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Abstract

Diapycnal mixing is a major candidate in maintaining the large-scale meridional

overturning circulation in the ocean, attributed principally to the breaking of internal

waves, with winds and tides serving as the primary wave sources. As a first step to

accurately estimate how much tidal energy is fed into turbulent mixing, it is crucial

to achieve a detailed understanding of the low-mode internal tides, the most energetic

part of internal tides. On the other hand, to study submesoscale variability by the next

generation altimeter mission SWOT, the low-mode internal tides having larger length

scales need to be predicted and removed, for which detailed quantification are required

for these waves, whose signatures in the surface elevations are most evident.

In this thesis, a concurrent simulation of the eddying general circulation, barotropic

and internal tides with the 1/10◦ STORMTIDE model is used to derive a near-global

quantification of the freely propagating low-mode internal tides of the M2 and K1 tidal

constituents. The three-dimensional baroclinic tidal velocities are analyzed by using

the wavenumber spectral analysis. Thus, the low modes of internal tides are separated

by a detailed analysis of spectral peaks of the wavenumber spectrum, and are quantified

by the resulting wavelengths. The results are compared with solutions of the Sturm-

Liouville eigenvalue problem and of the eigenvalue problem further simplified by the

WKB approximation.

Two modes of the M2 internal tide are captured in our model, ranging within 100-160

km and 45-80 km for mode 1 and 2, respectively. Due to the larger length scales of

the K1 internal tide, three modes (mode 1 to 3) are captured, presenting the ranges

of 200-400 km, 100-200 km, 60-120 km, respectively. All modes of the M2 and K1

internal tides reveal, to different degrees, a zonal asymmetry and a poleward increase

of the wavelengths. The largest magnitudes and the strongest spatial variations of the

wavelengths occur in the Pacific, with larger values in the western than in the eastern

Pacific for both tidal constituents.



II

The magnitudes and geographical distributions of the tidal constituents compare well

with those from the standard Sturm-Liouville eigenvalue problem. Hence, the simulated

internal tides are, to the first approximation, linear internal waves that satisfy the

local dispersion relation. Since the Sturm-Liouville eigenvalue problem depends only

on the Coriolis frequency f and stratification N , the observed zonal asymmetry and

poleward increase are accounted for by the effect of N and f , respectively. The mode-1

M2 internal tides are determined by both, whereas the mode-2 M2 internal tides are

controlled primarily by N only. The K1 internal tides are determined by the combined

role of N and f , with the f -effect being dominant.

The WKB-simplified Sturm-Liouville eigenvalue problem presents the relative dis-

crepancies up to 15% when compared with the standard Sturm-Liouville eigenvalue

problem. Hence, neglecting the details of the vertical variations of N could be prob-

lematic in deriving the wavelengths in the near-global ocean for the M2 and K1 internal

tides, although smaller relative discrepancies are found in certain regions.

The presence of the K1 critical latitude at 30◦ in this high-resolution simulation en-

ables us to investigate the vertical energy distributions of the freely propagating and

bottom-trapped K1 internal tides. The STORMTIDE model is capable of capturing

the different characteristics of the K1 internal tides in the vertical that are the surface

concentration and the bottom amplification of the kinetic energy in sub- and super-

critical latitudes, respectively. The kinetic energy is stronger in shallower than deeper

ocean regions both equatorward and poleward of 30◦. A strong decreasing rate of the

bottom-amplified K1 kinetic energy and a further upward energy reduction above the

level of energy minima are present in shallow waters poleward of 30◦.



Zusammenfassung

Diapyknische Vermischung spielt eine große Rolle in der Aufrechterhaltung der großskali-

gen Meridionalen Umwälzbewegung im Ozean, hauptsächlich durch das Brechen von

internen Wellen, die durch Winde und Gezeiten entstehen. Um möglichst genau ab-

schätzen zu können, wie viel Gezeitenenergie der turbulenten Vermischung zugeführt

wird, ist ein genaues Verständnis der „low-mode“ internen Gezeiten, dem energiereich-

sten Teil der internen Gezeiten, von großer Bedeutung. Um submesoskalige Variabilität

mit der Altimetermission der Zukunft, SWOT, untersuchen zu können, müssen ander-

erseits die low-mode internen Gezeiten mit größeren Längenskalen prognostiziert und

abgezogen werden. Dafür ist eine genaue Quantifizierung dieser Wellen, dessen Rolle

sich in der Wasserspiegelhöhe klar abzeichnet, notwendig.

In dieser Doktorarbeit wird eine gemeinsame Simulation der turbulenten allgemeinen

Zirkulation und der barotropen und internen Gezeiten mit dem 1/10◦ STORMTIDE

Modell genutzt, um die frei propagierenden low-mode internen Gezeiten der M2 und

K1 Komponenten der Gezeiten beinahe global zu quantifizieren. Die dreidimensionalen

baroklinen Gezeitengeschwindigkeiten werden mithilfe von spektraler Wellenzahlanal-

yse untersucht. Daher werden die „low modes“ (oder „niedere Moden“) der inter-

nen Gezeiten mit einer genauen Analyse der Spektrallinien eines Wellenzahlspektrums

heraus gesucht und mit der resultierenden Wellenlänge quantifiziert. Die Ergebnisse

werden mit dem Sturm-Liouville Eigenwertproblem und dem mit der WKB-Näherung

weiter vereinfachten Eigenwertproblem verglichen.

Zwei Moden der M2 internen Gezeiten werden von unserem Modell erfasst: von

100-160 km und 45-80 km für Mode 1, bzw. Mode 2. Da die K1 internen Gezeiten

eine größere Längenskala haben, werden hier drei Moden erfasst (Mode 1 bis 3), die

entsprechend von 200-400 km, von 100-200 km und von 60-120 km reichen. Alle Moden

der M2 und K1 internen Gezeiten zeigen, im verschiedenen Maße, eine zonale Asymme-

trie und eine polwärtige Zunahme der Wellenlängen. Die größten Wellenlängen und die
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mit den meisten räumlichen Abweichungen treten im Pazifik auf, mit größeren Werten

im West- als im Ost-Pazifik für beide Komponenten der Gezeiten.

Die Größenordnungen und die geographischen Verteilungen der Gezeitenkomponen-

ten sind gut mit denen aus dem ursprünglichen Sturm-Liouville Eigenwertproblem ver-

gleichbar. Daher sind die simulierten internen Gezeiten in erster Näherung lineare

interne Wellen, die die lokale Dispersionsrelation erfüllen. Da das Sturm-Liouville

Eigenwertproblem nur von der Coriolisfrequenz f und der Schichtung N abhängt, re-

sultiert die beobachtete zonale Asymmetrie und die polwärtige Zunahme aus dem Effekt

von f bzw. von N . Die Mode-1 M2 internen Gezeiten werden von beiden bestimmt,

während die Mode-2 M2 internen Gezeiten hauptsächlich von N alleine kontrolliert

werden. Die K1 internen Gezeiten werden von dem gemeinsamen Effekt von N und f

bestimmt, wobei der Effekt von f dominiert.

Das WKB-vereinfachte Sturm-Liouville Eigenwertproblem zeigt relative Abweichun-

gen von bis zu 15% im Vergleich zu dem ursprünglichen Sturm-Liouville Eigenwert-

problem. Daher könnte es problematisch sein, Einzelheiten der vertikalen Variation

von N beim Ableiten der Wellenlängen im beinahe globalen Ozean für die M2 und K1

internen Gezeiten zu vernachlässigen, obwohl einige Regionen kleinere relative Abwe-

ichungen zeigen.

Die Anwesenheit des K1 kritischen Breitengrades bei 30◦ in dieser hoch aufgelösten

Simulation erlaubt es uns die vertikale Energieverteilung der frei propagierenden und

der am Boden gefangenen K1 internen Gezeiten zu untersuchen. Das STORMTIDE

Modell ist in der Lage die unterschiedlichen Eigenschaften der K1 internen Gezeiten in

der Vertikalen, das heißt die Oberflächenkonzentration und die Bodenverstärkung der

kinetischen Energie in unter- bzw. über-kritischen Breiten, zu erfassen. Die kinetische

Energie ist stärker in flacheren als in tieferen Ozeanregionen äquator- und auch polwärts

von 30◦. Eine starke Abnahme der bodenverstärkten K1 kinetischen Energie und weiter

oben eine Energieabnahme oberhalb des Levels der Energieminima kommt in flachen

Gewässern polwärts von 30◦ vor.
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Chapter 1

Introduction

1.1 Motivation

The meridional overturning circulation (MOC) exerts a significant impact on both

modern and ancient climate and climate variability (e.g., Rahmstorf 2006; Marshall

and Speer 2012, and references therein) due to its significant role in transporting heat,

fresh water and carbon. It is thus crucial to identify the physical mechanisms that

drive the MOC and diagnose its sensitivity to variations of external driving forces,

which determines its further evolution and responses to the continued global climate

change. Discussions on the drivers of the MOC starts from the consideration of buoy-

ancy forcing. The tank experiments carried out by Sandström (1908) suggest that a

deeper heating source than the cooling is necessary in driving the overturning circula-

tion in the absence of other external forcing mechanisms. In reality, however, heating

and cooling both occur at the ocean surface at roughly the same level, which alone

enables merely a surface-intensified circulation driven by very weak convection, but

is impossible to drive a deep overturning circulation. Due to heat losses to the at-

mosphere and salt rejection during the sea ice growth, dense waters are continuously

formed and sink to great depths in high latitudes, leading to an increase of the water

density. The buoyancy forcing is, however, pointed out to provide too less energy to

efficiently drive the MOC (Oort et al. 1994; Faller 1966). Other mechanisms are thus

1



2 Chapter 1. Introduction

required to reduce the density of the waters in order to sustain the density balance.

The only possible mechanical energy sources are believed to be winds and tides (Munk

and Wunsch 1998).

There are two main candidates for driving the steady state MOC, diapycnal mixing

(causing water parcels to cross the surfaces of equal density) and winds (e.g., Munk

and Wunsch 1998; Kuhlbrodt et al. 2007; Marshall and Speer 2012), as depicted in Fig.

1.1. The former is the energy feeding into turbulent motions from winds and tides via

the breaking of the resulting internal waves, at work primarily in low latitudes, and

the latter is the direct kinetic energy input to the large-scale motions which is further

converted to the potential energy via upwelling, occurring mainly in the Southern

Ocean. Note that the regions for dense water formation are rather small and localized

compared to the wide spreading of upwelling. A detailed description of these driving

processes is found in Kuhlbrodt et al. (2007), with an emphasis on the wind-driven

upwelling in Marshall and Speer (2012). Here we will only focus on the mechanism

of diapycnal mixing, whose key role in maintaining the Atlantic MOC (AMOC) is

outlined, for instance, in Zickfeld et al. (2007), but is still not fully understood.

Given diapycnal mixing as the principal forcing to return deep dense waters back to

the surface, about 0.4 Terawatt (TW; 1 TW = 1012 W) of the power supply would

be required to balance a rough estimate of the global deep water formation rate of

30 SV (1 SV = 106 m3 s−1) through the mixing-driven upwelling (Munk and Wunsch

1998; Wunsch and Ferrari 2004). Taking into account the widely used value of the

mixing efficiency 0.2 (Osborn 1980), 2 TW of the power supply from winds and tides

is thus required. Only 20% of the injected energy to turbulence is converted from

turbulent kinetic energy to the potential energy through the buoyancy flux, whereas

the rest is dissipated to the production of heat. This estimate of the power supply is

consistent with estimates of the amount of energy available from winds and tides in the

deep ocean, where each is contributing approximately 1 TW (Munk and Wunsch 1998;

Egbert and Ray 2000; Wunsch and Ferrari 2004; Kuhlbrodt et al. 2007). However, large

uncertainty is involved in the estimate (Munk and Wunsch 1998).
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Figure 1.1: Simplified sketch of the global overturning circulation system. Surface currents are

shown in red, deep waters in light blue and bottom waters in brown. From Kuhlbrodt et al.

(2007).

The energy pathways of winds and tides and the associated energetics are sketched

in Fig. 1.2, indicating the key role of internal waves in the energy cascade from winds

and tides to turbulent mixing. Freely propagating internal waves can only exist with

a frequency ω satisfying f 6 ω 6 N in the stratified ocean, with f and N being the

Coriolis and buoyancy frequencies, respectively. These waves are energetic in a finite

frequency bandwidth between f and N , but they become much weaker in the spectral

energy beyond this range (Fig. 1.3). Particularly energetic motions are found at the

near-inertial and tidal frequencies, named the near-inertial internal waves and internal

tides, respectively. These waves are well rising above the rest of the spectrum between

f and N , which is called the continuum of internal wave spectrum.

Winds provide the main energy source for the generation of the near-inertial waves

(NIWs) with the frequency band located at around 1.0-1.2f (Alford et al. 2016), with

other possible forcing mechanisms discussed in the latest review by Alford et al. (2016).

The winds exert the forcing directly at the sea surface, exciting inertial waves, or called

inertial oscillations that are currents rotating at the local f in the mixed layer. These
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Figure 1.2: Schematic of energy pathways in the ocean. Astronomical forcing generates

barotropic tides (3.5 TW) primarily in the ocean, with 2.5 TW of barotropic tidal energy

lost to bottom friction in shallow seas. Approximately 1 TW is converted to internal tides in

the deep ocean, most of which enters the internal-wave-driven energy cascade from large scales

to mixing scales. The wind provides about 1 TW into the internal wave spectrum. From Carter

et al. (2012).



1.1. Motivation 5

Figure 1.3: Time-mean spectrum of vertical displacements measured at approximately 3200 m

in the open ocean. The Coriolis frequency f and the buoyancy frequency N denote the range

where freely propagating energetic internal waves can exist. Additional vertical dashed lines

represent the main internal tidal constituents that are the principal lunar semidiurnal tide M2,

the diurnal tide K1 and the compound tide M4 (=2×M2) of the semidiurnal tide. From Köhler

(2013).

waves are mostly vigorously generated under sudden wind events, for instance, storm

and cyclone tracks, near their critical latitudes, and propagate equatorward in the

horizontal (Garrett 2001). The wind-generated power input to the near-inertial motions

is, however, still under debate. The value is suggested to be around 0.3-0.7 TW based

on the slab ocean models, which is estimated by using the realistic wind stress products

and simplified ocean dynamics (Alford 2001; Watanabe and Hibiya 2002; Alford 2003),

and to be 0.4 TW on a basis of the general circulation model estimation (Furuichi et al.

2008; Simmons and Alford 2012; Jochum et al. 2013). By applying various temporal

and spatial resolutions of wind stress forcing to a global eddy-permitting ocean general

circulation model (Rimac et al. 2013), the value of the wind power input into the

NIWs is suggested to be 0.3-1.1 TW, with the temporal variations predominant over

the spatial variations in the wind stress field.

These NIWs are partly dissipated in the oceanic mixed layer, where they are gener-

ated, via turbulent mixing, whilst the rest propagates horizontally towards the equator
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and vertically slowly into the deep ocean. Only the energy escaping from the turbu-

lent mixed layer can freely propagate and exist in the stratified ocean as near-inertial

internal gravity waves. The breaking of these waves provides energy for deep ocean

turbulent mixing and thus for the large-scale overturning circulation. Only a small

fraction, 10-25%, of the wind-induced near-inertial energy flux is found to pass through

the mixed surface layer and be injected into the ocean’s interior, based on estimates of

the ocean general circulation models with constant mixed layer depths for limited area

(Furuichi et al. 2008; Zhai et al. 2009). When diagnosing with spatially and temporally

varying mixed layer depth in the global ocean (Rimac 2014), there is only 10.8% of

the wind power input, amounting to approximate 0.037 TW, radiating into the ocean’s

interior. It indicates the necessity for other energy sources for deep mixing. Hence, in

the following, we will focus on the second major energy source for deep ocean mixing

induced by ocean tides.

Oceanic barotropic tides, a significant component of oceanic motions, are generated

by the gravitational force from the sun and moon on the whole water body, causing

the uniform movement of the entire water column. Owing to their uniform vertical

structure, barotropic tides are widely simulated by numerical tide-only models that are

based on shallow water equations with realistic geometry and bathymetry applied. In

order to compute ocean tides with the highest accuracy possible, data assimilation tech-

niques were developed to include observations from tide gauges (Parke and Hendershott

1980; Schwiderski 1980) and satellite altimetry (Cartwright and Ray 1990). The ocean

tide products from those models are used for tidal corrections in geodetic observations

and in particular for altimetry and gravity satellite observations (Plag and Perlman

2009). Furthermore, various purely hydrodynamic global tide models, unconstrained

by observations (referred to as ”forward”, ”unconstrained”, or ”non-data-assimilating”

models), have been developed, (e.g., Jayne and St. Laurent 2001; Carrère and Lyard

2003; Egbert et al. 2004). The accuracy of global barotropic tide models, including

constrained and unconstrained model approaches, is comprehensively assessed against

various tidal observations in Stammer et al. (2014). In the deep ocean, ocean models
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have the highest accuracy in the representation of the barotropic tidal elevation. In

coastal regions and in high-latitude regions, models show larger errors, mainly due to

stronger nonlinear effects and a reduced availability of satellite observations.

Apart from causing the rise and fall of the sea level, barotropic tides also impact the

ocean circulation via tidal currents (rather than tidal elevations). One way to diagnose

this effect is by implementing tides in general ocean circulation models and perform

concurrent simulations of tides and circulation (Schiller and Fiedler 2007; Müller et al.

2010). In these first attempts with the coarse-resolution (O(100 km)) models, the tidal

currents and circulation interact via nonlinear bottom friction and by increased vertical

velocity shear induced by strong tidal currents. This effect is at work principally in

shallow seas (e.g., Egbert and Ray 2003), but is insignificant in the deep ocean as a

result of the rather weak tidal current velocities (e.g., Jayne and St. Laurent 2001).

Due to the low-resolution used in these models (Schiller and Fiedler 2007; Müller et al.

2010), internal tides, widely accepted as the principal mechanism for tidal dissipation

in the deep ocean, cannot be resolved. Their effect on diapycnal mixing is commonly

missed in the coarse-resolution model studies.

Diapycnal diffusivity is used to quantify turbulent mixing across the surfaces of equal

density that has an essential control on the MOC, and was initially widely accepted

to be constant [10−4 m2 s−1 in Munk (1966)], indicating an uniform distribution of

the slow upwelling over large regions in the ocean (Stommel and Arons 1959). It is,

however, challenged by observations. Diffusivity is found to be rather weak in the vast

regions of the ocean’s interior, with the value around 10−5 m2 s−1 (Moum and Osborn

1986; Ledwell et al. 1993; Gregg et al. 2003), and several orders of magnitude larger

near rough topography or continental slopes (Polzin et al. 1997; Ledwell et al. 2000;

Moum et al. 2002; Garabato et al. 2004). Hence, diapycnal diffusivity is revealed by

observations to be strongly spatially variable.

In numerical ocean models, a uniform value of diffusivity (around 10−5 m2 s−1) is

commonly applied, accounting for the weak interior mixing caused by nonlocal sources,

primarily due to internal waves (Munk and Wunsch 1998). As a major component
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of internal waves, internal tides that radiate away and dissipate remotely from the

generation sites contribute largely to this weak background mixing. Part of internal

tides is, however, dissipated locally near the topography features, enhancing the bottom

mixing there. Hence, diapycnal diffusivity associated with tides has a strong horizontal

variability, with small values over a vast smoothing area and large values near rough

topography. This horizontal variability is, however, not taken into account in many

ocean general circulation models (OGCMs). The modified Bryan and Lewis scheme

(Bryan and Lewis 1979) is instead commonly employed, which presents a horizontal

homogeneous, but vertically varying profile, and represents the background mixing

primarily related to the breaking internal tides that radiate away from the original

sources. There is, however, no observational evidence for the horizontal homogeneity

in diapycnal diffusivity. The horizontal inhomogeneity is thus further considered in

some models (e.g., Hasumi and Suginohara 1999; Huang and Jin 2002), but the energy

constraint supplied by tides to the deep ocean is neglected.

Tidal mixing parameterization that is energetically constrained is proposed by St.

Laurent and Garrett (2002), which describes the mixing of internal tides at their gen-

eration sites. The energy conversion from barotropic to internal tides needs to be

specified in this parameterization, 30% of which, corresponding to the high-mode in-

ternal tides, is considered to contribute to the locally elevated tidal mixing over rough

topography in the deep ocean. This parameterization has been employed by several

studies in the ocean/climate models (Simmons et al. 2004b; Saenko and Merryfield

2005; Saenko 2006; Jayne 2009; Exarchou et al. 2012, 2014), in which tidal mixing in-

duced by internal tides cannot be resolved directly. Note that due to a lack of an overall

precise parameterization of turbulent motions with the large-scale quantities that are

resolvable in the OGCMs, diapycnal diffusivity is often treated as a tunning parameter

in numerical models for a better simulation of the large-scale observable quantities.

In contrast, tidal mixing in this parameterization (St. Laurent and Garrett 2002) is

allowed to evolve with the model state, both spatially and temporally. By replacing

the uniform diapycnal diffusivity or the horizontally uniform but bottom-intensified
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profile, the spatially varying diffusivity is taken into account, which is associated with

the localized intensified tidal mixing over rough topography in the deep ocean. These

results reveal a significant impact of tidal mixing on the simulated MOC, in particu-

lar on the deep MOC, and on the responses of simulated climate to atmospheric CO2

increase, and reveal also a remarkable improvement of the ocean state.

The low-mode internal tides are considered to be standing waves in the vertical,

superposed by the waves and their reflection from the surface. These waves have a

larger spatial scale than high modes, and mainly radiate away from the generation

sites and propagate into the ocean’s interior (e.g. Alford 2003). They are observed to

be able to propagate over 1000 km away from their original sources (Ray and Mitchum

1996) and contribute to the background mixing when they break (Fig. 1.2) (e.g., Munk

and Wunsch 1998; Exarchou et al. 2012). The low- and high-mode internal tides both

contribute to the mixing in the open ocean, providing approximately 1 TW power to

the deep ocean (Munk and Wunsch 1998; Egbert and Ray 2003). In the state-of-the-

art tidal mixing parameterization (St. Laurent and Garrett 2002), however, only high

modes that account for 30% of internal tide energy converted from barotropic tides in

the open ocean are taken into account. The other 70% associated with low modes is left

unspecified, but only strongly simplified in the contribution to the weak background

mixing. Since the low-mode internal tides possess the major part of internal wave

energy, it is crucial to take their detailed effect on mixing into account. To understand

this process, we need to better understand the low-mode internal tides in a realistic

setting with realistic stratification and circulation. The concurrent simulation of the

circulation and tides (barotropic and internal tides) is thus vital to bring us the required

knowledge.

The global concurrent simulation of eddying general circulation and barotropic and

internal tides is first reported in Arbic et al. (2010) by using the HYbrid Coordinate

Ocean Model (HYCOM). The simulated three-dimensional total tidal currents are eval-

uated by the historical current meter measurements (Timko et al. 2013), while the in-

ternal tide signatures on sea surface elevations are evaluated by along-track altimeter
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data (Shriver et al. 2012), whose stationarity is estimated in Shriver et al. (2014). All

these evaluations show the skill of the HYCOM in simulating internal tides. The sci-

entific applications of the HYCOM are also carried out by Richman et al. (2012) for

the impact of internal waves on sea surface height wavenumber spectra and by Müller

et al. (2015) for the internal wave kinetic energy spectra and nonlinear interactions.

Müller et al. (2012) present another high-resolution concurrent simulation of circula-

tion, eddies and barotropic and internal tides by the STORMTIDE model (details of

this model described in Chapter 2), with an evaluation of the simulated barotropic tides

compared to tidal gauges and internal tide signatures compared to altimeter data. In

this thesis, we take into account the three-dimensional baroclinic tidal current veloc-

ities, which are not available from satellite altimeter data. These velocities are then

analyzed by performing the two-dimensional wavenumber spectral analysis in order to

gain the detailed quantification of the simulated low-mode M2 and K1 internal tides in

the deep ocean.

The internal tide signatures on the sea surface height are observed in the satellite

altimeter data, to which low modes are the major contributors. Since the next gener-

ation altimeter missions aim at studying submesoscale motions, internal tides need to

be predicted and removed, especially for low modes. The knowledge we gain in this

thesis would lead to a better understanding of the low-mode internal tides.

1.2 Thesis objective

Barotropic tidal energy is dissipated mainly by scattering into internal tides in the deep

ocean when barotropic tidal currents flowing over rough topography. To understand

how internal tides further contribute to diapycnal mixing, it is important to understand

the processes related to the generation, propagation and dissipation of internal tides,

in particular of low modes that are the most energetic part of internal tides. Since

satellite altimeter data provide only the signatures of internal tides in sea level heights

with integrations of various modes, it is difficult to derive details of these processes
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from altimeter data. The high-resolution ocean general circulation models are thus

indispensable tools, which can also provide us the three-dimensional baroclinic tidal

velocities. It is, however, not clear whether 0.1◦ horizontal resolution is good enough

for this purpose. The first question is thus raised in the following.

• Which resolution is required to properly resolve the low-mode internal tides?

In order to study the processes with regard to the generation, propagation and dissi-

pation of internal tides, we need to find ways to quantify the low-mode internal tides.

This brings us to the second question.

• What is the appropriate technique that can be used to quantify the simulated

low-mode internal tides?

In the concurrent simulation of the eddying circulation and tides, internal tides exist

in a spatially varying wave environment that has realistic stratification and circulation.

Thus, these waves interact in a realistic manner with themselves and the medium

(eddies, circulation, and so forth), including the potential nonlinear interactions. The

relatively complex wave environment and interactions are, however, not involved in

linear wave theory. This leads us to the third question.

• What are the properties of the low-mode internal tides that are directly related to

the spatially varying wave environments and hence difficult to assess using linear

wave theory only? How to interpret these results?

1.3 Outline of the thesis

This thesis comprises two major chapters. They are written in the style of journal

publications and thus can be read independently. Chapter 2 1 has been published and

Chapter 3 2 is in preparation for submission.
1Li, Z., J.-S. von Storch, and M. Müller, 2015: The M2 internal tide simulated by a 1/10◦ OGCM. J.

Phys. Oceanogr., 45, 3119-3135.
2Li, Z., J.-S. von Storch, and M. Müller, 2016: The K1 internal tide simulated by a 1/10◦ OGCM. in

Prep.
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In Chapter 2 we introduce the methods how to derive baroclinic tidal velocities

from the model output and how we perform the two-dimensional wavenumber spectral

analysis in space. Then we present the results on the spatial distributions of the wave-

lengths of the M2 internal tide for the first two modes, and compare them with those

by solving the Sturm-Liouville eigenvalue problem to investigate which kind of waves

are simulated in the STORMTIDE model. The importance of the details of the vertical

variations of stratification in determining the wavelengths is also studied by comparing

results of the standard and the WKB-simplified Sturm-Liouville eigenvalue problems.

Further, the relative roles of the Coriolis frequency f and the buoyancy frequency N

in determining the wavelength distributions are diagnosed.

In Chapter 3 we employ the same methods as used in Chapter 2, which provide us

the spatial distributions of the wavelengths for the low-mode K1 internal tide. These

wavelengths are further compared with those of linear wave theory, and the relative

roles of f and N are diagnosed, as done in Chapter 2. Furthermore, due to the low

latitude of the K1 critical latitude, it is important to study waves both equatorward

and poleward of the critical latitude. Hence, the vertical sections of the K1 kinetic

energy are presented to investigate the role of the critical latitude, and the vertical

distributions of the kinetic energy in various water depths are also analyzed in order

to understand how the trapping process is simulated in supercritical latitudes in the

STORMTIDE model.

This thesis is closed with a summary of our main findings and the outlook in Chapter

4.



Chapter 2

The M2 internal tide simulated by a 1/10◦

OGCM

Using a concurrent simulation of the ocean general circulation and tides with the 1/10◦

Max Planck Institute Ocean Model (MPI-OM), known as the STORMTIDE model,

this study provides a near-global quantification of the low-mode M2 internal tides. The

quantification is based on wavelengths and their near-global distributions obtained

by applying spectral analysis to STORMTIDE velocities and on comparisons of the

distributions with those derived by solving the Sturm-Liouville eigenvalue problem.

The simulated wavelengths, with respect to both their magnitudes and their ge-

ographical distributions, compare well with those obtained by solving the eigenvalue

problem, suggesting that the STORMTIDE internal waves are, to a first approximation,

linear internal waves satisfying local dispersion relations. The simulated wavelengths

of modes 1 and 2 range within 100-160 km and 45-80 km, respectively. Their distribu-

tions reveal, to different degrees for both modes, a zonal asymmetry and a tendency of

poleward increase with stratification N and the Coriolis parameter f being responsible

for these two features, respectively. Distributions of mode 1 wavelengths are found to

be determined by both N and f , but those of mode 2 are mainly controlled by varia-

tions in N . Larger differences between the STORMTIDE wavelengths and those of the

eigenvalue problem occur, particularly for mode 2, primarily in high-latitude oceans

13



14 Chapter 2. The M2 internal tide simulated by a 1/10◦ OGCM

and the Kuroshio and Gulf Stream and their extensions.

2.1 Introduction

Internal tides are internal waves at tidal frequencies that are generated by barotropic

tides flowing over rough topographic features in the stratified ocean. Although some

uncertainty still exists in the exact amount of the power available for the mixing in the

ocean’s interior from internal tides, theoretical and numerical models give estimates for

the deep ocean in the range of 0.5-0.8 TW for the M2 internal tide and of 0.9-1.4 TW

when considering the largest tidal constituents (Egbert and Ray 2000; Simmons et al.

2004a; Müller 2013; Green and Nycander 2013). The state-of-the-art parameterization

of mixing as a result of internal tides (e.g., St. Laurent et al. 2002; Simmons et al. 2004b;

Saenko and Merryfield 2005; Montenegro et al. 2007; Exarchou et al. 2012) considers

only 30% of this power, the part related to high-mode internal tides that dissipate

locally at the generation sites, whereby leaving the remaining 70%, the part related to

low-mode internal tides, unspecified. The dissipation of the low-mode internal tides can

provide a substantial amount of mixing energy, in which not only does the energy input

matter, but also where the dissipations occur in the vertical (Melet et al. 2013), and is

important for maintaining the meridional overturning circulation (Munk and Wunsch

1998). So far, our knowledge about the fate of these waves is still limited. Particularly

limited is our knowledge about their spatial distributions and to what extent they are

affected by the realistic stratification and eddying ocean circulation. This limitation

is partly caused by the sparse direct observations in the ocean’s interior (e.g., Polzin

and Lvov 2011). Satellite altimeters are now frequently used to study internal tides

on the global scale, but they provide only integrated wave properties in which modes

are superposed (Ray and Mitchum 1997). To advance our understanding, concurrent

simulation of the ocean circulation and tides is crucial for studying these low-mode

internal tides.

Until recently, tidal and non-tidal motions in the global ocean have been studied
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separately. Predicting ocean tides is largely based on two-dimensional shallow water

equations forced by the tidal forcing only, while simulating the ocean circulation is

based on three-dimensional primitive equations forced by momentum and buoyancy

fluxes at the sea surface without including the tidal forcing. The first attempts to

jointly simulate tides and circulations were made with coarse-resolution ocean-only or

climate models (Thomas et al. 2001; Schiller and Fiedler 2007; Müller et al. 2010).

Hence, these studies emphasized the effects of barotropic tides on the ocean circulation

without resolving mesoscale eddies and internal tides. With increasing computer power,

eddy-permitting and eddy-resolving simulations have advanced (Masumoto et al. 2004;

Maltrud and McClean 2005; von Storch et al. 2012). The HYCOM group (Arbic et al.

2010, 2012) was the first to report on global concurrent simulations of the eddying

general circulation and tides. Soon after another concurrent simulation was carried

out using the 1/10◦ Max Planck Institute Ocean Model (MPI-OM), known as the

STORMTIDE model (Müller et al. 2012). In both the HYCOM and STORMTIDE

models, barotropic tides are reasonably well simulated (Arbic et al. 2010; Shriver et al.

2012; Müller et al. 2012, 2014). The simulated internal tides’ signatures in the sea

surface height compare well with those obtained from the altimetry data (Arbic et al.

2010, 2012; Müller et al. 2012), suggesting that both the HYCOM and STORMTIDE

models have skill in simulating the low-mode internal tides.

In the present study, we aim to gain more understanding of the M2 internal tide

simulated by the 1/10◦ STORMTIDE model using the signatures of the low-mode

internal tides in baroclinic velocities. The wavelengths are used as a diagnostic tool to

quantify the waves and to answer the following questions:

1. Which modes of the M2 internal tide are simulated in the STORMTIDE model

and how consistent are they with the dispersion relation of linear internal waves?

What are the properties of the simulated internal tides, for instance, their wave-

lengths and the respective geographical distributions?

2. What are the relative roles of local stratification N and the Coriolis parameter f

in determining these geographical distributions?
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3. How important are the details of the vertical variations of stratification in de-

termining the wavelengths of internal tides when taking into account the WKB

approximation?

To answer the first question, we use the wavenumber spectra to diagnose the wave-

lengths from baroclinic velocities simulated by the STORMTIDE simulation and com-

pare the result with wavelengths obtained by solving the Sturm-Liouville eigenvalue

problem. To answer the second question, we compare the simulated wavelengths with

those obtained by keeping either N or f fixed in the eigenvalue problem. Finally, we

derive the wavelengths from WKB-simplified Sturm-Liouville eigenvalue problem and

compare them with those of the standard Sturm-Liouville eigenvalue problem to answer

the third question concerning the applicability of the WKB approximation. Note that

both eigenvalue problems use the same simulated stratification and do not take into

account eddying flows.

In section 2.2, the STORMTIDE model is introduced, including a further evaluation

of the simulated M2 internal tide using sea surface height. Section 2.3 describes methods

used to diagnose the wavelengths of the M2 internal tide, including a discussion of the

significances and limits of these methods. Results are discussed in section 2.4-2.7: The

kinetic energy of the internal tides simulated by the STORMTIDE model is briefly

discussed in section 2.4. In section 2.5, we describe the characteristics of the two-

dimensional wavenumber spectra and the geographical distributions of the wavelengths

deduced from these spectra and compare the result with those obtained by solving the

Sturm-Liouville eigenvalue problem. The relative roles of stratification and the Coriolis

parameter are examined in section 2.6. Section 2.7 discusses the applicability of the

WKB approximation, and section 2.8 presents the concluding remarks.

2.2 The STORMTIDE model

The STORMTIDE model (Müller et al. 2012) is based on the high-resolution MPI-OM

formulated on a tripolar grid and concurrently resolves the ocean circulation and tides.
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It was developed in the framework of the German consortium project STORM, with

an aim towards a coupled high-resolution climate model simulation (von Storch et al.

2012), in which a multidecadal simulation with the NCEP atmospheric forcing has

been obtained. Our branch with tides implemented is hence named the STORMTIDE

model.

The tripolar MPI-OM uses basically the same physics as its bipolar predecessor

(Marsland et al. 2003; Jungclaus et al. 2006). The horizontal resolution is around

1/10◦, about 10 km near the equator and about 5 km and less south of 60◦S. In the

vertical, it uses the ”z coordinate” system; 40 unevenly spaced vertical layers are used

with nine concentrating in the first 100 m. The layer thickness varies gradually from

10 m in the upper ocean to 500 m in the deep ocean.

In our study, the STORMTIDE model is forced by the complete lunisolar tidal poten-

tial, as calculated from the instantaneous positions of the sun and moon (Müller et al.

2012). This forcing takes implicitly hundreds of tidal constituents into consideration

(Thomas et al. 2001). The self-attraction and loading (SAL) effect is parameterized in

the same way as in Thomas et al. (2001). The model is forced at the sea surface by

daily climatological wind stresses with a 365-day cycle and a SST and SSS restoration

toward the monthly climatological values (Steele et al. 2001), and is integrated over 10

years.

The ability of the STORMTIDE model to simulate realistic barotropic and internal

tides was evaluated in Müller et al. (2012). Comparing the simulated barotropic tides

with 102 pelagic tidal observations, the STORMTIDE model was able to capture 92.8%

of the variance of the barotropic-tide-induced sea surface height for the eight dominant

constituents (Müller et al. 2012). In addition, in a model intercomparison (Stammer

et al. 2014), the model-simulated barotropic tidal currents of the STORMTIDE model

were evaluated. No internal wave drag is implemented in our model approach and

instead about 1.1 TW of tidal energy is converted from barotropic to internal tides

(Müller 2013), consistent with observational estimates (e.g., Egbert and Ray 2000).

In the following, we further extend the evaluation of the sea surface signatures of
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the M2 internal tide in Müller et al. (2012) by incorporating an observational product

obtained from 19-yr along-track satellite altimetry [TOPEX, Poseiden, Jason-1, and

Jason-2 (TPJ)] data (Cherniawsky et al. 2001; Foreman et al. 2009). Both the M2

along-track tidal signals obtained from the TPJ data and the model-simulated sea

surface height are obtained using a high-pass filter, with a cutoff wavelength of about

350 km, for a removal of the long-wave barotropic tidal signals. The signals are binned,

where ocean depths are larger than 1000 m, into 1◦ × 1◦ boxes and their root-mean-

squared (RMS) amplitudes are computed (Fig. 2.1). Note that since we considered the

hourly model-simulated output (January 1st to February 1st of the ninth simulation

year; for details see section 2.3.1) , no tidal aliasing (e.g., Zhao et al. 2012) is involved

in the simulated data processing which occurs only in the altimetry data as a result

of their poor temporal resolutions. To evaluate the RMS amplitudes in specific hot

spots, we choose regions as in Shriver et al. (2012) and indicate them in Fig. 2.1b.

The RMS amplitudes of the model and observations are given in Table 2.1, along with

the RMS ratios of the observations to model results. A large model underestimation

is presented in the Hawaii region. The internal tide beam from the Aleutians is also

significantly reduced in the model. In the other regions, the mismatch is less than

20% and reflects a similar quality in simulating the magnitude of internal tides in hot

spots regions as in Shriver et al. (2012). Because of the mesoscale contamination (e.g.,

Shriver et al. 2012) induced by the tidal aliasing in the altimetry data, we can observe

large spurious signals in the Gulf Stream, Kuroshio extensions and the Southern ocean

in the altimetry data. In general, we conclude that the STORMTIDE model gives us

a reasonably good model simulation of internal tides, in regard to what is currently

possible in a global model approach.
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Figure 2.1: RMS amplitudes (m) of the M2 internal tide obtained from (a) the 19-yr satellite

altimetry data and (b) the 2-yr hourly sea surface height simulated by the STORMTIDE model.

The M2 tidal signals are high-pass filtered and then binned into 1◦×1◦ boxes. The black boxes

mark the regions of hot spots used in Table 2.1.



20 Chapter 2. The M2 internal tide simulated by a 1/10◦ OGCM

Table 2.1: The surface signals (cm) of the M2 internal tide averaged as quantities by RMS over

various hot spots regions indicated in Fig. 2.1. TPJ and STORMTIDE refer to the observations

and model simulation, respectively. The last column shows the RMS ratios of observations to

model results.

Region TPJ STORMTIDE ratio

East of Philippines 0.79 0.74 1.06

Hawaii 0.87 0.60 1.44

Tropical South Pacific 0.97 1.10 0.88

Tropical SW Pacific 0.86 0.72 1.19

Madagascar 0.85 0.91 0.94

2.3 Methods

2.3.1 Details in deriving the baroclinic M2 tidal velocities

For the quantification of the kinetic energy and also for the wavelength analysis of the

STORMTIDE data throughout this paper, we use the three-dimensional horizontal M2

tidal velocities [see Müller et al. (2012) for a detailed description]. They are publicly

available (Müller 2012). Because of the huge amount of three-dimensional hourly data

that are used, we limit the data length to be 32 days, which is the minimum requirement

for the spectral analysis in order to resolve certain tidal constituents. Using the 32-day

model-simulated full zonal and meridional velocities from January 1st to February 1st

of the ninth simulation year, we perform the harmonic analysis to derive the amplitudes

AM2 and phases φM2 of the full M2 tidal velocities. Taking the zonal velocities as an

example, we describe the full M2 tidal velocities as

uM2(i, j, k, t) = AM2(i, j, k)e
i[2πωt−φM2

(i,j,k)], (2.1)

in which i, j and k are the grid indices in the zonal, meridional and vertical directions,

ω is the M2 tidal frequency and t is time. The vertical integration of Eq. (2.1) gives
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the barotropic M2 tidal velocities

ubt(i, j, t) =

[
1

H

∑
k

AM2(i, j, k)e
−iφM2

(i,j,k)4Hk

]
ei2πωt, (2.2)

in which H is the water depth and 4Hk is the thickness of the k-th layer. The complex

baroclinic M2 velocities are obtained by subtracting the complex barotropic velocities

in Eq. (2.2) from the full velocities in Eq. (2.1). Denoting the amplitudes and phases

of the resulting baroclinic M2 velocities by Aubc
(i, j, k) and φubc

(i, j, k), the baroclinic

M2 tidal velocities are given by

ubc(i, j, k, t) = uM2(i, j, k, t)− ubt(i, j, t)

= Aubc
(i, j, k)ei[2πωt−φubc

(i,j,k)].
(2.3)

The amplitudes (Aubc
and Avbc) and phases (φubc

and φvbc) of the zonal and meridional

baroclinic M2 tidal velocities are all interpolated onto 0.1◦ × 0.1◦ regular longitude-

latitude grids. The interpolated amplitudes Aubc
and Avbc are used to estimate the

kinetic energy of the M2 internal tide in section 2.4, since this energy is related to wave

motions satisfying the dispersion relation of internal tides, as will be shown in section

2.5.

2.3.2 Two-dimensional wavenumber spectral analysis

A two-dimensional wavenumber spectral analysis is used to diagnose the wavelengths of

the M2 internal tide. The analysis is based on the standard two-dimensional complex

discrete Fourier transform. We reconstruct the complex velocities with the in-phase

and quadrature baroclinic velocities being the real and imaginary components, respec-

tively. The in-phase and quadrature velocities are a quarter of a period apart, and

are expressed, taking ubc as an example, as Aubc
cosφubc

and Aubc
sinφubc

. The spectral

analysis is applied to these complex velocities in boxes of the size 15◦/cosϕ (in lon-

gitude) ×15◦ (in latitude) with ϕ being the latitude. For each 15◦/cosϕ × 15◦ box,

they are further converted to velocities on an equidistant grid (with an approximate

11 km resolution). Prior to the spectral analysis, a Tukey window is used to reduce
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spectral leakage, which tapers the signal at the endpoints, thereby emphasizing the

data in the center of a box. For a given level, ubc and vbc inside a 15◦/cosϕ× 15◦ box

are decomposed into two-dimensional plane waves with Fourier coefficients U(k, l) and

V (k, l) as wave amplitudes, where k and l are the zonal and meridional wavenumbers,

respectively. In order to obtain a near-global map, overlapping boxes are analysed each

shifted by 5◦. Wavenumber spectra Subc
(k, l) and Svbc(k, l) are then given by

Subc
(k, l) = |U(k, l)|2 and (2.4a)

Svbc(k, l) = |V (k, l)|2. (2.4b)

The average of Subc
(k, l) and Svbc(k, l) results in the spectrum of the kinetic energy,

denoted by SKE(k, l), in which velocities in both horizontal directions are taken into ac-

count for a robust result. The corresponding wavenumber spectra in the (k,l) wavenum-

ber plane are then converted into SKE(K), which are functions of the horizontal

wavenumber K =
√
k2 + l2. By moving the box horizontally, wavenumber spectra

at different locations can be obtained. The horizontal wavelength is identified from

the wavenumber where SKE(K) has a local maximum. Obviously, this diagnostic will

work well when there is a distinct spectral peak, but it will produce an ambiguous

result when the spectrum is flat. Note that we make no interpolations for land points

inside a box. Instead, U(k, l) and V (k, l) are calculated from available water points in

a box. Only boxes in which land points are less than 15% are considered.

Generally, stratification and the bathymetry (and consequently the water depth)

vary from grid point to grid point so that different wavelengths are expected from

the dispersion relation. The wavelength derived from the spectral analysis cannot

capture such variations and has to be considered as an averaged wavelength within

the considered box. Here, ”average” does not refer to an ”arithmetic mean”, but

rather the fact that the spectral analysis provides only one estimate of the wavelength

corresponding to each local maximum from SKE(K) in a given box. This has to be

kept in mind when comparing the wavelengths derived from wavenumber spectra of the

STORMTIDE products with those obtained from the linear internal wave theory using a



2.3. Methods 23

prescribed stratification and water depth. Wavelengths derived from the STORMTIDE

model simulation will be denoted by LST .

In the present paper the goal is to estimate the wavelengths of internal tides simulated

by an ocean circulation model and compare them with the wavelengths derived from

the linear wave theory. Thus, a (vertical) modal decomposition of the baroclinic tidal

velocities, as usually performed for point observation, is not adequate, since it would

implicitly constrain the results by assumptions given by the mode computations. Thus,

the horizontal spectral analysis seems to be beneficial to derive the quantity of simulated

internal tide wavelengths and further, with the windowing of the velocities prior to the

spectral analysis and the shifting of the boxes by 5◦, a near-global map with a resolution

of 5◦ can be obtained. To divide into mode 1 and mode 2 internal tides, we will analyse

the three-dimensional fields of baroclinic tidal velocities on different model levels, as

further detailed in section 2.5.1.

It is noted that the size of the box is a compromise between the demand to obtain a

more reliable estimate of the spectral peaks on the one hand and a more detailed map

of the geographical variations of the wave environment on the other hand. The former

requires a larger box size, but the latter a smaller box size. We found a 15◦/cosϕ× 15◦

box size to be a reasonable compromise.

2.3.3 The Sturm-Liouville eigenvalue problem

To confirm that the dominant length scales identified using wavenumber spectra rep-

resent the wavelengths of the low-mode M2 internal tides, the local dispersion relation

of internal waves is derived by solving the Sturm-Liouville eigenvalue problem (e.g.,

Olbers et al. 2012) for stratification profiles that are simulated by the STORMTIDE

model. We assume a flat bottom inside a 15◦/cosϕ × 15◦ box and no background

current in this eigenvalue problem. The water depth inside a box corresponds to the

box-averaged depth. Topographic features and background currents are only considered
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in the STORMTIDE simulation. The Sturm-Liouville eigenvalue problem is defined by

1

N2(z)

d2

dz2
wm(z) = −νmwm(z), m = 1, 2, ... (2.5)

together with boundary conditions of the flat bottom and rigid lid, in which z refers

to the vertical axis, N(z) is the buoyancy frequency, w(z) is the vertical structure of

the waves. The vertical mode number m refers to the mth eigenvector wm(z) with the

corresponding eigenvalue νm. The eigenvalue νm defines the dispersion relation

νm =
K2

m

ω2 − f2
, (2.6)

in which ω and f are the M2 tidal frequency and the Coriolis parameter, respectively.

Given a box-averaged stratification profile, and wm(z) and νm are obtained by nu-

merically solving the Sturm-Liouville eigenvalue problem. The horizontal wavelength,

denoted by LSL,m and defined as

LSL,m =
1

Km
=

1√
νm(ω2 − f2)

, (2.7)

corresponds to the mth vertical mode. Thus, LSL,m is determined solely by the local

stratification profile and the Coriolis parameter.

To be consistent with the wavenumber spectral analysis, we solve the Sturm-Liouville

eigenvalue problem for the same 15◦/cosϕ× 15◦ boxes using the box-averaged stratifi-

cation and water depth. The box-averaged monthly mean temperature and salinity are

used to calculate the corresponding box-averaged N . The resulting N is always well-

defined (i.e., real). When N < 10−10 s−1, it is interpolated with the neighboring points

in solving the eigenvalue problem. Note that the horizontal variations of stratification

within each box are neglected, whereas box-averaged vertical variations are taken into

account. The stratification available on the model levels is then interpolated onto a

vertical grid with a resolution of 10 m that is used to numerically solve the eigenvalue

problem.

Since the Sturm-Liouville eigenvalue problem is derived from the linear internal wave

theory, the question of whether the STORMTIDE model is capable of simulating in-
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ternal tides is answered by a comparison of the wavelengths obtained from the Sturm-

Liouville eigenvalue problem with those obtained by applying spectral analysis to the

STORMTIDE simulation.

2.3.4 The WKB-simplified eigenvalue problem

For each stratification profile, one needs to solve the respective Sturm-Liouville eigen-

value problem to obtain LSL,m. The WKB approximation assumes that the rate of the

vertical change in stratification is slower than the vertical variation of internal tides and

leads to a further simplification of the Sturm-Liouville eigenvalue problem. This WKB-

simplified eigenvalue problem (e.g., Chelton et al. 1998; Olbers et al. 2012) provides

the following relation between eigenvalues and stratification

νWKB,m =
m2π2

N̂2
, (2.8)

where N̂ =
∫ 0
−H N(z′)dz′ is the vertical integral of stratification. Substituting Eq.

(2.8) into (2.7), the wavelength of the WKB-simplified eigenvalue problem, denoted by

LWKB,m, is expressed as

LWKB,m =
N̂

mπ
√

ω2 − f2
, (2.9)

where N̂ is derived from the same box-averaged stratification and water depth as used

for LSL,m.

The wavelengths LWKB,m now can be obtained without solving the Sturm-Liouville

eigenvalue problem. By comparing LWKB,m with LSL,m, we can assess the importance

of details of the vertical structures of N(z) that are not described by N̂ in determining

LWKB,m, whereby addressing the third question raised in the introduction (section

2.1).

2.4 Kinetic energy of the M2 internal tide

Since it is difficult to diagnose the kinetic energy related to internal tides from the ob-

servations, we present here a quantification of this energy based on the STORMTIDE
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simulation. Fig. 2.2a and 2.2b show the horizontal distributions of the kinetic energy of

the M2 internal tide at 100 m and 1085 m, respectively. As will be discussed in section

2.5.1, 100 m and 1085 m are depths, at which two different modes dominate, respec-

tively. The kinetic energy at 100 m is much stronger than that at 1085 m. The overall

structures resemble those of the satellite-observed internal tide surface signatures, and

are characterized by hot spots at both depths, for instance, near Madagascar, Hawaii,

east of the Philippines, and the tropical South and Southwest Pacific. The maxima of

the kinetic energy correspond to a current speed of about 5-6.5 cm s−1 at 100 m and

1.5-2 cm s−1 at 1085 m for the M2 internal tide. For comparison, the typical speed of

maximum transient eddying currents is about 30 cm s−1 at 100 m (von Storch et al.

2012). The globally integrated kinetic energy of the M2 internal tide is about 0.08 EJ

(1 EJ = 1018 J). This is about 20% of the internal wave energy (von Storch et al. 2012)

that results presumably from wind-induced near-inertial waves.

Fig. 2.2c shows the vertical integral of the kinetic energy with a spatial pattern com-

parable to those at 100 m and 1085 m. The amplitude and the structure compare also

well with the M2 internal tide energy obtained by solving two coupled equations describ-

ing integrated versions of the radiative transfer equations for the M2 internal tide and

a wave continuum (Eden and Olbers 2014, their Fig. 5b). One of the main difference is

the beam-like structures which are absent in the figure by Eden and Olbers (2014). This

difference results from the fact that Eden and Olbers (2014) assumed for simplicity a

uniform distribution of the wave propagation angle in the forcing term. Consequently,

the equations considered do not distinguish waves with different wavevector angles. If

the wave sources are not homogeneously distributed, waves propagating from the in-

dividual generation sites, characterized by beam-like structures, would stand out more

clearly, as in case of Fig. 2.2c.
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(a) Kinetic energy, 100 m 

(b) Kinetic energy, 1085 m 

(c) Vertical integral of the kinetic energy

Figure 2.2: Kinetic energy (cm2 s−2) of the M2 internal tide in logarithmic scales at (a) 100

m and (b) 1085 m. (c) The vertical integral of the kinetic energy (J m−2) in logarithmic

scales, which is prepared in the same scales as used in Eden and Olbers (2014, their Fig. 5b).

The kinetic energy at single depth is derived using (A2
ubc

+ A2
vbc

)/2, with Aubc
and Avbc being

amplitudes of the M2 baroclinic zonal and meridional velocities, respectively. The vertical

integral is then derived by
∫ 0

−H
ρw(A

2
ubc

+A2
vbc

)/2dz with ρw being the density of seawater.
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2.5 Wavelengths of the model-simulated M2 internal tide

2.5.1 Characteristics of wavenumber spectra

Before considering the wavelengths, we first study characteristics of the two-dimensional

wavenumber spectra. Fig. 2.3 shows spectra SKE(k, l) in the left column, with both

positive and negative wavenumbers (Fig. 2.3a and 2.3c), at both 100 m and 1085 m

in the 15◦/cosϕ × 15◦ box centered at (170◦W, 22.55◦N). At 100 m (Fig. 2.3a), a

distinct spectral peak of SKE(k, l) is shown in the form of a near-circle band on the

(k, l) plane. This most energetic band is located within the range of K of about 0.005-

0.01 km−1, corresponding to a horizontal wavelength of 100-200 km. A less pronounced

band is located at relatively larger wavenumbers, with K being around 0.015 km−1,

corresponding to a wavelength of about 65 km. In the ocean’s interior at 1085 m, two

spectral peaks are also located at the same wavenumber bands. In contrast to the

spectrum at 100 m, the high-wavenumber peak, with a broader bandwidth, is stronger

than the low-wavenumber peak. Some spectral energy much weaker than the two

spectral peaks is also found at still higher wavenumbers at both depths.

The two spectral peaks remain well defined when converting SKE(k, l) into SKE(K)

in Fig. 2.3b and 2.3d. The blue dots show SKE(K) obtained from each wavenumber

vector (k, l). The red lines represent the bin averages of SKE(K) that are averaged over

all values of SKE(K) with K inside the respective intervals. For each wavenumber,

the variability indicated by the blue dots results from variations of SKE(k, l) along a

circle centered at the origin of the (k, l) plane. These variations indicate properties

of wave propagation. For waves generated at a few selected source sites, maxima of

the respective two-dimensional wavenumber spectra will not have the same strength

in all directions. For instance, in Fig. 2.3a, the low-wavenumber peak has the largest

values in the southwest and northeast direction. Thus, waves associated with the low-

wavenumber peak in the box considered in Fig. 2.3 propagate preferably along a line

orientated in the southwest-northeast direction.

We now consider the vertical dependence of SKE(K) in terms of the example shown
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Figure 2.3: Wavenumber spectra SKE(k, l) of the kinetic energy of the M2 internal tide at (a)

100 m and (c) 1085 m in logarithmic scales in the 15◦/cosϕ × 15◦ box centered at (170◦W,

22.55◦N). The resolved range of the zonal and meridional wavenumbers is within -0.045-0.044

km−1. To enhance the readability, we only show the range of -0.025-0.025 km−1 that involves

the most energetic motions and leave out wavenumber regions with very weak energy. In the

right column, wavenumber spectra SKE(K) of the M2 internal tide are shown at (b) 100 m

and (d) 1085 m, converted from SKE(k, l) using K =
√
k2 + l2 in the same box. The scattered

blue dots are converted directly from each value of SKE(k, l). The red lines represent the bin

averages of SKE(K), in which SKE(Ki) at the ith interval is obtained by averaging all values

of SKE(K) with K inside the interval (Ki,Ki+ M). We consider a total of 100 consecutive

intervals. Term M is obtained by dividing the total resolved wavenumber range by 100.
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in Fig. 2.4. Overall, the spectral energy decreases with increasing depth. The low-

wavenumber peak is strongest in the upper ocean, followed by a reduction until the

energy drops to a minimum at 1220 m (red dotted line). The spectral peak reemerges

further downward. The high-wavenumber spectral energy undergoes more complicated

variations. The spectral peak is detectable in the top 100 m and diminishes downwards,

disappears to different degrees in the depth range 122-485 m. It becomes evident again

farther below and clearly stands out in the depth range 560-1700 m. Below 1700 m, it

is strongly weakened.

To understand the depth-dependence of the low- and high-wavenumber peaks of

SKE(K), we introduce the vertical modal structures of the kinetic energy of modes 1

and 2 (the right panel of Fig. 2.4b), respectively. These vertical structures are derived

by solving the Sturm-Liouville eigenvalue problem [see Eq. (2.5), for m =1 and 2] using

the box-averaged stratification profile shown in the left panel of Fig. 2.4b. They show

a zero crossing at around 1220 m for mode 1 and an interior maximum at about 750 m

between two zero crossings at about 350 m and 2200 m for mode 2. The variations with

depth of both low- and high-wavenumber spectral peaks shown in Fig. 2.4a correspond,

in general, to the vertical structures of the first two modes of the Sturm-Liouville

eigenvalue problem. In particular, we observe a loss of the low-wavenumber peak and

find only the high-wavenumber peak at 1220 m. This is consistent with the fact that

the amplitude of mode 1 undergoes its zero crossing at this depth, while the amplitude

of mode 2 remains strong. Hence, the low- and high-wavenumber peaks are proved to

be actually mode 1 and 2, respectively.

As for the box considered in Fig. 2.4a, both mode 1 and mode 2 have the same

wavenumber throughout the water column in all considered boxes. This result reflects

the fact that the horizontal wavelength of a mode is independent of depth, indicating

that certain layers with energetic internal tides can be selected to efficiently identify

the wavenumbers of each mode. For this purpose, we have examined the zero-crossing

depths of modes 1 and 2. The mode 1 zero crossings, in regions with less than 15%

land points, - that is, in the open ocean - are located at depths deeper than 700 m.
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Figure 2.4: (a) Bin-averaged spectra SKE(K) of the horizontal kinetic energy of the M2 inter-

nal tide derived for the 15◦/cosϕ×15◦ box centered at (170◦W, 22.55◦N). (b) shown are (right)

the vertical modal structures of mode 1 (solid) and mode 2 (dashed) of the kinetic energy in the

considered box, which are proportional to [dwm(z)/dz]2 with wm(z) being the eigenfunction of

Eq. (2.5). These structures are derived by solving the Sturm-Liouville eigenvalue problem with

(left) the box-averaged stratification profile simulated by the STORMTIDE model.
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Mode 2 undergoes its first zero crossing at levels shallower than 900 m, whilst its second

zero crossing is located at depths deeper than 1400 m, both in the open ocean. Thus

performing spectral analysis on velocities at 100 m and around 1000 m, which depart

from the depths of zero crossings of modes 1 and 2, respectively, one should be able to

identify the wavelengths of modes 1 and 2. In the following, the near-global map of the

mode 1 wavelengths LST,1 is hence derived from SKE(K) at 100 m in section 2.5.2. In

the deeper ocean (e.g., around 1000 m), mode 2 is energetic, while mode 1 possesses

normally only weak energy. Hence, the near-global map of the mode 2 wavelengths

LST,2 is derived from SKE(K) at 1085 m.

In the process of performing spectral analysis for the kinetic energy of internal tides

in boxes covering the near-global ocean, we realize that the spectral peaks are difficult

to detect in regions with strong mesoscale eddies. The normalized spectral width of

mode 1 is shown in Fig. 2.5. We can see that larger spectral widths mainly occur

in strong current regions, for instance, the Kuroshio and the Gulf Stream as well as

their extensions, and the Antarctic Circumpolar Current regions in the southern high

latitudes. In these regions, the peaks are broadened. When the peaks get too broad or

even turn to flat spectra, an identification of the associated wavenumber will be hardly

possible. Thus,we neglect the regions poleward of 52.45◦S/52.55◦N in the following

near-global analysis.

2.5.2 Geographical distribution of wavelengths

The near-global map of LST,1 (Fig. 2.6a) shows that the scales of mode 1 are around

100-160 km in most regions, with the wavelengths shorter than 100 km existing only in

the very eastern equatorial region in the Pacific, in the southern Indian Ocean and in

the eastern equatorial Atlantic. The wavelengths longer than 170 km emerge mainly in

mid- and high latitudes, for instance, east of Japan and and in the southwestern Pacific

and south of Australia. This distribution reflects both a general poleward increase in

LST,1, and a zonal asymmetry that is more pronounced in the Pacific than in the other

two ocean basins.
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Figure 2.5: Normalized spectral width (×10) derived from the mode 1 wavenumber spectra.

The width is defined by the wavenumber interval between half of the peak energy, and is then

normalized by the wavenumber related to the spectral peak. Nine-point smoothing has been

performed after deriving the raw near-global map.

The mode 2 wavelengths (Fig. 2.7a) are around 45-80 km. The LST,2 in the Atlantic

are generally in the range of 45-65 km and have the lowest values among the three

ocean basins. The length scales of mode 2 in the Indian Ocean are around 50-80

km, with the longest wavelengths appearing in the northeastern part. Waves in the

Pacific show a clear zonal asymmetry with wavelengths longer than 75 km mainly in the

northwestern Pacific and in the western tropical Pacific, and with wavelengths shorter

than 60 km in the southeastern South Pacific. The mode 2 wavelengths reveal a strong

zonal asymmetry that outweighs the meridional variation and is much more pronounced

than the zonal asymmetry of LST,1.

2.5.3 Comparison with the distribution obtained by solving the eigenvalue
problem

The geographical distribution of LST,1 is comparable with that of LSL,1. Figure 2.8a

shows that the relative differences are primarily under 10% of the local wavelengths in
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Figure 2.6: Distributions of the mode 1 wavelengths (km) for the M2 internal tide as derived

(a) by applying two-dimensional wavenumber spectral analysis to the M2 baroclinic velocities

at 100 m simulated by the STORMTIDE model for overlapping 15◦/cosϕ × 15◦ boxes, (b)

by numerically solving the Sturm-Liouville eigenvalue problem, and (c) by analytically solving

the WKB-simplified eigenvalue problem. Both eigenvalue problems use the same stratification

profiles averaged over the same boxes as used in the spectral analysis.
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Figure 2.7: Distributions of the mode 2 wavelengths (km) for the M2 internal tide. The same

methods are used as described in Fig. 2.6, except that the spectral analysis is performed for

the STORMTIDE M2 baroclinic velocities at 1085 m for deriving LST,2.
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around 90.6% of the global ocean considered, and under 5% of the local wavelengths

in two-thirds of the global ocean. The small differences lead to a good agreement

between the zonal-mean LST,1 and LSL,1 in Fig. 2.9a. In high latitudes, mainly in

the Indian Ocean and Atlantic, larger discrepancies also arise, but with only 3% of

the global ocean considered having a relative difference larger than 15%. The result

indicates that in most of the global ocean, particularly in the Pacific, the mode 1 M2

internal tide simulated by the STORMTIDE model is well explained by linear waves

that satisfy the local dispersion relation, diagnosed locally, with other effects accounting

for less than 10% in terms of relative differences.

Figure 2.8b shows mainly negative relative discrepancies of mode 2, indicating that

the simulated mode 2 wavelengths are in general shorter than those predicted by the

Sturm-Liouville eigenvalue problem. The relative differences are under 10% in about

73% of the global ocean considered. Larger discrepancies occur mainly in high latitudes.

With respect to zonal means, the meridional profile of LST,2 is comparable with that of

LSL,2 (Fig. 2.9b). Overall, mode 2 shows a larger relative discrepancies than mode 1,

which makes sense since shorter waves are more easily affected by the varying oceanic

medium, introducing stronger nonlinear effect.

2.6 Relative roles of N and f in determining the wavelengths

The mode 1 wavelengths simulated by the STORMTIDE model (Fig. 2.6a) reveal a

zonal asymmetry and a general poleward increase. The same features are observed in

results of the standard (Fig. 2.6b) and the WKB-simplified (Fig. 2.6c) Sturm-Liouville

eigenvalue problems whose solutions solely depend on the local stratification N and on

the Coriolis parameter f . We now explore the relative roles of N and f in determining

the distribution of the wavelengths. Along a latitude circle, since f is constant, the

zonal asymmetry must result from the effect of N .

To further separate the roles of N and f in determining the wavelengths, we design

another two near-global maps of the mode-1 wavelengths using the linear theory. One
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(b) (LST,2-LSL,2)x100/LST,2

(a) (LST,1-LSL,1)x100/LST,1

Figure 2.8: Differences (%) between LST,m and LSL,m (m = 1, 2) for (a) mode 1 and (b) mode

2 normalized by values of LST,m. Red shading indicates that the values of LST,m are larger

than those of LSL,m, whereas blue shading suggests the opposite.
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Figure 2.9: Zonal-mean wavelengths of (a) mode 1 and (b) mode 2. The solid line represents

LST,m, which is obtained from the STORMTIDE simulation, and the dashed line represents

LSL,m, which is derived by solving the Sturm-Liouville eigenvalue problem.

is derived by using constant f in Eq. (2.7) with the eigenvalues directly from the eigen

solutions [Eq. (2.5)], whereas the other is acquired by setting constant stratification,

hence constant νm in Eq. (2.7), in the near-global ocean in which f varies realistically

with latitudes. Their normalized zonal-mean values, shown in Fig. 2.10a, are indepen-

dent of the values of N and f that have been chosen. We find a poleward increase

of the wavelengths with constant stratification (blue line), a tendency introduced by

the dependence of f on latitudes. The wavelengths will further proceed infinity at the

critical latitude of about 74.5◦N/S, where f approaches the M2 tidal frequency. The

wavelengths determined by N only (black line) decrease equatorward in the low lat-

itudes between 28◦N and 18◦S, and decrease poleward beyond this latitude range, a

feature introduced by the variations of νm with latitudes.

The normalized zonal-mean LST,1 is also displayed in Fig. 2.10a (red line). Between

28◦N and 18◦S (region A in Fig. 2.10a), the LST,1 goes up sharper than both theoretical

wavelengths, indicating the combined positive contributions from both N and f in

determining the wavelengths. In the latitudes between 28◦ and 33◦N and 18◦ and 42◦S

(region B), the LST,1 continues rising although N imposes here a negative contribution
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Figure 2.10: Zonal-mean wavelengths of (a) mode 1 and (b) mode 2 derived by the spectral

analysis with the simulated M2 baroclinic velocities (red), by setting constant N , hence constant

νm in Eq. (2.7) (blue), by setting constant f in Eq. (2.7) with νm directly from solving the

eigenvalue problem Eq. (2.5) (black). These wavelengths are normalized by their respective

maximum. The latitude space is further divided into characteristic regions, denoted by A-C for

mode 1 and denoted by A for mode 2, which are further described in the text.
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to the wavelengths. Hence, in these two regions, the role of f dominates over that of

N . However, poleward beyond 42◦S/33◦N (region C), the role of N outweighs that of

f due to the poleward decrease of LST,1. This explains the differences of our results,

specifically for high latitudes, to that of a two-layer model with a horizontally uniform

stratification but a latitudinal dependence of f in Simmons et al. (2004a, their Fig. 11).

Hence, we conclude that N and f play a combined role in determining the geographical

distribution of LST,1.

For the mode 2 wavelengths (Fig. 2.7a), we find that the tendency of a poleward

increase in wavelengths almost no longer exists and even reverses in the southern At-

lantic and part of the Indian Ocean. Hence, the role of f is significantly weakened

in determining LST,2 compared to its role in determining LST,1, consistent with the

fact derived from Eq. (2.7) that the same amount of changes in f will lead to smaller

changes in mode 2 than in mode 1 as a result of the larger eigenvalues of mode 2.

The zonal asymmetry on the other hand is more pronounced for LST,2 than for LST,1,

in particular in the Pacific. This feature is also captured in LSL,2 (Fig. 2.7b) and in

LWKB,2 (Fig. 2.7c). It seems that stratification has a stronger influence on LST,2 than

on LST,1, consistent with the description that higher modes are more sensitive to the

ocean environment (Ray and Zaron 2011), and thus controls the global characteristics

of LST,2.

The normalized zonal mean of the simulated mode 2 wavelengths are shown in Fig.

2.10b in comparison with those derived with either N or f fixed. The simulated mode

2 wavelengths (red line) are generally well captured by those derived with constant f

(black line) between about 28◦S and 23◦N (region A in Fig. 2.10b), and they depart

outside this latitude range. There is only a slight increasing tendency of LST,2 with

increasing latitudes. Hence, f seems not to play a significant role in determining mode

2 wavelengths. In conclusion, the effect of N outweighs that of f in determining the

simulated mode 2 wavelengths.
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2.7 Applicability of the WKB-simplified eigenvalue problem

As shown in Fig. 2.6c and 2.7c, the WKB-simplified eigenvalue problem [Eq. (2.9)] is

able to capture the basic patterns of LSL,1 and LSL,2. Specifically, the zonal asymme-

try, the general poleward increase of the wavelengths and the stronger zonal asymmetry

for mode 2 than for mode 1, as identified from the solutions of the STORMTIDE model

and the Sturm-Liouville eigenvalue problem, are reproduced. The relative differences

between the wavelengths obtained from the Sturm-Liouville and WKB-simplified eigen-

value problems are given by LSL,m − LWKB,m

LSL,m
× 100% and shown in Fig. 2.11. The

global mean relative differences are 6.4% and 5.2% for mode 1 and 2, respectively.

Therefore, in a qualitative sense of large-scale variations, the WKB-simplified eigen-

value problem could provide a useful interpretation of the numerical solutions of LSL,m,

consistent with Chelton et al. (1998).

We now consider the geographical distributions of deviations between these two eigen-

value problems (Fig. 2.11). For mode 1, the WKB-simplified eigenvalue problem

overestimates the wavelengths in the tropical oceans and underestimates them in the

subtropical oceans (Fig. 2.11a). The differences are smaller than 10% within 77% of the

global ocean. Differences larger than 10% are found in the northern Atlantic, the north-

ern and the eastern equatorial Pacific, the Indian Ocean and regions west of Australia.

For mode 2, the WKB-simplified eigenvalue problem underestimates the wavelengths

in most of the Pacific and Indian Ocean and overestimates them in southern part of

the ocean (Fig. 2.11b). In around 90% of the global ocean the relative differences are

smaller than 10%. This includes all of the Atlantic and the Indian Ocean, and some

of the Pacific. Differences are larger in the equatorial Pacific and in some parts of

the South Pacific. Apparently, differences for mode 1 reveal a spatial structure which

is different from that for mode 2 (Fig. 2.11). This might be caused by the different

sensitivities of the wavelengths of different modes to details of stratification.

Around 10% bias has been described by Chelton et al. (1998) to be too large for

many quantitative uses of the WKB approximation. Comparing LWKB,m with LSL,m
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(a) (LSL,1-LWKB,1) × 100/LSL,1

(b) (LSL,2-LWKB,2) × 100/LSL,2

Figure 2.11: Differences (%) between LSL,m and LWKB,m (m = 1, 2) for (a) mode 1 and (b)

mode 2 normalized by the values of LSL,m. Red shading indicates that values of LSL,m are

larger than those of LWKB,m, whereas blue shading suggests the opposite.
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shows differences up to about 15%, suggesting that the WKB approximation is also

problematic in deriving the wavelengths of the M2 internal tide globally.

2.8 Concluding remarks

With a spectral analysis of the near-global three-dimensional field of model simulated

baroclinic tidal velocities, we examined the horizontal wavelength properties of mode

1 and mode 2 M2 internal tides. The model is a 1/10◦ primitive equation model that

concurrently simulates the ocean circulation and tides. The near-global distributions

of the simulated internal tide wavelengths are compared to those obtained by solving

the Sturm-Liouville eigenvalue problem. The analysis aims not only to identify the

wavelengths of the low-mode M2 internal tides and their large-scale characteristics, but

also to quantify various factors that affect the wavelengths and hence the M2 internal

tide. The following conclusions are drawn.

1. Two modes of the M2 internal tide are captured by the STORMTIDE model. The

mode 1 wavelengths (LST,1) are in the range of 100-160 km. The largest values are

above 170 km and exist in strong current regions, for instance, in the Kuroshio and

Antarctic Circumpolar Current regions. The geographical distribution reveals a zonal

asymmetry and a general tendency of increasing LST,1 with increasing latitude. The

model-simulated internal tide mode 2 wavelengths (LST,2) are primarily in the range of

45-80 km. Values larger than 75 km are mainly concentrated in the equatorial regions

of the Pacific and in the northeast of the Indian Ocean. The dominant feature of

LST,2 is the zonal asymmetry, whereas the latitudinal variations are not as pronounced

as that of LST,1. This characteristics is explained by the dispersion relation derived

directly from the Sturm-Liouville eigenvalue problem, which depends primarily on the

local stratification N and the Coriolis parameter f . Obviously, the zonal asymmetry

of the wavelengths is a result of variation in N only, whereas the meridional variations

are caused by a combination of changes in N and f . Our analysis shows that for the

mode 1 internal tide, the wavelengths are controlled by both N and f . Instead, for the
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mode 2 internal tide, the variations of N dominate their spatial characteristics.

2. The STORMTIDE model simulates, to a first approximation, mainly linear in-

ternal waves that satisfy the local dispersion relation. The small differences between

LST,1 and LSL,1 are systematic, with LST,1 being smaller than LSL,1 over most of the

near-global regions. In high latitudes, larger differences between LST,m and LSL,m are

observed, suggesting important role of nonlinear wave-current interactions there.

3. The WKB-simplified eigenvalue problem is shown to be able to capture the main

features of the wavelengths of the low-mode M2 internal tides. Neglecting details of

vertical variations in N that is not captured by the vertical integral of N leads to

relative errors up to about 15%.

In general, we find that the spectral peaks are broadened considerably in eddy-active

regions, for instance, within the Antarctic Circumpolar Current region. Interactions

between mean flows, mesoscale eddies, and internal waves might play a role in deter-

mining the wavelengths in these regions. The broadening of the peaks could be a sign

of current-induced frequency shifts (Kunze 1985), and thus it implies that frequen-

cies of internal waves are shifted towards or away from the M2 tidal frequency. With

strong frequency shifts, the center of the peaks could also be shifted towards different

wavenumbers.

We conclude from this study that the characteristics of internal tides are well de-

scribed by the global model approach and are consistent with linear waves obtained by

solving the local Sturm-Liouville eigenvalue problem. Deviations from linear waves lead

to wavelength differences of about 5%-10%. Since these interactions are non-stationary

processes, it will be important to further understand these complex mechanisms in or-

der to accurately map the time-dependent characteristics for an advanced processing

of future high-resolution satellite altimeter data.



Chapter 3

The K1 internal tide simulated by a 1/10◦

OGCM

Using the 1/10◦ STORMTIDE concurrent simulation of the eddying general ocean

circulation and tides, we quantify the characteristics of the low-mode K1 internal tides

by diagnosing the wavelengths from the two-dimensional wavenumber spectral analysis

with the simulated baroclinic tidal velocities, whose interpretation is guided by linear

wave theory. We further investigate the role of the critical latitude and how the trapping

process is simulated in the STORMTIDE model by diagnosing the vertical distributions

of the STORMTIDE model-simulated K1 kinetic energy.

Three to four modes are resolved in the STORMTIDE model for the freely propa-

gating K1 internal tide. The wavelengths of the first three modes range within 200-400

km, 100-200 km and 60-120 km, respectively. The simulated K1 internal tides are, to

the first approximation, linear waves, exhibiting a zonal asymmetry and a poleward

increase, attributed to the role of stratification N and the Coriolis frequency f , respec-

tively. The f -effect is predominant in determining the low-mode wavelengths, although

a visible, but much weaker role of N is also observed.

The presence of the critical latitude ϕc separates the characteristics of the freely

propagating and trapped K1 internal tides, with a surface concentration and a bottom

amplification of the kinetic energy in the vertical in sub- and supercritical latitudes,

45
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respectively, features captured by the STORMTIDE model simulation. The stronger

kinetic energy is observed in shallower than deeper regions both equatorward and pole-

ward of ϕc, with a stronger decreasing rate above the bottom and a further upward

intensification above the level of the energy minimum in shallower regions in supercrit-

ical latitudes.

3.1 Introduction

The barotropic K1 tides are the dominant diurnal tidal constituent with a period of

around 23.935 hours, and are generated by the tidal forcing from the sun and moon on

the whole water body. Their interaction with rough topography in the stratified ocean

produces internal waves at the K1 tidal frequency, named the K1 internal tide. So

far, most studies with respect to internal tides have been dedicated to the largest tidal

constituent at the M2 tidal frequency, with specific focuses on the generation, energetics

and evolution (e.g., Munk and Wunsch 1998; Niwa and Hibiya 2001; Simmons et al.

2004a; Rainville and Pinkel 2006; Garrett and Kunze 2007; Müller et al. 2012). The

M2 and K1 internal tides are, however, differing in some important aspects, and the

special pattern of the internal tide generation is also very different for the M2 and K1

constituents. In the Luson Strait, for instance, the conversion rates from barotropic to

internal tides are much larger for the K1 internal tide (Jan et al. 2007). Furthermore,

diurnal tides are strongly modulated on bidecadal time scales and thus the variations

of tidal mixing might have important implications for decadal climate variability (Ray

2007). Special effort is thus required to understand the characteristic behaviors of the

K1 internal tide.

Internal tides are generated at topographic features and are either propagating away

from, or are trapped to, bottom topography. To separate both features, we define

the critical latitude ϕc, where the tidal frequency ω matches the Coriolis frequency f ,

with ϕc = 30◦ for the K1 internal tide. Freely propagating internal tides can only be

sustained equatorward of ϕc when f < ω < N is satisfied with N being the buoyancy
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frequency. Low modes radiate away from the generation sites, carrying most of the

energy and leaving about 30% of internal tide energy dissipated locally (St. Laurent

et al. 2002). The remote breaking of these low modes away from the original sources

contributes to the background diffusivity (normally assumed to be 10−5 m2 s−1) (e.g.,

Munk and Wunsch 1998; Exarchou et al. 2012). Poleward of the critical latitude,

internal tides are still generated due to the ubiquitous presence of barotropic tides,

but become subinertial since ω < f ; thus they are trapped to topography instead

of freely propagating into the ocean’s interior (Falahat and Nycander 2015). These

waves are called bottom-trapped internal tides, which break and dissipate locally in

the vicinity of their generation sites, serving as an efficient driver for vertical mixing

over the topography. Hence, a higher dissipation efficiency than 30% is expected for

trapped waves, which is, for instance, 80%-100% for the trapped K1 internal tide at

the Kuril Straits (Tanaka et al. 2010).

Internal tides serve as a major component in the energy cascade from barotropic tides

to diapycnal mixing through the turbulent processes. These waves, however, cannot be

resolved in the coarse-resolution climate or ocean general circulation (OGCMs) models;

their effect on extracting energy from barotropic tides in shallow water equations and

further on inducing mixing should be parameterized. In the state-of-the-art parameter-

ization of the tidal mixing effect in numerical models, the required internal tide energy

flux is parameterized by the simulated barotropic tidal velocities (Jayne and St. Lau-

rent 2001; St. Laurent et al. 2002; Egbert et al. 2004; Jayne 2009; Green and Nycander

2013; Falahat and Nycander 2015). The dissipation efficiency q is an important quan-

tity, which accounts for how much internal tide energy is locally fed into turbulence,

and thus needs to be considered. Because numerical models are mostly integrated in

time domain, the ω-dependent term (in frequency domain) is traditionally not taken

into account in the coarse-resolution OGCMs or climate models. Hence, a constant

value of q ' 0.3 (e.g., St. Laurent et al. 2002, their Eq. (2)) is widely used for all tidal

frequencies, globally. This application is obviously problematic in regions with high lo-

cal dissipation efficiencies, for instance, for trapped waves in supercritical latitudes. An
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improved parameterization is proposed by Schmittner and Egbert (2014) by separating

diurnal and semidiurnal tidal constituents. A complete dissipation (q = 1) is assigned

to diurnal tides poleward of 30◦; the incomplete dissipation (q = 0.33) is, however,

sustained for semidiurnal tides. This modification improves the diapycnal diffusivity

and circulation indices. It indicates that better knowledge of the trapped K1 internal

tide aids in a better parameterization in the OGCMs or climate models.

Since ϕc is located at a low latitude for the K1 tides, the bottom-trapped K1 internal

tide is present over a considerably large area. Thus, a better understanding of these

trapped waves is necessary. It is indicated by Müller (2013) that about 30% of the

diurnal internal tide energy is generated poleward of 30◦. This estimate is based on

a high-resolution OGCM (STORMTIDE; Müller et al. 2012), in which low-frequency

motions and tides are simultaneously resolved. On a basis of linear wave theory and

the modal decomposition approach, Falahat and Nycander (2015) present the spatial

distribution of diurnal tidal energy density and the corresponding energy flux for both

K1 and O1 internal tides in supercritical latitudes. The important role of bottom-

trapped diurnal internal tides in mixing is also recognized in some regional studies

(e.g., Nakamura et al. 2000; Fer et al. 2015). However, a detailed global study is not

existing on propagation and characteristics of the K1 internal tide and will be pursued

in this study.

In this study, we aim for a better understanding of the characteristics of the K1 inter-

nal tide, quantified by the distributions of the low-mode K1 internal tide wavelengths.

The wavelengths are diagnosed from the baroclinic tidal velocities simulated by the

1/10◦ STORMTIDE model (Müller et al. 2012) and are compared with those of the

Sturm-Liouville eigenvalue problem. We will also investigate the vertical distributions

of the K1 kinetic energy both equatorward and poleward of the critical latitude, involv-

ing the propagation of internal tides in a realistic ocean environment. The following

questions will be addressed in our study:

1. Which modes of the K1 internal tide are simulated in the STORMTIDE model

and what are their properties, for instance, their wavenumber characteristics,
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their wavelengths and the respective geographical distributions?

2. Are these waves consistent with the dispersion relation of linear internal waves?

What are the relative roles of N and f in determining these geographical distri-

butions?

3. How is the applicability of the WKB approximation to the K1 internal tide?

4. What is the role of the critical latitude in determining characteristics of the K1

internal tide? How is the trapping process simulated in the model?

To answer the first two questions, we perform the two-dimensional wavenumber spec-

tral analysis by using the baroclinic tidal velocities simulated by the 1/10◦ STORMTIDE

model, and compare the resulting wavelengths and their distributions with those de-

rived by solving the Sturm-Liouville eigenvalue problem in which the box-averaged

stratification from the STORMTIDE simulation is used. The same methods as de-

scribed in section 2.3 are used. By comparing the wavelength distributions derived by

solving the standard and WKB-simplified eigenvalue problems, the third question will

be addressed. To answer the last question, we will analyze the vertical distributions of

the K1 kinetic energy above the topography in different water depth regions, with a

particular focus on the distributions poleward of the critical latitude.

In section 3.2, we present the horizontal distributions of the model simulated kinetic

energy in both the upper and deep oceans. Section 3.3 describes the characteristics

of the wavenumber spectra and the distributions of the resulting wavelengths of the

K1 internal tide along with a comparison with those of linear wave theory. The in-

vestigation of the relative roles of N and f is also presented here. The applicability

of the WKB approximation to the K1 internal tide is addressed in section 3.4, while

detailed investigation of the role of the critical latitude, including characteristics of the

bottom-trapped internal tides, is described in section 3.5. The concluding remarks are

given in section 3.6.
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3.2 Kinetic energy of the K1 internal tide

To get an overview of the baroclinic tidal velocities of the 1/10◦ STORMTIDE model

simulation, we show the model-simulated kinetic energy of the K1 internal tide in the

upper (at 100 m) and deep (at 1085 m) oceans in Fig. 3.1a and 3.1b, respectively.

Both maps clearly show that most of the kinetic energy is confined within 30◦N to

30◦S, indicating the presence of the critical latitude in the 1/10◦ model simulation.

Note that with the same model set up, this critical latitude effect is absent in the 0.4◦

MPI-OM simulation (Fig. C.2 in the Appendix), revealing the significance of the high

resolution in internal tide studies.

In subcritical latitudes (ϕ < ϕc with ϕ being the latitude), the energy is most promi-

nent in the Pacific at both 100 m and 1085 m (Fig. 3.1a and 3.1b), especially in the

western Pacific, with the Luson Strait as the dominant generating obstacle of the K1

internal tide. There is, however, solely weak internal tide energy in the eastern Pacific,

in large part due to the relatively smooth topography compared to the western Pacific.

A high energy level shows up also in the Hawaiian Ridge and the Tuamotus in the

Pacific as a result of the rough topography, and in low latitudes in the Indian Ocean,

attributed to the intense interaction of significant barotropic tidal flows with rough to-

pography there. The kinetic energy in the Atlantic is, however, evidently much weaker

than those in the other two basins, which would be accounted for, at least in part, by

the weaker K1 barotropic tidal currents throughout most of the Atlantic (Egbert and

Ray 2003).

The K1 energy level is much lower in supercritical (ϕ > ϕc) than subcritical latitudes

(Fig. 3.1a and 3.1b). The K1 internal tide is subinertial (ω < f) poleward of 30◦ and

cannot freely radiate away from the generation site. Hence, the strong kinetic energy is

located primarily only directly over rough topography in the northern Pacific, such as

along the Kuril Islands, the Aleutian Islands and the Emperor Seamounts expanding

northwest of the Hawaiian Ridge. Relatively energetic motions are also produced in

the Southern Ocean around the Antarctic, involving in particular the southeast of New
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Figure 3.1: Kinetic energy (cm2 s−2) of the K1 internal tide in logarithmic scales at (a) 100 m

and (b) 1085 m, which are simulated by the 1/10◦ STORMTIDE model. They are derived by

(A2
ubc

+A2
vbc

)/2, with Aubc
and Avbc being amplitudes of the K1 baroclinic zonal and meridional

velocities, respectively. (c) The vertical integral of the K1 kinetic energy (J m−2) in logarithmic

scales derived by
∫ 0

−H
ρw(A

2
ubc

+A2
vbc

)/2dz, with ρw being the density of seawater and H water

depth. Boxes denote the regions in which the wavenumber spectra will be be introduced later.
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Zealand and the Pacific-Antarctic Ridge. All these hot spots indicate strong generation

of the bottom-trapped K1 internal tide in supercritical latitudes.

The vertical integral of the K1 kinetic energy is displayed in Fig. 3.1c, representing

again the existence of the critical latitude and hot spots of the kinetic energy both

poleward and equatorward of ϕc, resembling the distributions described above. The

beam-like structures are more evident in the vertical integral (Fig. 3.1c) than at a

single depth (Fig. 3.1a and 3.1b), indicating the propagation directions of the free K1

internal tide in subcritical latitudes.

3.3 Wavelengths of the model-simulated K1 internal tide

In general, we adopt the same methods for the K1 internal tide as used in the M2

analysis of the STORMTIDE simulation (section 2.3). Note that both tidal constituents

are derived from the same model simulation.

3.3.1 Characteristics of the wavenumber spectra

The two-dimensional wavenumber spectra indicate not only the magnitudes of the

wavenumber vectors, but also the directions of wave propagation. In this study, the

spectra are obtained in boxes of the size 15◦/cosϕ (in longitude) ×15◦ (in latitude),

with ϕ being the latitude, for the K1 internal tide. Spectra in a few selected boxes will

be discussed in the following.

The two-dimensional spectra of the kinetic energy are shown in Fig. 3.2 (left col-

umn), denoted by SKE(k, l) with k and l being the zonal and meridional wavenumbers,

respectively, in the box centered at (135◦E, 7.55◦N); this box is highlighted in white

in Fig. 3.1c, exhibiting strong K1 internal tide energy. The spectrum in Fig. 3.2a

is derived at 100 m. We can clearly see an almost closed energetic circle with the

wavenumber centered at around 0.004-0.005 km−1, corresponding to a wavelength of

about 200-250 km. This energetic circle further reveals an evident zonal asymmetry in

the energy distribution, indicating a preferably eastward propagation of the waves with
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more concentrated energy in the eastern half circle, in particular along lines that are

45◦ to the zonal direction. This characteristic propagation direction is closely related

to the local geographic features. Located at the Philippine Sea, we can see in Fig. 3.1c

that there are two principal sources for the K1 internal tide injected into this box. On

the one hand, internal tides radiate away after their generation over the Philippine

Trench, and partially propagate northeastward into the Philippine Sea. These waves

are revealed in the wavenumber spectrum SKE(k, l) along the 45◦ line, directing to the

northeast. On the other hand, there is an evident southeastward injection of waves into

this box from the northern boundary, originating apparently from the Luson Strait.

This southeastward propagation is revealed in Fig. 3.2a as well, along the line 45◦

southward to the zonal direction.

The one-dimensional wavenumber spectrum SKE(K) at 100 m, converted from SKE(k, l)

with K =
√
k2 + l2 being the horizontal wavenumber, is displayed in Fig. 3.2b. The

scatters correspond to each individual points in SKE(k, l). Variations of the scatters

at a specific wavenumber are caused by the inhomogeneity of the energy distribution

in the (k, l) plane along each wavenumber circle that indicates the anisotropy of wave

propagations. Detailed information of wave propagations is, however, lost through this

transformation. The energetic circle in Fig. 3.2a is further represented as a promi-

nent peak in the one-dimensional spectrum obtained by the bin averages of all values

of SKE(K) inside the respective intervals (Fig. 3.2b). This peak is named the low-

wavenumber peak.

Closely beyond this low-wavenumber circle to the east, we observe another less ener-

getic half circle in Fig. 3.2a, which is found to be more evident at 560 m (Fig. 3.2c)

where the vertical modal structure of mode 2 experiences its interior maximum in this

given box. This circle, named the mid-wavenumber circle, presents almost the same

energy level as the low-wavenumber circle at 560 m; both energetic circles are reflected

by prominent spectral peaks in SKE(K) (Fig. 3.2d), reflecting a similar amount of the

kinetic energy. The mid-wavenumber circle is located at around 0.007-0.008 km−1 (Fig.

3.2c), corresponding to a wavelength of about 125-140 km, with relatively weak energy
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Figure 3.2: Wavenumber spectra SKE(k, l) (m2 s−2 km−1, in logarithmic scales) of the kinetic

energy of the K1 internal tide in the 15◦/cosϕ×15◦ box centered at (135◦E, 7.55◦N) at (a) 100

m, (c) 560 m, and (e) 1220 m. The resolved ranges of k and l are within -0.045-0.044 km−1,

but we show only the energetic range of -0.025-0.025 km−1 to enhance the readability. In the

right column, wavenumber spectra SKE(K) are converted from the respective SKE(k, l) using

K =
√
k2 + l2. The scatters are converted directly from each value of SKE(k, l). The red lines

represent the bin averages of SKE(K), in which SKE(Ki) at the ith interval is obtained by

averaging all values of SKE(K) with K inside the interval (Ki,Ki+ M). We consider a total of

100 consecutive intervals. Term M is obtained by dividing the total resolved wavenumber range

by 100.
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emerging at even higher wavenumbers. Waves associated with the mid-wavenumbers

are strongly directed to the east. In particular, the high energy level in the northeast

indicates a larger injection of the K1 internal tide from the Philippine Trench than from

the Luson Strait at this depth.

Down to the deeper ocean, the spectrum in Fig. 3.2e is derived at 1220 m where

mode 3 undergoes its second (deeper) interior maximum in the vertical distribution.

Here we still capture the strong mid-wavenumber circle, whereas the one related to

the low wavenumber is rather weak and emerges only partially. There is another circle

appearing at even higher wavenumber of around 0.012-0.013 km−1 with a wavelength

of about 80 km. It is thus referred to as the high-wavenumber circle. Its lower energy

level than the mid-wavenumber circle is consistent with the distribution of SKE(K)

(Fig. 3.2f), where the energy level is almost one order of magnitude lower for the high-

than mid-wavenumber peaks, while the low-wavenumber peak is almost unrecognizable.

Similar as the mid-wavenumber circle, waves associated with the high-wavenumbers

(Fig. 3.2e) prefer to propagate eastward, in particular to the northeast, revealing the

predominance of the K1 internal tide from the Philippine Trench. In general, due to the

relatively long distance from the Luson Strait to the considered region, the significance

of the K1 internal tide originating from the Luson Strait is only observed for the low-

wavenumber motions, but not for the mid- and high-wavenumber motions owing to

their slow propagation speed.

To get a more general overview of the characteristics of the K1 wavenumber spectra,

results in the box centered at (110◦W, 7.45◦S) (the box highlighted in black in Fig. 3.1c)

are displayed in Fig. 3.3. The spectra are derived at 100 m, 740 m and 1365 m, depths

with the same definition as used in Fig. 3.2, representing the diagnosis of the low-, mid-

and high-wavenumber peaks, respectively. The energy distributions of SKE(k, l) (left

column of Fig. 3.3) reveal strong asymmetries, much more pronounced in the meridional

than zonal directions. Hence, the K1 internal tide in this given box mainly propagates

in the northward direction. Furthermore, the meridional asymmetry is found to be

most evident for the mid-wavenumber waves, but least evident for the low-wavenumber
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waves. The three peaks (right column of Fig. 3.3) present at the wavenumbers of about

0.005 km−1, 0.01 km−1 and 0.015 km−1, respectively, corresponding to the wavelengths

of about 200 km, 100 km, 67 km, independent of depth. Interestingly though, a fourth

circle with relatively weak energy is found to emerge at even higher wavenumbers in

Fig. 3.3c and 3.3e, whose existence and consistency at both depths are also reflected by

SKE(K) (Fig. 3.3d and 3.3f). Hence, differing from the results described in Fig. 3.5,

four energetic peaks, instead of three, in SKE(K) are captured by the spectral analysis

at the three selected depths.

We further show an example for a box close to the critical latitude. In Fig. 3.4, we

show the spectra in the box centered at (165◦E, 22.55◦N) (the box highlighted in red in

Fig. 3.1c), where the K1 tide approaches its critical latitude at 30◦N in the poleward

boundary of the considered region. The spectra are derived at 100 m, 845 m and 1365

m, respectively. The energy circles are not easily distinguishable in SKE(k, l) at 100

m (Fig. 3.4a); three isolated peaks are, however, still revealed in the corresponding

SKE(K) (Fig. 3.4b). Hence, we can still diagnose the low wavenumber to be located

at roughly 0.0025 km−1, related to the wavelength of about 400 km, albeit a broader

low-wavenumber peak of SKE(K) at 100 m (Fig. 3.4b) than the previous ones (Fig.

3.2b and 3.3b). The energy circles at 845 m (Fig. 3.4c and 3.4d) are better split,

showing a wavenumber of about 0.005 km−1 and a related wavelength of about 200 km.

Further downward to 1365 m, two obvious circles, associated with the mid- and high-

wavenumber waves, are presented in SKE(k, l) (Fig. 3.4e). The mid-wavenumber circle

is again located at the wavenumber of around 0.005 km −1 (Fig. 3.4f), while the high-

wavenumber circle is presented at the wavenumber of about 0.01 km−1 corresponding

to a wavelength of 100 km. Fig. 3.4 generally presents the common features of the

spectral circles that are not well split in regions near the critical latitude as a result

of the larger length scales of the K1 internal tide there. However, we are still able to

capture the wavenumbers (hence the wavelengths) of the isolated peaks through the

conversion from SKE(k, l) to SKE(K). In general, the K1 internal tidal peaks diagnosed

from the wavenumber spectral analysis are more isolated from each other in lower- than



3.3. Wavelengths of the model-simulated K1 internal tide 57

Figure 3.3: Wavenumber spectra SKE(k, l) (m2 s−2 km−1, in logarithmic scales) of the

STORMTIDE-simulated kinetic energy of the K1 internal tide in the 15◦/cosϕ× 15◦ box cen-

tered at (110◦W, 7.45◦S) at (a) 100 m, (c) 740 m, and (e) 1365 m. In the right column,

wavenumber spectra SKE(K) converted from the respective SKE(k, l) using K =
√
k2 + l2,

with K, k and l being the horizontal, zonal and meridional wavenumbers, respectively. Other

details are the same as described in Fig. 3.2.
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in higher-latitude oceans.

To obtain an overview of the entire vertical distributions of the wavenumber spectra,

we show the spectral distributions over all depths from the surface to ocean bottom

derived in the box centered at (135◦E, 7.55◦N) in Fig. 3.5, the same box as used in Fig.

3.2. We observe three groups of peaks that are denoted by I, II and III in Fig. 3.5a.

The low-wavenumber peak (group I) undergoes an energy reduction from the surface to

about 1220 m, where the peak vanishes, and then a slight energy rise downward until

the bottom. The energy of the mid-wavenumber peak (group II) reduces gradually

from the surface to 220 m where the peak disappears. Afterwards the energy increases

firstly with depth and then decreases until dying out again at 1885 m. The energy

reemerges further downward. There is a more complicated structure of the energy

variations of the high-wavenumber peak (group III). The strongest energy shows up

at the surface. Observing closely, we find three depths, 122 m, 645 m and 2290 m, at

which the high-wavenumber peak cannot be detected.

In order to understand the spectral distributions in Fig. 3.5a, we consider here the

vertical modal structures of the low-mode K1 kinetic energy that are derived by solving

the Sturm-Liouville eigenvalue problem. Results are shown for the first three modes

of the K1 internal tide in the box centered at (135◦E, 7.55◦N) in Fig. 3.5c, derived

by solving the standard eigenvalue problem with the box-averaged N in Fig. 3.5b.

We can see that mode 1 has its minimum where the energy becomes zero at 1260 m,

while there are two minima for mode 2 at 200 m and 1870 m, and three minima for

mode 3 at about 120 m, 650 m and 2360 m, respectively. Variations of these modal

structures from linear theory are consistent with the vertical energy distributions of

the wavenumber spectra in Fig. 3.5a, which proves that the three groups of peaks (I,

II and III) represent mode 1 to 3, respectively, in the considered box.

We further provide the vertical energy distributions of the wavenumber spectra in the

other two boxes (Fig. 3.6a and 3.7a) as used in Fig. 3.3 and 3.4. It is found that four

groups of peaks are observed for the K1 internal tide in Fig. 3.6a, which correspond

to mode 1 to 4, respectively, diagnosed from the same comparison between the vertical
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Figure 3.4: Wavenumber spectra SKE(k, l) (m2 s−2 km−1, in logarithmic scales) of the

STORMTIDE-simulated kinetic energy of the K1 internal tide in the 15◦/cosϕ× 15◦ box cen-

tered at (165◦E, 22.55◦N) at (a) 100 m, (c) 845 m, and (e) 1365 m. In the right column,

wavenumber spectra SKE(K) are converted from the respective SKE(k, l). Other details are

the same as described in Fig. 3.2.
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Figure 3.5: (a) Bin-averaged spectra SKE(K) of the kinetic energy of the K1 internal tide for

the box centered at (135◦E, 7.55◦N). (c) The vertical modal structures of the first three modes

of the kinetic energy in the considered box, which are proportional to [dwm(z)/dz]2 with wm(z)

being the eigenfunction. These structures are derived by solving the Sturm-Liouville eigenvalue

problem with (b) the box-averaged stratification profile simulated by the STORMTIDE model.

The zero crossings of mode 1 to 3 diagnosed from the modal structures are at (1260 m), at (200

m, 1870 m), and at (120 m, 650 m, 2360 m), respectively.



3.3. Wavelengths of the model-simulated K1 internal tide 61

energy distributions of the wavenumber spectra and the modal structures derived by

solving the Sturm-Liouville eigenvalue problem as mentioned above (details not given).

Furthermore, three groups of peaks are observed in Fig. 3.7a which are proved to be

related to the first three modes of the K1 internal tide, respectively. Although the

detailed diagnosis is not described here, the information required to do the diagnosis

is provided as a reference in Fig. 3.6a and 3.7a for the respective vertical distributions

of the spectral energy, in Fig. 3.6c and 3.7c for their respective modal structures, and

in Fig. 3.6b and 3.7b for the box-averaged stratification that is used in solving the

standard Sturm-Liouville eigenvalue problem. Since a fourth mode is not universally

captured by the spectral analysis at selected depths with the STORMTIDE simulation,

we diagnose only the wavelengths of the first three modes.

3.3.2 Geographical distributions of the K1 wavelengths

The wavenumber spectral analysis at selected depths in section 3.3.1 ensures the pres-

ence of each modal peak in the one-dimensional spectra SEK(K). Hence, the mode-1

K1 wavelengths are all derived at 100 m in the considered oceans for different boxes

with 5◦ movement away from each other in the horizontal. The spectral analysis is,

however, performed at varying depths for the wavelengths of modes 2 and 3, rather

than at a constant depth of 1085 m as done for the mode-2 M2 internal tide in Chapter

2.

Furthermore, it is difficult to obtain the geographical distributions of the wavelengths

in supercritical latitudes because of the highly inhomogeneous distributions and the

strong local dissipation (rather than free propagation) of the K1 internal tide there.

We thus perform the spectral analysis solely in subcritical latitudes where internal

tides are freely propagating after their generation. That means we consider only from

the equator to the most northern/southern boxes that are centered at 22.5◦N/S and

expand over 15◦ in the meridional direction until 30◦N/S, where the critical latitude is

present for the K1 internal tide.

The simulated mode-1 wavelengths LST,1 of the K1 internal tide are shown in Fig.
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Figure 3.6: The same as Fig. 3.5, but for the box centered at (110◦W, 7.45◦S). The zero

crossings of mode 1 to 3 diagnosed from the modal structures are at (1280 m), at (280 m, 1900

m), and at (110 m, 740 m, 2270 m), respectively.
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Figure 3.7: The same as Fig. 3.5, but for the box centered at (165◦E, 22.55◦N). The zero

crossings of mode 1 to 3 diagnosed from the modal structures are at (1340 m), at (390 m, 2340

m), and at (190 m, 860 m, 2910 m), respectively.
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3.8a, within a range of 200-400 km. The most prominent feature is a poleward increase

in all three ocean basins, particularly strong in the Pacific. The wavelengths rise in

the Pacific from about 200 km in the equator to over 400 km near the critical latitude.

Compared to this poleward increase, a zonal asymmetry is less pronounced, but exists

in all three ocean basins. We observe the strongest zonal asymmetry in the Pacific,

with larger values in the western than in the eastern Pacific in low latitudes.

Figure 3.8: Mode-1 wavelengths (km) of the K1 internal tide, derived (a) by applying the spec-

tral analysis to the STORMTIDE-simulated baroclinic tidal velocities at 100 m, (b) by solving

the Sturm-Liouville eigenvalue problem with the box-averaged stratification that are simulated

by the STORMTIDE, and (c) by solving the WKB-simplified Sturm-Liouville eigenvalue prob-

lem. The same box-averaged stratification has been used for both eigenvalue problems.

The simulated K1 wavelengths range within 100-200 km for mode 2 (LST,2 in Fig.

3.9a) and within 70-120 km for mode 3 (LST,3 in Fig. 3.10a), showing a relatively small

range in the Indian Ocean. These wavelength distributions capture a zonal asymmetry
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and a poleward increase in all three basins as observed in LST,1. The largest variations of

the wavelengths occur in the Pacific with the smallest values in the eastern equatorial

Pacific and the largest values near the critical latitude, which reveal simultaneously

the zonal asymmetry and the poleward increase. In conclusion, both general features

captured in the wavelengths of the first three modes indicate the presence of common

factors that control the behaviors of the lowest three modes in a similar way, which will

be investigated later.

Figure 3.9: Mode-2 wavelengths (km) of the K1 internal tide, derived by the same methods

as described in Fig. 3.8. Instead of 100 m used for the simulated mode-1 wavelengths, (a)

the simulated mode-2 wavelengths are derived at depths where the vertical modal structures of

mode 2 undergo their respective interior maxima.
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Figure 3.10: Mode-3 wavelengths (km) of the K1 internal tide, derived by the same methods

as described in Fig. 3.8. Instead of 100 m used for the simulated mode-1 wavelengths, (a)

the simulated mode-3 wavelengths are derived at depths where the vertical modal structures of

mode 3 undergo their respective second (deeper) interior maxima.
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3.3.3 Comparison with the distributions obtained by solving the eigenvalue
problem

The spatial distributions of the simulated wavelengths LST,m (m = 1, 2, 3) show similar

geographic patterns as those derived by solving the Sturm-Liouville eigenvalue problem

LSL,m, as can be seen by comparing Fig. 3.8a with 3.8b, 3.9a with 3.9b, 3.10a with

3.10b, respectively. The relative differences between LST,m and LSL,m are shown in

Fig. 3.11. In general, a small discrepancy, under 5%, is observed in about half of

the considered regions or even more (specifically 54%, 67.5% and 48% for mode 1 to 3,

respectively). The small discrepancy indicates a good agreement between the simulation

and the eigenvalue problem, meaning that the simulated waves in these regions highly

satisfy the dispersion relation diagnosed locally from linear wave theory. This good

agreement is also reflected in the zonal-mean comparisons of LST,m and LSL,m (left

column of Fig. 3.12).

Furthermore, a discrepancy between 5%-15% covers certain considered regions. Dis-

crepancies larger than 15% can also be observed, but show up only in very limited area

(covering 4.6%, 6% and 12% of the considered region for mode 1 to 3, respectively),

primarily in higher-latitude oceans. Large discrepancies (> 15%) appear also in the

eastern equatorial Pacific for mode 3. Differing from the first two modes though, the

discrepancies between the LST,3 and LSL,3 in Fig. 3.11c primarily show negative values,

indicating shorter length scales of the simulated mode-3 K1 internal tides compared to

those derived from the eigenvalue problem. This feature is clearly reflected in the

zonal-mean comparison in Fig. 3.12e.

To summarize, the simulated K1 internal tides are, to the first approximation, linear

internal waves that satisfy the local dispersion relation, with other effects accounting for

less than 10% (5.9%, 5% and 7.5% for the global average of mode 1 to 3, respectively)

of the relative discrepancies between LST,m and LSL,m.
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Figure 3.11: Relative discrepancies (%) between the simulated and theoretical wavelengths for

(a) mode 1, (b) mode 2, and (c) mode 3, that is, (LST,m − LSL,m) × 100/LST,m, m = 1, 2, 3.

Blue shading indicates that the values of LST,m are larger than those of LSL,m, whereas brown

shading suggests the opposite.
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(a) Zon�l�me�n mode�1 w�velengths (b) Norm�l��ed mode�1 w�velengths

(c) Zon�l�me�n mode�2 w�velengths (�) Norm�l��ed mode�2 w�velengths

(�) Zon�l�me�n mode�3 w�velengths (f) Norm�l��ed mode�3 w�velengths

Figure 3.12: Zonal-mean wavelengths (km) of (a) mode 1, (c) mode 2, and (e) mode 3, derived

from the model simulation (solid lines) and by solving the standard Sturm-Liouville eigen-

value problem (dashed lines). In the right column, comparisons of the normalized zonal-mean

wavelengths of the simulation (red lines) with the ideal tests, for mode (b) 1, (d) 2 and (f) 3,

by assigning constant N (blue lines) and f (black lines), respectively, when solving the stan-

dard Sturm-Liouville eigenvalue problem. These wavelengths are normalized by their respective

maxima in order to bring them to a comparable range of 0-1.
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3.3.4 Relative roles of N and f in determining the wavelengths

As described above, we find a good agreement between LST,m and LSL,m. Since only

N and f are taken into account in the eigenvalue problem, we perform two ideal tests

to separate their roles by assigning constant N (hence constant eigenvalues νm) and

constant f , respectively, when solving the standard Sturm-Liouville eigenvalue problem

[Eq. (2.7)]. The resulting wavelengths are then denoted as LSL,m,N (constant N

assigned) and LSL,m,f (constant f assigned), respectively.

The normalized zonal-mean values of LST,m (red lines), LSL,m,N (blue lines) and

LSL,m,f (black lines) are shown in Fig. 3.12 (right column). Note that the results are

independent of the absolute values of the constant N and f due to the normalization

of the resulting wavelengths. The zonal-mean LST,1 in Fig. 3.12b agrees well with the

variations of LSL,1,N , in which solely the f -effect is taken into account. This agreement

occurs not only for the poleward increase tendency, but also for the relative magnitude.

The relatively large discrepancy between them appears, however, in the equatorial

regions, where the values of f are quite small and N could instead impose a larger

effect. The zonal-mean LSL,1,f , with N at work only, tends to increase with increasing

latitudes as well, but vary in a quite narrow range. The large discrepancies between

LSL,1,f and LST,1 reveal the weaker role of N in determining the mode-1 K1 internal

tide wavelengths. The presence of N -effect in LST,1 influences, however, the slopes

of LST,1 compared to LSL,1,N . Both slopes are comparable between 12.45◦S-22.45◦S

(region A) due to the flatness of LSL,1,f . The slopes of LST,1 are, however, sharper

than those of LSL,1,N between 12.45◦S-22.55◦N (region B), a result of the superposition

of the effects of both N and f . Hence, it proves that N and f play a combined role in

determining the mode-1 simulated K1 wavelengths, with the f -effect being dominant.

The normalized zonal-mean comparisons are shown for mode 2 in Fig. 3.12d. In gen-

eral, the agreement between LST,2 and LSL,2,N is much better than mode 1, indicating

the predominant role of f in determining the mode-2 wavelengths. To be specific, the

relative magnitudes of LST,2 and LSL,2,N are similar in the southern hemisphere (re-

gion A), with also a comparable slope during their poleward increase. The magnitudes
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of LST,2 and LSL,2,N agree well between 17.55◦-22.55◦N (region C), and depart equa-

torward of 17.55◦N in the northern hemisphere (region B). The N -effect leads to the

complicated variations of LSL,2,f , namely a poleward decrease in the southern hemi-

sphere, and a poleward increase until 7.55◦N followed by a decrease in the northern

hemisphere. The variations of LSL,2,f are small in magnitudes, but contribute to the

relatively larger discrepancies between the slopes of LST,2 and LSL,2,N in region B,

where N and f play the role simultaneously. Outside this region (region A and C), the

effect of N is rather weak, and the dominant role of f is evident.

Fig. 3.12f shows the normalized zonal-mean comparisons of mode 3. The relative

magnitudes of LST,3 agree well with that of LSL,3,N , in particular in the southern

hemisphere (region A and B), with a poleward increase of the wavelengths. The slopes

of LST,3 and LSL,3,N present, however, slight discrepancies. The wavelengths LSL,3,f

vary in a rather small range and show similar latitudinal variations as mode 2. In the

southern hemisphere, LSL,3,f reduces monotonously with increasing latitudes, leading

to a reduced slope of LST,3 compared to LSL,3,N between 17.45◦S-2.55◦N (region B),

with an exception poleward of 17.45◦S (region A). In the northern hemisphere, the

poleward increase of LSL,3,f leads to steeper LST,3 between 2.55◦-12.55◦N (region C)

and the poleward reduction of LSL,3,f further leads to milder slopes of LST,3 (region

D), compared to those of LSL,3,N . Hence, a combined role of N and f , with f being

dominant, is observed for the mode-3 wavelengths.

In general, the normalized zonal-mean LST,m consists with LSL,m,N much better than

with LSL,m,f , with LSL,m,f varying in a rather narrow range of the relative magnitudes.

The poleward increase of LST,m is determined primarily by the presence of f . Hence,

the Coriolis frequency f plays the dominant role in determining the K1 wavelengths

for all three modes that are resolved in the STORMTIDE model. The role of N is less

significant in determining LST,m, but its role in the slight adjustment of the slopes and

magnitudes of LST,m is visible.
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3.4 Application of the WKB-simplified eigenvalue problem

In this section, the WKB approximation is further applied to the Sturm-Liouville eigen-

value problem, by which we assume a more rapid vertical change of the K1 internal

tide than stratification N . Hence, we take into account only the vertical integral of

stratification N̂ , but neglect its detailed variations [Eq. (2.9)]. As shown in Fig. 3.8-

3.10, the wavelength distributions derived from the WKB-simplified eigenvalue problem

(LWKB,m) reveal not only the same basic geographic patterns.

For a better understanding of the application of the WKB approximation to the

freely propagating K1 internal tide, we investigate the relative discrepancies between

LSL,m [Eq. (2.7)] and LWKB,m [Eq. (2.9)] in detail, which is derived by

LSL,m − LWKB,m

LSL,m
= 1−

N̂
√
νm

mπ
, (3.1)

where νm is the eigenvalues from the standard Sturm-Liouville eigenvalue problem.

It suggests that the relative discrepancies are independent of the tidal frequency ω,

and thus present the same distributions for the K1 internal tide as those of the M2

constituent (section 2.7).

The relative discrepancies are shown in Fig. 3.13. The dominant structures that are

observed are the dominant negative values for mode 1 and positive values for mode 2

and 3, indicating the general overestimates for mode 1 and underestimates for modes 2

and 3 by applying the WKB approximation. Relative small discrepancies, under 10%,

are observed in a large fraction of the considered ocean (80%, 88% and 92% for mode

1 to 3, respectively). There are discrepancies that are even smaller than 5% in the

entire ocean basin, in the Atlantic for mode 2 and in the Indian Ocean for mode 3,

where the WKB approximation is in general applicable. However, discrepancies larger

than 10% also show up in certain regions, mainly in the eastern Pacific and the low-

latitude Indian Ocean for mode 1, in the western equatorial Pacific for mode 2, and in

the eastern equatorial Pacific and northern Atlantic for mode 3, respectively. In these

regions, the WKB approximation would cause large errors in quantitative calculations.

To accurately capture the K1 internal tide wavelengths, not only the precise vertical
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integral, but also the detailed variations of stratification are thus required.

Figure 3.13: Relative discrepancies (%) between LSL,m and LWKB,m for mode (a) 1, (b) 2,

and (c) 3, respectively, that is, (LSL,m − LWKB,m) × 100/LSL,m, m = 1, 2, 3. Blue shading

indicates that the values of LSL,m are larger than those of LWKB,m, whereas brown shading

suggests the opposite.

3.5 Role of the critical latitude

3.5.1 Kinetic energy section of the propagating K1 internal tide

A vertical section of the simulated kinetic energy of the K1 internal tide is shown in Fig.

3.14a along 20.05◦N. The energy is found to be primarily concentrated in the upper

ocean, while there is only a low energy level in the deeper ocean, a feature observed

also for the simulated M2 internal tide (Fig. 2.4a).

To understand the surface-concentrated energy, we take into account the propagation



74 Chapter 3. The K1 internal tide simulated by a 1/10◦ OGCM

of internal tides. Internal tides emitted from a localized source normally propagate as

beams (Mowbray and Rarity 1967; Turner 1973) both vertically and horizontally in the

continuously stratified ocean. The energy trajectories are typically calculated by the ray

theory (e.g., Kunze 1985; Broutman et al. 2004; Rainville and Pinkel 2006; Chavanne

et al. 2010), with ray paths emanating from the locations of critical slopes on the ridge

flanks (e.g., Pairaud et al. 2010). In our results, the beam-like structures are partially

recognizable as highlighted (black lines) in Fig. 3.14a. The beams are found to be

bended and steeper in the abyssal than upper ocean, an effect of refraction occurring

in a varying medium (e.g., Gerkema and Zimmerman 2008). This is consistent with

the results of linear wave theory, which predicts that beams propagate more vertically

in the abyssal ocean with weaker N , while they tend to propagate more horizontally

with strong N in the upper ocean. Based on linear wave theory, refraction of upward-

propagating internal tides would focus the energy (Mathur and Peacock 2009), leading

to narrower wave beams in the upper ocean than in the deeper ocean, hence resulting

in a surface concentration of energy. However, this single process is not isolated in our

result. Furthermore, the upward-propagating beams are partially trapped within the

pycnocline, experiencing further reflection within the pycnocline with energy confined

in a narrow upper band (Mathur and Peacock 2009). Small-scale variations in N

(smaller than a vertical wavelength of the beams) also scatter wave beams, significantly

distorting the wave beams, weakening the reflected beams and creating a second site

of surface activity (Martin et al. 2006; Mathur and Peacock 2009). All these processes

are potential contributors for the surface concentration of the kinetic energy. Further

studies would be required to separate their relative importances.

On the other hand, the beams are mainly observed evidently in the immediate vicinity

of topographic features (Fig. 3.14a). It is known that the superposition of various

vertical modes forms the beams (e.g., Gerkema and Zimmerman 2008). Low modes

can radiate long distances from their generation sites (e.g., Ray and Mitchum 1996),

while high modes exist primarily near topography features because of their greater

shear and slower propagation speeds (e.g., Pickering and Alford 2012). Hence, in the
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Figure 3.14: Vertical distributions of (a) the K1 kinetic energy (J m−3) in logarithmic scale,

and (b) stratification (s−1) over the section along (140◦-170◦E, 20.05◦N) in the northern Pacific.

Both plots are derived at the regular lonlat grid, i.e., 0.1◦ × 0.1◦, which are converted from the

non-regular model resolution. In (a), the black lines indicate internal wave beams (manually

drawn for demonstration), and the two boxes indicate the regional breakups of wave beams.
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far field of the generation site, only low modes are at work, as shown in Fig. 3.15, for

the dominant mode 1 (blue line) and a superposition of modes 1 and 2 (red line).
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Figure 3.15: Vertical profiles of the K1 kinetic energy at single points, located at (130◦E,

20.05◦N) (blue) and at (170◦W, 20.05◦N) (red), derived at the regular lonlat grid with a reso-

lution of 0.1◦ × 0.1◦.

As has been pointed out by Gerkema and van Haren (2012), introducing vertical

variations of N breaks up the well-defined beams in uniform N near the pycnocline.

The beams are turned into patches when further taking into account the horizontal

variations of N . The observed regional breakups in the upper ocean, for instance,

between 150◦-165◦E (highlighted by the magenta and blue boxes in Fig. 3.14a), can

be, at least partially, attributed to the presence of the pycnocline (Fig. 3.14b).

When upward-propagating beams impinge on thermoclines or ocean surface, many

processes occur. In the reflection zone at the surface where incident and reflected beams

intersect, nonlinear effects are strong and drag energy out of the wave beams, producing

a mean flow and higher harmonics (Gerkema et al. 2006; Pairaud et al. 2010). Solitary

internal waves can also be excited when the wave beams impinging on the pycnocline

(Akylas et al. 2007). The beams can also undergo internal reflection (e.g., Gerkema and

van Haren 2012), or lead to trapped waves in the boundary layer due to the reflection

(Mathur and Peacock 2009). All these processes contribute to a complicated structure
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of the kinetic energy distributions, deviating severely from the well-established beams

from the generation sites. More investigations are thus required to fully understand

the propagation of internal tide beams in the realistic ocean.

3.5.2 Kinetic energy section of the trapped K1 internal tide

The simulated K1 kinetic energy poleward of the critical latitude is shown in Fig. 3.16

at (160◦E, 52.05◦N). The energy level in Fig. 3.16 is significantly lower and reveals

a different vertical distribution than those in Fig. 3.15. The kinetic energy is found

to be amplified at the bottom, with a rapid upward decrease. Hence, the surface

energy is lower, exhibiting relatively weak variations. This bottom amplification of the

kinetic energy is associated with bottom-trapped internal tides (Falahat and Nycander

2015), a feature well represented in the vertical section along 52.05◦N in Fig. 3.17a.

Energetic motions are observed over rough topography, for instance, at around 160◦E

and 174◦E directly over the seamounts, where strong internal tides are created by

barotropic tidal currents flowing over sloping topography. Since these internal tides

cannot propagate away from the generation site in supercritical latitudes due to the

constraint of f , they are locally confined, with strong tidal current velocities of the K1

internal tide observed in the vicinity of rough topography. The K1 tidal currents are,

however, largely weakened in the ocean’s interior. Further, no beams are observed in

the neighbouring of the seamounts in the absence of wave propagations.

The Southern Ocean is found to contain strong kinetic energy as described in section

3.2. Fig. 3.18a shows the vertical distributions of the K1 kinetic energy along 52.02◦S

in the Southern Ocean. The bottom amplification of the kinetic energy is present,

since it is located at the supercritical latitudes. However, a high energy level shows

up also in the surface layers, different from our finding shown in Fig. 3.16a. The

vertical distributions of N are more complex in this given section in the southern

hemisphere (Fig. 3.18b) than in the northern hemisphere (Fig. 3.17b), attributed to

the strong currents and rich eddies in this region. Hence, the resulting strong nonlinear

interactions with internal tides might be responsible for bringing the bottom energy
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Figure 3.16: Vertical distribution of the K1 kinetic energy (J m−3) at (160◦E, 52.05◦N).

upward and account for the regional hot spots of surface-concentrated energy.

3.5.3 Bottom energy distributions of the K1 internal tide

To know how the trapping process is simulated by the model, we investigate the vertical

energy distributions of the K1 internal tide above the ocean bottom. In this calculation,

we interpolate, within the horizontal plane, the amplitudes of the zonal (ubc) and

meridional (vbc) K1 baroclinic velocities, defined on the edges of the grid cells, onto the

scalar points that are defined on the centers of the grid cells, whose water depths are

used as a reference. The vertical resolution is inhomogeneous in the model. The layer

thickness is in the range of 10-60 m in the upper 500 m, and ranges within 100-500 m

below 700 m, shown in Fig. 3.19 with the y-axis being the averaged depths of every

two neighbouring model layers. It is obvious that the resolution is much coarser in the

deeper than upper ocean. In order to smoothen the profiles of the energy distribution

close to the ocean bottom, the model data have been interpolated to a vertically uniform

100 m resolution grid. The energy is also obtained at 50 m above the bottom at shallow

waters in order to take advantage of the higher resolution.

The vertical distributions of the K1 kinetic energy above the bottom for regions
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Figure 3.17: Vertical distributions of (a) the K1 kinetic energy (J m−3) in logarithmic scale

and (b) stratification (s−1) for a section between 159◦-175◦E along 52.05◦N in the northern

Pacific. This section is located at poleward of the K1 critical latitude (ϕc = 30◦), and both

distributions are derived from the distributions at the regular lonlat grid with a resolution of

0.1◦ × 0.1◦.
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Figure 3.18: Vertical distributions of (a) the kinetic energy (J m−3) in logarithmic scale and

(b) stratification (s−1) between 140◦-165◦E along 52.05◦S in the Southern Ocean poleward of

the K1 critical latitude.
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Figure 3.19: Layer thickness (m) of the STORMTDIE model. Y-axis shows the averaged

depths of every two neighbouring model layers.

equatorward of 30◦ are shown in Fig. 3.20a for waters shallower than 2500 m and in

Fig. 3.20b for water depths below 2500 m. The energy distributions are shown for

different water-depth intervals separated by 500 meters. In general, the baroclinic tidal

kinetic energy density is largest in shallow waters (water depth H <550 m). With

larger water depths, energy is distributed over a large water column and thus reduces.

The energy is found to increase upward from the bottom until a certain depth. This

characteristics is more pronounced in shallower than in deeper waters. This upward

increase is a feature of freely propagating internal tides with energy concentrated in

the upper ocean as described before. Note that due to the coarser resolution in deeper

waters, results are most reliable in shallower waters.

Even when the tidal frequency is larger than f , tides can still be trapped at the

coastal regions when certain criteria are satisfied (e.g., Rhines 1970). In our results

(Fig. 3.20a), an initial upward slight decrease of the kinetic energy is observed from 50

m to 100 m above the very bottom in waters shallower than 550 m (bottom two dots of

the blue line in Fig. 3.20a), which could be attributed to the coastal trapped internal
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tides.

The vertical energy distributions above the bottom poleward of 30◦ are displayed in

Fig. 3.21a and 3.21b for waters shallower and deeper than 2500 m, respectively, for

the K1 internal tide. Again, the kinetic energy appears to be strong in shallow waters,

yet strongest in waters shallower than 550 m, followed by a gradual reduction in the

energy level from the shallow to deep waters. The energy in deeper waters (Fig. 3.21b)

turns out to be much lower than that in shallower waters (Fig. 3.21a). Focusing on a

specific water depth interval (along a single line), the kinetic energy is found to reduce

from the bottom upward until a certain depth, a typical feature of bottom-trapped

internal tides. This feature is better visualized in Fig. 3.22, in which the kinetic energy

is normalized by their respective maximum, primarily located at the bottom, except

for the case of water depths within 4000-4500 m.

Distinct decreasing rates are observed in Fig. 3.21 and Fig. 3.22, revealing a faster

reduction of the energy in shallow than deep oceans. The strongest energy reduction

occurs in waters shallower than 550 m, reducing to 50% within around 200 m above the

bottom. To obtain the same reduction (about 50%), we need, however, go up to 270

m, and even to 500 m, above the bottom for water-depth intervals within 550-1000 m

and 1000-1500 m, respectively. A larger distance from the bottom is further required

for even deeper waters to obtain 50% energy reduction.

As clearly shown in Fig. 3.21a, there is a further intensification of energy above the

level of energy minimum (at 200 m of the blue line) for shallow waters, which is even

visible for waters of intermediate depth (1000-1500 m). This could be related to the

near-surface intensification of energy as shown in Fig. 3.18a for the bottom-trapped K1

internal tides. However, a comprehensive understanding would require further analysis.

3.6 Concluding remarks

In this study, we quantify the characteristics of the low-mode K1 internal tide by us-

ing the 1/10◦ STORMTIDE simulation, in which the eddying circulation and tides
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Figure 3.20: Kinetic energy (J m−3) of the K1 internal tide above the bottom, divided by

different water depths equatorward of the K1 critical latitude at 30◦ for (a) shallower waters

(H < 2500 m) and (b) deeper waters (H > 2500 m). In general, 500 m interval is employed in

the separation of regions. Note the different scales of the x-axis in both plots.
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Figure 3.21: The same as Fig. 3.20, but derived in regions poleward of the K1 critical latitude

at 30◦.
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Figure 3.22: Normalized kinetic energy (%) above the bottom, divided by different water

depths, and normalized by their respective maximum in each water depth interval poleward

of the K1 critical latitude 30◦ for (a) shallower waters (H < 2500 m) and (b) deeper waters

(H > 2500 m). In general, 500 m interval is employed in the separation of regions.
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are simultaneously simulated. The two-dimensional wavenumber spectral analysis is

applied to the simulated baroclinic tidal velocities, which guides us into the character-

istics of the wavenumber spectra, the wavelengths and their geographical distributions.

By comparing these results with those of the standard and the WKB-simplified Sturm-

Liouville eigenvalue problems, we analyze to what extent does the simulated K1 internal

tide satisfy the dispersion relation, and the relative roles of stratification N and the

Coriolis frequency f in determining the distributions of the K1 wavelengths.

The presence of the critical latitude (at 30◦ for the K1 tides) in this high-resolution

simulation enables us to study and compare the characteristics of baroclinic tidal energy

above the bottom both poleward and equatorward of the critical latitude. In general,

the following main conclusions are drawn in our study.

1. Three to four modes are captured in this 1/10◦ STORMTIDE simulation. The

wavelength maps of the first three modes are provided in our study and commonly reveal

a zonal asymmetry and a poleward increase of the simulated wavelengths, features that

are more pronounced in the Pacific than in the other two basins. The wavelengths range

in general within 200-400 km, 100-200 km, and 60-120 km for mode 1 to 3, respectively.

2. In around half of the considered ocean, the relative discrepancies between LST,m

and LSL,m are under 5%. The discrepancies, larger than 15%, occur in about 4.6%, 6%,

and 12% of the considered ocean for mode 1 to 3, respectively. Hence, in most of the

ocean, the simulated low-mode K1 internal tides are, to the first approximation, linear

waves that satisfy the local dispersion relation. A combined role of N and f is observed

in determining the wavelengths of the first three modes, with f being dominant.

3. The relative discrepancies between LSL,m and LWKB,m are smaller than 15%

for all three modes. We observe very small discrepancies (< 5%) in the Atlantic for

mode 2 and in the Indian Ocean for mode 3, where the WKB approximation would be

well applied. Larger discrepancies (> 10%) are also found in 20%, 12% and 8% of the

considered region for the first three modes, respectively, where the WKB approximation

would be problematic for a quantitative usage.

4. The STORMTIDE model is capable of capturing the different characteristics of the
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kinetic energy of the K1 internal tide, which are the surface concentration in subcritical

latitudes and the bottom amplification in supercritical latitudes. Stratification N is

found to play an important role in determining these vertical energy distributions. The

kinetic energy is stronger in shallower than in deeper ocean regions, both equatorward

and poleward of 30◦. Furthermore, in shallow waters, we observe a strong decreasing

rate of the bottom-amplified K1 kinetic energy in supercritical latitudes, with an upward

intensification above the level of the energy minima. The decreasing rate is, however,

rather weak in deep waters.

The vertical model resolutions are rather coarse near the bottom in the open ocean.

It leads uncertainties in our calculations of the vertical energy distributions above the

bottom. However, due to a lack of global observations with a high vertical resolution

directly above the bottom, this high-resolution simulation with 40 vertical layers is

currently our only source of information. It also indicates the necessity of a higher

vertical resolution in the model simulation, which also aids in a better understanding

of the intensification of the K1 baroclinic tidal energy above the depth of the energy

minimum for shallow waters in supercritical latitudes.





Chapter 4

Concluding remarks and outlook

4.1 Concluding remarks

In this thesis, we analyze the tidal velocities that are simulated by the global high-

resolution STORMTIDE model with a 1/10◦ horizontal resolution, in which the eddying

general circulation, barotropic and internal tides are simultaneously simulated. The

concurrent simulation is advanced, and to our knowledge, only two model groups have

published such global concurrent simulations. This high-resolution simulation enables

us to consider the three-dimensional currents globally. The only other global source of

information is from satellite altimeter data, which, however, provide only the internal

tide signatures at the sea surface with all modes integrated.

The tidal velocities—amplitudes and phases of the M2 and K1 constituents—are

derived by performing the harmonic analysis with the full velocities of the model out-

put. Subtracting the vertically integrated tidal velocities (barotropic) provides us the

baroclinic tidal velocities over the 40 model layers. We present the magnitudes and

geographical distributions of the horizontal baroclinic tidal kinetic energy in the upper

(100 m) and deep (1085 m) ocean, as well as for the vertical integral. These distri-

butions exhibit consistent hot spots of the internal tide generation with other studies.

The baroclinic tidal energy is much stronger in the upper ocean than in the deep ocean

for both tidal constituents. The kinetic energy of the K1 internal tide clearly reveals
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the presence of its critical latitude at 30◦N/S.

The baroclinic tidal velocities are further employed by using the two-dimensional

wavenumber spectral analysis. The resulting two-dimensional wavenumber spectra

SKE(k, l) of the kinetic energy, with k and l being the zonal and meridional wavenum-

bers, respectively, are displayed in a manner of energetic circles (
√
k2 + l2 ≈ con-

stant). It means that the energy is concentrated at certain isotropic wavenumbers, an

isotropy with respect to the amplitudes of the wavenumber vector. However, the spec-

tra SKE(k, l) show strong anisotropy with respect to the directions of the wavenumber

vector, and thus present us the preference of the wave propagation in each 15◦/cosϕ

(in longitude) ×15◦ (in latitude) box, which is closely related to the topography and

varies in space.

We summarize our main findings in the following.

1. Which modes of the M2 ad K1 internal tides are simulated in the

STORMTIDE model?

The depth-dependence of each spectral peak of the one-dimensional kinetic energy

spectra SKE(K), converted from SKE(k, l) using the horizontal wavenumber K =
√
k2 + l2, is consistent with the vertical modal structures derived by solving the stan-

dard Sturm-Liouville eigenvalue problem with the simulated box-averaged stratification

N . Hence, by performing the wavenumber spectral analysis, we capture actually the

low-mode internal tides, two modes for the M2 internal tide and three modes for the

K1 internal tide.

2. What are the properties of the simulated internal tides, for instance,

their wavelengths and the respective geographical distributions?

By diagnosing the spectral peaks from SKE(K), the corresponding peak wavenumbers

lead to the ultimate wavelengths. We perform the spectral analysis at fixed levels, i.e.,

100 m and 1085 m, for deriving the mode 1 and mode 2 M2 wavelengths. whose general

ranges are within 100-160 km and 45-80 km, respectively.
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More modes are resolved for the K1 internal tide, which cause a more complicated

vertical modal structure. Hence, we apply varying depth in space for the acquisition

of the K1 internal tide wavelengths of each mode, at 100 m for mode 1, at depths

where mode 2 undergoes its interior maximum for mode 2, and at depths where mode

3 experiences its second (deeper) interior maximum for mode 3. The K1 wavelengths of

the first three modes range within 200-400 km, 100-200 km, and 60-120 km, respectively.

Apparently, the K1 internal tide exhibits a larger length scale than the M2 internal tide

at the same vertical mode, consistent with the large timescale of the K1 internal tide.

The largest magnitudes and strongest spatial variations of the wavelengths are found

in the Pacific for both the M2 and K1 internal tides; in general, wavelengths are larger

in the western than in the eastern Pacific. There is an evident zonal asymmetry for

both modes of the M2 constituent, but a general poleward increase of the wavelength

with increasing latitudes is much more pronounced for mode 1 than for mode 2. Both

features are clearly observed for mode 1 to 3 of the K1 internal tide.

3. How are the simulated low modes consistent with the dispersion rela-

tion of linear internal waves?

We compare the magnitudes and geographical distributions of the simulated M2

and K1 wavelengths (LST,m with m being mode number) with those derived from the

standard Sturm-Liouville eigenvalue problem (LSL,m) with the simulated box-averaged

N applied. The relative discrepancies between LST,m and LSL,m are under 5% in

around two thirds and one half of the considered ocean for the M2 and K1 internal

tides, respectively. Discrepancies larger than 15% appear only in very limited regions.

Hence, the simulated internal tides are, to a first approximation, linear internal waves

that satisfy the local dispersion relation, with other effects accounting for less than 10%

in terms of the relative discrepancies.

4. What are the relative roles of local stratification N and the Coriolis

parameter f in determining these geographical distributions?
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The standard Sturm-Liouville eigenvalue problem depends only on N and f . Hence,

the zonal asymmetry and the poleward increase with increasing latitudes, observed in

both LST,m and LSL,m, are attributed to the effect of N and f , respectively.

Ideal tests are set up in order to investigate the relative roles of N and f , by cor-

respondingly assuming constant f and N in the Sturm-Liouville eigenvalue problem.

The tests are separately carried out for the M2 and K1 internal tides. A combined

role of N and f is observed in determining the wavelengths of the mode-1 M2 internal

tide, while N seems to play a dominant role in determining the mode-2 wavelengths.

Due to the large spatial scales of the K1 internal tide, f plays the dominant role in

determining the wavelengths of the lowest three modes; the role of N is also visible,

but less significant.

5. How important are the details of the vertical variations of stratifica-

tion in determining the wavelengths of internal tides when taking into

account the WKB approximation?

The relative discrepancies between the standard and the WKB-simplified Sturm-

Liouville eigenvalue problems are frequency-independent. The application of the WKB-

simplified eigenvalue problem, however, depends on N and f , and thus is spatially

variable. The WKB-simplified Sturm-Liouville eigenvalue problem reveals the relative

discrepancies up to 15% when compared to LSL,m. Hence, the vertical details of N are

important in the near-global analysis of internal tides, although small discrepancies are

diagnosed in certain regions.

6. What is the role the critical latitude in determining the characteristics

of the K1 internal tide? How is the trapping process simulated in the

STORMTIDE model?

The critical latitude, 30◦ for the K1 internal tide, separates different types of waves

in both sides, freely propagating (both horizontally and vertically) waves in subcrit-

ical latitudes and bottom-trapped waves in supercritical latitudes, which can be well



4.2. Outlook 93

captured by the 1/10◦ STORMTIDE model. The surface concentration of the kinetic

energy is observed equatorward of 30◦, with the presence of the coastal-trapped K1

internal tide, while the bottom-amplified kinetic energy is exhibited poleward of 30◦.

The kinetic energy is in a higher level in shallower than deeper ocean regions, and strat-

ification N is found to play a significant role in determining the vertical distributions

of the K1 kinetic energy, both equatorward and poleward of 30◦ in the global ocean.

Regarding the trapping process in supercritical latitudes, distinct decreasing rates of

the K1 kinetic energy away from the bottom are revealed, which are faster in shallower

regions than in deeper regions. A further upward increase of the kinetic energy is also

found above the energy minimum for waters shallower than 1500 m poleward of 30◦.

4.2 Outlook

In this thesis, we describe the characteristics of the wavenumber spectra of the M2 and

K1 internal tides in detail in Chapter 2 and 3, respectively. These spectra provide us

the information about the directions of the wave energy propagation, which can also be

studied by using the wave energy flux vector, or via ray tracing. A possible extension

of our study is to compare the propagating directions of internal tides in detail that

are derived by using different techniques.

The surface-concentrated kinetic energy is described in Chapter 3 for the K1 internal

tide in subcritical latitudes. There are several mechanisms that lead to this feature,

whose roles are not separable in our concurrent simulation. Hence, their relative im-

portances require further investigation by considering them separately, which can be

done by theoretical studies or idealized model simulations.

The bottom-intensified kinetic energy is well captured in the STORMTIDE model

simulation in supercritical latitudes as described in Chapter 3. One question that arises

is that how the bottom-intensified energy is brought up to the upper ocean as shown

by the hot spots of the K1 kinetic energy at 52.05◦S at the surface, since these waves

are supposed to be confined at the ocean bottom and present no beams. We show in
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this study that these waves are found to be associated with the vertical distributions

of stratification N . Hence, it is necessary to further investigate the detailed impact of

N on the propagation of internal tides, not only in supercritical latitudes, but also in

subcritical latitudes.

In Chapter 3, we show that the vertical distributions of the kinetic energy of the K1

internal tide are distinct in various water-depth intervals, exhibiting different decreasing

rates of the kinetic energy. These results are most reliable in shallower water regions due

to the higher vertical resolution there. This is, however, the best that we can currently

obtain due to the limitation of the vertical model resolution, in particular in the deep

ocean. It reveals the necessity of the high vertical resolution in order to accurately

simulate the vertical kinetic energy distributions above the bottom for bottom-trapped

waves poleward of the critical latitude. It can help to reduce the possible uncertainties

in the current study. The further upward increase of the kinetic energy above the

energy minimum can also be better investigated in waters shallower than 1500 m in

supercritical latitudes with the simulation of a high vertical resolution.



Appendix A

Remarks on the methods

During the peer-reviewed process of Chapter 2 that has been published in Journal

of Physical Oceanography, the method has been revised to a large extent due to the

relatively large errors induced in the previous one by using the regular 0.1◦ lonlat grid

rather than the equidistant grid. It is documented here.

A.1 Two-dimensional wavenumber spectral analysis of the

previous method

Initially, we performed the two-dimensional wavenumber spectral analysis within 15◦×

15◦ (rather than 15◦/cosϕ×15◦ as used in Chapter 2 and 3, with ϕ being the latitude)

boxes, which is based on the standard two-dimensional discrete Fourier transform. We

neglected the convergence of meridians within each 15◦× 15◦ regional box and used in-

stead for simplicity a global regular 0.1◦ lonlat grid for the Fourier analysis. Moreover,

the spectra in Eq. (2.4a) and (2.4b) were obtained for three time steps at three suc-

cessive model hours (t = 1, 2, 3 hours in Eq. (2.3)), respectively, which correspond to

different phases of a M2 wave, to obtain robust signals. The corresponding time-mean

wavenumber spectra in the (k,l) wavenumber plane were then converted into Subc
(K)

and Svbc(K), which are functions of the horizontal wavenumber K =
√
k2 + l2. The

average of Subc
(K) and Svbc(K) resulted in the spectrum of the kinetic energy of the
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M2 internal tide, denoted as SKE(K), from which the peak wavenumbers, hence the

wavelengths, are diagnosed.

This part corresponds to section 2.3.2, presenting the differences between these two

methods. Other details are the same for both methods, except that we raised the

land points that are permitted in the spectral analysis from 10% (section A.1) to 15%

(Chapter 2 and 3). In the following, when we talk about the previous method, we refer

to the method described in this section.

A.2 Discussions concerning two methods

There are three major differences between these two methods. Firstly, in Section A.1 we

took the zonal grid spacing as the value corresponding to the mid-latitude in the consid-

ered box. The most northern/southern box considered by us was centered at 52.5◦N/S.

Thus, the largest deviation was derived by (cos60◦ - cos52.5◦)/cos52.5◦ =18%, which

is a large deviation induced merely by using the regular lonlat grid.

We show in Fig. A.1 the the spectral width that is derived from the kinetic energy

spectra SKE(K) at 100 m of the previous method, denoting the wavenumber interval

between half of the maximum spectral energy at each location. There is an evident

meridional variation. The general poleward increase of the spectral width represents

the broader peaks in higher than lower latitudes, which is, at least partially, induced by

ignoring the differences of the zonal grid spacing within a 15◦×15◦ box. By employing

the equidistant grid of the baroclinic velocities, this deviation would be eliminated. As

shown in Fig. 2.5, larger spectral widths mainly occur in strong-current regions instead

of in high latitudes in Fig. A.1.

Fig. A.2 shows the spectra of the M2 baroclinic zonal tidal velocities Subc
(k, l) and

Subc
(K) at both 100 m and 1085 m in the 15◦×15◦ box centered at (167.5◦W, 22.55◦N).

These spectra are derived by using the method described in Section A.1 and are located

at the region very close to that in Fig. 2.3 (170◦W, 22.55◦N) . The corresponding

wavelengths can be easily diagnosed from both Subc
(k, l) and Subc

(K). This feature
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Figure A.1: Spectral width (× 1000, km−1) derived from the kinetic energy spectra SKE(K)

at 100 m of the mode-1 M2 internal tide by using the previous method. The width is defined

by the wavenumber internal between half of the peak energy. Nine-point smoothing has been

performed after deriving the raw near-global map.

consists with those in Chapter 2 and 3 and we won’t go into details. What is different

here is that we observe a strong anisotropy between k and l in Subc
(k, l) (Fig. A.2a

and A.2c), in particularly at 1085 m (Fig. A.2c). This anisotropy is somewhat largely

weakened and only slightly visible in Fig. 2.3, which is believed to closely related to

the employment of the equidistant grid instead of the regular lonlat grid.

The second change concerns the three time slices applied in the previous method.

There are exactly two linearly independent components of the signal, the in-phase and

quadrature parts. The complex baroclinic zonal velocities are expressed in Eq. (2.3),

and we take into account only the real part in the physical domain, which is further

expressed (neglecting the indices i, j, k and t) as

ubc =Aubc
cos(2πωt− φubc

)

=Aubc
cos(2πωt)cos(φubc

)︸ ︷︷ ︸
In-phase

−Aubc
cos(2πωt+ π/2)sin(φubc

)︸ ︷︷ ︸
Quadrature

.
(A.1)

Both components are offset in phase by one-quarter cycle (π/2 radians). By tak-

ing t to be π/2 apart, the complex velocities are then constructed with the in-phase

[Aubc
cos(φubc

)] and quadrature [Aubc
sin(φubc

)] baroclinic velocities being the real and
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(a) log(Subc(k,l)), 100 m

(c) log(Subc(k,l)), 1085 m
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Figure A.2: Time-mean wavenumber spectra Subc
(k, l) of the M2 baroclinic zonal velocity ubc

at (a) 100 m and (c) 1085 m, and (b, d) the corresponding spectra Subc
(K) converted from

Subc
(k, l) using K =

√
k2 + l2, derived for the 15◦ × 15◦ box centered at (167.5◦W, 22.55◦N).

The scattered blue dots are converted directly from each value of Subc
(k, l). The red lines

represent the bin averages of Subc
(K), in which Subc

(Ki) at the ith interval is obtained by

averaging all values of Subc
(K) with K inside the interval (Ki,Ki+ M). We consider a total of

100 consecutive intervals. Term M is obtained by dividing the total resolved wavenumber range

by 100.
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imaginary components, respectively. Note that a lack of any part (either the in-phase

or the quadrature part) would not improve the robustness of the signal by considering

more time slices in one part only.

Finally, we apply a two-dimensional Tukey window in space to the complex baroclinic

velocities, which is not included in the previous method. The one-dimensional Tukey

window is defined as

w(n) =



1

2

[
1 + cos

(
π

(
2n

α(N − 1)
− 1

))]
0 6 n 6 α(N − 1)

2

1
α(N − 1)

2
6 n 6 (N − 1)(1− α

2
)

1

2

[
1 + cos

(
π

(
2n

α(N − 1)
− 2

α
+ 1

))]
(N − 1)(1− α

2
) 6 n 6 (N − 1)

(A.2)

where N is the total number of grid points that are considered in the series, w(n) is the

weight of the nth grid point with 0 6 n 6 N−1, and α = 0.3 in our analysis. This one-

dimensional Tukey function is displayed in Fig. A.3, which are further applied in both

zonal and meridional directions to the complex baroclinic velocities before performing

the two-dimensional wavenumber spectral analysis. The window function reduces the

spectral leakage that is caused by the limitation of spatial resolution (determining the

wavenumber resolution) or the limited box size, and results in ultimately the emphasis

of the data in the center by tapering the signal at the endpoints.
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Figure A.3: Tukey window function that is used in our analysis.





Appendix B

Comparisons of LSL,1 from model-simulated

and observational N

Due to a lack of observations for three-dimensional baroclinic tidal velocities, we can

take into account the results of the Sturm-Liouville eigenvalue problem applied to

observed ocean stratification profiles when comparing the simulation with observations.

Another method has been illustrated recently by Ray and Zaron (2016) who extracted

the wavenumber distributions for the M2 internal tide from multi satellite altimetry. In

solving the eigenvalue problem, the stratification N at a resolution of 1◦ is interpolated

vertically with a 10 m interval for both the simulation and observations. Note that

there are slight differences in the calculation of the simulated and observational N .

The simulated N used is the average within each 1◦×1◦ boxes of the model simulation,

and the observational N is located at the grid points rather than the box-averages,

calculated from the temperature and salinity of the Levitus data of the 1◦ resolution.

The resulting mode-1 wavelengths of the M2 internal tide are shown in Fig. B.1

for both the simulation and observations. Both distributions reveal a similar pattern,

with large length scales in the northwestern Pacific, in the Gulf Stream and in the

Southern Ocean. Small length scales are exhibited in the equatorial eastern Pacific

and the equatorial Atlantic. The magnitudes of both distributions are comparable

with only slight differences, with a similar result also presented in Ray and Zaron

101
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(2016). In summery, the STORMTIDE wavelengths in the 1◦ resolution (Fig. B.1a)

are comparable to those of the Levitus data (Fig. B.1b) in both magnitudes and spatial

distributions.

On the other hand, the wavelengths in Fig. B.1a and Fig. 2.6b are both based on the

model-simulated N , which is, however, averaged over different box sizes, with the box

size of 1◦×1◦ in Fig. B.1a and of 15◦×15◦ in Fig. 2.6b. It is found that the magnitudes

are in general larger in Fig. B.1a than those in Fig. 2.6b in strong-current regions, for

instance, in the Kuroshio and Gulf Stream regions and in the Southern Ocean. These

discrepancies are attributed to the different smoothing induced by various box sizes,

which also accounts for the smoother patterns in Fig. 2.6b than in Fig. B.1a.

To compare the results of the two methods in Section A.1 and section 2.3.2, we show

in Fig. B.2 the wavelengths of the M2 internal tide derived by the previous method. We

focus on the mode-1 wavelengths only. A remarkable discrepancy between these two

methods is over the Kuroshio and its extension regions, where the mode-1 wavelengths

is observed to be smaller in Fig. 2.6a than in Fig. B.2a. However, the extent of the

large wavelengths of the new method (expanding from western North Pacific to the

northeastern Pacific in Fig. 2.6a) is better consistent with the observations (Fig. B.1b)

than the previous method (Fig. B.2a) does. Hence, the mode-1 wavelengths of the new

method agree well with those of the observations (Fig. B.1b).
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(b) LSL,1 from the Levitus data

(a) LSL,1 from the STORMTIDE model

Figure B.1: Mode-1 wavelengths LSL,1 (km) of the M2 internal tide in a 1◦× 1◦ resolution de-

rived by solving the Sturm-Liouville eigenvalue problem (a) with the box-averaged stratification

of the model simulation and (b) with the stratification derived from the Levitus temperature

and salinity.
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(b) LST,2

(a) LST,1

Figure B.2: (a) Mode-1 and (b) mode-2 wavelengths (km) of the M2 internal tide derived from

the baroclinic tidal velocities simulated by the STORMTIDE model. The box size of 15◦ × 15◦

is employed with the data interpolated onto the regular lonlat grid of 0.1◦.



Appendix C

Effect of the model resolution on internal

tide simulation

Tides are also implemented in the MPI-OM at a horizontal resolution of roughly 0.4◦,

which corresponds to a resolution of about 40 km, with 40 layers applied in the vertical.

The corresponding results are shown in Fig. C.1 for the simulated kinetic energy of the

M2 and K1 internal tides, with the colorbars consistent with those used by the 1/10◦

STORMTIDE simulation (Fig. 2.2 and 3.1). The hot spots of the kinetic energy are

more or less captured in Fig. C.1, but in a very low energy level compared with those

of the high-resolution simulation (Fig. 2.2 and 3.1).

We also find the absence of the K1 critical latitude at 30◦ in this 0.4◦-resolution

simulation. It means that the 0.4◦ resolution is not sufficient to properly resolve the K1

internal tide. It is widely accepted that eight grid points per wavelengths are required

in the model in order to properly resolve these waves (e.g., Arbic et al. 2010). Hence,

with a roughly 40 km resolution, even the mode-1 K1 internal tide with the length scales

of about 200-400 km cannot be always well resolved equatorward of 30◦, for instance,

in regions near the equator where the relatively small wavelengths cannot expand over

eight grid points. Based on the fact that at least three grid points per wavelength are

required for a wave to be recognized in the model, the mode-2 K1 internal tide at least

can be resolved in this 0.4◦ MPI-OM simulation, while mode 3 cannot be guaranteed
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to be resolved in the equatorial regions, which is worse for higher modes. Thus, a high-

resolution model is required in simulating internal tides. Fig. C.2 shows the amplitudes

and phases of the K1 internal tide simulated by the 0.4◦ MPI-OM model. Again, we

observe the absence of the critical latitude in the amplitudes (Fig. C.2a), which is,

however, presented by the distribution of the phases (Fig. C.2b). Due to the poor

capability of the 0.4◦ model in simulating internal tides, we will not look into details

concerning this phenomenon.
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(a) Amplitude of zonal velocities of the K1 internal tide, 100 m

(b) Phase of zonal velocities of the K1 internal tide, 100 m

Figure C.2: (a) Amplitudes (cm) and (b) phases (degree) of the K1 baroclinic zonal velocities

at 100 m that are simulated by the 0.4◦-resolution MPI-OM, in which tides are implemented.
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