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Humans choose representatives who enforce
cooperation in social dilemmas through extortion
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Social dilemmas force players to balance between personal and collective gain. In many

dilemmas, such as elected governments negotiating climate-change mitigation measures,

the decisions are made not by individual players but by their representatives. However,

the behaviour of representatives in social dilemmas has not been investigated experimentally.

Here inspired by the negotiations for greenhouse-gas emissions reductions, we

experimentally study a collective-risk social dilemma that involves representatives deciding

on behalf of their fellow group members. Representatives can be re-elected or voted out after

each consecutive collective-risk game. Selfish players are preferentially elected and are hence

found most frequently in the ‘representatives’ treatment. Across all treatments, we identify

the selfish players as extortioners. As predicted by our mathematical model, their steadfast

strategies enforce cooperation from fair players who finally compensate almost completely

the deficit caused by the extortionate co-players. Everybody gains, but the extortionate

representatives and their groups gain the most.
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A
lthough humans are regarded as champions of
cooperation1,2, there are social dilemmas that so far
have defied solution—we have not yet collaborated

successfully to stop the increase of global greenhouse-gas
emissions3,4, Europe continues to overexploit its marine fish
stock5 and the European Union has so far failed to reach an
equitable solution to accommodating the large number of
refugees arriving from Africa and the Middle East6. In these
and other dilemmas, essential decisions are made not by
individual social actors but by representatives such as officials
from elected governments. Representatives have been shown to
display a more competitive mindset than ‘ordinary’ group
members7. However, the behaviour of representatives in a social
dilemma has, to our knowledge, not been investigated
experimentally. To fill this gap is the aim of our paper.

While we believe that our results apply to the role of
representatives in social dilemmas more broadly, we have drawn
our main inspiration and the concrete setting of our experiments
from the challenge to prevent ‘dangerous anthropogenic
interference with the climate system’8. This challenge is now
usually interpreted as limiting global warming to below 2 �C
compared with the pre-industrial period. To prevent temperature
from exceeding this limit, greenhouse-gas emissions should be
reduced from about 2020 onwards; by 2050, emissions should fall
to a level of r50% of the year 2000 emissions4,9–12. However, as
representatives attend climate summits to negotiate their
country’s share in reducing greenhouse-gas emissions, they are
eagerly watched by their voters who might not re-elect their
representatives when others negotiate a lower share13. Though
everybody profits only if dangerous climate change is averted,
none of the many climate summits has achieved sustained
emissions reductions, the relative success of the Paris negotiations
at COP21 notwithstanding.

The global emissions-reduction problem has been simulated
experimentally in the ‘collective-risk social dilemma’ game14–18.
A number of volunteers can invest anonymously from their
individual endowments into a climate account in each of 10
consecutive rounds. If the group collectively reaches a specified
target sum, everybody receives in cash what she has not invested
from her endowment. However, if the group fails to reach the
target, individuals risk losing all their remaining endowment with
a high probability, mimicking the drastic economic losses that
result from dangerous climate change. The social dilemma arises

because all players benefit only if the collective target is reached,
but individual payoff is maximised by lower-than-average
contributions, spurred by the hope that others will compensate
to reach the target13.

In contrast to previous work, we have here assembled 15
groups of 18 players each where the groups are sub-divided into 6
‘countries’ of 3 players each who elect, re-elect or vote out their
representative for the 6 representatives’ ‘summit’. For control, we
have assembled 15 groups of 6 players each (as in ref. 14) and 15
groups of 18 players each. In 3 consecutive collective-risk games
with 10 rounds each, each player in the 6-players and 18-players
treatments contributes from her initial endowment of h40; in the
6-representatives treatment, each representative contributes from
the combined endowments (h120) of her watching country mates
and on their behalf (Fig. 1; see Methods). The target sum that
must be collected by each group to prevent simulated dangerous
climate change is h120 in the 6-players treatment and h360 both
in the 18-players and the 6-representatives treatments.

We find that selfish players are preferentially elected and are
hence found more frequently in the six-representatives treatment
than in the other two treatments. Across all treatments, we
identify the selfish players as extortioners. We develop a
mathematical model and confirm its prediction that the
extortioners’ steadfast strategies enforce cooperation from fair
players who finally compensate almost completely the deficit
caused by the extortionate co-players.

Results
Simulated dangerous climate change. In the first game of the
18-players treatment and of the 6-representatives treatment, only
33% of the groups reach the target sum. By contrast, groups in the
six-players treatment are almost twice as likely to collect sufficient
contributions in the first game, with 60% of the groups reaching
the target sum (Fig. 2a–c), similar to a previous study14. The
percentage of groups reaching the target sum increases towards
game 3 in the six-players and the six-representatives treatment,
but the increase is not statistically significant. In game 3, the
groups in the 18-players treatment are the least successful
(Fig. 2a–c), but again differences are not statistically significant.

The total sums contributed per group do not differ among
treatments in games 2 and 3 (Fig. 2e,f). In game 1, the six
representatives contribute less than the six players (P¼ 0.019,
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Figure 1 | Design of the three treatments. (a) The 6-players treatment, (b) the 18-players treatment, (c) the 6-representatives treatment. Each game

consists of 10 rounds, during which players need to raise sufficient contributions to reach a specified target sum. Games 2 and 3 are replicates of game 1.

The players remain the same in the 6-players and the 18-players treatment. In the 6-representatives treatment, representatives are randomly picked in

game 1 and re-elected or voted out for games 2 and 3. Re-election of a representative may depend on the representatives’ performance in previous games.

In addition, except for the first four groups, after games 1 and 2 all players in the 6-representatives treatment are asked to write non-binding pledges about

how they would contribute if elected. Players are only informed about the pledges of members of their own subgroup.
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z¼ � 2.341, n1¼ n2¼ 15 groups, Mann–Whitney U-test,
two-tailed; we use two-tailed tests throughout, with the group
of six or 18 players as our statistical unit if not stated otherwise).
Because in game 1, representatives are randomly picked from
the group (see methods), the only difference between the
two treatments is that representatives are contributing on behalf
of their observing group. In such situations, representatives
may have a more competitive mindset7, which would explain
why groups in the six-representatives treatment reach the target
less often. Total contributions show a small increasing trend from
the first to the third game in all treatments (Fig. 2e,f), but the
differences are statistically significant only between games 1 and 2
in the six-representatives treatment (P¼ 0.026, z¼ � 2.230,
n¼ 15, Wilcoxon signed-rank matched pairs test). Summed up
over all three games per group, contributions relative to the target
sum are lowest in the six-representatives treatment, significantly
lower than in the six-players treatment (P¼ 0.0061, z¼ � 2.742,
n1¼ n2¼ 15, Mann–Whitney U-test).

Fair and selfish players. For the group to reach the target sum,
each player must on average contribute half of her total
endowment—the ‘fair share’ of h20 (h60 per representative in the
six-representatives treatment). Thus, whenever the target sum is
not reached, one or several players must have contributed less
than their fair share. We call these ‘selfish players’ to distinguish
them from the ‘fair players’ who give at least their fair share. The
percentage of selfish players is highest in the 6-representatives
treatment (Fig. 3a), higher than in the 6-players treatment
(P¼ 0.01, z¼ � 2.559, n1¼ n2¼ 15, Mann–Whitney U-test) and
almost significantly higher than in the 18-players treatment
(P¼ 0.06, z¼ � 1.862, n1¼ n2¼ 15, Mann–Whitney U-test).
The average contribution of a selfish player (relative to the
fair-share contribution) is lower in the 18-players treatment
than in both the 6-players (P¼ 0.02, z¼ � 2.302, n1¼ n2¼ 15,
Mann–Whitney U-test; Fig. 3b) and the 6-representatives
treatment (P¼ 0.006, z¼ � 2.739, n1¼ n2¼ 15, Mann–Whitney

U-test) (Fig. 3b). Over all three games, the net payoff (including
trials where the group fails to collect the target sum and loses
all remaining money) is higher for selfish than for fair
players (Fig. 3c). Selfish players achieve a higher net payoff in the
6-players treatment, compared with both the 18-players
treatment (P¼ 0.024, z¼ � 2.261, n1¼ n2¼ 15, Mann–Whitney
U-test) and the 6-representatives treatment (P¼ 0.020,
z¼ � 2.325, n1¼ n2¼ 15, Mann–Whitney U-test, shown per
represented player; Fig. 3c).

Using a classification of players in a social dilemma proposed
by Fischbacher and Gächter19, the selfish representatives might be
‘pessimistic conditional cooperators’ who dislike that others
contribute less than their fair share and thus stop contributing.
However, all selfish representatives contribute more in the
end than in the beginning (P¼ 0.0002, linear regression of
contribution per selfish representative per group on rounds 1–10,
analysed for game 3) and resemble ‘imperfect conditional
cooperators’19. By increasing their contribution during the 10
rounds as do fair representatives (P¼ 0.002), the selfish players
help reaching the target, though they contribute much less than
fair representatives.

Voters choose selfish representatives. After both games 1 and 2,
representatives can be either re-elected or voted out. After game
1, those representatives who are re-elected have contributed
significantly less in game 1 than those who are voted out (Fig. 4a)
(P¼ 0.01, z¼ � 2.587, n¼ 15, Wilcoxon signed-rank matched
pairs test). While this is not the case after game 2, we still find a
tendency that selfish representatives are preferentially re-elected,
based on their past contributions. In addition, before each
election the players formulate election pledges specifying their
contribution strategy if elected. The percentage of selfish pledges
(see Methods) is higher among the 6 elected representatives than
among all 18 players of that treatment (Fig. 4b), although
significantly so only after game 2 (P¼ 0.0071, z¼ � 2.692,
n¼ 11, Wilcoxon signed-rank matched pairs test). Thus,
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Figure 2 | Group success in reaching the target sum (left) and group investments (right). (a,d) Six-players treatment; (b,e) 18-players treatment;

(c,f) 6-representatives treatment. In f, the sum invested is divided by 3 to allow comparison among treatments. Means±s.e.m. of 15 groups per game and

treatment are shown. See text for statistics.
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representatives who act selfishly in game 1 are preferentially
re-elected, and players who pledge to be selfish are preferentially
elected after game 2.

Players classified as selfish according to their election pledges
vote in 71.3% for classified selfish players and in 10.1% for
classified fair representatives. Players classified as fair vote in 78.9%
for classified fair players and in 14.6% for classified selfish players
(the complement missing from 100% is due to players that could
not be classified as either selfish or fair). Hence, selfish players want
selfish representatives, and fair players want fair representatives.

Representatives who have pledged to be selfish contribute less
in the following game than those who have pledged to be fair
(Fig. 4c; after game 1: P¼ 0.007, z¼ � 2.692, n¼ 10; after game
2: P¼ 0.0051, z¼ � 2.803, n¼ 10, Wilcoxon signed-rank
matched pairs test). Thus, players fulfil their pledges when acting
as representatives.

Identification of selfish players as extortioners. Theorists have
predicted for a long time that cooperative and fair strategies such
as Tit-for-Tat would eventually succeed in social dilemmas20–23.
Why then would subjects vote for representatives who mainly
pursue the success of their own subgroup while disregarding the
risks for the whole community? We hypothesize that the election
procedure would favour representatives who motivate the other
subgroups’ representatives to reach the target, but at the same
time ensure that the own subgroup contributes less than other

subgroups. Individuals would like their representatives to be
steadfast and to convince the other subgroups’ representatives to
compensate for any missing contributions. Such behaviour is
reminiscent of the recently discovered class of extortionate ZD
strategies for the repeated prisoner’s dilemma24–30, where
extortionate players incentivize their opponents to cooperate
although they themselves are not fully cooperative. In pairwise
encounters, these extortionate players cannot be beaten by any
other strategy, and they are predicted to perform well among
adaptive co-players24,25,27,29. In the Methods section, we extend
the theory of ZD strategies to the collective-risk social dilemma,
and we prove that also in our experiment players may adopt
extortionate strategies. Such players exhibit the following three
characteristics: (i) Extortioners gain higher payoffs than their
co-players by contributing less towards the climate account; that
is, if xi is the total contributions of an extortioner, and if x� i is
the average contribution of the other group members, then

xi � x� i: ð1Þ
(ii) Extortioners persuade their co-players to make up for
the missing contributions; that is, the collective best response
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investment of representatives who are either voted out or re-elected,

(b) percentage of selfish players, according to their election pledges,

available and elected, (c) future fulfilment of election pledges by selfish and

fair players. Means±s.e.m. groups are shown, for 15 groups in a and

11groups in b and 10 groups in c. See text for statistics.
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for the remaining N� 1 group members is to choose x� i such
that the group reaches the target sum T,

xiþ N � 1ð Þ?x� i ¼ T ð2Þ

(iii) Extortioners are consistent, meaning that the properties (i)
and (ii) are not only satisfied in one particular instance of
the game, but in every game the player participates in. We now
test whether the selfish players in our experiment meet these three
criteria.

Because we find both fair and selfish players in all three
treatments, we perform a proof-of-principle with players of all
treatments combined. To keep the group as statistical unit, we
enter contribution averaged over all fair players of each group;
contributions of representatives are divided by 3 to be comparable
‘per player’ to the other treatments. The contribution per fair
player increases over the three games (Fig 5a; P¼ 0.0057,
F2,130¼ 5.3788, generalized linear model (GLM) with
family¼Gaussian). By contrast, the contribution per selfish
player does not increase significantly (P¼ 0.66, F2,131¼ 0.4163,
GLM). We find a significant interaction between fair and selfish
players’ contributions over the three games (P¼ 0.032,
F2,261¼ 3.4798, GLM). Over the three games, as the contributions

of fair players increase, so does the payoff of both fair players
(P¼ 0.010, F2,132¼ 4.7574, GLM, with family¼ gamma)
and selfish players (P¼ 0.015, F2,132¼ 4.339, GLM, with
family¼ gamma; Fig. 5b). In each game, selfish players gain
more than fair players; the difference increases from game 1 to
game 3 (Fig. 5c) (P¼ 0.046, z¼ � 1.995, n¼ 45, Wilcoxon
matched pairs signed ranks test).

To test whether other group members are willing to
compensate for missing contributions, we compare the
contribution deficit of all selfish players in a group (the sum of
all their negative deviations from the fair share) with the
contribution surplus of all fair players (the sum of positive
deviations of all the fair players; Fig. 6). For example, in game 1 in
the six-players treatment, the dot most to the left (Fig. 6a)
shows a group where the five selfish players contribute only h80
instead of the fair-share contribution of h100. The single fair
player of that group contributes h22, h2 more than her fair share
but not enough to compensate for the deficit of h20 caused by the
selfish players. Hence the group misses the target sum of h120,
and everybody loses the money not invested with 90%
probability. As another example, the leftmost dot of those exactly
on the red line depicts a group where the three selfish players
invest h44 instead of h60, causing a deficit of h16, which is exactly
compensated by the three remaining fair players. Thus the group
meets the target of h120, but the selfish players receive a higher
payoff than the fair players.

If selfish players were indeed able to persuade the remaining
group members to compensate for missing contributions, we
would expect the regression lines in Fig. 6 to have a significantly
negative slope and to be close to the red lines marking exact
(hypothetical) compensation. We see this compensation in the
six-players treatment in game 2 (Fig. 6b, simple regression,
F-test¼ 36.257, degree of freedom (DF)¼ 1, P¼ 0.0001) and in
game 3 (Fig. 6c, simple regression, F-test¼ 26.204, DF¼ 1,
P¼ 0.0002) and in the six-representatives treatment in game 3
(Fig. 6f, simple regression, F-test¼ 17.286, DF¼ 1, P¼ 0.0011).
By contrast, we find no significant compensation in the
18-players treatment.

In the 6-players treatment, fair players compensate or over-
compensate the selfish players’ deficit in 9 groups in games 1 and 2
(Fig. 6a,b) and in 13 groups in game 3 (Fig. 6c). In the
18-players treatment, fair players compensate or overcompensate
the selfish players’ deficit in 5 groups in game 1 (Fig. 6g) and in 7
groups in games 2 and 3 (Fig. 6h,i). In the 6-representatives
treatment, the deficit of the selfish players is only compensated in 4
groups in game 1 (Fig. 6d) but in 9 groups in game 2 (Fig. 6e) and
in 10 groups in game 3 (Fig. 6f). Over all treatments and games,
selfish players or selfish representatives successfully drive their fair
counterparts to compensation in 73 out of 135 individual games
(54%). Moreover, groups become increasingly successful in
reaching the target, improving from game 1 (40%) to game 2
(56%) and game 3 (67%). Because only fair players raise their
contributions over the three games but not selfish players
(see Fig. 5a), these results suggest that a considerable fraction of
fair players learn to become even more cooperative in response to
extortioners. The learning effect is demonstrated by the observa-
tion that the contribution per fair representative has no relation to
the number of selfish representatives per group in game 1 but
correlates significantly in game 3 (Supplementary Fig. 2).

Players behave consistently across the 3 games in the 6-players
and the 18-players treatments, as witnessed by significant positive
correlation of the contributions (see Supplementary Information
for detailed analysis). For the six-representatives treatment, we
have analysed the behaviour of representatives after being
re-elected. In 34 out of the 42 cases in which a selfish
representative is re-elected, the representative remains selfish in
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the next game (P¼ 0.005, Fisher’s exact test, two-tailed compared
with 50%). Overall, we have thus established that selfish
players gain much higher payoffs (Fig. 5); they are often
successful in persuading their fair co-players to compensate for
missing contributions (Fig. 6); and they are consistent across
different games. Thus, selfish players show all three characteristics
of extortionate behaviour.

Discussion
We have introduced into the collective-risk social dilemma the
innovation that contributions into the climate account are
decided on not by individual players but by representatives
(six-representatives treatment). For control, we have assembled
groups of 6 players and 18 players in 2 further treatments.
We find selfish players in all treatments, but their concentration is
highest in the 6-representatives treatment. Selfish representatives
are preferentially elected or re-elected if they either contribute less
than the fair share or pledge to do so. Having to cater to
their electorates’ preferences thus has the adverse effect that
representatives risk losing the climate game to win elections. As
a consequence, groups in the six-representatives treatment
contribute less than groups in the six-players treatment (relative

to the required target sum), and they receive lower average
payoffs. On the other hand, in games 2 and 3 the groups tend to
reach the target sum more often in the 6-representatives than in
the 18-players treatment. While fair representatives compensate
for missing contributions in game 3, 18 players do not
achieve that compensation. Thus, our representatives tend to be
more successful in preventing simulated dangerous climate
change than 18 players deciding themselves. We speculate that
this ‘representatives’ advantage’ is much greater with much larger
groups such as real countries.

The psychological consequences of acting as a representative of a
group have been characterised as evoking both more competitive
interaction goals and more competitive expectations of others7. A
representative is faced with a powerful responsibility to provide
good outcomes for her constituency and may face strong pressures
by being monitored and evaluated7. The mindset that is activated
by the role of representative shows up clearly in our experiments
when we compare the behaviour of six players randomly selected
to decide for themselves with the behaviour of six representatives
randomly selected to decide for their group. Otherwise the players
find themselves in exactly the same situation in both cases. As
psychology predicts7, the six players’ groups are twice as successful
as the six-representatives’ groups in reaching the target sum. When
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Thus, dots on or above the red line correspond to groups that reach the target sum. See text for statistics.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10915

6 NATURE COMMUNICATIONS | 7:10915 | DOI: 10.1038/ncomms10915 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


voting, players preferentially choose representatives who either
have displayed a competitive mindset as former representatives or
have pledged to do so if elected.

In our experiments, selfish behaviour pays off only if others
compensate any missing contributions. Selfish subjects apply an
implicit form of extortion24—they contribute less than is needed
on average, but in a way that makes it optimal for their peers to
become even more cooperative. The effect of extortion in our
experiments differs from that in the repeated prisoner’s dilemma,
in which subjects strongly oppose exploitation31. Here subjects in
the six-players and six-representatives treatments eventually
accept extortion up to a certain degree, especially in game 3, in
which subjects have already gained some experience.
We speculate that the higher tolerance towards extortioners in
our experiment is due to the higher stakes involved—resisting
extortion comes relatively cheap in the prisoner’s dilemma,
but it endangers the entire payoff in the collective-risk game.
Only in the 18-players treatment was extortion unsuccessful in
persuading others to cooperate, presumably because in larger
groups it becomes more difficult to induce individuals to behave
in a desired way.

Our identification of extortionate behaviour in the collective-
risk social dilemma suggests two counteracting major effects
when, with all due caution, we try to interpret the social dynamics
of climate summits with our results in mind. On the one hand,
the competitive advantage of selfish players in getting elected or
re-elected appears to work against reaching a collective
target such as preventing dangerous climate change—there
might not be enough fair representatives around to support the
target. On the other hand, selfish players, who are ubiquitous and
show up in all but 1 of the 135 individual collective-risk
games, consistently act as extortioners. Their steadfast strategies
enhance the already-existing willingness of our fair players to
contribute towards reaching the collective target. If we compare
extortionate to hypothetical non-extortionate selfish players, we
conclude—with more than just a hint of Machiavellian
thinking—that extortion benefits the prevention of dangerous
climate change.

Methods
Experimental procedures. A total of 630 undergraduate students from the
Universities of Bonn, Hamburg, Göttingen, Kiel and Münster voluntarily
participated in 45 experimental sessions with either 18 or 6 subjects each in a
computerized experiment (for example, ref. 32). The subjects were separated by
opaque partitions and each had a computer, on which they received the
instructions for the experiment and with which they communicated their decisions.
Throughout the whole experiment, subjects were anonymous, and they made their
decisions under a neutral pseudonym.

There are three treatments (Fig. 1). For each treatment, we had 15 groups of
subjects interacting in a variant of the ‘collective-risk social dilemma’ game14:
subjects received an initial endowment, and they were asked, in each of 10 rounds,
to contribute money from this endowment into a ‘climate account’. At the end of
round 10, the game software checked whether total contributions of all group
members matched (or exceeded) a previously specified target sum. If that was the
case, subjects received their remaining endowment in cash (in a way that
maintained the subjects’ anonymity). If the collective target was not reached,
subjects lost their remaining endowment with 90% probability. Each game was
repeated twice, such that every group played three games with all players keeping
their pseudonyms (each time with a new endowment).

In the 6-players and the 18-players treatments, groups consisted of 6 and 18
subjects, respectively, and each subject had an initial endowment of h40. In each
round, subjects could choose whether to contribute h0, h2 or h4 to the climate
account, and the decisions of all subjects were shown to all subjects after each
round. The target was reached if on average subjects contributed half their
endowment (the target sum was h120 in the 6-players treatment, and it was h360 in
the 18-players treatment).

In the 6-representatives treatment, groups of 18 subjects were sub-divided in 6
‘countries’ of 3 players. For game 1, the computer randomly determined six
representatives, one from each country. Only the representatives were able to
contribute money to the group’s climate account: they had 3 times h40 at their
disposal, for investing h0, h6 or h12 in each of 10 rounds. The decisions of all

representatives were shown to all 18 subjects after each round. The target
was to collect at least h360 in donations (h60 per representative or h20 per subject). If
the target was reached, subjects received a third of their country’s remaining
endowment.

After games 1 and 2, the three subjects of each country could re-elect the
previous representative or vote her out and elect a different member of their
country with a majority vote. Except for the first four groups of this treatment,
subjects could compose both after game 1 and game 2 election pledges of up to 500
characters on their laptop that could be seen only by the 3 subjects of a country.
The pledges described how the person would decide if elected. We have blindly
classified all pledges; those that promise to contribute ‘less than the others’, or ‘less
than the fair share’ have been classified as ‘selfish’ and the others as ‘fair’. When
making the voting decision, each subject knew the observed decisions of her
previous representative and those of the other representatives, and saw the three
election pledges within her country (each with the respective pseudonym and a
button for voting). In cases with no majority vote, the computer decided randomly
for the next representative (in 9% of cases).

Subjects knew that the total sum of money in the climate account, accumulated
from all participating groups, would be used to publish a press advertisement on
climate protection in a daily German newspaper simultaneously with the
publication of the present study. However, they received the ‘little information’
version from ref. 32 to explain the climate account, so that we could expect very
weak motivation to invest in publishing the advertisement per se.

Theoretical model. Press and Dyson24 describe a class of so-called ZD strategies
for the repeated prisoner’s dilemma, and they demonstrate that a subset of ZD
strategies can be used to extort opponents. However, the collective-risk dilemma
game used in our experiment is not a repeated two-player game. Herein, we thus
extend the theory of ZD strategies to collective-risk dilemmas. As an application,
we show the existence of extortionate strategies. Such strategies ensure that (i) a
player gets at least the average payoff of the co-players; (ii) the collective best reply
for the remaining group members is to reach the target; and (iii) the properties (i)
and (ii) hold in any game the player participates in.

To this end, we consider a group of N individuals, with each group member
having an initial endowment of E. The group engages in a collective-risk
dilemma12: in each of R rounds, players can decide how much they want to
contribute towards a common pool. We denote player i’s contribution in
round r by xi(r), and we assume that the minimum contribution per round is 0,
whereas the maximum contribution is xmax¼ E/R. To calculate the total
contributions xi of player i, we sum up over all rounds, xi¼

P
xi(r). The group’s

total contributions x are obtained by summing up over all individual contributions,
x¼

P
xi. Payoffs for the collective-risk dilemma are defined as follows: if total

contributions after round R exceed a threshold T, then all players receive their
remaining endowment; that is, if xZT, then player i’s expected payoff is E� xi.
Otherwise, if total contributions are below the threshold, all players risk losing their
remaining endowment with some probability p40, and player i’s expected payoff
becomes (1� p) (E� xi). Supplementary Table 1 gives a summary of all used
variables.

In the experiment, players had to choose between three possible contribution
levels in a given round, but for the model we assume for simplicity that players can
contribute any amount xi(r)A[0, xmax]. We note that the definition of ZD strategies
given below can be extended to the case of discrete contribution levels. To achieve
an arbitrary contribution level yA[0, xmax], player i would need to randomize
between the given discrete contribution levels such that the expected value satisfies
E[xi(r)]¼ y. Similar to Tit-for-Tat-like strategies in the Prisoner’s Dilemma, we
define ZD strategies in the collective-risk dilemma as behaviours that condition
their contribution in the next round on the co-players’ contributions in the
previous round:

Definition (ZD strategies). Player i applies a ZD strategy for the collective-risk
dilemma if i’s contributions xi(r) in every round r satisfy

xi rð Þ ¼ sx� i r� 1ð Þþ 1� sð ÞgE=R; ð3Þ
where x� i(r� 1) is the average contribution of the other group members in the
previous round, with x� i(0):¼ 0, and s and g are parameters that can be chosen by
player i.

The parameter s is a measure for how a player reacts to the co-players’
contributions of the previous round. The parameter g, on the other hand,
determines a player’s baseline contribution level. These two parameters cannot be
chosen arbitrarily—since player i’s contribution needs to be in the interval [0, E/R],
the two parameters need to satisfy

� 1 � s � 1
� s=ð1� sÞ � g � 1=ð1� sÞ ð4Þ

It is the following property that makes ZD strategies interesting.
Proposition 1 (properties of ZD strategies). Suppose player i applies a ZD strategy

with parameters s and g.

1. If xi denotes the total contributions of player i, and if x� i denotes the average
total contribution of i’s co-players, then

jxi � sx� i � 1� sð ÞgE j � E=R ð5Þ
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2. Similarly, if pi and p� i denote the corresponding realized payoffs, then payoffs
either satisfy pi¼ p� i¼ 0 (if the group fails to reach the threshold and
dangerous climate change occurs), or

jpi � sp� i � 1� sð Þð1� gÞE j � E=R ð6Þ

Proof

1. By summing up Equation (3) over all rounds 1rrrR, we obtain

xi ¼ s x� i� x� i Rð Þ½ � þ 1� sð ÞgE:

As a consequence,

jxi� sx� i� 1� sð ÞgE j � sx� i Rð Þj j � E=R:

2. In case players do not lose their remaining endowment, Equation (6) follows
directly from Equation (5) because pi¼ E–xi and p� i¼ E� x� i.

For a collective-risk dilemma with sufficiently many rounds R, Proposition 1
thus implies that xiEsx� iþ g(1� s)E. That is, there is a linear relationship
between the total contributions of player i, and the total contributions of i’s
co-players. Similarly, it follows for the realized payoffs that either pi¼p� i¼ 0 or
piEsp� iþ (1� g)(1� s)E. Therefore, unless payoffs are zero, there is also a linear
relationship between the players’ realized payoffs. This property makes strategies
having the form of Equation (3) analogous to the ZD strategies described for the
repeated prisoner’s dilemma24. It is important to note that the above Proposition
makes no restrictions on the strategies of i’s co-players—the stated results hold no
matter what the other group members do. As a particular instance of ZD strategies,
let us consider the following special case.

Definition (extortionate ZD strategies). A player applies an extortionate ZD if
the parameters s and g are chosen such that

g ¼ 0 and max 0;T= pEð Þ� N � 1ð Þ½ � � so1: ð7Þ

If some player i applies such an extortionate strategy, it follows from Proposition 1
that approximately i’s total contribution only make up a fraction of the average
contribution of the other group members, since xiEsx� i (Supplementary Fig. 1
gives an illustration).

The following Proposition shows that the name ‘extortionate ZD strategy’ is
justified: players with such a strategy show the typical characteristics of extortionate
behaviour.

Proposition 2 (properties of extortionate ZD strategies). Suppose player i applies
an extortionate ZD strategy. Then, irrespective of the strategies applied by the other
group members (that is, in any game player i participates in),

1. Player i’s realized payoff is never below the mean payoff of the other group
members, piZp� i.

2. The collective best reply for the remaining group members is to reach the
threshold T. In that case, player i’s payoff is strictly better than average, pi4p� i.

Proof. Because a player with an extortionate ZD strategy contributes strictly less
than average, xiox� i, it follows that either pi¼ p� i¼ 0 (if the group misses the
target and players lose their remaining endowment) or pi4p� i (otherwise).
Moreover, for the other group members, it is collectively optimal to reach the
target: by contributing nothing, their expected payoff becomes (1� p)E, whereas
if they make the minimum contribution (in the first R� 1 rounds) such that
total contributions reach the target, then their payoff is E�T/(N� 1þ s). Because
sZT/(pE)� (N� 1), reaching the target is a collective best reply.

Proposition 2 is a proof-of-principle: there are strategies for the collective-risk
dilemma that allow a player to extort the other group members. We note that the
set of all extortionate strategies will typically be considerably bigger than the set of
all extortionate ZD strategies. When we analyse experimental data, we therefore do
not specifically look for strategies that have the functional form described in
Equations (3) and (7); we rather look for all possible strategies that indicate
extortionate behaviour (that is, we look whether players satisfy the conditions
(i)–(iii) defined in the main text).
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