africa and South-America (Table 4.5).

The lowest fluxes are found for Australia. This is mostly in agreement with the findings

of Mayorga et al. (2010), where they found the highest export of particulate nitrogen

and phosphorus for Asia, and the lowest for Australia.

Although, the difference in the export of nitrogen and phosphorus between South-

America and Africa is relatively small, Mayorga et al. (2010) found a higher export

for South-America, in contrast to our findings for the total eroded nitrogen and phos-

phorus. This difference can be attributed to multiple factors. First of all, erosion of

nutrients in a catchment is not always correlated to the export of nutrients from the

catchment, due to deposition and mineralization of these nutrients on the way to the

catchment outlet. This indicates the importance of investigating the spatial organiza-

tion of erosion and deposition of sediment and nutrients in a catchment, rather than

concentrating only on the export of these elements from the catchment Steegen et al.

(2001).

Table 4.5: Estimates of global soil erosion (E) and linked nitrogen (N) and phosphorus

(P ) fluxes for present day per region. Erosion fluxes are in Pg year−1, while nitrogen and

phosphorus fluxes are in Tg year−1.

E mean E uncertainty N mean N uncertainty P mean P uncertainty

Europe 4.0 3.4 – 8.2 10.3 8.5 – 24.4 4.2 3.7 – 6.8

Asia 35.0 31.4 – 43.9 165.0 149.2 – 194.9 45.1 40.0 – 51.9

Africa 14.5 13.8 – 15.4 50.9 48.6 – 54.1 17.3 16.4 – 18.5

Australia 2.1 1.8 – 2.5 4.5 3.9 – 5.4 2.6 2.2 – 3.0

North-America 7.4 5.1 – 24.1 19.4 14.0– 61.2 6 4.4 – 16.2

South-America 9.4 9.1 – 10.7 45.6 43.8 – 53.2 9.4 9.0 – 11.3

Central-America 2.0 1.9 – 2.1 15.2 14.9 – 15.6 2.8 2.7 – 2.9

Global average 81.1 72.6 – 120.3 336.0 306.5 – 444.1 93.8 84.4 – 119.9

On a global scale, this can be done by modelling the internal dynamics of sediment

and nutrients in a catchment. Secondly, Mayorga et al. (2010) included the effect of

sediment trapping behind dams and the effect on the total river export of carbon and

nutrients. In our study this is not taken into account. Also, biases in erosion rates from

the adjusted RUSLE model and biases in the simulated carbon and nutrient export as

mentioned in the study of Mayorga et al. (2010) could play a role here.

Our estimates of total mobilized nitrogen and phosphorus by soil erosion on a global

scale are in the order of respectively 336 and 94 Tg year−1 (Table 4.6 and Table 4.7).

The total mobilized nitrogen is in the same order as the sum of nitrogen deposition,

fertilizer supply and natural and anthropogenic fixation by biomass. The total mobi-

lized phosphorus exceeds by far the production of phosphorus by weathering and the

supply of phosphorus to the soils by fertilizers. This confirms the very large lateral

fluxes of these nutrients due to soil erosion as previously indicated by Quinton et al.

(2010). However, our findings also show that other areas, except for agricultural areas,

can have an equally or even larger contribution to the total global eroded nitrogen and
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phosphorus. This indicates the importance of a global assessment of the effects of soil

erosion on the nutrient cycles.

Table 4.6: Global nitrogen fluxes (Tg year−1) in relation to our estimates of displaced nitrogen

by soil erosion.

Flux Mean nitrogen gains (+) Reference

and losses (-)

Denitrification (-) 109 Ciais et al. (2014)

Atmospheric deposition (+) 63 Ciais et al. (2014)

Fertilizer supply (+) 160 Food and of the United Nations (2015)

Natural and anthropogenic (+) 118 Ciais et al. (2014)

fixation by biomass

Eroded nitrogen (-) 336 this study

Riverine flux (-) 45-60 (Mayorga et al., 2010; Howarth, 2008)

Table 4.7: Global phosphorus fluxes (Tg year−1) in relation to our estimates of displaced

phosphorus by soil erosion.

Flux Mean phosphorus gains (+) Reference

and losses (-)

Mining (-) 161 Goll (2013)

Weathering (+) 1.6 Goll (2013)

Fertilizer supply (+) 48 Food and of the United Nations (2015)

Eroded phosphorus (-) 94 this study

Riverine flux (-) 9-20 (Mayorga et al., 2010; Seitzinger et al., 2005)

(Howarth et al., 1995)

The total flux of nitrogen and phosphorus to the global ocean is estimated at respec-

tively 45 to 60 and 9 to 20 Tg year−1 (Table 4.6 and 4.7), of which respectively about

14 and 7 Tg year−1 is in the form of particulate nitrogen (PN) and (PP ) Mayorga

et al. (2010). We expect that soil erosion will lead mostly to PN and PP , as in the

case of SOC erosion. This makes the total nitrogen flux only 13 to 18 % and the PN

flux only 4 % of the total eroded nitrogen. While the total phosphorus flux is 10 to

21 % of the total eroded phosphorus and the PP flux is 7 %. These numbers indicate

that, similar to SOC erosion, most of the nutrients are either mineralized or buried

on hillslopes are in floodplains. The mineralization and burial of nutrients due to soil

erosion is largely unknown on the global scale.

4.4 Limitations of current approaches

One of the limitations of implementing the adjusted RUSLE model to estimate lateral

fluxes of carbon and nutrients by soil erosion is the fact that this model does not

include other soil erosion processes, such as, glacial erosion and erosion by tectonic

uplift, coastal erosion, landslides and gully erosion. Regions where such forms of soil



100 CHAPTER 4 CARBON AND OTHER NUTRIENT CYCLES

erosion prevail can show a very different net effect of soil erosion and consequently of

soil redistribution on the fluxes of carbon and nutrients. Zhao et al. (2015) showed

for the Chinese Loess Plateau, that the strength of the erosion induced carbon sink

can be up to four times lower when sediment and SOC mobilization by gully erosion

and landslides is taken into account. Present-day glacier retreat and tectonic uplift

lead to increased continental soil erosion rates that not only result in the burial of

fast amounts of carbon and nutrients, but also in increased weathering that promotes

the uptake of CO2 from the atmosphere (Chaopricha and Maŕın-Spiotta, 2014; Galy

et al., 2007; Goudie and Viles, 2012). Coastal erosion of the thawing Arctic permafrost

leads to the activation of old carbon and contributes to the export of large amounts

of organic carbon export from this region (Vonk et al., 2012). In other areas coastal

erosion due to sea level rise as a result of global warming can also lead to increased

amounts of carbon and nutrient export to the oceans.

Other limitations of the approach in this study are related to the uncertainty in erosion

estimates in mountainous areas, and uncertainty in SOC, nitrogen and phosphorus

contents estimates in certain regions.

4.5 Next steps

As shown in the previous sections of this study, soil erosion can mobilize substantial

amounts of SOC and nutrients on a global scale. However, export of the eroded carbon

and nutrients from rivers is only a small part of the total mobilized amount. This

shows that it is essential to understand the dynamics of the carbon and nutrients in

a landscape itself, before these elements are exported by the rivers. These dynamics

are strongly coupled to the dynamics of sediment, which consists out of soil erosion,

sediment deposition and transport by runoff. Therefore, the next step would be to ex-

plicitly model the sediment redistribution in a landscape, and couple the processes such

as mineralization, burial and transport of the biogeochemical elements to the sediment

redistribution processes. In order to estimate the temporal variability of the change in

stocks, lateral and vertical fluxes of carbon and nutrients due to soil redistribution, an

interactive simulation with the main sources and sinks of the biogeochemical elements

would be required.

Additionally, the other forms of soil erosion such as, continental erosion, coastal ero-

sion, landslides and gully erosion should also studied and quantified in the future in

order to have a full picture of the effects of soil redistribution on the biogeochemical

cycles.
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4.6 Conclusions

In this study present-day global soil erosion rates from the adjusted RUSLE model

were coupled to the carbon, nitrogen and phosphorus contents in the soil, to estimate

mobilization of carbon and nutrients by soil erosion. The results show that soil erosion

can lead to significant lateral fluxes of carbon and nutrients, especially in mountainous

regions, agricultural areas and the humid tropics. Emissions of CO2 from mineraliza-

tion of mobilized SOC by soil erosion are 13% of the total global fossil fuel emissions

(7.8 Pg year−1). The total mobilized nitrogen by soil erosion is in the same order as

the inputs of nitrogen in the soil by deposition, fertilizer supply, and natural and an-

thropogenic fixation by biomass. While, the total mobilized phosphorus by soil erosion

exceeds by far the production of phosphorus by weathering and the supply of phospho-

rus to the soils by fertilizers.

Comparing the estimate of the lateral flux of eroded SOC found for agricultural areas

to those from Doetterl et al. (2012) and Van Oost et al. (2007) shows that the mean

global SOC erosion rate in this study is up to two times higher than the mean rates

from these studies. We expect that this is mainly due to the fact that a different version

of the RUSLE model and different global empirical databases on soil, land cover/land

use and climate are used. Furthermore, biases related to the estimation of global soil

erosion with the adjusted RUSLE model as described in chapter 2 also play a role here.

Furthermore, the estimated total nitrogen flux due to erosion on agricultural areas was

slightly higher than the range of lateral nitrogen fluxes found by Quinton et al. (2010).

The total phosphorus flux due to erosion on agricultural areas was in the range of the

lateral phosphorus fluxes found by Quinton et al. (2010).

This study also shows that only a small amount of the total mobilized SOC, nitrogen

and phosphorus is exported from the terrestrial biosphere by rivers globally. For the

SOC, the total exported POC is only about 3% of the mobilized amount, while for the

nitrogen and phosphorus the total exported PN and PP are respectively 4% and 7% of

the total mobilized amounts. This indicates that the dynamics of the biogeochemical

cycles in the landscape play an important role and much of the mobilized carbon and

nutrients by soil erosion is either mineralized or buried on hillslopes, in floodplains,

and man-made reservoirs.

It can be concluded that in order to quantify the net global effects of soil redistribution

on the carbon and nutrient cycles a spatially explicit model is needed where processes

related to the biogeochemical cycles such as, mineralization, burial and transport are

tightly coupled to the sediment processes in a landscape. Additionally, interactive

simulation with all the main sources and sinks of the biogeochemical elements will be

required to simulate the temporal variability in the stocks, lateral and vertical fluxes

of these elements due to soil redistribution. Finally, other soil erosion processes such

as, continental and coastal erosion, landslides and gully erosion should be quantified in

order to have a full picture of the effects of soil erosion on the biogeochemical cycles.
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Chapter 5

Summary and Conclusions

The primary objective of this study was to simulate soil redistribution on a global

scale, and investigate the effects of external forces such as, land use change and climate

change, on the soil redistribution rates. The focus was the development of methods

and tools that are compatible with Earth System Models (ESMs) and can simulate

long-term soil erosion rates and sediment fluxes. In this context an attemption is made

to gain insight into the drivers behind the spatial and temporal change of soil erosion

rates and the resulting soil redistribution for the last millennium (850-2005AD) on a

global scale. Also, the scaling behavior of characteristics of river catchments, such as

slope and area, and their impact on the effect of external forces is investigated.

In the following an overview and summary of the main results and the main conclusions

is provided in Section 5.1. Recommendations for future work are given in Section 5.2.

5.1 Summary of findings

5.1.1 Global soil erosion

5.1.1.1 How can realistic global soil erosion rates be derived for present

day, and what are the main uncertainties?

This study presents an adjusted version of the Revised Universal Soil Loss Equa-

tion (RUSLE) model, compatible with the coarse resolution of ESMs, that includes

improvements made to the computation of the topographical- and rainfall erosivity

factors. Using obervational datasets on environmental parameters, the model simu-

lates accelerated soil erosion rates for many regions with a mean global erosion rate

of 6.5 t ha−1 year−1 for present day. These erosion rates are comparable to the high-

resolution rates from Europe (Cerdan et al., 2010), and the USA (NRI database). The

factors of the adjusted RUSLE model that were not improved, such as the land cover

and the soil erodibility factors, and the neglection of the land-management factor, are
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identified as the main uncertainties in estimating present-day global soil erosion rates

with this model. Also the rainfall erosivity factor can be further improved for tropical

climates.

5.1.1.2 Can global soil erosion rates that are derived from observational

datasets be reproduced with climate and land cover data from

Earth System Models?

Out of the five ESMs that are investigated, only two models (CCSM4 and MIROC-

ESM) show a similar continental variability in soil erosion rates as the ones based on

observed data. However, none of the selected ESMs show a similar grid-scale variation

in global soil erosion rates as the ones from observed data. This is mainly due to the

sensitivity of the adjusted RUSLE model to data on land cover and climate.

5.1.1.3 How did soil erosion change during the last millennium and what

were the main drivers behind this change?

The ESMs that were used in this study disagree on the global trend of erosion for

the last millennium. MPI-ESM and CCSM4 show a significant increase in global soil

erosion rates during the last millennium, which is mainly related to the strong land

use change simulated by these models for most parts of the world. IPSL-CM5A shows

a decreasing trend mainly due to the simulated precipitation decrease in the tropics,

especially in South-America. The other models do not show a significant change in

the mean erosion trend during the last millennium. However, the median soil erosion

trends from all models show a non-negligible signal related to land use change for the

last two centuries.

5.1.2 Global soil redistribution

5.1.2.1 How to simulate large-scale sediment storage and fluxes for the

long-term (centennial to millennial timescales)?

In order to simulate soil redistribution, a new large-scale sediment budget model was

developed that is compatible with the coarse resolution of ESMs. This new model

builds on the adjusted RUSLE model and simulates beside soil erosion, also sediment

deposition in floodplains and on hillslopes, as well as sediment transport. After being

calibrated based on data from the Rhine catchment, the new model was forced with

climate and land cover data from the MPI-ESM for the last millennium. The model

reproduces the spatial distribution of sediment storage in floodplains when compared

to observations from the Rhine catchment (Hoffmann et al., 2007). Also, the scaling

relationships between sediment storage and catchment area for the non-Alpine part of

the Rhine catchment (Hoffmann et al., 2013) are correctly reproduced.
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5.1.2.2 How did sediment storage change during the last millennium and

what were the main drivers behind this change?

Application of the model for 20 global river catchments shows that the change in

erosion rates during the last millennium modified the sediment budgets, resulting in

a significant increase in sediment storage for the different catchments. Globally, land

use change turned out to be the main driver behind this increase for most of the

catchments during the last millennium. This is consistent with the findings of other

studies, such as the study of Hoffmann et al. (2013) on measured sediment storage in

the Rhine catchment, and the study of Syvitski et al. (2005) on simulated and observed

sediment yields for global catchments. Furthermore, the global spatial distribution of

present-day sediment yields simulated by the model for different river catchments is

comparable to the distribution from observed sediment yields, when the uncertainty in

the observations is taken into account.

5.1.2.3 How do catchment characteristics influence the change in sediment

storage on the long-term?

This study shows that catchments with steep slopes and small areas show a similar

change in sediment storage during the last millennium as catchments with low slopes

and large areas. The steepness of the landscape proves thus to be as important as

the size of the catchment with respect to change in sediment storage. Additionally,

all investigated global catchments show that sediment storage in floodplains scales

exponentially with the catchment area, while for hillslopes this scaling is mostly linear.

Based on these results the scaling behavior between sediment storage and catchment

area is identified as a global feature, which is a result of the topography.

5.1.3 Carbon and nutrient cycles

5.1.3.1 How large are present-day lateral fluxes of carbon and nutrients

due to soil erosion only?

This study shows that soil erosion can lead to significant lateral fluxes of carbon and

nutrients, especially in mountainous regions, agricultural areas and the humid tropics.

Soil erosion leads to total global fluxes of 5 Pg year−1, 336 Tg year−1, and 94 Tg year−1

for soil organic carbon (SOC), nitrogen and phosphorus respectively. The flux of SOC

due to soil erosion results in emissions of CO2 that are 13% of the total global fossil

fuel emissions. The total mobilized nitrogen by soil erosion is in the same order as

the total input of nitrogen in the soil. While, the total mobilized phosphorus by soil

erosion exceeds by far the production of phosphorus by weathering and the supply of

phosphorus to the soils by fertilizers.
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5.1.3.2 How does soil redistribution impact these lateral fluxes of carbon

and nutrients?

This study shows that the total mobilized fluxes for carbon, nitrogen and phospho-

rus by soil erosion comprise 3%, 4% and 7% of the total particulate organic carbon

(POC), particulate nitrogen (PN) and particulate phosphorus (PP) respectively, that

are exported by global rivers. This indicates that the dynamics of the biogeochemical

cycles in the landscape play an important role and much of the mobilized carbon and

nutrients by soil erosion is either mineralized or buried on hillslopes, in floodplains, and

man-made reservoirs (Van Oost et al., 2012; Quinton et al., 2010). These dynamics of

biogeochemical cycles in a landscape are tightly linked to the sediment dynamics or

soil redistribution.

5.1.3.3 Which approach should be taken to quantify the main effects of

soil redistribution on the carbon and nutrient cycles?

The next step is to simulate the main processes of biogeochemical cycles after soil

erosion takes place, such as mineralization, burial and transport. In order to quantify

the main effects of soil redistribution on the carbon and nutrients cycles, these processes

should be coupled to the sediment dynamics of a spatially explicit model such as

the global sediment budget model presented in this study. This approach should be

compatible with ESMs in order to run an interactive simulation with the biogeochemical

components of ESMs in the future. This is needed to simulate the temporal variability

of the change in the stocks, and the lateral and vertical fluxes of carbon and nutrients

due to soil redistribution.

5.2 Conclusions

This study is, to my knowledge, the first one to model soil redistribution on a global

scale on centennial to millennial timescales, taking into account the large-scale spatial

variability in soil detachment, deposition and transport. This study shows that the

erosion component of the newly developed sediment budget model, is applicable on

a coarse resolution on the global scale, and can reproduce the spatial variability in

soil erosion rates for Europe and the USA. Despite the fact that the deposition and

transport components of the new model are calibrated based on data from the Rhine

catchment, the new model still reproduces the global features of soil redistribution.

The findings in this study indicate accelerated rates of soil erosion for present day in

most parts of the world. These erosion rates are a result of the combination of climate

change and intensified land use change. The change in erosion rates during the last

millennium modified the sediment budgets globally and resulted in a significant increase

in sediment storage in floodplains and on hillslopes for different global catchments.
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This study identifies that land use change turned out to be the main contributor to

the change in sediment storage for most global catchments during the last millennium.

Catchment characteristics, such as catchment area, slope, and sediment connectivity,

play an important role in buffering or amplifying the effect of external forces on the

change in erosion and sediment storage. It should be noted that the results presented

in this study are affected by the sensitivity of the new model to climate and land

cover data, and biases in the estimation of model parameters. A general limitation in

simulating historically realistic soil redistribution and resulting sediment yields with

the new model arises from the unknown initial state of a river catchment.

Finally, this study shows that soil erosion can result in significant fluxes of carbon and

nutrients globally. However, only a small part of the mobilized carbon and nutrients

due to soil erosion is exported by rivers. This indicates the importance of including

sediment dynamics in ESMs to estimate the overall impact of soil redistribution on

the biogeochemical cycles, and quantify the human impact, for the past, present and

future. With the newly developed sediment budget model a first step is made in this

direction.

5.3 Recommendations for future work

5.3.1 Future model developments with respect to global soil

redistribution

In this study erosion rates are calculated without taking into account the effects of

land management and slope length. Both factors are important for agricultural areas,

which occupy a large part of the land surface globally. It is expected that in the future

land management will play an even more important role, especially in combating soil

degradation. Therefore, future studies on global soil erosion rates should especially

focus on simulating the effects of land management on erosion.

Furthermore, in this study the seasonal interaction between land cover or land use with

rainfall erosivity is ignored. The interaction between these factors is very important

in areas with agriculture and areas with a strong seasonal character. This is another

important point to focus on in future studies on global soil erosion.

To improve the application of the sediment budget model on a global scale, validation

with long-term sediment storage and yields from other large catchments should be per-

formed. Model parameters related to the sediment residence time and deposition are

calibrated based on data for the Rhine catchment, as this catchment was one of the

only catchments with observed long-term sediment storage data. The model param-

eters should also be adjusted for catchments with different environmental conditions,

such as tropical catchments.

In order to apply the sediment budget model on timescales longer than the last mil-

lennium additional changes to the parameterization of the residence time of sediment
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in floodplains and hillslopes should be implemented. In the current setup of the model

it is assumed that the residence time for floodplains is only dependent on the catch-

ment area. However, the change in surface slope due to sediment storage on a timescale

longer than the last millennium can impact the residence time (Hoffmann, 2015). Also,

it is assumed that the residence time for hillslopes is in the order of the timescale of

the last millennium. Therefore, to simulate soil redistribution for longer timescales,

a residence time for hillslopes needs to be parameterized that includes the long-term

interaction of sediment between hillslopes and floodplains.

Currently, the model has a simple parameterization for the sediment deposition factors

for floodplains and hillslopes. Sediment deposition is mainly calculated as a function

of land use and slope, which does not explicitly take into account the effect of sur-

face roughness. Surface roughness influences the capacity of flow to carry sediments

downhill. This effect of surface roughness is partly captured by differentiating between

agricultural and natural landscapes, but the representation of surface roughness should

be further improved in the model.

Finally, including other types of soil erosion, such as landslides, gully erosion, glacial

erosion and erosion due to tectonic uplift, is essential to capture the full dynamics of

soil redistribution on the global scale.

5.3.2 Coupling soil redistribution to the biogeochemical cycles

on a global scale

Even though this study mainly addresses sediment dynamics, it is relevant for fur-

ther research related to the biogeochemical cycles. As shown before, soil redistribution

can significantly impact the biogeochemical cycles through lateral transport of carbon

and nutrients, and the on-site disruption of soil aggregates and burial of sediment.

Therefore, future studies that aim to investigate and quantify the human impact on

the global biogeochemical cycles should also focus on the coupling of soil redistribu-

tion to the biogeochemical cycles. This can be done by using the ESM framework in

combination with the new sediment budget model.
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A Appendices

A.1 Appendix of Chapter 2

Table A.1: List of data sets used in this study.

Category Data set Source Spatial

resolution

Temporal pe-

riod

Variables

DEM GTOPO elevation

model

USGS (1996),

Gesch et

al. (1999)

30 arcsec elevation

ETOPO1 elevation

model

Amante and

Eakins

(2009)

1 arcmin elevation

ETOPO2 elevation

model

US Department

of Commerce and

NOAA (2001)

2 arcmin elevation

ETOPO5 Elevation

Model

National Geophys-

ical

Data Center/

NESDIS/NOAA

(1995)

5 arcmin elevation

Climate GPCC 0.5 degree

data set

Schneider et al.

(2011)

0.5 degree Years 1989–

2010

total yearly

precipitation

GPCC 0.25 degree

data set

Meyer-Christoffer

et al.

(2011)

0.25 degree years 1951–

2000

total yearly

precipitation

GHCNDEX data

set

CLIMDEX; Donat

et

al. (2013)

2.5 degree years 1951–

present

simple precipita-

tion

intensity index

(SDII)

Köppen–Geiger

data set

Peel et al. (2007) 5 arcmin Köppen–Geiger

climate classifi-

cations

Soil Global Soil Data set

for

use in Earth System

Models (GSDE)

Shangguan et al.

(2014)

30 arcsec sand, silt and

clay

fractions, or-

ganic

matter %, gravel

%

Harmonized World

Soil

Database (HWSD)

version 1.2

Nachtergaele et

al. (2009)

30 arcsec volcanic soils

Land cover GIMMS data set ISLSCP II; Tucker

et

al. (2005), Hall et

al. (2006)

0.25 degree year 2002 normalized

differ-

ence vegetation

index

(NDVI)

Land use MODIS data set ISLSCP II; Friedl

et

al. (2010), Hall et

al. (2006)

0.25 degree year 2002 land use frac-

tions
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Figure A.1: Mean continental soil erosion rates for the last millennium for the climate change

scenario (blue), land use change scenario (green) and default scenario (black) based on data

from different CMIP5 models. Units are in t ha−1 year−1.
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A.2 Appendix of Chapter 3

Figure A.2: Catchment slope versus change in sediment storage (red) and storage rate (blue).

Figure A.3: Catchment area versus change in sediment storage (red) and storage rate (blue).
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Table A.2: List of values for the residence time parameters, aτ and bτ

Continent aτ bτ
Europe -9301752 1672772

Asia -11385298 2047465

Africa -13764033 2475242

Australia -3359855 604217

North-America -15542635 2795095

South-America -22101816 3974660

Ventral-America -2042211 367259

A.3 Appendix of Chapter 4

Table A.3: Global mean erosion rates of SOC, nitrogen (N) and phosphorus (P) for different

land cover / land use types. The uncertainty in the mean is due to the uncertainty in erosion

rates from the adjusted RUSLE model. Units are g m−2 year−1.

SOC mean SOC uncertainty N mean N uncertainty P mean P uncertainty

Forest 78.1 76 – 87.9 4.4 4.3 – 4.7 1.1 1.1 – 1.2

Shrub 29.4 22.4 – 63.8 2.1 1.6–4.5 0.8 0.6 – 1.4

Crop 34.8 32.9 – 38.4 2.7 2.6–3.0 1.0 0.9 – 1.1

Grass 29.2 21.7 – 34.6 1.9 1.4–2.2 0.5 0.3 – 0.6

Savanna 39.2 37.3 – 45.9 3.0 2.8 – 3.2 1.0 1.0 – 1.4

Bare 7.4 6.2 – 20 0.7 0.6–1.5 0.3 0.3 – 0.5
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