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ABSTRACT

The growth and decay of a convective boundary layer (CBL) over a surface with a constant surface tem-

perature that develops into a linear stratification is studied, and a mathematical model for this system is

derived. The study is based on direct numerical simulations with four different Reynolds numbers; the two

simulationswith the largest Reynolds numbers displayReynolds number similarity, suggesting that the results

can be extrapolated to the atmosphere. Because of the interplay of the growing CBL and the gradually

decreasing surface buoyancy flux, the system has a complex time evolution in which integrated kinetic energy,

buoyancy flux, and dissipation peak and subsequently decay. The derivedmodel provides characteristic scales

for bulk properties of the CBL. Even though the system is unsteady, self-similar vertical profiles of buoyancy,

buoyancy flux, and velocity variances are recovered. There are two important implications for atmospheric

modeling. First, the magnitude of the surface buoyancy flux sets the time scale of the system; thus, over a

rough surface the roughness length is a key variable. Therefore, the performance of the surface model is

crucial in large-eddy simulations of convection over water surfaces. Second, during the phase in which kinetic

energy decays, the integrated kinetic energy never follows a power law, because the buoyancy flux and dis-

sipation balance until the kinetic energy has almost vanished. Therefore, the applicability of power-law decay

models to the afternoon transition in the atmospheric boundary layer is questionable; the presented model

provides a physically sound alternative.

1. Introduction

This paper addresses the growth and decay of a con-

vective boundary layer (CBL) over a surface with a

constant surface temperature. Few studies exist of the

basic properties of such a boundary layer; most of the

simulation-based studies of the properties of the turbu-

lent flow in the CBL have been done using a fixed sur-

face flux (e.g., Moeng 1984; Sullivan et al. 1998;

Fedorovich 1995; Garcia and Mellado 2014), whereas

many of the studies with a fixed surface temperature

address cloudy boundary layers over sea, often in a

setting including radiative cooling (e.g., Tompkins and

Craig 1998; vanZanten et al. 2011).

Our study of a CBL over a fixed-temperature surface

has relevant applications. It represents, for instance,

a limiting case of the decay of turbulence in the

CBL: one where the system dies out very slowly.

Furthermore, it can help in understanding hetero-

geneously heated and cooled boundary layers over

sea ice; here, it represents the limiting case of a

boundary layer that forms over a very wide Arctic

lead (Esau 2007). It also represents an idealized

setting to study the reaction of a CBL over sea to

changes in the sea surface temperature.

In this paper, we study this CBL in one of its most

simple forms: the growth of a CBL against a linear

stratification over a surface with a fixed temperature,

without a balancing cooling force and without a large-

scale horizontal pressure force and subsidence. This

system develops and dies out over time, as the at-

mospheric buoyancy evolves toward that of the sur-

face, resulting in an unsteady system with a vanishing

near-surface gradient. Our aim is to derive a mathe-

matical model for the system in order to find the rel-

evant time scales as a function of the external

parameters. This model is verified against direct nu-

merical simulations (DNSs) of the system. The mo-

tivation for using DNS is that it does not require us
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to use a surface model, as its applicability in a turbu-

lence resolving model under conditions of free con-

vection is still under discussion (Zilitinkevich et al.

2006; Mellado et al. 2015). As the Reynolds num-

bers acquired in direct numerical simulations are

several orders of magnitude smaller than those in the

atmosphere, this study contains a careful assessment

of whether the results can be extrapolated to the

atmosphere.

The organization of this paper is the following: In

section 2, we define the system and apply dimensional

analysis to minimize the number of independent pa-

rameters and to obtain first estimates of characteristic

scales. Subsequently, we describe the simulation setup

in section 3 and study the evolution of the system based

on the simulations in section 4. In section 5, we

propose a mathematical model that describes the evo-

lution of the system as a function of time and derive the

analytical solutions, which we verify against the simu-

lations in section 6. In this analysis, we explore the

presence of self-similarity and Reynolds number simi-

larity. This is followed by a discussion on the applica-

bility of the results to the atmosphere in section 7,

including a discussion on the importance of surface

roughness and of the relevance of this case to the study

of the decay of turbulence during the afternoon

transition.

2. Physical model and dimensional analysis

The physical model being studied is a linearly

stratified atmosphere with kinematic viscosity n and

thermal diffusivity k that is heated from below by a

surface with a constant temperature (Fig. 1). For

generality, we make use of buoyancy as our thermo-

dynamic variable. We define buoyancy in terms of

virtual potential temperature as b[ (g/uy0)(uy 2 u0y),

where uy0 is the virtual temperature of the back-

ground stratification at the surface. The linearly strat-

ified system at rest has thus a surface buoyancy of

0m s22. We express the initial linear stratification as

parameter N2 [ db/dz. In our simulation, we assign a

surface buoyancy b0 to the system that is larger than

zero to trigger convection and thus the development of

a CBL.

The system is described by its four parameters

(n, k, N2, b0) and has length and time as dimensions;

thus, two nondimensional parameters can be derived.

We use k and N2 to make the system dimensionless to

arrive at 8<
:n

k
,

 
b4/3
0

k2/3N2

!4/3
9=
;, (1)

where the former is the Prandtl number (Pr) and

the latter a reference Reynolds number (Re), which

we explain below. In this study, we assume the

Prandtl number to be unity, which allows for

several simplifications in the following dimensional

analysis.

In order get a better physical understanding of the

system and to scale it later on, we introduce a set of

characteristic scales. First, we define an outer length

scale L:

L[
b
0

N2
, (2)

which is the height at which the buoyancy of the line-

arly stratified atmosphere equals the surface buoyancy

(Fig. 1). This is the maximum size the system can

achieve. Then, we define the surface buoyancy flux

scale B:

B[ b4/3
0 k1/3 , (3)

following inner-layer scaling (Townsend 1959; Mellado

2012), where we assume that the influence of stratifica-

tion is not felt in the surface layer. With the help of

the previous two scales, we can define a velocity scale

to normalize the velocity fluctuations caused by

turbulence:

U[B1/3L1/3 5
b7/9
0 k1/9

N2/3
, (4)

following Deardorff (1970). With the defined length

and velocity scales, one can rewrite the defined

FIG. 1. Sketch of the system and its parameters. The red line

illustrates a typical CBL during the initial development.

2166 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73



Reynolds number according to the classical definition

Re5ULn21.

Now we define a reference Kolmogorov length scale

h for this system, where we assume that the total dissi-

pation in the system is a fraction, of order 1, of the

surface buoyancy flux. This gives

h[
k3/4

B1/4
5

k2/3

b1/3
0

, (5)

where the unity value of the Prandtl number is used to

substitute n with k. It follows that the Reynolds number

is equal to the four-thirds power of the scale separation;

thus, Re5 (Lh21)4/3.

The last scale to be defined is the time scale of the

system. This time scale is the characteristic time scale

of the evolution of the system and is therefore different

than that of the turbulent fluctuations LU21. We as-

sume time scale T to be proportional to the time it

takes to warm up the system from the initial linear

stratification to buoyancy b0 over height L. The total

energy required is proportional to (1/2)b0L, whereas

the speed at which it warms is proportional to the

surface buoyancy flux such that we can define the time

scale as

T[
b
0
L

B
5

b2/3
0

N2k1/3
. (6)

To diagnose the actual state of the system, we define a

length scale and a buoyancy scale that can be acquired

from the vertical profile of horizontally averaged

buoyancy hbi. These are the required variables for the

derivation of a mathematical model in section 5. Note

that, in the remainder of this paper, horizontally aver-

aged quantities are denoted with angle brackets. The

scales are

h2

*[
2

N2

ð‘
0

hbi2N2z dz , (7)

where

b
ML

[min(hbi) . (8)

The definition of length scale h* follows the same

geometrical reasoning as that of time scale T. The total

added energy is the equal to the integral in Eq. (7). If

this integral is assumed to be a right triangle with legs

h* and h*N
2, then normalization of the integral in Eq.

(7) with 2N22 gives the value of h2

*. The time evolution

of h2

* can be described by the following equation,

where we make use of the governing equation for

buoyancy to substitute the partial time derivative of

buoyancy:

dh2

*
dt

5
2

N2

d

dt

�ð‘
0

hbi2N2z dz

�

5
2

N2

�ð‘
0

›hbi
›t

dz

�

5
2

N2

�
k
›hbi
›z

����
‘

2 k
›hbi
›z

����
0

�

5
2

N2
(kN2 1 hB

s
i) , (9)

where hBsi is the time-varying horizontally averaged

surface buoyancy flux.

With the latter equation, we have an exact evolution

equation for our defined length scale h*. We can rewrite

Eq. (9) as an evolution equation for h* that is, under the

assumption that the buoyancy in the mixed layer is well-

mixed, equivalent to a mixed-layer model that describes

the evolution of the depth of a CBL that grows through

encroachment:

dh*
dt

5
hB

s
i1 kN2

h*N
2

. (10)

With the set of scaling variables fL, T, Bg, we can re-

write Eq. (10) in terms of nondimensional variables. We

define ĥ*[ h*/L, t̂[ t/T, and B̂s [Bs/B. Substitution into

Eq. (10) results in the equivalent evolution equation:

dĥ*
dt̂

5
hB̂

s
i1Re23/4

ĥ*

. (11)

In section 5, we use Eq. (11) as the reference for the

derivation of a mathematical model of the system for

high–Reynolds number flows.

3. Numerical simulations

a. Formulation and model description

The evolution of the system is described by the set of

evolution equations for velocity vector ui, buoyancy b,

and volume, formulated in flux form for a Boussinesq

fluid:

›u
i

›t
1

›u
j
u
i

›x
j

52
›p

›x
i

1 d
i3
b1 n

›2u
i

›x2j
,

›b

›t
1

›u
j
b

›x
j

5 k
›2b

›x2j
,

›u
j

›x
j

5 0, (12)

where p is a modified pressure.
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The velocity boundary conditions are specified as

no penetration (w5 0) and no slip (u5 y5 0) at the

bottom boundary and no penetration and free slip

(›u/›z5 ›y/›z5 0) at the top. The top boundary con-

dition for buoyancy is a fixed gradient equal to the

stratification N2. The initial fields for velocity are set to

zero, whereas the initial buoyancy profile is zero at the

surface and increases with a constant gradient N2 with

height. Random noise is superimposed on the velocity

fields in order to provide perturbations that trigger

convection. The noise exponentially decays with height

and is negligible beyond 0.1L.

We use MicroHH (http://microhh.org), which is a 2D-

parallel combined DNS/LES code. Fully conserva-

tive, fourth-order-accurate finite-difference schemes

(Morinishi et al. 1998; Vasilyev 2000) have been used,

combined with a low-storage third-order Runge–Kutta

time integration scheme (Williamson 1980). The pres-

sure is acquired by solving a Poisson equation. Here, the

horizontal dimensions are decoupled using a Fourier

decomposition, and for each mode a heptadiagonal

matrix is solved. In the top of the domain (upper 25%) a

damping layer is applied that prevents the reflection of

gravity waves back into the domain with a damping time

scale that is infinity at the bottom boundary of the

damping layer and decreases exponentially to (2p)/N at

the top of the domain.

b. Numerical experiments

The results in this study are based on four direct nu-

merical simulations, with varying Reynolds number and

an identical Prandtl number of unity (Table 1). Each

simulation has been run at a horizontal domain size of

2m, with a linear stratification N2 of 3 s22. The varia-

tions in the Reynolds number are acquired by varying

the surface buoyancy b0 and the thermal diffusivity k. As

the acquired boundary layer height is well approximated

by b0/N
2, the width-to-height aspect ratio reduces with

Reynolds number from 12 in simulation ReS to 3 in

simulation ReXL. The total runtime has been specified

in Table 1. Note that ReXL could not be continued

because of the small aspect ratio and the imminent

reorganization of the flow into a single large-scale

circulation.

4. Results

a. Characteristics

Wefirst study the general characteristics of our system

from the time evolutions of buoyancy- and kinetic-

energy-related variables (Fig. 2). To already give an

impression of the performance of the later-to-be-

derived model, we have added its results with dotted

black lines. Our analyses are partly based on the time

evolution of several vertically integrated quantities that

are denoted as If, where f is an arbitrary variable. The

value of If is calculated following

I
f
[

ð‘
0

hfi dz . (13)

We make use of the integrals of b 2 N2z, of kinetic

energy e[ (1/2)(u02 1 y02 1w02), of the buoyancy flux

w0b0, and of dissipation «, denoted as Ib, Ie, IB, and I«,

respectively, where Ib is referred to as the vertically in-

tegrated buoyancy hereinafter.

The time evolution of the mean surface buoyancy

flux hBsi (Fig. 2a) shows that the energy input from the

surface is decreasing in time from the beginning of

the simulations and converges toward zero. With the

chosen scaling variables, the four simulations and the

derived model collapse very well. The surface flux does

not decay exponentially, nor does it follow a power

law, because of the nonlinear relation between surface

buoyancy flux and the buoyancy difference over the

surface layer and the increasing CBL depth over time.

The time evolution of the boundary layer depth h*
(Fig. 2b), calculated following Eq. (7), shows a growth

that levels off in time, with a growth rate proportional to

the energy input to the system. The CBL depth of the

simulations with lowReynolds numbers (ReS andReM)

keeps increasing, because a nonnegligible amount of

energy is added to the system through diffusion of

buoyancy down the linear stratification. As the impor-

tance of diffusion from the top boundary decreases with

Reynolds number [see Eq. (11)], the simulations with a

higher Reynolds number develop toward an asymptotic

CBL depth ofL. The time evolution of those simulations

is well predicted by the model.

TABLE 1. Overview of the numerical simulations.

Name Nx 3Ny 3Nz b0 (m s22) L (m) n, k (m2 s21) Re tend (s)

ReS 10243 10243 384 0.5 0.1667 13 1025 1876 400

ReM 10243 10243 768 1.0 0.3333 13 1025 6431 900

ReL 15363 15363 768 1.6 0.5333 53 1026 27 463 700

ReXL 20483 20483 1024 2.0 0.6667 53 1026 40 835 343
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The time evolution of the vertically integrated mean

buoyancy (Fig. 2c) shows two lines for each simulation:

namely, the surface contribution to the integral, calcu-

lated as Ib 2kN2t (solid lines), and the contribution of

the top boundary kN2t (dashed lines). Each of the cases

shows that the total amount of integrated buoyancy

keeps increasing even when the surface buoyancy flux

approaches zero. This is related to the molecular diffu-

sion flux at the top of the domain. The results show that

the molecular diffusion flux at the top becomes negli-

gible at higher Reynolds numbers; already for case ReL

the contribution is less than 3% at the end of the simu-

lation. This means that the contribution of diffusion to

the total heating can be neglected for the high–Reynolds

numbers simulations. Therefore, our model approxi-

mates well the time evolution of the vertically integrated

buoyancy and becomes progressively better for higher

Reynolds numbers.

The time evolutions of vertically integrated mean ki-

netic energy, buoyancy flux, and dissipation (Figs. 2d–f)

demonstrate the complexity of the system. The time

evolution of the integrated kinetic energy (Fig. 2d) shows

that there is first a phase in which the kinetic energy in-

creases, during which the added potential energy through

the surface buoyancy flux is converted into kinetic en-

ergy and the benefits of a deeper CBL outweigh the loss

of buoyancy supply at the bottom boundary. The buoy-

ancy flux and dissipation show a similar pattern, but

with a peak that occurs earlier in time.

After the peak, the integrated variables decrease in

time and slowly develop toward zero. Similar to the time

evolution of the surface buoyancy flux, also the time

evolution of the three kinetic-energy-related variables

shows a complex decay pattern that is neither exponen-

tial nor follows a power law. With the model that we de-

rive in section 5, we provide the proper algebraic scaling.

The derived model only predicts the correct kinetic

energy for the two cases with the highest Reynolds

numbers. Interestingly, the buoyancy flux and the dis-

sipation are adequately predicted by the derived model

in all four simulations. This suggests that, in the simu-

lations with low Reynolds numbers (ReS and ReM),

there is insufficient scale separation between the large

scales at which the production happens and the smaller

scales at which the energy is dissipated. Plumes are

therefore already dissipated before they can reach their

full potential, resulting in a lower integrated kinetic

energy than in simulations ReL and ReXL.

FIG. 2. (top) The nondimensional time evolution of (a) the mean surface buoyancy flux hBsi, (b) the boundary layer height h*, and

(c) the surface contribution to the vertically integrated buoyancy Ib 2kN2t (solid line) and the top contribution to the vertically integrated

buoyancy kN2t (dashed line). (bottom) The nondimensional time evolution of (d) the vertically integrated kinetic energy Ie, (e) buoyancy

flux IB, and (f) dissipation I«.
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We conclude from the analysis that a high Reynolds

number is a requirement for the study of the initial peak in

integrated kinetic energy and, even more so, of those in

the integrated buoyancy flux and dissipation. Only then is

the time it takes to forget the initial perturbations and to

form a fully turbulent layer sufficiently shorter than the

time it takes to form the peak in kinetic energy so that the

model is able to predict the integrated kinetic energy

during the phase that its magnitude is still steeply in-

creasing. The evolution toward the peak is thus not related

to the spinup of the model, but is a fully physical process.

b. Reynolds number

Before the derivation of the mathematical model, we

evaluate the Reynolds numbers of the simulations. In

Fig. 3, the time evolution of two definitions of the

Reynolds number is shown. The two are defined as

Re*[B1/3
s h4/3

f n21 , (14)

Re
l
[max

(
[(2/3)hei]1/2l

n

)

5max

"�
20

3

hei
h«in

�1/2
#
. (15)

The first is the convective Reynolds number (Re*), and

the second is the maximum in the vertical profile of the

Taylor Reynolds number (Rel), as defined by Pope (2000,

p. 200). In the latter, we substituted l with (10nhei«21)1/2

(Pope 2000, p. 199). Height hf in Re* is the height of the

minimum in the mean buoyancy flux hw0b0i. In terms of

Rel, ReL has its peak at a value around 150 and decreases

subsequently to values close to 100, whereas ReXL peaks

close to 180. Both simulations fulfill the criteria of

Dimotakis (2000) for fully developed turbulence, which

sets an Rel of 100–140 as the threshold; thus, this cor-

roborates our observation of Reynolds number similarity

for simulations ReL and ReXL (Fig. 2).

To illustrate the influence of the Reynolds number on

the flow characteristics, two cross sections of the surface

buoyancy flux are displayed in Fig. 4. The left cross

section shows simulation ReL at the moment of maxi-

mumReynolds number, whereas the right one shows the

state of that variable at the end of the simulation, where

the Reynolds number has decreased considerably. The

FIG. 3. Time evolution of the convective Reynolds number (Re*;

solid lines) and Taylor Reynolds number (Rel; dotted lines).

FIG. 4. The surface buoyancy fluxBs of the full computational domain (a) at its maximumReynolds number (t/T5 5) and (b) at the end

of the simulation (t/T5 26) for simulation ReL. The color scale ranges from no flux (white) to maximum flux (black). The scale is

nonlinear and serves to highlight the flow structure the best.
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decrease in Reynolds number reveals itself in the loss of

small-scale features in the flow, as the size of the smallest

eddies that can exist is increasing because of the de-

crease of energy input at the largest scales.

5. Mathematical model

a. Governing equations of the model

To create a mathematical model for the evolution of

the system, we first need a model that describes the

surface buoyancy flux, because we use a Dirichlet

boundary condition. We make use of bML [Eq. (8)] and

define the actual viscous length as d[ k2/3(b0 2 bML)
21/3.

Based on viscous scaling, we can define then the mod-

eled surface buoyancy flux Bsm:

hB
s
i52k

›hbi
›z

����
0

’B
sm

[ c
0
k
b
0
2 b

ML

d

5 c
0
k1/3(b

0
2 b

ML
)4/3 (16)

If we assume that Bsm is a good approximation for Bs, we

can define a modeled length scale h*m according to Eq.

(10), which is a good approximation for h*. We make the

conjecture that it takes a constant c1 to relatebML toh*mN
2:

b
ML

5 c
1
h*mN

2 , (17)

which we verify later.

This gives the following expression:

B
sm

5 c
0
k1/3(b

0
2 c

1
h*mN

2)4/3 . (18)

If we define B̂sm [Bsmb
24/3
0 k21/3, we acquire the following

expression for the nondimensional surface buoyancy flux:

B̂
sm

5 c
0
(12 c

1
ĥ*m)

4/3 , (19)

With Eq. (19) as the model for the surface buoyancy

flux, we can define the differential equation that de-

scribes the evolution of the characteristic length scale

h*m of the system. This equation is similar to Eq. (11),

but under the assumption that the Reynolds number is

so high that the top-diffusion term can be neglected:

dĥ*m
dt̂

5
c
0
(12 c

1
ĥ*m)

4/3

ĥ*m

. (20)

The constant c0 has been discussed in detail in

Beljaars (1995), where a similar dimensional analysis

has been presented. This constant does not directly re-

late to a rough-wall scalar exchange coefficient, as these

are generally applied in combination with a wind speed

difference between the atmosphere and the surface,

which we do not consider in our dimensional analysis.

There are indications that such laws can be applied lo-

cally in free convection (Zilitinkevich et al. 2006), but

this is still under debate. The analysis as we applied it

can be extended to rough surfaces. To do so, we

introduce a new modeled surface buoyancy flux BsmR

that relates the flux to the roughness length z0 and the

buoyancy difference between z0 and the mixed layer:

B
smR

[ c
R
z1/20 (b

z0
2 b

ML
)3/2 , (21)

with a constant cR to match the left- and right-hand side.

The introduction of Eq. (21) into Eq. (10) gives, if we

assume the high–Reynolds number limit, amodel for the

boundary layer depth over rough surfaces:

dh*R
dt

5
c
R
z1/20 (b

z0
2 c

1
h*RN

2)3/2

h*RN
2

, (22)

which can be reduced to a similar form as Eq. (20), but

with slightly different coefficients. Furthermore, this

equation is not closed, as we also need theory and a

model to describe the buoyancy at the roughness length

bz0 , which goes beyond the scope of this study.

b. Solutions of the governing equations

To solve Eq. (20) in its most general form, we define
~t [ c0c

2
1 t̂ and

~h*m [ c1ĥ*m , which immediately shows that

the characteristic time of the system is linearly related to

c0 and quadratically to c1. The corresponding equation is

d ~h*m
d~t

5
(12 ~h*m)

4/3

~h*m

. (23)

This equation has the following implicit solution, which

has been shown by Deardorff et al. (1969) and elabo-

rated by Zilitinkevich (1991):

11
2

9
~t5

1

3
(12 ~h*m)

2/3 1
2

3
(12 ~h*m)

21/3 . (24)

This function has a one-to-one mapping of t to h*m for

t$ 0 and 0# h*m # 1. We can distinguish two limiting

cases. The first one is that, under the condition ~h*m � 1,

d ~h*m
d~t

’ 1
~h*m

, (25)

with solution

~h*m ’ (2~t )1/2 , (26)
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which is equal to the solution of the CBL with a fixed

surface flux. This solution applies in the initial state,

where the surface buoyancy has not reduced yet signif-

icantly as an effect of atmospheric warming.

The second limiting case is found in the approach of

the final state, where ~h*m ’ 1:

d ~h*m
d~t

’ (12 ~h*m)
4/3 . (27)

This equation has solution

11
1

3
~t ’ (12 ~h*m)

21/3 , (28)

which can be inverted to an expression for h*m :

~h*m ’ 12

�
3

~t1 3

�3

. (29)

This solution describes the final state at which the non-

dimensional height of the system is approximately unity

and only the variation in the surface buoyancy flux is still

relevant. In our later discussion on the role of roughness

in free convection (section 7), we make use of the ap-

proximated solutions. We complete our set of scaling

variables by defining a convective velocity scale

w*m [B1/3
smh

1/3
*m (Deardorff 1970).

c. Fitting the constants

To apply this model for scaling the results, we need to

fit the constants c0 and c1 based on the simulations. First,

c0 needs to be determined, as its value is required to

infer c1. The constants are calculated with the help of

Eqs. (16) and (17), and their time evolutions are shown

in Fig. 5. The figure shows that, for all Reynolds num-

bers, c0 approaches a constant value directly after the

initial transient; it remains constant as long as there is

sufficient turbulence, even though this period is only

very short for the two cases with the lowest Reynolds

numbers. For these cases, an increase of the constant c0
is already observed before t/T5 10, because of the ef-

fects of viscosity. The value of c0 decreases with in-

creasing Reynolds number, but convergence emerges

for the highest Reynolds numbers, even though small

differences between ReL and ReXL remain visible. To

scale our results, we choose a value of 0.145 for c0 based

on simulation ReXL. This value is in the range of 0.14 to

0.16 that has been presented in Beljaars (1995, his Fig. 2)

and Mellado et al. (2015). Constant c1 has been de-

termined by trial and error to ensure that the time series

min(hbi)h21

*mN
22 becomes constant in time. Also, con-

stant c1 displays Reynolds number dependence, mostly

related to the dependence of the near-surface mean

buoyancy profile on Reynolds number. A similar con-

clusion is drawn from the large-eddy simulations by

Sullivan and Patton (2011, their Fig. 2), who show that in

the mean potential temperature profile the thicknesses

of the surface layer and the entrainment zone decrease

with increasing resolution, thus with increasing effective

Reynolds number. We have inferred a value of 1.026 for

c1. To predict the kinetic energy, we define two more

constants ce and cB that relate the vertically integrated

kinetic energy, buoyancy, and dissipation to the model

variables following:

I
e
5 c

e
h*mw

2

*m , (30)

I
B,«

5 c
B
h*mBsm

. (31)

The constants calculated from the model results are

ce 5 0:5 and cB 5 0:46, based on the data from

simulation ReL.

6. Scaling the results

a. Time evolution

The scaled time evolutions of the buoyancy- and

kinetic-energy-related variables are shown in Fig. 6,

which is similar to Fig. 2, but with the mathematical

model used to normalize the results. For each of the

variables, a constant value in time corresponds to a

perfect performance of the model. Each of the results

show a convergence toward the value predicted by the

model with increasing Reynolds numbers, and for all

plotted variables there is convergence for simulations

ReL and ReXL.

We can conclude from the time evolution of scaled

surface buoyancy flux hBsi/Bsm that our proposed model

works very well as long as the Reynolds number is high

enough but that the influence of viscosity eventually

FIG. 5. Time evolution of c0 5 hBsi(b0 2bML)
24/3

k21/3 (solid lines)

and c1 5 bMLh
21

*mN
22 (dotted lines).
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causes a departure of the scaled variable from unity. The

moment at which this happens is similar to the moment

the top heating becomes relevant to the heat budget (see

Fig. 2c). Top heating causes the gradient to reduce, re-

sulting in a simulated surface flux that is less than the

predicted flux and thus in a decrease of the scaled value

in time. The lower importance of the top diffusion for

largerReynolds numbers can be observedwell in Fig. 6c,

where the evolution of the scaled surface contribution to

the total heating starts following a constant line with

increasing Reynolds number.

The height evolution (Fig. 6b) shows a scaled height

h*/h*m close to unity and convergence to exactly unity

for increasing Reynolds number. This result shows that

our chosen model [Eq. (18)] for the surface buoyancy

flux provides the proper interaction with that of the

height h*, as the derived model predicts the length scale

h* very well.

The scaling of the kinetic-energy-related variables is

more subtle. The model is able to predict the kinetic

energy well (Fig. 6d), but the kinetic energy is sensi-

tive to the correct prediction of the surface buoyancy

flux; it drops quickly as soon as hBsi/Bsm falls below

unity, because the predicted surface buoyancy flux is

too large. Figures 6e and 6f show that the model is well

able to predict the buoyancy flux and the dissipation.

As the time evolution of the kinetic energy (Fig. 6d) is

the result of the delicate balance between buoyancy

production and dissipation, more fluctuation is ob-

served in this variable. Until a nondimensional time

of 20, the model has at most 10% error, but subse-

quently the influence of viscosity increases the error

beyond that.

b. Profiles

In Fig. 7, we present scaled vertical profiles of relevant

buoyancy- and kinetic-energy-related variables, making

use of the scaling variables provided by the derived

model. The profiles are taken at equal intervals in the

range where the nondimensional time of the system t/T

varies between 1 and 8. The buoyancy profiles (Fig. 7a)

show an adequate height scaling that results in self-

similar behavior for the three cases with the largest

Reynolds numbers. In addition, the acquired buoyancy

profiles in the two cases with the largest Reynolds

numbers collapse well, which shows that Reynolds

number independence also applies to the shape of the

profiles.

FIG. 6. (top) The scaled time evolution of (a) the mean surface buoyancy flux Bs, (b) the boundary layer height, and (c) the surface

contribution to the vertically integrated buoyancy. (bottom) The scaled time evolution of (d) the vertically integrated kinetic energy,

(e) buoyancy flux, and (f) dissipation.
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Similar conclusions can be drawn from the profiles of

the mean buoyancy flux hw0b0i (Fig. 7b). The three cases
with the largest Reynolds numbers display a self-similar

flux profile and the two with the largest value show

identical profile shapes. The flux profiles show that the

modeled flux Bsm is not the proper scaling variable for

the two low–Reynolds number cases. The vertical pro-

file of the viscous flux (Fig. 7c) shows that the scaled

surface viscous buoyancy flux is decreasing in time for

these two cases. We can infer from these results that,

only for simulations ReL and ReXL, the viscous term in

Eq. (9) can be neglected; thus, only for these cases, Eq.

(20) is a good model.

The vertical profiles of the kinetic energy and the

velocity variances show that theReynolds number of the

flow has a much larger impact on the kinetic-energy-

related flow properties than on the thermodynamic

characteristics of the flow. In Fig. 2, which displayed the

time evolution of the vertically integrated mean kinetic

energy, we found that the total normalized kinetic en-

ergy roughly doubles from the lowest to the highest

Reynolds number. Figures 7d–f shows that the increase

in kinetic energy with larger Reynolds numbers comes

with a change in the shape of the profiles, where the two

largest Reynolds numbers recover the profiles with the

shape and magnitudes, exactly as those in Sullivan and

Patton (2011, their Fig. 6). Note the conversion factor

w2

*5 (h/h*m)
2/3
w2

*m 5 (1:24)2/3w2

*m between our results

and those of Sullivan and Patton (2011) [the value of

1.24 originates from Garcia and Mellado (2014, their

Table 2)]. We do not observe a relative loss of decay in

kinetic energy near the top of the CBL in the early stages

of decay, nor a relative increase in the final stages, as has

been observed by Darbieu et al. (2015). In their study,

the presence of shear in the early stages leads to a rel-

ative increase in kinetic energy near the surface, because

the shear production is maintained by the large-scale

pressure gradient, whereas the buoyancy production

slowly decreases. In the final stages, the surface wind has

largely ceased, and the shear that is still present in the

higher regions of the boundary layer that are decoupled

from the surface becomes the dominant production

FIG. 7. Vertical profiles of (a) horizontally averaged buoyancy hbi, (b) the buoyancy flux B, (c) the diffusive buoyancy flux, (d) the

kinetic energy, (e) the horizontal velocity variance, and (f) the vertical velocity variance. The lines represent equal parts of the interval

t/T 5 1–8. Later times have darker colors.
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term. As all forms of shear production are absent in our

study, we observe a self-similar vertical profile of kinetic

energy over the entire decay. All in all, the time evolu-

tion of vertical profiles remains a controversial topic, as

consistent behavior did not emerge from intensive field

campaigns yet (Grimsdell and Angevine 2002; Lothon

et al. 2014).

To conclude, the analysis of the vertical profiles of

buoyancy and velocity variances validates the applica-

bility of our mathematical model for the scaling of high–

Reynolds number simulations. Furthermore, it shows

that, even though the integrated kinetic energy

exhibits a complex time evolution, the vertical profiles

display self-similarity. The Reynolds number similarity

displayed in the two cases with the highest Reynolds

numbers encourages the use of direct numerical simu-

lation as a tool in atmospheric turbulence, as the re-

quired resolution to recover converged results from

large-eddy simulations is only marginally higher

[Sullivan and Patton (2011) found similarly converged

results at 5123 grid points] and the entire uncertainty

introduced by subfilter-scale models has been

eliminated.

7. Discussion: Roughness and decay during the
afternoon transition

In the previous sections, we have validated the de-

rived characteristic scales and the mathematical model

for the bulk characteristics of the CBL and several

kinetic-energy-related variables and have shown the

presence of Reynolds number similarity. This allows us

to extrapolate the results to the atmospheric boundary

layer with very high Reynolds number. In this section,

we use the mathematical model to analyze the time

evolution of the system under typical atmospheric con-

ditions. We have chosen here for an excess temperature

of 6K, a lapse rate of 0.006Km21, a thermal diffusivity

of 1 3 1025m2 s21, and a buoyancy parameter g/u0 of

9.81/273ms22K21.

One important difference between our experiments

and most atmospheric flows is the type of bottom

boundary, as nearly all atmospheric flows are rough.

Zilitinkevich et al. (2006) and Beljaars (1995) have

shown that free convection over rough surfaces is a

delicate issue and that full understanding is still lacking.

Nonetheless, Zilitinkevich et al. (2006) has estimated

that, over a rough surface, the transfer coefficient can

increase two orders of magnitude compared to a smooth

surface. To study the time scales in an approximate at-

mospheric setting, we have calculated the time evolution

of the system using the fitted constant c0, representing

the smooth surface, and with constants that are re-

spectively one and two orders of magnitude higher,

representing the rough surfaces. Assuming that we are

studying dry systems, the initial surfaces fluxes with the

chosen dimensions are 5, 50, and 500Wm22. All three

are shown in Fig. 8.

According to the scaling laws, the rate of change of the

system is proportional to hBsi and thus to c0. Based on

the chosen values for c0, the systems with rough surfaces

evolve therefore 10 or 100 times faster than that with a

smooth surface.With respect to atmospheric time scales,

this difference is of great importance. Over a smooth

wall, the height evolution can be well approximated

using a fixed flux boundary condition for approximately

10 h, whereas for the roughest surface the solid and

dotted lines depart from each other within a fewminutes

(Fig. 8a). Such information is relevant, for instance, to

parameterizations that describe the refreezing of Arctic

FIG. 8. Time evolution of (a) the CBL depth, (b) the surface buoyancy flux, (c) the vertically integrated kinetic energy, and (d) the

vertically integrated buoyancy flux as predicted by themodel described in section 5. The three lines represent three cases: the smooth flow

with the original value of c0, a factor-of-10 increase in c0, and a factor-of-100 increase in c0. The dashed and dotted lines in (a) represent the

approximate solutions given in Eqs. (26) and (29), respectively.
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leads; if the time it takes to refreeze a lead is within the

time that the constant flux approximation is valid, it

potentially allows for very simple models to describe the

process. This finding can be directly related to the rela-

tive rate of change of the surface buoyancy flux since the

initial value, shown in Fig. 8b, where the time during

which the surface buoyancy flux is approximately con-

stant, quickly reduces with increasing roughness. The

time evolution of the integrated kinetic energy and

buoyancy flux (Figs. 8c and 8d) show that the change in

surface conditions can change the moment at which the

peaks in integrated kinetic energy and buoyancy occur

from values around 100 to approximately 1 h.

The linear dependence of the time scales in our system

on the buoyancy transfer rate makes the surface model a

crucial, and potentially overlooked, model component

under conditions of free convection. The exact behavior

of free convection over a rough surface is still not fully

understood, although adequate parameterizations for

large-scale models have been developed (Beljaars

1995). These solutions, however, are not applicable in

large-eddy simulations, where the large-scale motions of

the size of the CBL depth are resolved. Zilitinkevich

et al. (2006) have made the case that, in regions of

horizontal flow toward plumes, Monin–Obukhov-like

parameterizations are applicable. However, few mea-

surement data are available, and the solution to this

problem remains incomplete. Consequently, large-eddy

simulations of (cloudy) boundary layers over sea sur-

faces may exhibit an important dependence on the

chosen formulation of the surface model and the way

roughness is accounted for during free convection.

With respect to the decay of turbulence during the

afternoon transition, our results indicate that, at atmo-

spheric Reynolds numbers, the quasi-steady state, thus

the dominant balance between the buoyancy flux and

dissipation, can be maintained until the input of energy

from the surface buoyancy flux has nearly vanished. Van

Driel and Jonker (2011) have shown that this balance

holds for systems that have slow fluctuations in the

surface buoyancy flux, although they worked with pre-

scribed fluxes. As a result of this balance, the time

evolution of the kinetic energy in the system can be

excellently predicted from the solution of Eq. (10), as

long as the appropriate model forBs is provided and this

variable does not vary too rapidly. The time evolution of

integrated kinetic energy cannot be approximated by a

power law, nor by an exponential function, but is de-

pendent on the shape of the specified function for Bs.

This finding suggests that the power-law decay of in-

tegrated kinetic energy found by Nieuwstadt and Brost

(1986) after a sudden stop of energy input at the bottom

is not a good basis for the study of the decay of

turbulence during the afternoon transition. Our results

explain, for instance, why Sorbjan (1997, line D1 in his

Fig. 2) and Nadeau et al. (2011, their Fig. 7) do not find a

region with a constant power law, but instead an in-

creasingly negative slope, in agreement with our Fig. 8c.

In case a sinusoidal heat flux profile with a period that

matches the diurnal cycle is prescribed for Bs, also an

accelerating decay is found (not shown). The power law

is therefore not an artifact of the characteristic shape of

the daily evolution of the surface buoyancy flux.

8. Conclusions

We have characterized the growth and decay of a

convective boundary layer (CBL) over a surface with a

constant surface temperature and a linear stratification.

This system has only the Reynolds and Prandtl numbers

as nondimensional parameters. We have done direct

numerical simulations for four different Reynolds

numbers and have chosen a Prandtl number of unity for

all simulations. We have derived a mathematical model

that describes the time evolution of the buoyancy- and

velocity-variance-related variables and verified the

model against the simulations.

Each simulation has a decaying surface buoyancy flux

from the beginning, because the temperature difference

between the surface and the atmosphere is decreasing.

However, the vertically integrated kinetic energy,

buoyancy flux, and dissipation initially increase in time,

because the contribution of boundary layer growth is

more important than the decay of the flux. These vari-

ables develop toward a peak and decay subsequently.

The derived model is very well able to describe the

evolution of the bulk variables of high–Reynolds num-

ber flows. Our simulations display Reynolds number

similarity for the two cases with the highest Reynolds

numbers, which suggests that our results can be ex-

trapolated to the atmosphere, despite their moderate

Reynolds numbers. This demonstrates the applicability

of direct numerical simulation to the study of atmo-

spheric boundary layers.

The time rate of change of the system is linearly re-

lated to the surface flux of buoyancy, and therefore any

atmospheric model study depends crucially on correct-

ness of the mathematical formulation of the surface

model. Especially in large-eddy simulations over water

surfaces, which is a common setting for studies of

cloudy boundary layers, the importance of the chosen

surface roughness may have been underestimated. Even

in the case of a friction-velocity-dependent roughness

(Charnock 1955), an arbitrary constant is involved that

has a large influence on the time scale of the system.We,

however, cannot give the definitive answer on the role of
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surface roughness in free convection, which warrants a

repetition of this study, but with a rough surface im-

plemented at the bottom boundary.

This system can be seen as a limiting case for the decay

of turbulence during the afternoon transition, as the

surface flux slowly develops toward a value of zero. Our

results show that the evolution of kinetic energy in the

decay phase is not exponential, nor does it follow a

power law, as a result of the competing effects of

boundary layer growth and a decreasing surface flux.

The derived model in this paper is able to predict the

correct evolution in time of the CBL depth, kinetic en-

ergy, buoyancy production, and dissipation.
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