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to the Fram Strait within the time frame of a couple of 
years. In the same model, predictive skill appears to move 
northward along a similar route as forecast time progresses. 
We attribute this to the northward advection of SST anoma-
lies, contributing to skill at longer lead times in the eastern 
Nordic Seas. The skill at these lead times in particular beats 
that of persistence forecast, again indicating the potential 
role of ocean circulation as a source for skill. Furthermore, 
we discuss possible explanations for the difference in skill 
among models, such as different model resolutions, initiali-
zation techniques, and model climatologies and variance.

Keywords  Nordic Seas · Barents Sea · Predictive skill · 
CMIP5 decadal hindcasts · SST

1  Introduction

Climate predictions with an interannual-to-decadal forecast 
horizon merge the gap between seasonal forecasts and future 
climate projections. In other words, it is both an initial value 
problem and a boundary condition problem. For this reason, 
decadal predictions require unique information combining 
both the present state of climate and external forcing, such 
as changes in greenhouse gases, anthropogenic and volcanic 
aerosols. Although global climate is expected to warm over 
the present century in response to increasing levels of green-
house gases, regional climate (e.g., in the Nordic Seas) on 
timescales of years to decades are likely to be dominated 
by internal climate variability. Much of the internal climate 
variability is thought to be related to the slow variations in 
the ocean, which provides memory to the climate system.

The North Atlantic Current extends into the Nordic Seas 
(Fig.  1), carrying warm and saline water masses of sub-
tropical origin northward. The Nordic Seas comprises the 

Abstract  The Nordic Seas and the Barents Sea is the 
Atlantic Ocean’s gateway to the Arctic Ocean, and the 
Gulf Stream’s northern extension brings large amounts of 
heat into this region and modulates climate in northwest-
ern Europe. We have investigated the predictive skill of 
initialized hindcast simulations performed with three state-
of-the-art climate prediction models within the CMIP5-
framework, focusing on sea surface temperature (SST) in 
the Nordic Seas and Barents Sea, but also on sea ice extent, 
and the subpolar North Atlantic upstream. The hindcasts 
are compared with observation-based SST for the period 
1961–2010. All models have significant predictive skill in 
specific regions at certain lead times. However, among the 
three models there is little consistency concerning which 
regions that display predictive skill and at what lead times. 
For instance, in the eastern Nordic Seas, only one model 
has significant skill in predicting observed SST variability 
at longer lead times (7–10 years). This region is of particu-
lar promise in terms of predictability, as observed thermo-
haline anomalies progress from the subpolar North Atlantic 
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Greenland Sea, Iceland Sea, and the Norwegian Sea, and 
is constrained by the Greenland-Scotland Ridge in the 
south, Norway in the east, the Fram Strait in the north, and 
Greenland in the west. The amount of heat carried by the 
North Atlantic Current and its related heat loss influences 
the atmospheric circulation (e.g., Overland et al. 2008), the 
extent of the sea ice (Årthun et al. 2012; Sandø et al. 2014), 
marine ecosystems (Loeng and Drinkwater 2007; Drinkwa-
ter et al. 2014), and the dense Nordic Seas overflows across 
the Greenland-Scotland Ridge (Mauritzen 1996; Eldevik 
et al. 2009), contributing to the lower limb of the Atlantic 
Meridional Overturning Circulation (AMOC). The capacity 
to predict changes in the state of the ocean years in advance 
would therefore be of great potential impact.

Sea surface temperature (SST) anomalies occur-
ring along the pathway of the North Atlantic Current are 
brought northwards and eventually into the Nordic Seas 
(Sutton and Allen 1997; Chepurin and Carton 2012). Sev-
eral observation-based studies have shown that SST anom-
alies propagate from the northeast North Atlantic, via the 
Nordic Seas, and towards the Barents Sea and the Arctic 
Ocean (e.g., Polyakov et  al. 2005; Holliday et  al. 2008; 
Eldevik et al. 2009). If this occurs recurrently, the tempera-
ture in the Nordic Seas would be predictable some years 
ahead. Based on retrospective predictions (“hindcasts”) 
with three coupled climate models, we herein take a first 
step and investigate the multiyear predictive skill of SST in 
the Nordic Seas and Barents Sea for the 50-year long time 
period 1961–2010.

In the present study we focus on the eastern Nordic Seas 
(as defined in Fig.  1). This is a climatically complicated 

and economically important region with the northernmost 
surface signature of Atlantic Water; subsequently it either 
extends east into Barents Sea, or enters the Fram Strait as 
a sub-surface water mass to recirculate south or to progress 
into the Arctic Ocean. The eastern Nordic Seas remain ice-
free during winter as the Atlantic layer of relatively warm 
and saline water extends to the surface (Swift 1986). A thin 
mixed layer is overlaying the Atlantic Water in summer 
(Nilsen and Falck 2006). Herein we focus on the months 
January to April, when SST is representative of the Atlantic 
layer in general. These months are also the coldest in the 
eastern Nordic Seas and when the Nordic Seas in general 
exhibit the largest sea ice extent (Fig. 2).

Based on both observational and model studies, the 
northward propagation of SST anomalies in the subpolar 
region have been attributed to changes in purely advective 
signals from the subtropics, changes in local atmosphere–
ocean interaction, or a combination of these two processes 
(Sutton and Allen 1997; Hátún et al. 2005; Sarafanov et al. 
2008; Häkkinen et  al. 2011). Accordingly, ocean circula-
tion is an important factor when it comes to predicting 
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Fig. 1   Sea surface temperature in winter (Jan–Apr) from the Had-
ISST data, averaged over the period 1961–2010. The black box 
embraces the eastern Nordic Seas (66–79°N and 0–18°E), and the 
dashed black line indicates the Greenland-Scotland Ridge. The exten-
sion of the North Atlantic Current, carrying warm and saline Atlan-
tic Water into the Nordic Seas and the Barents Sea, is illustrated by 
magenta arrows

(a) 

(b) 

Fig. 2   Seasonal cycle of SST in the eastern Nordic Seas (a) and sea 
ice area in the Nordic Seas (b), averaged over the period 1961–2010. 
The CMIP5 models are represented by their ensemble mean of the 
historical+ runs
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SST anomalies in the subpolar North Atlantic. For exam-
ple, Matei et al. (2012) explain predictive skill for SST on 
longer lead times in the subpolar North Atlantic with the 
northward advection of subtropical water by the Atlan-
tic Meridional Overturning Circulation. Similarly, a suite 
of models (e.g., Robson et  al. 2012; Yeager et  al. 2012; 
Msadek et al. 2014) show that retrospective predictions are 
able to reproduce the subpolar warming in the 1990s due 
to increased northward advection of warm water. On the 
other hand, the Nordic Seas and the Barents Sea have been 
poorly investigated with respect to ocean predictability on 
interannual-to-decadal time scales. One recent “perfect 
model” twin-experiment shows encouraging results with 
predictive skill in heat content in the eastern and northern-
most Nordic Seas up to a decade (Counillon et al. 2014). In 
this perfect model study the synthetic data used for initiali-
sation and verification is taken from a free-running simula-
tion with the same climate model.

The manuscript is organized as follows. The CMIP5 
simulations, initialization data sets, and the observational 
based data, as well as the methods used in our study, are 
presented in Sect.  2. In Sect.  3, the retrospective predict-
ability of SST in the Nordic and Barents Seas is assessed 
and inter-compared among the three models. In Sect.  4, 
we discuss why there is different skill among the models 
and which factors can limit SST predictability in our focus 
region. Finally, the conclusions are given in Sect. 5.

2 � Data and methods

In the following, the simulations and observation-based 
data are introduced, including a description of the model 
resolutions and initialization process used for the hindcast 
experiments. Finally, we describe how the predictive skill 
is calculated.

2.1 � CMIP5 simulations (decadal hindcasts 
and historical runs)

In this study we use a suit of initialized hindcast simula-
tions (or retrospective predictions) performed within the 
framework of the fifth phase of the Coupled Model Inter-
comparison Project (CMIP5; Taylor et  al. 2012). CMIP5 
includes simulations that have been assessed in the Inter-
governmental Panel on Climate Change Fifth Assessment 
Report (IPCC 2013). Each model provides several ensem-
ble members, which have been initialized every fifth year 
between 1960 and 2010 (end of 1960, end of 1965…end 
of 2005). Here, we are using observations over the period 
1961–2010. That means that we are investigating only the 
hindcasts started between 1960 and 2005 (the 2006 decadal 
hindcast simulates the 2006–2015 period that is outside our 

observational data set). All hindcasts have a time length of 
10 years. Some of the CMIP5 models provide hindcasts ini-
tialized every year, but initialization every fifth year was a 
minimum requirement for CMIP5 decadal experiments. For 
consistency, we use the hindcasts initialized every fifth year 
from all models. Additionally we also check the predictive 
skill robustness in the hindcasts initialized every year from 
MPI-ESM-LR system, the model showing the most prom-
ising results (as shown later).

There are 16 different models that contribute with dec-
adal hindcast experiments to the CMIP5 data archive 
(Meehl et  al. 2014). Herein we are focusing on three of 
these models: MPI-ESM-LR (Giorgetta et  al. 2013; Jun-
gclaus et  al. 2013), CNRM-CM5 (Voldoire et  al. 2013), 
and IPSL-CM5 (Dufresne et al. 2013). The first two models 
have a reasonable seasonal cycle of ice area export in the 
Fram Strait (Langehaug et al. 2013). A realistic ice export 
is one of the important factors for correctly simulating 
the Arctic Ocean sea ice (Smedsrud et  al. 2011). We also 
include IPSL-CM5 in the present study, which has been 
widely used in previous climate studies (e.g., also includ-
ing previous versions of the model, Mignot et  al. 2011; 
Langehaug et al. 2012; Mignot et al. 2013). In Langehaug 
et al. (2012), both IPSL-CM and MPI-ESM were included, 
and the study demonstrated large model differences in the 
properties of the North Atlantic Current in the subpolar 
region. Another recent study (Deshayes et  al. 2014) com-
bines all three models herein, and shows that the models 
have clear differences in the extent of Atlantic Water in 
the subpolar region: MPI-ESM-LR is the warmest model 
of the three models studied herein with respect to Atlantic 
Water, whereas IPSL-CM5 is the coldest, and CNRM-CM5 
is intermediate compared to the two other. This is also 
expressed in the seasonal cycle of the sea ice area in the 
Nordic Seas (Fig. 2, lower panel): underestimated sea ice in 
MPI-ESM-LR, overestimated in CNRM-CM5, and largely 
overestimated in IPSL-CM5.

It is in a modelling and dynamical aspect of interest to 
analyse models that differ, thus representing a range of 
different model climates. This is particularly relevant for 
Sect. 4, discussing why different predictability is found in 
different models. The present study is accordingly not only 
an assessment of predictability in the three hindcast experi-
ments, but also an evaluation of how model-dependent 
mechanisms affect actual predictive skill. An appreciation 
of why these models show different predictability in the 
Nordic Seas and the Barents Sea will help to pinpoint the 
mechanisms carrying predictability in this region.

The model resolution of the oceanic component in the 
three models is given in Table  1, and a visualization of 
the horizontal resolution can be obtained from the spatial 
Figures, e.g., Fig.  12. MPI-ESM-LR has a bipolar grid 
with 1.5° resolution, but the northern pole is located over 
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Greenland, and hence, close to Greenland the resolution 
can be as high as 12  km. IPSL-CM5 has a tripolar grid 
with 2° resolution, and is the model with the lowest resolu-
tion of the three models in the North Atlantic/Nordic Seas. 
CNRM-CM5 also has a tripolar grid, but with an intermedi-
ate resolution (1°) compared to the two other models, and 
the resolution is similar to that of the observation-based 
data set (see Sect.  2.3 for further description of this data 
set).

In order to assess the impact of the initialization of the 
hindcasts, we compare the predictive skill of the hindcasts 
against the benchmark skill of the non-initialized histori-
cal simulations. The historical simulations cover the period 
1850–2005, and the RCP4.5 scenario simulations are used 
to extend the historical simulations up to 2010. The com-
bined historical and RCP4.5 runs are in the following called 
historical+ runs. Even if the number of ensemble members 
in the historical simulations for a particular model might be 
higher, the number of historical+ runs at hand is limited by 
the number of available RCP4.5 simulations. This numbers 
is for the three models as follows: three members for MPI-
ESM-LR, four members for IPSL-CM5, whereas the his-
torical+ run for CNRM-CM5 consist only of one member 
(as given in Table 1). The ensemble mean is used for MPI-
ESM-LR and IPSL-CM5.

2.2 � Initialisation data sets and techniques

The three models in this study use different techniques and 
different data sets in the initialization process for their dec-
adal hindcast experiments (Meehl et al. 2014).

The initial state in the hindcasts from MPI-ESM-LR is 
extracted from a nudged simulation using the coupled MPI-
ESM-LR. In this so-called assimilation experiment, the 
3D temperature and salinity fields of the second historical 
ensemble member of MPI-ESM-LR are relaxed towards the 
temperature and salinity anomalies of a simulation with the 
MPI ocean model forced with NCEP-NCAR daily atmos-
pheric reanalysis (Matei et  al. 2012; Müller et  al. 2012). 
The relaxation time scale is 10  days. In the regions cov-
ered by sea-ice an additional relaxation proportional with 
the ice-free fraction is applied in the upper 12 levels of the 
ocean model. This anomaly initialisation scheme aims at 
reducing model drift toward its own imperfect climatology. 
An ensemble simulation of ten members for the hindcasts 
initialized every fifth year (and three members for yearly 
initialized hindcasts) is subsequently made.

The initial state in the hindcasts from CNRM-CM5 
is extracted from a nudged simulation using the coupled 
CNRM-CM5 (Germe et  al. 2014). In this simulation the 
3D temperature and salinity are nudged towards the full 

Table 1   List of observational 
data sets, CMIP5 models and 
initialisation data

Source of data/modelling groups

(1) Hadley Centre Sea Ice and Sea Surface Temperature

(2) National Snow Ice Data Center

(3) Max Planck Institute for Meteorology

(4) Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancees 
en Calcul Scientifique

(5) Institute Pierre Simon Laplace

(6) Initialisation data for MPI-ESM-LR. Ocean model used is MPI-OM

(7) Initialisation data for CNRM-CM5. Ocean model used is NEMO

(8) Initialisation data for IPSL-CM5: NOAA Extended Reconstructed Sea Surface Temperature (ERSST)
a  Hind =  maximum number of members from decadal hindcasts (1961–1970, 1966–1975, 1971–1980, 
1976–1985, 1981–1990, 1986–1995, 1991–2000, 1996–2005, 2001–2010, 2006–2015)
b  Hist = number of members used from historical* runs (1850–2005)
c  RCP = maximum number of members from RCP4.5* runs (2006–2100/2300)

* Combined historical and RCP4.5 runs are called historical+ runs in the text

Abbreviations Period Hinda Histb RCPc Horiz (ocean) Vert

(1) HadlSST 1958–2010 1° × 1°

(2) NSIDC 1979–2010 25 km × 25 km

(3) MPI-ESM-LR 1961–2010 10 3 3 1.5° × 1.5° (nominal) 40 (z-level)

(4) CNRM-CM5 1961–2010 10 1 1 1° × 1° (nominal) 42 (z-level)

(5) IPSL-CM5 1961–2010 6 4 4 2° × 2° (nominal) 31 (z-level)

(6) NCEP forced ocean hindcast 1958–2010 1.5° × 1.5° (nominal) 40 (z-level)

(7) NEMOVAR COMBINE 1958–2008 1° × 1° (nominal) 42 (z-level)

(8) ERSST 1958–2010 2° × 2°
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fields from the ECMWF ocean reanalysis NEMOVAR–
COMBINE (Balmaseda and Mogensen 2010). The nudg-
ing is 3D Newtonian damping with a vertical dependence 
of the relaxing time-scale ranging from 10 days below the 
mixed layer to 360  days at the bottom of the ocean. No 
nudging is applied within the mixed layer (Germe et  al. 
2014). An ensemble simulation of ten members for the 
hindcasts initialized every fifth year is subsequently made.

The initial state in the hindcasts from IPSL-CM5 is 
extracted from a nudged simulation using the coupled 
IPSL-CM5 (Swingedouw et al. 2013). This nudged simu-
lation is based on the first historical ensemble member 
of IPSL-CM5, where SST anomalies are nudged towards 
observed SST anomalies (ERSST data, Reynolds et  al. 
2007). That means that no initialization is included below 
the ocean surface in IPSL-CM5-LR. Additionally, there 
is no initialization where the sea ice concentration is 
higher than 50 % (Swingedouw et  al. 2013). A relaxing 
timescale of around 60 days is used in the nudged simu-
lation (for a mixed layer of 50 m depth), and hence, the 
nudging is weaker in IPSL-CM5 than in MPI-ESM-LR 
and CNRM-CM5. An ensemble simulation of six mem-
bers for the hindcasts initialized every fifth year is subse-
quently made.

Another main difference among the models is whether 
anomaly or full field initialization has been applied. MPI-
ESM-LR and IPSL-CM5 use anomaly initialization, 
whereas CNRM-CM5 uses a full field initialization (Meehl 
et  al. 2014). An expected hindcast evolution for the full 
field initialization approach is a drift toward the model cli-
matology. The model state in CNRM-CM5 is colder than 
the observed state, and hence, sea ice area in the Nor-
dic Seas increases and SST in the eastern Nordic Seas 
decreases in each hindcast (not shown).

2.3 � HadISST sea surface temperature and sea ice data

Observation-based SST and sea ice concentration is 
obtained from the Hadley Centre Sea Ice and SST data set, 
version 1.1 (HadISST). This data set from the Met Office 
Hadley Centre is a combination of monthly global SST and 
sea ice concentration on a 1-degree latitude-longitude grid 
from 1870 to present. A detailed description of the dataset 
and its production process is given in Rayner et al. (2003).

The HadISST sea ice data are in reasonable agree-
ment with data from National Snow Ice Data Center 
(NSIDC, lower panel in Fig. 3). The monthly sea ice con-
centration from the NSIDC for the period 1979–2010 is 
estimated from passive microwave satellite data on a 
25  km ×  25  km grid (Cavalieri et  al. 1996). Due to the 
short time period of this data set, we are using the Had-
ISST sea ice data to assess the realism of the CMIP5 

models. The accuracy of the data before 1979 is lower 
compared to the period after 1979, due to the higher res-
olution and more homogenous data in the modern satel-
lite period (from 1979 and onwards). However, note that 
we here only use the mean and the standard deviation of 
the sea ice concentration over the period 1961–2010 and 
the mean seasonal cycle over the same period. We do not 
compare the year-to-year variability from HadISST and 
the CMIP5 models.

For the spatial distribution of predictive skill (i.e., skill is 
calculated grid point wise), the HadISST data are interpo-
lated to each of the three ocean model grids using bilinear 
interpolation. The HadISST SST data is set to “missing” 
for grid boxes with 100 % sea ice concentration, and hence, 
fully sea ice covered regions will appear as regions with no 
data in the spatial maps showing predictive skill of SST. 
The sea ice concentration in the models is also indicated 
in the relevant figures (Figs. 8, 9, 10). Furthermore, when 
calculating average SST in the eastern Nordic Seas for the 
models we exclude regions with 100 % sea ice concentra-
tion (as is the case for HadISST).
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Fig. 3   a Winter SST in the eastern Nordic Seas from HadISST and 
the three data sets used to initialise the three models. b Integrated 
winter sea ice area in the Nordic Seas from two different observation-
based data sets. HadISST data have been interpolated to the NSIDC 
grid before integrating sea ice area
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2.4 � Assessment of decadal hindcasts

In interannual-to-decadal predictability studies it is com-
mon to use one independent observation-based data set 
(e.g., HadISST) to compare with the hindcast experiments 
(e.g., Smith et  al. 2007; Kim et  al. 2012; Hazeleger et  al. 
2013; Robson et al. 2013; Caron et al. 2014), although the 
hindcasts are initialized with a different data set. If there 
are large differences between the independent observation-
based data set and the data sets used for initialisation (which 
is possible in our region of interest), the assessment of pre-
dictive skill can be expected to underestimate the actual pre-
dictability for a given model. In this study, we have there-
fore tested the predictive skill for each model against the 
data set that has been used for initialisation, in addition to 
an independent observation-based data set. This provides a 
more robust evaluation of the predictive skill, which can be 
divided in two parts: (1) how skilful are predictions com-
pared to the data actually used for initialization, and (2) how 
skilful are predictions compared to a reference climate as it 
evolved (in our case chosen to be HadISST).

Regarding the data used for initialization, it is important 
to note that we here consider these data sets before their 
eventual modification in the specific assimilation procedure 
of the models. Hence, the hindcasts and the initialization 
data sets may differ at the starting point of each hindcast 
(as is shown later). However, the initialization data sets are 
generically more consistent with the respective hindcasts 
than the HadISST data, and therefore, higher predictive 
skill is expected when evaluating against the initialization 
data sets. More details on the initialization data sets are 
given in Table 1, and Fig. 3 (upper panel) shows how they 
differ. The initialization data sets for MPI-ESM-LR (NCEP 
forced ocean hindcast) and CNRM-CM5 (NEMOVAR-
COMBINE; Balmaseda and Mogensen 2010) are most 
similar to the HadISST data, whereas the initialization data 
set for IPSL-CM5 (ERSST; Reynolds et  al. 2007) has a 
temporal variability that is rather different from the others.

2.5 � Calculation of predictive skill

We are calculating predictive skill according to lead time 
(e.g., Matei et al. 2012) to investigate how many years in 
advance SST in the Nordic Seas and Barents Sea is skil-
fully predictable. The two main measures for predictive 
skill are the anomaly correlation coefficient (or correla-
tion skill) and the Root Mean Square Error (RMSE) skill. 
Herein we will focus on the former, since we are inter-
ested in whether or not the models are able to predict the 
observed SST anomalies.

To calculate the anomaly correlation coefficient, we con-
struct a time series from the hindcasts for each lead time 

and correlate it with the corresponding observation-based 
time series. Since we are interested in the year-to-year 
variability and not the long-term trend, a linear trend is 
removed from the constructed time series at each lead time, 
prior to the calculation of the correlation. The anomaly 
correlation coefficient is calculated both for the ensemble 
mean and for the different ensemble members. Regarding 
the latter, a random ensemble member is chosen for each 
hindcast at each lead time. This process is repeated 100 
times at each lead time to get a picture of the spread in cor-
relation for the ensemble members. Correlation close to 1 
indicates good predictive skill, while low correlation indi-
cates poor skill. The statistical significance level at 90  % 
is achieved by the standard two-sided Student’s t test (e.g., 
O’Mahony 1986). With 9 data points available at each lead 
time, a significant correlation must be higher than 0.58. We 
believe that the two-sided t test is the more relevant in our 
case. If we use a one-sided t test we disregard the possibil-
ity of a relationship in the other direction (i.e., negative cor-
relations), which does not represent predictive skill, but it is 
possible. In the presence of strong negative correlation it is 
normal to check if such a value can be obtained by chance 
or if it is a real issue (e.g., initialization shock, unrealistic 
model behaviour/variability), and then one needs to use a 
two-sided t test (e.g., Matei et  al. 2012). The two-sided t 
test gives a higher statistical threshold compared to a one-
sided t test.

The anomaly time series are smoothed to increase the 
signal-to-noise ratio (e.g., Kim et  al. 2012; Matei et  al. 
2012). More specifically, a 3-year moving average has been 
applied to the hindcasts, and hence, we are considering lead 
times 1–3, 2–4, 3–5…and 8–10  years. The HadSST data 
and the historical+ runs have also been smoothed the same 
way.

As mentioned, CNRM-CM5 shows a clear drift in the 
initialized hindcasts. A drift correction is therefore done at 
each lead time by subtracting the mean difference between 
the hindcast and the observation-based data from each 
hindcast (Fig.  4). By doing this, the drift is removed, but 
variability is maintained in the hindcasts. There are other 
ways of doing the drift correction, but the one used herein 
is reasonable when having a small number of hindcasts 
(initialized only every fifth year between 1960 and 2010; 
Gangstø et al. 2013).

We compare the hindcast correlation skill not only 
against the benchmark skill of the non-initialized histor-
ical simulations, but also against the skill of the persis-
tence forecast. More specifically, at lead time 1–3  years 
(i.e., 1961–1963, 1966–1968…), the persistence forecast 
is constructed from the observation-based data by using 
the last year before the first forecasting year (i.e., 1960, 
1965…).
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3 � Results

Predictive skill for the average SST in the eastern Nordic 
Seas is presented for each model in this section, compar-
ing the skill of initialized hindcasts, non-initialized histori-
cal runs, and the persistence forecast. To achieve a better 
understanding of the skill, we also present spatial maps 
showing the anomaly correlation coefficient grid point by 
grid point. Assessing maps for each lead time give the pos-
sibility to detect regions where ocean advection appears to 
be important for the skill.

3.1 � Predictive skill in the eastern Nordic Seas differs 
among the climate models

Eastern Nordic Seas SST displays a positive trend in all ini-
tialization data sets (Fig. 4, black curves). With respect to the 
initialized hindcasts (Fig. 4, coloured curves), a positive trend 
is most clearly seen in CNRM-CM5. In IPSL-CM5 there is 
a drift in some of the individual hindcasts (e.g., 1981–1990). 
Since a drift with the same sign is not present in all hind-
casts, i.e., the model is not drifting back to its mean state (as 
CNRM-CM5), drift correction is not applied for this model. 
Note that we show the time series for the ensemble mean 
hindcast for each model (Fig. 4), which has a smaller vari-
ance than each individual ensemble member. From Fig. 4, it 
is difficult to deduce how well the models predict SST in the 
eastern Nordic Seas. Hence, we turn to the anomaly correla-
tion coefficient that is calculated for each lead time. In order 
to assess the practical robustness of correlations, hindcasts 
are compared both with the respective initialization data set 
and the observational-based reference (HadISST). Note that 
NEMOVAR-COMBINE only provides data up to 2008, and 
therefore the predictive skill for CNRM-CM5 can only be 
calculated for lead times up to 6–8 years.

The number of data points at each lead time is too low 
to estimate robustly any lagged auto-correlation, and hence 
the effective degrees of freedom. However, the indicated 
significance level (0.58; Fig.  5, and cf. Sect.  2.5) should 
be representative as a bootstrap-like procedure resulted in 
practically the same significance level. In this procedure 
the time series of SST in the eastern Nordic Seas based on 
initialization data were correlated with 9 randomly chosen 
numbers from the first historical ensemble member for the 
period 1961–2010 (i.e., from a 50-datapoint time series). 
This procedure was repeated 5000 times for each lead time. 
This resulted in a distribution of all correlations with the 5 
and 95 % percentile almost matching the significance level 
based on the two-sided t test (mean for all lead times is 
0.6, except the 95 % percentile for CNRM which is 0.64). 
Using the concatenated first three historical+ runs (i.e., 
150 data points) from MPI-ESM-LR and IPSL-CM5 gives 
the same result (0.6).

Both MPI-ESM-LR and IPSL-CM5 display increased 
correlation skill with increasing lead times (Fig.  5, left 
panel). The peak correlation is reached at a different 
lead time for IPSL-CM5 (4–6  years) and MPI-ESM-LR 
(8–10 years). MPI-ESM-LR also shows significant correla-
tion at shorter (1–3 years) lead time. CNRM-CM5 has the 
highest correlation at the shortest lead time (1–3  years), 
although not significant; contrary to the two other models, 
there is no increase of skill towards long lead times.

Comparing predictive skill using the initialization data 
and HadISST data (right panel, respectively) we find that 

Fig. 4   Hindcast winter SST in the eastern Nordic Seas for three 
CMIP5 models (coloured curves). The black curves show the data 
sets used to initialise the three models. Grey shading represents the 
range of one standard deviation of the spread in the ensemble mem-
bers at each time step. The starting time of each hindcast is indicated 
by a magenta circle
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Fig. 5   Left panel Anomaly correlation coefficient of winter SST in 
the eastern Nordic Seas for three CMIP5 models: the solid coloured 
lines show the correlation between the ensemble mean of the hind-
casts and the data used to initialise the hindcasts. The grey curves 
show the spread in the ensemble members. For comparison, also 
the ensemble mean of the non-initialised runs (historical+ runs) 
and the persistence forecast are shown. At each lead time, the time 

series are smoothed by a 3 year-moving average and the linear trend 
is subtracted prior to correlation. Note that NEMOVAR-COMBINE 
only provides data up to 2008, and therefore the predictive skill for 
CNRM-CM5 can only be calculated for lead-times up to 6–8 years. 
Right panel Same as left panel, but HadISST data is used instead of 
the initialisation data
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the overall results agree (Fig. 5). However, there are some 
differences that are worth mentioning; the correlation at 
short lead time for MPI-ESM-LR is not significant and the 
lead time for the peak correlation is shifted from 8–10 to 
7–9 years when considering HadISST. On the other hand, 
IPSL-CM5 shows higher correlations when using Had-
ISST data instead of initialization data, e.g., the peak cor-
relation at lead time 4–6  years is now significant. This is 
somewhat surprising, as one would maybe expect the high-
est predictive skill from consistency, i.e., from evaluat-
ing against the data also used for initialization. However, 
it could also reflect the fact that we only have nine data 
points to be correlated at each lead time. Furthermore, all 
three models show most negative correlations when using 
HadISST instead of initialisation data sets. These negative 
correlations appear to arise from sampling issues, as the 
negative correlations are greatly reduced when consider-
ing hindcasts initialized every year for MPI-ESM-LR (this 
will be shown later at the end of the current subsection). A 
thorough investigation of the reason for the drop in the cor-
relation is beyond the scope of this study. In the remainder 
of this subsection, the results are valid for evaluations both 
with respect to initialization data sets and HadISST data.

The non-initialized (historical+) runs are included here 
as a reference forecast and a direct comparison for the 
eventual benefit of initialization. At each lead time, the 
same years are taken from the non-initialized runs as from 
the hindcasts. A linear trend is also removed at each lead 
time from the historical+ time series prior to the calcula-
tion of the correlation skill. The historical+ run from MPI-
ESM-LR has no significant skill (Fig. 5). This shows that 
SST in the eastern Nordic Seas in MPI-ESM-LR benefit 
from the initialization (which also holds for the hindcasts 
initialized every year, as shown below). However, the ben-
efit for SST in the eastern Nordic Seas in IPSL-CM5 is not 
clear, as neither the initialized hindcasts nor the historical+ 
runs display any general significant skill (Fig. 5). Regard-
ing CNRM-CM5, the situation is different; the historical+ 
run is significantly correlated with the initialization data at 
nearly all lead times, and for some lead times when evalu-
ated against HadISST data (Fig. 5).

To further corroborate the covariance of the historical+ 
runs and the HadISST data, we correlate the continuous 
time series from the historical+ runs with HadISST over 
the full study period (1961–2010; Fig. 6). This means that 
50 data points from each data set is correlated, as opposed 
to the nine data points that have been correlated for each 
lead time in Fig. 5. Effective degrees of freedom were esti-
mated according to the decorrelation time scale (following 
Pyper and Peterman 1998). As Fig. 5 suggests, the histori-
cal+ run from CNRM-CM5 is significantly in phase with 
HadISST (0.48, Fig. 6). This analysis shows that the single 
non-initialized historical simulation from CNRM-CM5 has 

higher skill than the initialized hindcasts (both for individ-
ual members and ensemble mean). Hence, for SST in the 
eastern Nordic Seas, CNRM-CM5 hindcasts do not benefit 
from the initialization. The other two models have no sig-
nificant correlation between historical+ and HadISST at 
zero time lag (Fig. 6), consistent with Fig. 5.

There is little persistence of HadISST in the eastern 
Nordic Seas at short lead time, i.e., at lead time 1–3 years 
the correlation is slightly above 0.2 (Fig.  5, right panel); 
the auto-correlation of HadISST is negligible at lag year 
three (Fig. 6). At the subsequent lead times, the persistence 
forecast shows negative correlations, and particularly high 
negative correlations at lead time 5–7 years. On the other 
hand, considering the initialization data sets (Fig.  5, left 
panels), persistence is ranging from essentially zero (for 
IPSL-CM5) to nearly 0.6 (for MPI-ESM-LR) at short lead 
time. At increasing lead times, correlations are negative (at 
least for MPI-ESM-LR and CNRM-CM5), similar to the 
persistence forecast based on HadISST data, but the values 
do not exceed the significance level.

The positive peak correlations at longer lead time for the 
MPI-ESM-LR hindcasts are higher than those for the per-
sistence forecast. This underlines the potential role of ocean 
dynamics in bringing predictability to the Nordic Seas and 
Barents Sea, and similar result for the North Atlantic has 
been stressed using a different version of the MPI-ESM 
(Matei et al. 2012) as well as other models (Robson et al. 
2012; Yeager et al. 2012; Msadek et al. 2014).

The significant negative correlation for the persis-
tence forecast using HadISST data at lead times 4–6 and 
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Fig. 6   Cross-correlation of time series of SST in the eastern Nordic 
Seas for the period 1961–2010; ensemble mean of the non-initialised 
runs (historical+ runs) from the CMIP5 models have been correlated 
with HadISST data. The auto-correlation of HadISST data is shown 
by the black dashed curve. The time series are smoothed by a 3 year-
moving average and the linear trend is subtracted prior to correlation
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5–7  years (Fig.  5) is consistent with the auto-correlation 
for HadISST data (Fig. 6), where a significant negative cor-
relation is found at a time lag of ±6 years. This suggests 
a characteristic time scale of variance for SST in the east-
ern Nordic Seas of about 12 years, in line with the recent 
findings of Årthun and Eldevik (2016) combining both 
HadISST and a multi-century model control simulation. 
Accordingly, a warm anomaly in the eastern Nordic Seas 
should be followed by a cold anomaly about 6 years later, 
and a warm anomaly about 12 years thereafter.

As MPI-ESM-LR is showing the most skilful results 
in terms of SST anomalies in the eastern Nordic Seas, we 
have further assessed this model with respect to the impact 
of sampling size on the robustness of predictive skill also 
considering the available extended suite of hindcasts ini-
tialized every year (Fig. 7). The SST anomalies in eastern 
Nordic Seas are assessed both against HadISST data and 
the initialisation data set (Fig. 7). We see that negative cor-
relations are greatly reduced compared to what is shown in 
Fig. 5. Hence, the negative correlations in Fig. 5 appear to 
be a result of sampling issues (at least for MPI-ESM-LR), 
as also suggested above. Another difference between Fig. 5 
and Fig. 7 is the reduced positive correlation at short lead 
time when evaluating against HadISST data. Otherwise 
the shape of the curves is similar to what we got for the 
hindcasts initialised every fifth year, with increasing skill 
for increasing lead time and significant correlations at lead 
times 7–10  years (for evaluation against both data sets). 
Regarding the non-initialized historical experiments we see 
that the shape of the non-initialized historical experiments 
skill is now more similar to that of the initialized hindcasts, 

however, at lower non-significant levels. The similarity of 
the curves could suggest that the radiative forcing also con-
tributes to the predictive skill.

3.2 � Differences in predictive skill north and south 
of the Greenland‑Scotland Ridge

We here describe the predictive skill of SST in three 
regions: the subpolar North Atlantic, the Nordic Seas, 
and the Barents Sea (see Fig. 1 for the location of the dif-
ferent regions). These results give a better understanding 
of the predictive skill of the average SST in the eastern 
Nordic Seas (Fig. 5). The following results are based on 
assessment of the initialized hindcasts only against Had-
ISST data. Note that also the extent of the sea ice cover 
for each of the models is shown in Figs.  8, 9 and 10. 
MPI-ESM-LR has the smallest extent of sea ice of the 
three models, IPSL-CM5 the largest extent, and CNRM-
CM5 is somewhere between the two other models. The 
sea ice extent is more closely discussed in the following 
section.

In general, high predictive skill is found in the sub-
polar North Atlantic in MPI-ESM-LR (red colours are 

(a) (b) 

Fig. 7   Left panel Anomaly correlation coefficient of winter SST in 
the eastern Nordic Seas for MPI-ESM-LR with yearly initialization: 
the solid coloured lines show the correlation between the ensemble 
mean of the hindcasts and the data used to initialise the hindcasts. 
The grey lines show the spread in the ensemble members. For com-

parison, also the ensemble mean of the non-initialised runs (histori-
cal+ runs) and the persistence forecast are shown. At each lead time, 
the time series are smoothed by a 3 year-moving average and the lin-
ear trend is subtracted prior to correlation. Right panel Same as left 
panel, but HadISST data is used instead of the initialisation data

Fig. 8   Anomaly correlation coefficient, point-by-point, of winter 
SST for MPI-ESM-LR between HadISST data and the ensemble 
mean of the hindcasts at different lead times. Significant correlations 
at the 90  % level are embraced by the black solid (dashed) curves 
for positive (negative) correlations. At each lead time, the time series 
are smoothed by a 3 year-moving average and the linear trend is sub-
tracted prior to correlation. The magenta curve shows the position 
where the sea ice concentration is 50 %

▸
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dominating south of the Greeland-Scotland Ridge, 
Fig. 8), consistent with previous studies (e.g., Matei et al. 
2012; Hazeleger et al. 2013; Bellucci et al. 2015). In con-
trast, the predictive skill in the Nordic Seas and Barents 
Sea is poorer than in the subpolar North Atlantic (blue 
colours are dominating in the north, Fig. 8). However, at 
short time after initialization (1–3  years), MPI-ESM-LR 
has significant predictive skill in parts of the Nordic Seas 
and the Barents Sea. Thereafter, the skill becomes over-
all poorer as we move away from the initialization time. 
In the subpolar North Atlantic the skill becomes higher 
again at longer lead times (4–6 years). Interestingly, in the 
following lead times, domains of high skill are propagat-
ing from the subpolar North Atlantic and into the eastern 
Nordic Seas, and finally the Barents Sea (6–8 years). The 
increase of skill at longer lead times is consistent with 
the skill for the averaged SST in the eastern Nordic Seas 
(Fig. 5).

Similar to MPI-ESM-LR, CNRM-CM5 shows overall 
high predictive skill in the subpolar North Atlantic and 
poor skill in the Nordic Seas and the Barents Seas (Fig. 9). 
However, at short time after initialization (1–3  years), 
CNRM-CM5 has significant predictive skill in parts of 
the Nordic Seas and the Barents Sea. Thereafter, the skill 
becomes overall poorer as we move away from the ini-
tialization time. In the subpolar North Atlantic the skill 
becomes higher again at longer lead times (6–8  years). 
But, in contrast to MPI-ESM-LR, the domains of high 
skill are only reaching as far north as the southernmost 
part of the Nordic Seas. This is consistent with the no 
skill we find for the averaged SST in the eastern Nordic 
Seas (Fig. 5).

In IPSL-CM5, the subpolar North Atlantic has poor pre-
dictive skill at nearly all lead times, in contrast to the other 
two models (Fig. 10). The southern part of the Nordic Seas 
has high skill at short lead times. Similarly to what was 
found in MPI-ESM-LR, this region of high skill appears to 
spread further northward and into the Barents Sea (at lead 
times 4–6 and 5–7 years). Again, these findings are consist-
ent with the skill for the averaged SST in the eastern Nor-
dic Seas (Fig. 5). The Barents Sea at short lead times has 
poor skill in contrast to other two models. Possible reasons 
for the differences in skill among models are discussed in 
the following section.

3.3 � Relationship between SST in the eastern Nordic 
Seas and AMOC

Matei et  al. (2012) has investigated the relation between 
SST in the subpolar North Atlantic and AMOC (at 26.5°N), 
and find significant correlations between the two at time 
lags from 4 to 10 years. Matei et al. (2012) therefore sug-
gested that in their decadal prediction system, the SST skill 
in the subpolar region at longer lead times is a consequence 
of initialization AMOC variability, while the SST skill at 
shorter lead times can be attributed to persistence. These 
findings supports that skill at long lead time is a delayed 
response to ocean circulation (advective time lag). In the 
present study, we also find a significant correlation between 
the AMOC (at 48°N) and SST in the eastern Nordic Seas 
for MPI-ESM-LR and IPSL-CM5, where AMOC is leading 
with 5 and 1–2 years (Fig. 11), respectively. The time lag 
between the two appears to be related to the timing of pre-
dictive skill in the southeastern Nordic Seas for MPI-ESM-
LR (Fig. 8, lead time 4–6 years) and IPSL-CM5 (Fig. 10, 
lead time 2–4 years). Regarding CNRM-CM5, there is no 
significant correlations between AMOC and SST in the 
eastern Nordic Seas (Fig. 11), consistent with no SST skill 
in the eastern Nordic Seas (Fig. 5). The AMOC-SST rela-
tionships (Fig.  11) come from the non-initialized histori-
cal experiments that are the basis for the hindcast experi-
ments for MPI-ESM-LR and IPSL-CM5 (as described 
in Sect.  2.2). Examining the cross-correlation with other 
ensemble members from the historical experiment shows 
that the AMOC-SST relationship is different from one 
ensemble member to another.

4 � Discussion

We have investigated predictive skill of SST in the Nordic 
Seas and Barents Sea, with a particular focus on the east-
ern Nordic Seas, based on initialized hindcasts with three 
coupled climate models. The previous section showed that 
the predictive skill differs among the three models. In this 
section we are firstly discussing possible reasons for why 
the predictive skill differ, and then secondly we discuss 
more closely the characteristics of the model (MPI-ESM-
LR) that showed the most promising results in the previous 
section.

4.1 � Potential sources (causes) for the spread 
in predictive skill among models

A robust prediction would ideally require that the predic-
tive skill in the eastern Nordic Seas is high and similar 
across different models. However, this is not the case in the 

Fig. 9   Anomaly correlation coefficient, point-by-point, of win-
ter SST for CNRM-CM5 between HadISST data and the ensemble 
mean of the hindcasts at different lead times. Significant correlations 
at the 90  % level are embraced by the black solid (dashed) curves 
for positive (negative) correlations. At each lead time, the time series 
are smoothed by a 3 year-moving average and the linear trend is sub-
tracted prior to correlation. The magenta (grey) curve shows the posi-
tion where the sea ice concentration is 50 (95) %

◂
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present study. There are several reasons that could lead to 
these differences, such as the different horizontal resolution 
of the models. There appears to be a link between the reso-
lution and the SST skill of the three models. MPI-ESM-LR 
is the model with the highest resolution of the three mod-
els, and is also the one showing the most promising results 
(Figs. 5, 8). IPSL-CM5, on the other hand, has the lowest 
resolution among the three, a poor skill in the subpolar 
region, no robust skill for the averaged SST in the eastern 
Nordic Seas, and a largely overestimated sea ice cover in 
comparison to the two other models (Figs. 5, 10). CNRM-
CM5 has an intermediate resolution compared to the other 
two models. Also this model has no robust skill for aver-
aged SST, but it has skill in the subpolar region (Figs. 5, 9).

Another source for the differences among the models 
that could limit the SST skill is the initialization process. 
The three models in this study use different initialization 
techniques for their decadal hindcast experiments. Initiali-
zation is one of the important challenges to the decadal 
climate prediction (Meehl et al. 2014). The predictive skill 
in IPSL-CM5 is fairly different than in the other two mod-
els. This model uses initialization of SST only. This could 

imply that an initialization not taking into account sub-
surface variability and salinity is not enough to get ocean 
dynamics correct. In addition, IPSL-CM5 has no initializa-
tion of SST where the sea ice concentration is higher than 
50  % (Swingedouw et  al. 2013), e.g., the Barents Sea in 
wintertime, which could also contribute to the poor skill.

Systematic model errors are a major challenge in cli-
mate predictions. We here assess two important aspects of 
the climate at northern high latitudes in the models, which 
might influence the skill of SST in the Nordic Seas and the 
Barents Sea: the sea ice cover and the pathway of Atlantic 
Water. In the following we discuss the mean and variance 
of the sea ice concentration and SST in the three models 
based on the historical+ runs (Figs. 12, 13, respectively). 
For the SST discussion, we also compare the results with 
the hindcast experiments, as SST is the key variable in this 
study. We note that skill is not only related to how accurate 
the simulated mean state is. The variability and realism of 
various processes and mechanisms are also important for 
models’ predictive capacity.

The sea ice cover in IPSL-CM5 is expanding too far 
south during wintertime compared to observed sea ice, 
and high variance in the sea ice is therefore found in the 
central and eastern part of the Nordic Seas where the sea 
ice edge is located (Fig.  12). In the Barents Sea, IPSL-
CM5 clearly differs from the two other models, since the 
region is almost completely sea ice covered in wintertime, 
and therefore only allows for very small changes in SST 
(Fig. 13). The large sea ice cover in this model is consist-
ent with the Atlantic Meridional Overturning Circulation 
being weaker than the observation-based estimate and also 
compared to other CMIP5 models (Escudier et  al. 2013; 
Zhang and Wang 2013). Furthermore, with an earlier ver-
sion of IPSL-CM, it has been shown that the North Atlan-
tic Current subducts in the subpolar North Atlantic due to 
an overly fresh surface layer in the North Atlantic region 
(Mignot and Frankignoul 2010; Langehaug et  al. 2012). 
After travelling at subsurface, Atlantic Water emerges in 
the Nordic Seas. This subduction could be one suggestion 
for why we find poor skill in the subpolar North Atlantic in 
IPSL-CM5. However, unrealistic location of the convection 
in the subpolar region (Langehaug et al. 2012), limited ini-
tialization and low resolution, as mentioned above, or too 
weak nudging (Sect. 2.2) could also be possible reasons for 
the poor skill in the subpolar region. On the other hand, a 
recent study using the IPSL-CM5 hindcasts do find poten-
tial predictability of AMOC (Swingedouw et  al. 2013), 
which might explain some of the skill that we find in Nor-
dic Seas.

CNRM-CM5 is more similar to the observed sea ice 
and SST than IPSL-CM5 (Figs.  12, 13). However, the 
extent in CNRM-CM5 advances too far eastward in the 
southern part of Nordic Seas compared to observations; 
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Fig. 11   Cross-correlation between AMOC at 48°N and SST in the 
eastern Nordic Seas for the period 1961–2010 based on ensemble 
members from the historical+ runs from the CMIP5 models. The leg-
end denotes which model and ensemble member (given in the paren-
theses). The time series are smoothed by a 3  year-moving average 
and the linear trend is subtracted prior to correlation. The significance 
level is shown by the dashed lines

Fig. 10   Anomaly correlation coefficient, point-by-point, of winter 
SST for IPSL-CM5 between HadISST data and the ensemble mean 
of the hindcasts at different lead times. Significant correlations at 
the 90 % level are embraced by the black solid (dashed) curves for 
positive (negative) correlations. At each lead time, the time series are 
smoothed by a 3  year-moving average and the linear trend is sub-
tracted prior to correlation. The magenta (grey) curve shows the posi-
tion where the sea ice concentration is 50 (95) %
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the isoline for 10 % sea ice concentration is located east 
of Iceland in the model, whereas it is located west of Ice-
land in HadISST data (Fig. 12, left panels). This overes-
timation of sea ice could obscure the SST signals com-
ing from the south. In addition, the oceanic heat transport 
from the Nordic Seas and into the Barents Sea is weak 
in this model in comparison with observed values (Sandø 
et al. 2014).

Furthermore, CNRM-CM5 has the largest difference of 
the three models regarding SST variance in the Nordic Seas 
between the historical+ run and initialized hindcast experi-
ment (Fig.  13, compare left and right panel for CNRM-
CM5), where SST variance is greatly enhanced northeast of 
Iceland in the hindcast experiment. Note that Fig. 13 (right 
panel) only shows the SST variance for the last hindcast, 
i.e., the hindcast starting in 2001. Interestingly, this region 

also coincides with the most skilful region in the Nordic 
Seas at lead time 1–3 years (Fig. 9), and one could specu-
late whether the SST skill is enhanced by the change in the 
SST variance due to the initialization of the model. How-
ever, Germe at el. (2014) describe differences between the 
historical and hindcast experiments for CNRM-CM5. They 
find that the historical experiment has less sea ice northeast 
of Iceland in the period after 1987 compared to period prior 
to 1987, which is consistent with the observational record. 
On the other hand, a similar reduction in the sea ice extent 
northeast of Iceland was not seen in the hindcast experi-
ment (Germe et  al. 2014). The enhanced SST variance 
northeast of Iceland in the hindcast experiment could there-
fore simply be due to co-location of the sea ice edge north-
east of Iceland, and not due to the initialization of tempera-
ture and salinity.

Fig. 12   Winter sea ice concentration (SIC) from HadISST data and 
three CMIP5 models for the period 1961–2010. The colour shows 
standard deviation (std), whereas the single black curve shows where 

the SIC is equal to 10 %. The models are represented by one ensem-
ble member from the historical+ runs to exemplify the typical vari-
ance in the runs
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MPI-ESM-LR compares similarly to observed sea 
ice and SST as CNRM-CM5, although these two models 
also have differences between them with MPI-ESM-LR 
being generally warmer than CNRM-CM5 (Figs.  12, 13). 
However, MPI-ESM-LR is the one out of the three mod-
els showing the highest predictive capacity of SST for 
a broader region (subpolar region, Nordic Seas, and Bar-
ents Sea) for the period 1961–2010 (Figs. 5, 8). In particu-
lar, on longer lead times, only MPI-ESM-LR shows SST 
skill along the pathway of the Atlantic Water all the way 
from the subpolar North Atlantic to the Barents Sea. In 
the following, the discussion is therefore concentrated on 
MPI-ESM-LR.

4.2 � Predictive capacity of MPI‑ESM‑LR

Previous studies find predictive skill for SST in the sub-
polar region at lead times up to a decade with MPI hind-
casts experiment, but the persistence forecast beats the 
hindcasts at short lead time (Matei et al. 2012). Likewise, 
multi-model ensembles show predictive skill for the ocean 
surface in the North Atlantic up to a decade (Hazeleger 
et al. 2013; Bellucci et al. 2015). Consistently, MPI-ESM-
LR used herein also shows predictive skill in large parts of 
the northeast subpolar region up to lead times of 6–8 years 
(Fig.  8). Furthermore, another study using sea surface 
salinity from MPI-ESM-LR with yearly initialization also 
shows predictive skill up to decade in the subpolar region 
(Lohmann et al., in preparation).

Moving further north, to the Nordic Seas, MPI-ESM-
LR shows skill in predicting both sea surface temperature 
(Fig. 8) and salinity (Lohmann et al., in preparation) along 
the pathway of Atlantic Water at longer lead times. Since 
skill is found both for sea surface temperature and salinity, 
it indicates that the skill is caused by ocean advection. The 
northward spread of skilful regions is consistent with what 
is known from observational studies; ocean surface tempera-
ture and salinity anomalies progress northward as they are 
carried by the mean flow from the subpolar North Atlantic 
and towards the Arctic Ocean (e.g., Holliday et  al. 2008; 
Eldevik et  al. 2009; Årthun and Eldevik 2016). Based on 
both observations and a tracer simulation, Gao et al. (2005) 
demonstrated that the transit time is about 5  years during 
the 1970s for a passive tracer originating from the Irish Sea 
(eastern North Atlantic) to reach the Barents Sea. Starting 
from the entrance of the Nordic Seas and considering ther-
mohaline properties, the travel time reduces to 1–3  years 
(Eldevik et al. 2009). Similarly, Årthun and Eldevik (2016) 
finds a travel time of about 3 years for SST anomalies propa-
gating the same distance. The travel time through the eastern 
Nordic Seas in MPI-ESM-LR can be estimated from the spa-
tial maps of predictive skill to about 2 years (Fig. 7; lead time 
3–5 and 5–7 years), which is comparable to observations.

As MPI-ESM-LR appears to be the more adequate 
model to predicting SST in the Nordic and Barents Seas, 
we also show predictive skill for the Barents Sea ice cover 
(assessed against HadISST; Fig. 14). Similar to the anom-
aly correlation coefficient for the averaged SST in the east-
ern Nordic Seas, the correlation for the sea ice in the Bar-
ents Sea is highest at short lead time and then increases at 
longer lead times, with peak correlation at 6–8 years lead 
time. Although none of the correlations are significant, 
the result point in the same direction as recent studies. 
These studies highlight the potential of predicting the sea 
ice in the Barents Sea a couple of year ahead using heat 
transports through the Barents Sea Opening as a predictor 
(Schlichtholz 2011; Årthun et  al. 2012; Smedsrud et  al. 
2013; Onarheim et al. 2015).

5 � Conclusions

This study is based on initialized hindcasts for the period 
1961–2010 with three coupled climate models. The maybe 
most promising results are related to one model, MPI-
ESM-LR, which shows aspects of SST predictability in the 
eastern Nordic Seas on longer lead times, i.e., 7–10 years 
after the initialization. The skill at these lead times beats 
the skill of a persistence forecast, underlining the poten-
tial role of ocean circulation in bringing predictability to 
the Nordic Seas and the Barents Sea. Regions of high skill 
propagate from the subpolar North Atlantic towards the 
Barents Sea as forecast time progresses, similar to observed 
ocean temperature anomalies. This appears to be a source 
for skill on interannual time scale in this region.

In the other two models, the northward propagation 
of skilful regions as forecast time progresses is found to 
a varying and lesser degree. In IPSL-CM, the subpolar 
North Atlantic shows no skill, but skilful regions is found 
between the entrance to the Nordic Seas and the entrance to 
the Barents Sea (where the model sea ice edge is located). 
In CNRM-CM5, there is northward propagation of skill 
from the subpolar North Atlantic, similar to MPI-ESM-
LR, but the skill does not extend beyond the southern part 
of the Nordic Seas. The reason for model differences such 
as these, and how they translate into skill or lack thereof, 
needs to be better understood to improve future decadal 
predictions.

For all models, skilful regions are found in parts of the 
Nordic and Barents Seas 1–3 years after the initialization 
(regions are model dependent). However, for longer lead 
times we generally find that the predictive skill of SST in 
the Nordic Seas and Barents Sea is more limited than the 
relatively high skill that appears relatively robust for the 
subpolar North Atlantic (e.g., Matei et al. 2012; Hazeleger 
et al. 2013; the IPSL-CM5 is neither associated with skill 
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in the subpolar North Atlantic). Large areas even display 
significant negative correlations with observations, par-
ticularly in the Nordic Seas. This underlines the need for 
a better understanding of the mechanisms and processes 
giving rise to skill in the Nordic Seas and the Barents Sea. 
As an example, a recent study argues that realistic eddy 
fluxes and volume of Atlantic Water in the Lofoten Basin 
are needed in climate models in order to better represent 
the transport of Atlantic Water into the Arctic (Chafik et al. 
2015).

There are several factors that can limit predictive skill 
of SST in the Nordic Seas and the Barents Sea: insufficient 
horizontal resolution, an imperfect initialization technique, 
and model biases, such as an unrealistic sea ice cover. For 
instance, an overestimation of sea ice in the Barents Sea 
would mute SST variance, and hence, predictions would 
not be useful for that region. In order to improve the predic-
tive skill of climate models it is essential to reduce model 
biases and improve the representation of mechanisms and 
processes relevant for predictability. Regarding SST in the 
Nordic Seas and the Barents Sea, it appears essential to 

simulate a realistic poleward propagation of SST anoma-
lies. More specifically, this means a continuous propaga-
tion of anomalies from the subpolar North Atlantic to the 
Fram Strait along a realistic pathway and with a realistic 
time scale of propagation.
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