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Zusammenfassung 

Anpassungsstrategien sind insbesondere für jene wirtschaftlichen Aktivitäten relevant, die in 

direktem Zusammenhang mit Klimavariablen stehen, so zum Beispiel landwirtschaftliche 

Aktivitäten. Die aktuellen Herausforderungen einer qualitativ als auch quantitativ 

beschränkten Ressourcenverfügbarkeit und die durch externe Faktoren hervorgerufenen 

Spannungen inklusive des Klimas könnten die Lebensmittelproduktionskapazitäten des 

Agrarsektors reduzieren. Im Agrarsektor beziehen sich Anpassungsstrategien im 

Wesentlichen auf das Wasser- und Landmanagement, wobei hierbei die verbesserten 

Anbaumethoden zur Ressourcenschonung besonders hervorzuheben sind. Diese 

Herausforderungen sind beispielsweise in den Entwicklungsprozessen in Asien zu 

beobachten, die unter dem Einfluss des Monsuns entstehen. Das asiatische Monsunsystem, 

welches etwa ein Drittel der Weltbevölkerung direkt betrifft, hat starken Einfluss auf zwei 

Länder von besonders hoher Relevanz: Indien und China, die sich rasch entwickeln und 

aufgrund ihrer Größe die umwelttechnischen und ökonomischen Veränderungen im gesamten 

Erdsystem maßgeblich beeinflussen. Hierbei gibt es viele unerforschte Lücken am 

Schnittpunkt von Politik, wirtschaftlicher Entwicklung, Umweltökonomie, Klimaeinfluss und 

globalem Wandel als Ganzes in den oben beschriebenen Zusammenhängen. Das Gesamtziel 

ist es, eine Zusammenfassung über jene Lösungsansätze bereitzustellen, welche in Asien zur 

Anpassung an den globalen Wandel benötigt werden. Um dieses Ziel zu erreichen nutzen wir 

eine Reihe von transdisziplinären Methoden, um Forschungsfragen mit einem spezifischen 

Fokus auf Politik, Technologie und Klimavariabilität zu untersuchen. In Kapitel 2 

gebrauchen wir ein ökonometrisches Modell, um den Einfluss der chinesischen Politik auf 

die Anwendung von Bewässerungstechnologien im Bezug auf die allgemeine Anpassung an 

den globalen Wandel zu analysieren. Wir zeigen, dass  staatliche Hilfen und wirtschaftliche 

Anreize sehr wichtig sind, um die Anwendung von modernen Bewässerungstechnologien 

bekannt zu machen. Unsere Studie zeigt zum ersten Mal, dass insbesondere der Wasserpreis 

einen Einfluss auf die Anwendung von Bewässerungstechnologien in China hat. In Kapitel 3 

repräsentieren wir Wasser und Energie als Bindeglied der Bewässerung durch eine Reihe von 

Gleichungen, um die Auswirkungen der aktuellen politischen Pläne zur Entwicklung der 

Bewässerungstechnologien auf die Energieversorgung in China zu zeigen. Interessanterweise 

liegt unsere berechnete Bewässerungseffizienz für China (23,80%) unter den Werten anderer 

Studien. Wir finden heraus, dass der verbreitete Einsatz von Sprinklern und Mikro-
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Bewässerung, wie sie im Fünfjahrplan (2011-2015) beschrieben wird, den Ausstoß von 

Treibhausgasen durch die agrartechnische Wassernutzung ansteigen ließe. Wir zeigen, dass 

die Anwendung der teuersten Technologien zu einem Ausgleich führen, während positive 

Nebeneffekte generell durch weniger kostspielige Technologien erreicht werden. In Kapitel 4 

entwickeln wir ein integriertes Assessment-Modell, das sowohl die Saisonalität als auch die 

kleinen geographischen Skalen in Indien abbildet, um den Einfluss von ‚stay green‘ Hirse, 

einer innovativen Nutzpflanzenvarietät, auf den gesellschaftlichen Wollstand zu diskutieren. 

Wir zeigen, dass, obwohl diese Innovationen in der Landwirtschaft einen signifikanten 

Beitrag zur Steigerung des Wohlstands leisten, die Bereitstellung von Informationen einen 

größeren Beitrag zur Steigerung des Wohlstands leistet. Zu guter Letzt machen wir einige 

Vorschläge, wie Wissenschaft im Bereich des globalen Wandels verbessert werden könnte. 
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Assessment of policy and climate variability impacts on food, 

water and energy in the Asian monsoon region under diverse 

adaptation scenarios. 

Abstract 

Adaptation is especially relevant on those economic activities that have direct links with climate 

variables, like agriculture. Current challenges related to the constraints on resource availability, both 

on quality and quantity, and the stresses caused by external factors, including climate, might 

undermine the ability of the agricultural sector to produce food. In the agricultural sector, adaptation 

has to do mainly with water and land management, in particular with enhanced cropping techniques to 

improve the management of these resources. These challenges find very good examples in the 

developing processes occurring in Asia, under the influence of the monsoon. The Asian Monsoon 

system, which covers roughly one third of the global population, strongly influences two countries of 

special relevance: India and China, which are developing quickly and because of their relative sizes 

will significantly determine what will happen in the whole earth system, both environmentally and 

economically. There are many uncovered gaps in the intersection of policy, development economics, 

environmental economics, climate impacts and global change as a whole in the context described 

above. The overall aim is to provide an overview of the solutions needed for adaptation to global 

change in Asia. To achieve this aim, we use a variety of transdisciplinary methods to tackle research 

questions with a specific focus on policies, technologies and climate variability. In Chapter 2 we use 

an econometric model to analyse the impact of Chinese policies on the adoption of water technologies 

related to adaptation to global change. We show that governmental support and economic incentives 

are highly relevant to promote the adoption of modern irrigation technology. In particular water 

pricing is found for the first time to have an impact on the adoption of irrigation technology in China. 

In Chapter 3 we reproduce the water-energy nexus of irrigation in a system of equations, to show the 

energy implications of current policy plans of irrigation development in China. Interestingly, our 

calculated irrigation efficiency for China (23.80%) is lower than other estimates. We find that 

expansion of sprinklers and micro-irrigation as outlined in the 5YP would increase greenhouse gas 

emissions nationally from agricultural water use. We show that the most costly technologies relate to 

trade-offs, while co-benefits are generally achieved with less expensive technologies. In Chapter 4 we 

built and ad-hoc Integrated Assessment Model capturing seasonality and low geographical scales in 

India to calculate the welfare contribution of  “stay-green” sorghum, an innovative crop variety. We 

show that although a significant amount of welfare is added by these innovations to the agricultural 
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sector, the provision of information has much larger welfare amounts to add. Finally, we make some 

suggestions to improve global change related science. 
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Chapter 1. Introduction  

 

1.1 The Importance of Adaptation for Humankind 

 

Adaptation can be defined as an adjustment to external stress, or as an improvement of the ability to 

cope with it. In the climatic scientific arena, it refers to adjustments to current or expected climatic 

impacts. Adaptation is a crucial concept in the human dimensions of global change, where risks, 

opportunities and stresses intersect with a myriad of complex processes and actions partly driven by 

policies and technological change (Smit and Wandel, 2006).  

Adaptation is especially relevant on those economic activities that have direct links with climate 

variables. Adaptation in the agricultural sector is crucial. Agricultural productivity has significantly 

increased through the 20th century due to technological advances and policies that made them reach 

the fields. However, current challenges related to the constraints on resource availability, both on 

quality and quantity, and the stresses caused by external factors, including climate, might undermine 

the ability of the agricultural sector to produce food. However, agriculture is not a significant part of 

the gross domestic product of the developed world. Even so, it might be also noted by the reader that 

there is no other source of food that could substitute the output of the agricultural sector. Beyond the 

production of food, agriculture in developing countries has a major role in societal stability. For this 

reason agriculture has a value that, even if it can be quantified, goes beyond its economic dimension.  

In the agricultural sector, adaptation has to do mainly with water and land management, in particular 

with enhanced cropping techniques to improve the management of these resources. Water is an 

essential factor, and there is a quest for searching technologies and for developing new plant varieties 

that can help to cope with current climate variability and with an increase of risks related to climate 

change.  
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Figure 1-1 Boreal Summer broad scale circulation of the Asian Monsoon system; A stands for 
anticyclonic circulation (high pressure), whereas C stands for cyclonic circulation (low 
pressure) (Source: CLIVAR/GEWEX Monsoons Panel). 

 

1.2 Motivation for the Selection of the Regions Covered 

 

From the whole region covered by the Asian Monsoon system, which covers roughly one third of the 

global population, I1 selected two countries of special relevance. India and China are developing 

quickly and many questions are raised over their ability to cope with increased demands of water and 

land, considering the limited amount available of these resources. It is indeed necessary for any global 

researcher to have at least a perspective on what is happening in these regions, because of their 

significance at the global level the outcome of their development processes will determine what will 

happen in the whole earth system, both environmentally and economically. 

The Asian Monsoon system is a seasonal reversal of atmospheric circulation and associated 

precipitation, arising from reversal changes in temperature gradients between the land surface and the 

neighbour oceans. In Figure 1-1 we can observe the boreal summer circulation pattern with ascent 

over South East Asia that favours precipitation. This reversal phenomenon creates a climatic 

                                                 

1 I use the singular form “I” when referring to decisions or actions performed by myself. The plural form “we” is 
preferred when there is some degree of implications regarding the co-authors (cf. Acknowledgements section 
below).  
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characterization of wet and dry seasons that has massive implications for the human dimension of the 

earth system (Wang, 2006). 

 

 

Figure 1-2 Correlation between rice yields and rain on the wet monsoon season, which 
constitutes the main agricultural season in India (Source: Wang, 2006). 

 

Food security is a crucial issue on developing countries. Indeed, China and India have food security as 

a first order policy goal. The influence of the Asian Monsoon system in the economy of both 

countries is very large, particularly on the agricultural sector. The wet and dry seasons constitute the 

basis of a seasonal differentiation also in agricultural terms. The wet face of the reversal monsoon 

arrives to the Indian subcontinent in dates ranging from early June in the South-Eastern limit with the 

Indian ocean, to early August in the North-Western in the border between India and Pakistan. Figure 

1-2 shows a clear correlation between precipitation on the wet face of the reversal monsoon system 

and the degree of success of the main agricultural season. 
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1.3 Development Challenges, Technology and Global Change 

 

Policies might have unintended consequences. Linear thinking and lack of understanding of all the 

factors involved on processes have often led to wrong environmental policies. As an example, by 

willing to save water without considering the energetic consequences of the measures applied, it is 

possible that in many cases the outcome becomes contradictory in the nexus between water and 

energy: in some cases water might be saved, but at the cost of increased emissions, which constitutes 

a trade-off. The synergistic co-benefit of saving water and saving energy could be achieved in much 

more situations if the nexus linking resources is considered in the design of the policies.  

In China, indeed it is happening that water is saved with a lot of technological effort in areas where 

the water availability is very limited, thus the amount of water saved is scarce, and the amount of 

emissions needed to save water is significant. Contrarily, in those places where water is abundant, like 

in the south of China, there are less efforts to save water. To complicate more the situation, societal 

changes related to the migration of the sons of farmers into the city and the unwillingness to continue 

farming, are a pending challenge to policy makers in this very moment (November 2015), especially 

because this transformation is more intense in the south of China, where water is more abundant, so it 

can be expected that more farms will remain in the north of the country, which agricultural areas are 

poorer and endowed with a lower amount of resources. 

There is not an authoritative answer to the question whether 9 billion people can be fed in the Earth 

System in 2050 with a healthy diet and a sustainable production, and India is one of those places 

where much progress is needed to improve the supply side of the question, especially in those places 

under challenging environmental conditions, like arid or semi-arid contexts where lack of soil 

humidity is assumed in the dry post-rainy season. Under these conditions crop failure happens often 

and innovations are needed to improve production. Management innovations, such as varieties 

obtained with methods of accelerated breeding, have the potential of improving the living conditions 

of households under extreme socio-ecological conditions, such are low soil quality fields in drought-

prone contexts with little opportunities for development.  
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1.4 Overall Aim of the Thesis and Brief Outlook 

 

There are many uncovered gaps in the intersection of policy, development economics, environmental 

economics, climate impacts and global change as a whole in the context described above. My aim is 

to provide an overview of the solutions needed for adaptation to global change in Asia, with a specific 

focus on policies, technologies and climate variability. To achieve this aim, the following general 

research questions are approached in the next chapters: 

o How good is the performance of policies promoting the adoption of agricultural technology 

related to water and adaptation to climate change? 
 

o Does the adoption of these water-related technologies have unexpected negative impacts in 

terms of energy consumption? 
 

o What is the full adoption potential of new agricultural varieties for improving welfare and 

food production under climate variability? 

 
Each of the following three chapters relates to one of these research questions, in consecutive order, 

and in each chapter these general questions are disaggregated in a more specific set of research 

questions. However, the dispersion of the geographies covered, the size of the regions explored, and 

the disparities of the challenges and methods used might give the reader a certain sense of 

disconnection between the chapters. To produce scientifically relevant results, I focused on those 

cases for which it was possible to find relevant local collaboration in data collection and production of 

data from related experiments. From a diverse network of data providers I selected those cases that 

were most appropriate to the main challenges described above. 

In this way, within an exclusive focus on the agricultural sector, we cover water, land and energy in 

China in Chapters 2 and 3, and land and food production in India in Chapter 4, and we introduce 

policy and technology scenarios for both regions. Then we introduced climatic variability and 

information scenarios for India. From the methodological perspective, in Chapter 4 we introduce 

significant innovations in the Integrated Assessment Modelling arena, improving spatial and temporal 

resolutions.  I perceive these modelling exercises are relevant for adaptation to global change.  
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Our exercises produced novel contributions, and show some striking results of global relevance. Our 

main novel contributions, in relation to the stated above research questions, show that: 

o water pricing has an impact on the adoption of modern irrigation technology; 
 

o irrigation efficiency is much lower than previously estimated for China, and strikingly, it is 

cheaper to achieve co-benefits, between adaptation to and mitigation of climate change in 

irrigation planning, than to achieve trade-offs;  
 

o innovative crop varieties have significant contributions to agricultural welfare and reduce the 

impact of climate variability on agricultural production, but the potential contribution of 

forecasting information provided to the user is much higher. 

 
These findings have significant added value for policy making under global change in the Asian 

Monsoon region, because they clarify pending crucial issues on the understanding of policy and 

climate variability impacts on food, water and energy. In this way, I am immodest enough to believe 

we indeed covered a relevant subset, albeit certainly limited, of the challenges in the context described. 
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Chapter 2. Policies, Economic Incentives and the Adoption of 

Modern Irrigation Technology in China  

 

Abstract 

The challenges China faces in terms of water availability in the agricultural sector are exacerbated by 

the sector’s low irrigation efficiency.To increase irrigation efficiency, promoting modern irrigation 

technology has been emphasized by policy makers in the country. The overall goal of this paper is to 

understand the effect of governmental support and economic incentives on the adoption of modern 

irrigation technology in China, with a focus on household-based irrigation technology and 

community-based irrigation technology. Based on a unique dataset collected at household and village 

levels from seven provinces, the results indicated that household-based irrigation technology has 

become noticeable in almost every Chinese village. In contrast, only about half of Chinese villages 

have adopted community-based irrigation technology. Despite the relatively high adoption level of 

household-based irrigation technology at the village level, its actual adoption on crop-sown areas was 

not high, even lower for community-based irrigation technology. The econometric analyses results 

revealed that governmental support instruments like subsidies and extension services policies have 

played an important role in promoting the adoption of modern irrigation technology. Strikingly, the 

present irrigation pricing policy has played significant but contradictory roles in promoting the 

adoption of different types of modern irrigation technology. Irrigation pricing showed a positive 

impact on household-based irrigation technology, and a negative impact on community-based 

irrigation technology, possibly related to the substitution effect, that is, the higher rate of adoption of 

household-based irrigation technology leads to lower incentives for investment in community-based 

irrigation technology. The paper finally concludes and discusses some policy implications. 
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2.1 Introduction 

 

Increasing industrial and urban demands for water are intensifying the pressure on agricultural water 

use in China. The water resources in the country are scarce and the annual per capita water 

availability is only approximately one-quarter of the world average (MWR, 2010). With increasing 

water demand from the industrial and domestic sectors, the share of water used in agriculture has 

declined from 97% in 1949 to 62% in 2013 (Wang, J. et al., 2005, MWR, 2013). In addition, there is 

concern about future water deficits in irrigated agricultural production areas due to climate change; 

such deficits are projected to cause an estimated 7 to 14% drop in rice production that would threaten 

food security (Xiong et al., 2010). Furthermore, agricultural production in China is concentrated in 

areas that are increasingly prone to water shortages (FAO, 2011; Wu, Z. et al., 2010; Wu, P. and 

Zhao, 2010). Some areas have also experienced environmental problems associated with water 

pollution and sea-water intrusion, thus limiting the availability of water for agricultural use (Mei and 

Dregne, 2001). 

The challenges China faces in terms of water availability in the agricultural sector are exacerbated by 

the sector’s low irrigation efficiency (Cheng et al., 2009; Yang et al., 2003). In 2010, irrigation 

efficiency in China was estimated to be 48% on average; this figure is lower than that of some 

developed countries such as Israel (75%) (Wang, X. et al., 2010). Such low irrigation efficiency is one 

of the major reasons of increasing water scarcity in China. An improvement on irrigation efficiency is 

necessary to maintain the use of existing irrigation capacity in the face of increasing demand for water 

from other sectors (Cheng and Hu, 2011; Zhang, et al., 2005). Modern irrigation technology can make 

a substantial difference in efficiency and contribute to the successful adaptation of the agricultural 

sector to climate change in China (Belder, 2004; Erenstein et al., 2008; Zhao et al., 2010; Zou et al., 

2013a; Zou et al., 2013b). However, the adoption level of modern irrigation technology is low in 

China (Blanke et al., 2007). 
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The Chinese Government stated that the promotion of modern irrigation technology is one of the 

priorities in its water conservancy reforms (CPC, 2010; USDA, 2011a). The rural and agriculture 

sections of the China’s 12th Five-Year Plan, issued in March 2011, highlight the importance of 

efficiency and technological innovation (CPC, 2011a; USDA, 2011b). In addition, the Chinese 

Government announced expenditures of over 600 billion USD on water conservation over 10 years 

starting in 2011 (CPC, 2011b) and a specific investment of 6.03 billion USD to support the adoption 

of modern irrigation technology on 2.53 million hectares (Xinhua, 2012).There is clearly a strong 

policy commitment to diffusing modern irrigation technology, but the likely impact of these 

interventions remains largely unknown. 

 

 Scope 2.1.1

 

For analytical convenience, Blanke et al. (2007) have divided irrigation technology into three groups: 

traditional, household-based and community-based. Traditional irrigation technology includes border 

irrigation, furrow irrigation and field levelling. These technologies are characterized by relatively low 

fixed costs and are divisible in the sense that one farm household can adopt the practice independently 

of its neighbors. Traditional irrigation technology is already widely adopted in China; they were used 

prior to the period of agricultural reform of the late 1970s and early 1980s. During the reform period, 

the adoption of traditional technologies grew slowly, in part due to the relatively high prevailing 

adoption level. When policy makers and scholars in China refer to the adoption of modern irrigation 

technology, they mainly emphasize the adoption of household-based and community-based irrigation 

technologies. Unlike traditional technology, these two categories of technology have been adopted 

mainly since the 1980s. Given this observation, we refer to them as modern irrigation technologies 

and focus on their adoption in our paper  

As modern irrigation technology, household-based and community-based irrigation technologies have 

different characteristics. Household-based irrigation technology includes intermittent irrigation, 

surface pipes, plastic-film mulching, reduced or no tillage, retaining stubble, incorporation of crop 
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residue and use of drought-resistant crop varieties. Household-based irrigation technology can be 

adopted separately by each household and have low fixed costs. Community-based irrigation 

technology includes sprinklers, drip irrigation, underground pipes and lined canals. These 

technologies are not typically adopted by single households; they normally require collective 

organization by farmer groups or village committees. In contrast to traditional and household-based 

irrigation technology, community-based irrigation technology has higher fixed costs. The adoption of 

sprinklers, drip irrigation and underground pipes is more recent (1990s) than the adoption of 

household-based technology, but lined canals were used earlier (Blanke et al., 2007).  

The existing literature tells us that governmental support is an important factor in farmers’ decisions 

whether to adopt modern irrigation technology. Policies promoting adoption of modern irrigation 

technology often aim to overcome farmers’ economic and technical constraints. To overcome 

economic constraints, direct provision of subsidies is proven to be an important policy measure in 

increasing the adoption level of modern irrigation technology, especially when the prevailing adoption 

levels are low (Feder and Umali, 1993; Tiwari and Dinar, 2000). Liu et al. (2008) found a significant 

positive relationship between subsidies and adoption of some types of irrigation technology in rural 

China. In terms of technical constraints, providing knowledge and technical advice through extension 

service activities are effective ways to increase the adoption level of modern irrigation technology 

(Dong, 2008; Feder and Umali, 1993; Ommani et al., 2009).  

In addition to governmental support, setting rational economic incentives for farmers is another 

important factor that influences farmers’ technology adoption behaviour. International experience 

indicates that water price is a significant determinant of adoption of modern irrigation technology in 

the agricultural sector (Dinar and Yaron, 1992; Negri and Brooks, 1990; Zilberman and Caswell, 

1985). Although Blanke et al. (2007) do not conduct a quantitative analysis, they argue that reforming 

water pricing in China will promote the adoption of modern irrigation technology. However most 

research concurs that in China’s agricultural sector, the “price” of water in terms of actual water 

charges is low, which constrains its potential role in promoting the use of modern irrigation 

technology (Finlayson et al., 2008; Huang et al., 2010). 
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 Goal and Objectives 2.1.2

 

To design more effective policies to foster the adoption of modern irrigation technology in China, it is 

essential to answer the following questions: What are the current levels of extent and intensity of 

adoption of modern irrigation technology in rural China? Have interventions such as subsidy and 

extension policies played a significant role in promoting the adoption of modern irrigation 

technology? Could economic incentives established through a water pricing policy play an important 

role in increasing the adoption level of modern irrigation technology? Despite a relatively rich 

international literature quantitatively analysing the determinants of adoption of modern irrigation 

technology (Webb et al., 2005; Zilberman and Caswell, 1985; Dinar and Yaron, 1992), such studies 

focused on China are very few. We only found a few quantitative analyses that explore the factors 

influencing the adoption of modern irrigation technology in China, such as those by Liu et al. (2008) 

and Zhou et al. (2008). More importantly, no study has assessed the effectiveness of economic 

incentives in promoting the adoption of modern irrigation technology in rural China. 

The overall goal of this paper is to understand the effect of governmental support and economic 

incentive on the adoption of modern irrigation technology in China. With this goal in mind, the 

following objectives have been specified. First, we examine the extent of adoption of modern 

irrigation technology at households and village levels. Second, we quantitatively identify the policy 

drivers that have been most important in promoting the take up of modern irrigation technology. 

Third, we explore the influence of economic incentives (in terms of charges for irrigation water) on 

the adoption of modern irrigation technology. 

The paper is organized as follows. The next section explains materials and methods, including 

sampling procedures, survey design and data collection, indicators for measuring the adoption of 

irrigation technology, and specification of the econometric model. Based on descriptive statistical 

analyses and econometric model estimation, section 3 presents analyses and results on the adoption 

status of modern irrigation technology (household-based and community-based technologies) and 

major factors influencing the adoption. Section 4 discusses the results and concludes. 
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2.2 Material and methods  

 

 Sampling Procedures 2.2.1

 

The data used in this study are collected from one large-scale household survey conducted in seven 

provinces in China, which allow for regional variation in geophysical conditions and levels of 

socioeconomic development. These seven provinces include Beijing and Hebei in the Haihe River 

Basin (RB), Jilin in the Songliao RB, Anhui in the Huaihe RB, Sichuan in the Yangtze RB, Yunnan in 

the Southwest RB and Zhejiang in the Southeast RB (Figure 2-1).  

When selecting provinces for the field survey, we have accounted for the differences in climate and 

water resources between Northern and Southern regions; in addition, the pattern of diverse economic 

development has been considered. For example, the survey samples cover three river basins 

(Songliao, Haihe and Huaihe RBs) characterized by less precipitation, while the other three river 

basins (the Yangtze, Southwest and Southeast RBs) have more abundant precipitation and water 

resources. These regions also represent high (Zhejiang Province), middle (Jilin and Hebei Provinces) 

and low (Anhui, Sichuan and Yunnan Provinces) levels of economic development (NBSC, 2010).  

Stratified random sampling was used in each province to select study areas. First, we divided all 

counties in each province into three quantiles by the per capita annual net income of rural residents in 

2009. In each quantile, we randomly selected one county to be surveyed. After the counties were 

chosen, we randomly selected two townships in each county and three villages in each township for 

field surveys. In each village, we randomly selected 10 households with which to conduct the field 

survey. Therefore, the survey sample included a total of 20 counties, 40 townships, 123 villages and 

1269 households. Because rainfed farmers do not need to pay irrigation fee —one of the key variables 

that we are interested, in the analysis we only focus on those farmers who replied on using irrigation 

for crop production. The final samples used in the analysis include 993 households in 118 villages in 

20 counties. 
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Figure 2-1 Map of China illustrating the surveyed provinces in bold. Source: Authors. 

 

 Survey Design and Data Collection 2.2.2

 

In each village, we conducted two surveys, the household and the village surveys. While the 

household and village level surveys cover a wide range of issues, our analysis only used data relevant 

to this study. From the household level surveys, we used the following data: i) whether any kind of 

modern irrigation technology was adopted in each plot, and areas adopting modern irrigation 

technology; ii) annual irrigation fee paid for each plot; iii) the household characteristics, including the 

gender, age, and education of household heads, hours of total labor and off-farm labor, household 

assets, and production inputs and outputs for each plot that can be used for calculating net cropping 

income; and iv) the plot characteristics, including crop sown area, soil type, soil quality, saline nature, 

topography and the distance from the households to the plot.  

From the village level surveys, we used the following data:  i) whether the households in the village 

adopted any kind of modern irrigation technology in their plots; ii) whether the village obtained the 

financial subsidy for the adoption of modern irrigation technology; iii) whether the village obtained 
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extension service on adopting modern irrigation technology, such as extension experts coming to the 

villages to guide farmers, or the village being an experimental site for modern irrigation technology; 

iv) the proportion of irrigated area; v) the distance to township government; vi) whether using 

groundwater for irrigation, and groundwater reliability in the past 5 years. Finally, we obtained the 

annual precipitation data for each county from the Chinese National Meteorological Information 

Center. Table 1 provides the descriptive statistics for the data used in the study. 

 

 Indicators for Measuring the Adoption of Irrigation Technology 2.2.3

 

In the following discussion, we examine two dimensions of the adoption of modern irrigation 

technology: the extent of adoption, and its intensity. The extent of adoption measures how spatially 

pervasive modern irrigation technology has become. To measure the extent of adoption, we apply the 

information collected at the village, household and plot levels. At the village level, we intend to reveal 

the percentage of villages that are adopting modern irrigation technology. By our definition, if even a 

single household in the village adopts modern irrigation technology, the village is considered to have 

adopted the technology.  
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Table 2-1 Descriptive statistics for major variables included in the study.  

 

Data source: Authors’ survey. 
 

Similarly, even if a household uses modern irrigation technology on only one plot, the household is 

considered as having adopted modern irrigation technology. The extent of adoption at the household 

level is measured by the percentage of households adopting modern irrigation technology. The extent 

of adoption at the plot level is measured by the percentage of plots adopting modern irrigation 



Chapter 2.Policies, Economic Incentives and the Adoption of Modern Irrigation Technology 
in China 
 

28 

 

technology. To measure adoption intensity, we use the percentage of crop sown areas that adopt 

modern irrigation technology. 

 

 Specification of Econometric Methods on Analyzing Major Factors 2.2.4

Influencing the Adoption of Modern Irrigation Technology 

 

To identify the influence of policies, economic incentives and other factors on the adoption of modern 

irrigation technology (household and community-based irrigation technology), the following 

econometric methods have been specified: 

ijk ijk ijk ijk ijk ijkA S E IFCI C                (1) 

jk jk jk jk jk jkI S E IFCI C                              (2) 

In equation (1), ijkA  represents adoption of modern irrigation technology (household-based or 

community-based technology) for the ith plot of household j in village k. ijkA is a dummy variable that 

equals 1 when the plot adopts irrigation technology and 0 otherwise. Among the explanatory 

variables, ijkS , ijkE  and ijkIFCI  are the variables of interest. ijkS is a qualitative dummy variable that 

represents the availability of subsidies to households for investing in modern irrigation technology; it 

equals 1 when the subsidy is available and 0 otherwise. Similarly, ijkE  is a dummy variable capturing 

the availability of extension service activities that equals 1 when the activities are available and 0 

otherwise. ijkIFCI is the ratio of the irrigation fee to net cropping income of the household; this 

variable expresses the importance of an annual per-area irrigation fee relative to the household’s 

economic standing. 

ijkC is a set of control variables included to reduce omitted variable bias. It includes variables related 

to village, household and plot characteristics. Village variables include the proportion of irrigated 

area, the distance to the township government (km), the proportion of years without reliable 

groundwater supply in the last 5 years, a dummy variable reflecting the exclusive use of groundwater 
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(1=yes, 0=no) and precipitation at the county level (mm). Household variables include the proportion 

of off-farm labors in the household, household assets (10,000 Yuan), education (years), gender 

(1=male, 0=female) and age (years) of the head of household. Variables related to a particular plot 

include the distance from house to the plot (km) and six dummy variables (1=yes, 0=no) regarding 

various characteristics of the plot: loam soil, clay soil, plain terrain, high-quality, medium-quality and 

saline soil.  ,, and  are the parameters to be estimated. The error term, ijk , is assumed to be 

uncorrelated with the independent variables. 

In Equation (2), jkI  represents intensity of adoption of modern irrigation technology for the jth 

household in village k, measuring the proportion of crop-sown areas adopting modern irrigation 

technology. Similar to equation (1), equation (2) also includes explanatory variables such as the 

availability of subsidies, the availability of extension service and IFCI. In equation (2), the variables 

related to village and household characteristics are the same as those in equation (1). However, in 

equation (2) the variables related to the characteristics of the plots of the household are not the same. 

Instead, they are the average distance from the house to the various plots of the households (km), and 

six variables reflecting the proportion of the household’s plots that exhibits a given characteristic. 

These six variables include the proportion of loam soil plots in the household (ratio), and five 

analogous variables describing the proportion of plots with the following characteristics: plain terrain, 

clay soil, high quality, medium quality and saline soil. 

In equation (1), since the dependent variable is dummy variable, we used the Logit model to estimate 

it (Train, 1993). For the equation (2), considering some values of the dependent variable are zero 

since not all plots adopted the modern irrigation technology, in order to reduce the estimation biases, 

the Tobit model is used (Feder and Umali, 1993). 
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2.3 Analyses and Results 

 Adoption of Modern Irrigation Technology 2.3.1

 

Our data indicate that almost all villages in China adopted household-based modern irrigation 

technology. For example, 99% of sampled villages adopted household-based irrigation technology in 

2010 (Table 2, column 1). It implies that household-based irrigation technology has become a 

pervasive practice for famers to increase irrigation efficiency of agricultural activities. However, only 

47% of villages adopted community-based irrigation technology (column 2). 

Consistent with the village scale data, at household and plot scales the levels of adoption of 

household-based irrigation technology are much higher than the levels of community-based irrigation 

technology. For example, 73% of all households reported that they adopted some types of household-

based irrigation technology in 2010 (Table 2, column 1). On average, household-based irrigation 

technology was adopted in 54% of plots. Turning to community-based irrigation technology, we find 

that only 17% (Table 2, column 2) of households adopted this category of irrigation technology and 

the percentage of plots adopting was only 14% (column 2). 

 

Table 2-2 The adoption extent and intensity of modern irrigation technology in China, 
2010. 

 
Household-based  

technology 
Community-based 

technology 

Adoption extent   

Percentage of villages (%) 99 47 

Percentage of households (%) 73 17 

Percentage of plots (%) 54 14 

Adoption intensity   

       Percentage of crop sown areas (%) 32 4 

Data source: Authors’ survey. 
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Despite the relatively high adoption level of household-based irrigation technology at the village and 

household level, its actual adoption on crop-sown areas is not high: roughly one third of crop-sown 

areas are utilizing this technology. The level of intensity of adoption for community-based irrigation 

technology is even lower. Our data reveals that in the full sample, community-based irrigation 

technology is used on only 4% of crop-sown areas (Table 2, row 4). Our data are consistent with the 

findings of other researchers (such as Blanke et al., 2007; Liu et al., 2008) who also found that the 

intensity of adoption of modern irrigation technology is very limited. 

 

 Governmental Support, Economic Incentives and the Adoption of 2.3.2

Modern Irrigation Technology in China 

 

Consistently with other studies (Dinar and Yaron, 1992; Ommani et al., 2009), descriptive statistical 

analyses show a possible positive relationship between the adoption of modern irrigation technology 

and policies encouraging it. In our analysis, we use two variables to represent governmental support: a 

subsidy for investing in irrigation technology and extension services that assist farmers in becoming 

familiar with the application of irrigation technology. Based on our field survey, we found that 15% 

of households accessed to the subsidy policy. More importantly, when subsidies are available to 

farmers, they are more likely to adopt both household-based and community-based irrigation 

technology. For example, if the subsidy was available, 73% of plots adopted household-based 

irrigation technology; the adoption level was only 50% if the subsidy was not available (Table 3, 

column 1). Similarly, if farmers can obtain the subsidy when they invest in modern irrigation 

technology, the adoption level of plots for community-based irrigation technology (29%) was also 

considerably higher than without the subsidy (11%) (column2).  
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Table 2-3 Relationship between governmental support and adoption of modern 
irrigation technology in China, 2010. 

 Adoption extent: share of plots 

adopting (%) 

Adoption intensity: share of crop 

sown areas adopting (%) 

 Household-

based 

technology 

Community-

based 

technology 

Household-

based 

technology 

Community-

based 

technology 

Financial subsidy     

        Available 73 29 77 24 

        Not available 50 11 45 6 

Extension service     

        Available 61 18 50 8 

Not available 41 8 42 8 

Data source: Authors’ survey 
 

When the subsidy policy is available, the percentage of crop-sown areas to which modern irrigation 

technology was applied was higher. Specifically, in households where the subsidy was available, the 

average intensity of adoption of household-based irrigation technology was 77% (Table 3, column 3), 

while the average intensity of adoption was lower (45%) in those households where the subsidy policy 

was not available. In the case of community-based irrigation technology, the availability of subsidies 

makes also a difference, although smaller. If the subsidy was available, the average intensity of 

adoption of community-based irrigation technology was 24% (column 4), while the figure was much 

lower (6%) if the subsidy policy was not available. This smaller difference most likely arises because 

community-based irrigation technology has higher fixed costs; thus, the subsidy policy plays a 

fundamental role in adoption.  
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Table 2-4 Relationship between economic incentives and adoption of modern irrigation 
technology in China, 2010. 

 Adoption extent: share of plots 

adopting (%) 

Adoption intensity: share of 

crop sown areas adopting (%) 

Household-

based 

technology 

Community-

based 

technology 

Household-

based 

technology 

Community-

based 

technology 

Ratio of irrigation fee to 

net cropping income 

    

0 47 11 45 7 

>0 59 16 49 8 

Among samplesa:      

        >0~0.002 60 17 46 4 

        0.002~0.005 60 17 59 19 

        0.005~0.011 60 18 61 19 

        >0.011 56 15 58 19 

Note: a) When the ratio of irrigation fee to net cropping income is larger than 0, we have 
divided the sample into four groups by their ratio of irrigation fee to net cropping income; 
each group has the same number of elements.  
Data source: Authors’ survey 
 

Our data also show that when extension services were available, the likelihood that farmers will adopt 

modern irrigation technology was higher. According to our field survey, 64% of households had 

access to support activities from extension services. When extension services were available, 61% of 

plots adopted household-based irrigation technology, while the level of adoption was only 41% if 

these services were not available (Table 3, column 1, last two values). Similarly, the availability of 

extension services was associated with a higher adoption level of community-based irrigation 

technology (18% versus 8%, column 2). Likewise, the provision of extension services also appears to 
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increase the adoption intensity of modern irrigation technology. If the extension service activities 

were implemented, the adoption intensity of household-based irrigation technology increased from 

42% to 50% (column 3), but the adoption intensity of community-based irrigation technology 

remained at 8% (column 4). Although the availability of extension services seems to have an impact 

on the intensity of adoption of household-based irrigation technology, the differences of values in 

Table 3 imply that the availability of subsidies may have a larger impact on the adoption of modern 

irrigation technology. 

Charges for irrigation water can provide an economic incentive to conserve water through the 

adoption of modern irrigation technology (Tiwari and Dinar, 2000). Among the surveyed households 

that irrigate, almost all farmers that use groundwater exclusively paid for water whereas only about 

half of the exclusive surface water users paid for water. Surface water users pay less often for water 

because they usually have optional sources from which to obtain water, some of which are free, such 

as using water directly from rivers, water cellars, ponds, small streams or springs. Payment for 

irrigation water is reflected here by the proportion irrigation fee to net cropping income of household 

(IFCI).  

Our descriptive statistical analyses suggest the existence of a positive relationship between payment 

for water (IFCI) and the adoption of modern irrigation technology. When there was a water fee, 

farmers exhibited a positive increased difference in the extent of adoption of household-based and 

community-based irrigation technology. For example, Table 4 (column 1) displays that in plots from 

households with values of IFCI larger than 0, the adoption extent of household-based irrigation 

technology was 12% higher than among those plots without payment. A lower increase in the 

adoption level (5%) was evident in the extent of adoption of community-based irrigation technology 

(column 2), although less perceivable increases are apparent in the adoption intensity of modern 

irrigation technologies (columns 3 and 4). 
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 Estimation Results of Econometric Models 2.3.3

 

The estimated results of the four models show that they all perform well (Tables 5 and 6). The models 

passed the Chi-square test, and the PseudoR2 values of the four models range from 0.072 to 0.288. 

These values are sufficiently high enough for regression analyses based on large-scale cross-sectional 

data. Moreover, many village, household and plot control variables have signs that agree with our 

expectations and are statistically significant. For instance, in the four models, the sign of the 

coefficient of exclusive use of groundwater is positive and statistically significant (Tables 5 and 6). 

This outcome implies that after keeping all other factors constant, farmers using groundwater 

exclusively are more likely to adopt modern irrigation technology. This result is in agreement with 

findings of other researchers (Yang et al., 2003; Caswell and Zilberman, 1985).  

The results also indicate that farmers with a higher education level are more likely to adopt 

community-based irrigation technology with more extent and intensity, as expected. In the same way, 

adoption is positive and significantly related to plain terrain and plots with saline conditions. This 

relationship implies that modern irrigation technology is more likely to be adopted in plots with no 

slope conditions and can minimize the effects of soil salinity, which is consistent with previous 

findings (Castilla, 1999). 

More importantly, the results show that when the subsidy policy is available to farmers, the farmers 

adopt modern irrigation technology with greater extent (Table 5), and with greater intensity in the 

case of household based technology (Table 6). If a subsidy policy is applied, the probability of 

adopting modern irrigation technology will increase by 11.7% for household-based irrigation 

technology and by 2% for community-based irrigation technology. Similarly, the probabilities of an 

increase in crop-sown areas using household-based irrigation technology are 10.6%.  
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Table 2-5 Estimates of determinants of the adoption decision of modern irrigation 
technology in China (Logit model). 

 Whether the plot adopts (1=Yes; 0=No) 

 Household-based  
irrigation technology 

Community-based 
irrigation technology 

Policy support    
Financial subsidies (1=Yes; 0=No) 0.117*** 0.020** 

(4.71) (2.11) 
Extension service (1=Yes; 0=No)  0.106*** 0.008 

(5.43) (0.98) 
Economic incentives   

Ratio of irrigation fee to net cropping income 1.346*** -0.822*** 
(3.77) (3.74) 

Village characteristics   
Proportion of irrigated area 0.276*** 0.093*** 

(7.79) (6.19) 
Distance to township government (km) 0.001 -0.000 

(0.40) (0.59) 
Proportion of years without reliable water 
supply 

0.015 0.003 
(0.31) (0.23) 

Exclusive Use of groundwater 
 (1=Yes; 0=No) 

0.100*** 0.080*** 
(2.94) (6.68) 

Annual total precipitation (mm)  -0.0001** -0.0001*** 
(2.01) (5.05) 

Household characteristics   
Gender of  household head  

(1= Male; 0=Female) 
-0.141* -0.018 
(1.84) (0.71) 

Age of  household head (Years) -0.002** -0.000 
(2.18) (0.01) 

Education of  household head (Years) 0.005 0.005*** 
(1.54) (4.09) 

Proportion of off-farm labour  -0.017 0.057*** 
(0.56) (5.25) 

Household asset (10.000 Yuan) 0.001*** 0.0001*** 
(2.65) (2.78) 

Plot characteristics   
Loam soil (1=Yes; 0=No) 

 
-0.046** 0.010 
(1.98) (1.12) 

Clay soil (1=Yes; 0=No) -0.056*** -0.015* 
 (2.86) (1.96) 

Plain terrain (1=Yes; 0=No) 
 

0.002 0.040*** 
(0.12) (4.21) 

High quality plot (1=Yes; 0=No) 
 

0.044 0.026** 
(1.48) (2.25) 

Medium quality plot (1=Yes; 0=No) 
 

0.059** 0.020** 
(2.44) (2.02) 

Saline plot (1=Yes 0=No) 0.092** 0.050*** 
(2.00) (4.06) 

Distance from house to plots (km)  0.039*** -0.011** 
(3.42) (2.01) 

Observations 4172 4172 
Prob> chi2 0 0 
Pseudo R2 0.0720 0.2880 
Notes: Estimates are marginal effects. Absolut value of zstatistics in the parenthesis. 

***p<0.01, ** p<0.05, * p<0.1 
Data source: Authors’ survey.  
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Table 2-6 Estimates of determinants of the adoption intensity of modern irrigation 
technology in China (Tobit model). 

 Proportion of crop sown areas adopting 
Household-based 

irrigation technology 
Community-based 

irrigation technology 
Policy support   

Financial subsidies (1=Yes; 0=No) 0.106*** 0.130 
(2.69) (1.47) 

Extension service (1=Yes; 0=No)  0.102*** 0.043 
(3.12) (0.49) 

Economic incentives   
Ratio of irrigation fee to net cropping income -0.003 -1.223 

(0.01) (0.94) 
Village characteristics  

Proportion of irrigated area  0.247*** 0.867*** 
(4.33) (5.18) 

Distance to township government (km) -0.002 0.009 
(0.67) (1.17) 

Proportion of years without reliable water 
supply 

0.028 0.056 
(0.47) (0.40) 

Exclusive use of groundwater (1=Yes; 0=No) 0.175*** 0.411*** 
(3.29) (3.67) 

Annual total precipitation (mm)  -0.0001*** -0.001*** 
(5.52) (7.32) 

Household characteristics  
Gender of household head 

 (1= Male; 0=Female) 
0.036 0.080 
(0.41) (0.41) 

Age of household head (Years) -0.001 0.002 
(0.72) (0.52) 

Education of household head (Years) 0.005 0.035** 
(0.88) (2.40) 

Proportion of off-farm labour  -0.021 0.199 
(0.40) (1.48) 

Household asset (10.000 Yuan) 0.000 0.002** 
(0.56) (2.40) 

Plot characteristics  
Proportion of loam soil plots 

 
0.060 0.317*** 
(1.33) (2.68) 

Proportion of clay soil plots 0.103*** 0.085 
(2.86) (0.90) 

Proportion of plain terrain plots           0.112*** 0.254** 
(2.93) (2.31) 

Proportion of high quality plots 0.004 0.226 
(0.07) (1.45) 

Proportion of medium quality plots -0.013 0.210 
(0.26) (1.57) 

Proportion of saline plots 0.074 0.305* 
(0.97) (1.89) 

Distance from house to plots (km)  -0.018 -0.036 
(0.89) (0.57) 

Observations 993 993 
Prob> chi2 0 0 
Pseudo R2 0.1686 0.2644 
Notes: Estimates are marginal effects. Absolut value of z statistics in the parenthesis. 

***p<0.01, ** p<0.05, * p<0.1 
Data source: Authors’ survey.  
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Similarly, in both logit and Tobit regressions, the coefficient of the extension service activities 

variable is positive and statistically significant for household-based irrigation technology. This result 

suggests that when extension service activities are accessible to farmers, the probability that farmers 

adopt household-based irrigation technology significantly increases. If extension service activities are 

available, the possibility of adopting household-based irrigation technology increases by 10.6%, and 

the probability of increase in crop-sown areas is 10.2%.  

Having a stronger economic incentive significantly facilitated farmers adopting household-based 

irrigation technology, but hindered the adoption of community-based technology. The estimated 

coefficient of the IFCI is positive and statistically significant in the model of household-based 

irrigation technology (Table 5, column 1). It implies that when farmers need to pay higher irrigation 

fees in relation to their limited net cropping income, they are more concerned about the adoption of 

household-based irrigation technology, which is expected to reduce the application of irrigation and 

relevant production inputs for irrigation. However, an interesting finding is that the coefficient of IFCI 

in the model of community-based irrigation technology (column 2) is negative and also significant. 

This result indicates that having higher irrigation fee ratio will hinder the adoption of community-

based irrigation technology. Finally, our results also have not indicated the significant role of 

economic incentives on increasing adoption intensity of irrigation technology (Table 6). 

 

2.4 Discussion and Conclusions 

 

In this paper, we have sought to explore the importance of governmental support measures and 

economic incentives on the adoption of modern irrigation technology in China. Descriptive statistical 

analyses show that household-based irrigation technology has become noticeable in almost every 

Chinese village. In contrast, only about half of Chinese villages have adopted community-based 

irrigation technology. Adoption levels are lower at the household and plot scales. Amongst those 
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households adopting modern irrigation technology, there are very few adopters that use it in all their 

crop-sown areas; this observation especially applies to community-based irrigation technology.  

Overall, our descriptive and econometric analyses reveal that governmental support has played an 

important role in promoting the adoption of modern irrigation technology. Descriptive statistical 

analyses show positive differences in adoption levels of modern irrigation technology when subsidies 

available (Table 3). Moreover, econometric results demonstrate that the availability of subsidies has a 

positive and significant impact on adoption extent of both described types of modern irrigation 

technology (Table 5), and on adoption intensity of household-based technology (Table 6). These 

results are consistent with results from previous research (Bjornlund et al., 2009; Dinar and Yaron, 

1992; Feder and Umali, 1993) and confirm the relevance of subsidies in encouraging adoption of 

agricultural innovations. In fact, subsidies appear as the most influential and comprehensive policy for 

encouraging the adoption of household-based and community-based irrigation technology. However, 

only 10% of villages are currently eligible for such support. Consideration should be given to  extend  

the subsidy to include more farmers in the future. Since these subsidies are a public expenditure that 

also provides private benefits, they should be made available until the advantages of the technology 

are known to farmers and they adopt the technology by themselves.   

Subsidies to motivate adoption should be combined with actions to promote knowledge of the benefits 

of advanced irrigation technologies amongst farmers.  Statistical analyses show positive differences in 

adoption levels of household-based irrigation technology when extension service activities are 

accessible to farmers. This is corroborated by the econometric results, showing that the probability 

that farmers adopt household-based irrigation technology significantly increases when extension 

service activities are accessible to farmers. This is in agreement with previous findings in the 

literature (Dong, 2008; Feder and Umali, 1993; Ommani et al., 2009). Conversely, the descriptive 

statistical analysis for the levels of adoption intensity of community-based irrigation technology  do 

not show differences when extension service activities are accessible to farmers (Table 3). Similarly, 

the econometric results show that there is no impact of extension service activities on the adoption of 

community-based irrigation technology. This lack of impact might be because the decision to adopt 
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community-based technology are highly influenced by local leaders —village, township and even 

county leaders. Nevertheless, the provision of extension services makes valuable contribution by 

spreading information about the beneficial aspects of the technology. Consideration should be given 

to expanding extension effort in those technologies and in areas of high potential benefit, but current 

low adoption because of limited awareness or knowledge.  Overall, it seems clear that there is scope 

to strengthen the extent and integration of targeted subsidies and extension support for irrigation 

technology where there is most potential benefit.  

Compared with governmental support, the present irrigation pricing policy has played a very 

important role in promoting the adoption of household-based irrigation technology. Descriptive 

statistical analyses show higher levels of adoption of modern irrigation technology when irrigation 

charges are levied and IFCI is greater than 0, but these differences are large only for adoption extent 

of household-based irrigation technology. Our econometric results confirm that the payment for water 

and the adoption level of household-based irrigation technology are positively and significantly 

related. Our result implies adoption of household-based irrigation technology is influenced by 

irrigation price policy. Irrigation pricing can play an important role in inducing farmers to change 

their irrigation behavior. This result is consistent with previous studies from Caswell et al. (1990), and 

Dinar and Yaron (1992).  

Interestingly, the impact of irrigation pricing on the extent of adoption of community-based irrigation 

technology shows significant and negative values. An explanation for this is that there is some 

substitution effect between household and community-based irrigation technology. If farmers have 

higher incentives to adopt household-based irrigation technology, there may be fewer incentives to 

invest in community-based irrigation technology, which has an added barrier for adoption due to high 

costs. In fact, such relationship further indicates the significant role of irrigation pricing policy on 

promoting the adoption of modern irrigation technology. Compared with community-based irrigation 

technology, household-based irrigation technology is cheaper and easier to adopt by small and 

individual farmers, which is more consistent with the present production environment in China. 

Therefore, instead of investing in expensive community-based irrigation technology, the government 



Chapter 2.Policies, Economic Incentives and the Adoption of Modern Irrigation Technology 
in China 

 

41 

 

should consider putting more effort into encouraging farmers to adopt household-based irrigation 

technology through appropriate and targeted irrigation pricing and extension policies.  

Within the limits of available data, the econometric models used here have been applied to groups of 

irrigation technologies together rather than at the detail of individual irrigation technologies.  The 

limitations could be overcome with further work through collecting more data for the individual 

technology, and combining both quantitative and qualitative methods. If possible, we can conduct 

follow-up surveys to create panel data with multiple time points to further improve econometric 

estimates. In addition, although policies and incentive mechanism can play role on promoting the 

adoption of modern irrigation technology, the significance for their role maybe differ by farmers’ 

characteristics, such as their different degree of wealth. Such interesting issue also can be further 

explored in the future studies. 
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Chapter 3. Co-benefits and trade-offs in China’s irrigation 

water–energy nexus  

 

Abstract 

There are strong interdependencies between water use in agriculture and energy consumption as water 

saving technologies can require increased pumping and pressurizing. The Chinese Government 

includes water efficiency improvement and carbon intensity reduction targets in the 12th Five-Year 

Plan (5YP. 2011-2015), yet the links between energy use and irrigation modernization are not always 

addressed in policy targets. Here we develop linked resource analysis to assess policy targets for 

deployment of irrigation technologies, which contribute to reduce water application and adapt Chinese 

agriculture to climate change. The consequences of policy targets involve co-beneficial outcomes that 

achieve water and energy savings, or trade-offs in which reduced water application leads to increasing 

greenhouse gas emissions. We analyze irrigation efficiency and energy use using scenarios based on 

targets in the 12th 5YP nationally and in four significative provinces. Interestingly, our calculated 

irrigation efficiency for China (23.80%) is lower than other estimates. We find that expansion of 

sprinklers and micro-irrigation as outlined in the 5YP would increase greenhouse gas emissions 

nationally from agricultural water use. We show that the most costly technologies relate to trade-offs, 

while co-benefits are generally achieved with less expensive technologies. Overall, the results show 

that water sources largely determine whether energy savings occur with reduced water application. 
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3.1 Introduction 

 

China faces its own ‘perfect storm’ as rapid economic transition drives increasing per capita demand 

for water, energy and food. National food production increased substantially in recent decades but in 

doing so the agricultural sector has become responsible for nearly two-thirds of total water use and 

17%-20% of China’s greenhouse gas (GHG) emissions (Wang et al 2012). Groundwater use in China 

increased from around 10km3 during the 1950s to more than 110 km3 in 2010 (Shah 2009) causing 

increases in pumping-related emissions of GHGs (Wang et al 2012). The interdependencies between 

water and energy are increasingly recognised (e.g. Hoff 2012). One example is the potential for co-

benefits or trade-offs to occur when reducing water application in agriculture due to the need for 

energy consumption for increased pumping, pressurizing and conveyance. For instance, situations of 

groundwater use for irrigation might provide co-benefits via savings on the energy pumped when 

reducing water application (Zou et al 2013a), while areas irrigated with surface water can result in 

trade-offs between reductions in water application and increases in emissions when energy-intensive 

irrigation technology is deployed. Outcomes can be explored using a nexus approach (Finley and 

Seiber 2014; WEF 2011). Irrigation comprises the second largest contribution (22%) to the total 

carbon footprint of crop production in China (Cheng et al 2011). Jackson et al (2010) reported 

emissions savings of 12% to 44% could be achieved through the adoption of irrigation technology in 

groundwater fed conditions. Optimal management measures such as dynamic regulation of pressure 

may also lead to additional energy savings of 20% (Díaz et al 2009). Irrigation technologies can 

reduce the non-productive consumption (Perry 2011) of water in different ways; they can minimize 

leaching and evaporation and improve control of application to optimize water uptake in plants. Canal 

lining and pipelines are measures to avoid non-productive evaporation and leaching of water during 

conveyance; sprinkler and drip systems limit the application of water to fields/crops. By reducing 

applied water and potentially helping to cope with climate change (e.g. precipitation variability and 

more intense droughts), irrigation technology can contribute to adaptation and, in some contexts, 
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irrigation technology might simultaneously contribute to carbon intensity reduction and mitigation of 

climate change. 

The Chinese Government included water efficiency, farming modernisation and improved risk 

management in agriculture as priorities in the 12th Five-Year Plan (5YP, 2011-2015) (CPC 2011) and 

the No. 1 Central Document in 2011 (CPC 2010). The 12th 5YP was the first to set targets for carbon 

intensity reduction. Water pumping is a major input for Chinese agriculture, yet the links between 

energy use and irrigation modernization are not addressed directly in these policy plans. In fact, 

vertical planning processes often fail to integrate water-energy considerations (Yu 2011). The 12th 

5YP targets increases in irrigation efficiency of 3% and includes objectives for increasing the area 

under four irrigation technologies which are the focus of this study; sprinkler irrigation. micro/drip 

irrigation, canal lining for seepage control and low pressure pipelines. The policy targets are intended 

to be realised by incentivizing and supporting farmers to adopt irrigation technology through 

extension activities, subsidies, discount loans for equipment and water pricing (Cremades et al 2015; 

NEA 2012). At the provincial level the current 5YP aims for increases in the area using irrigation 

technology of 26% in Hebei, 54% in Heilongjiang, 33% in Shandong and 53% in Xinjiang (detailed 

figures of baseline and scenarios in tables 2 and 3, respectively; CPC, 2011). 

We examine how to decrease energy consumption linked to irrigation, whilst reducing irrigation water 

application and maintaining food security. This challenge is exacerbated by the diversity of situations 

in which outcomes of similar policies can be either trade-offs or co-benefits. We apply linked 

resource analysis by assessing the consequences of sectoral policy targets that intersect the irrigation 

water-energy nexus (Scott et al 2011): focussing on co-benefits; to identify win-win outcomes which 

achieve reductions of water applied and energy savings, and on trade-offs; in which reductions of 

water applied lead to increasing GHG emissions from energy use. The study uses data from 

government sources and develops a method based on the estimation of changes on water use 

efficiency and energy use emissions, applied to analyse policy scenarios based on the targets of 

China’s 12thFYP. The analysis is done nationally and in four provinces with contrasting water-energy 

endowments. To achieve this we first seek to understand which factors determine different outcomes 

in terms of emissions from irrigation technology, and derive estimates of energy use and economic 
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cost for key irrigation technology from the literature. Second, we assess the possible trade-offs and 

co-benefits in different cases of the nexus to understand the consequences of sectoral policy goals. We 

conclude by suggesting policy recommendations for improved management of the irrigation water-

energy nexus. 

 

3.2 Methodology 

 

We apply a methodology for assessing water use efficiency and energy use emissions in irrigation 

schemes, comprising all processes from extraction and conveyance of water to its application in the 

field (Figure 3-1). These processes may require energy (e.g. for pumping, pressurising) and will 

unavoidably involve some consumption of non-productive agricultural water use through evaporation, 

runoff and seepage. Using provincial and national level averages from a range of official sources we 

calculate the scheme irrigation efficiency and energy use emissions for the year 2010 and use these as 

a baseline.  

 

 

Figure 3-1 Main data sources used in the water-energy assessment (full details in 
Supplementary Section 2). 

 

• Total agricultural water use (km3)

• Supply source (GW, SW, pumped SW)

• GW pumping head, SW pumping head
Agricultural Water Use

• Total irrigated area

• Area of lifting irrigation (3 types)

• Area of water‐saving technologies (5 types)
Irrigated Area

• Emissions from SW pumping

• Emissions from GW pumping

• Emissions from field application
Energy Use Emissions

• Conveyance efficiency

• Application efficiency
Water Use Efficiency
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The scheme irrigation efficiency, defined as the fraction of water “pumped or diverted through the 

scheme inlet which is used effectively by the plants” (FAO 1989), is the combined efficiency of the 

conveyance and the application (see Equation 1). Conveyance efficiency represents the efficiency of 

water transport in canals and field application efficiency represents the efficiency of water application 

in the field. 

િ ൌ 	
஗ୡ	ൈ஗ୟ

ଵ଴଴
          （1） 

િ܋ ൌ ∑ ௜௜ܣ ηc௜          （2） 

િ܉ ൌ ∑ ௝௝ܤ ηa௝         （3） 

 

Where: 

η: scheme irrigation efficiency (%) 

ηc: conveyance efficiency (%) 

ηci: conveyance efficiency for ith kind of delivery facility, being i a set that includes the following 

delivery facilities: unlined canal, lined canal and low pressure pipeline 

Ai: percentage of irrigated areas using the ith kind of delivery facility  

ηa: field application efficiency (%) 

ηaj: field application efficiency for jth kind of irrigation technologies in the field, being j a set that 

includes flood, sprinkler, micro-irrigation and other kinds of irrigation technologies 

Bj: percentage of irrigated areas using the jth kind of irrigation technologies in the field 

 

According to the Food and Agriculture Organization of the United Nations (FAO 1989) a scheme 

irrigation efficiency of 50-60% is good. 40% is reasonable, whereas 20-30% is poor. The combined 

irrigation scheme efficiency depends on the type of conveyance and application system all of which 

have different water use efficiencies (see supplementary table S4 in Appendix A1). If well 

maintained, long, sandy soil canals have maximum conveyance efficiencies of 60%. Taking into 
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account poor maintenance of canals the conveyance efficiency of earthen canals is set to 30%, and the 

conveyance efficiency of canals with seepage control is set to 75% (FAO 1989). For low pressure 

pipelines, we assume a conveyance efficiency of 90%. For application efficiencies we adopt a mid-

value of 50% for flood systems, 75% for sprinkler, 90% for drip and 70% for other field practices that 

enhance efficiency. 

To calculate the scheme irrigation efficiencies (equation 1), we use national statistics for irrigated 

areas by province (sources detailed in Suppl. Section 2). For conveyance efficiency, the total irrigated 

area is divided according to the areas supplied by seepage controlled canals, low pressure pipelines 

and the remaining area is assumed to be supplied by traditional non-lined canals (see equation 2). For 

field application efficiency, the total irrigated area is divided according to areas of sprinkler, micro 

and other field measures; the remaining is classified as flood (see equation 3). Flood irrigation 

comprises all types of surface water irrigation (basin, furrow, border). It is important to note that 

Chinese government metrics for irrigation efficiency do not consider conveyance and application 

practices separately. While areas supplied by water through lined canals and pipelines are counted as 

irrigation technologies, water might still be applied through flooding practices. Hence, we argue it is 

important to acknowledge that water can leave the irrigation scheme through non-productive 

evaporation and seepage both during conveyance and application and therefore both steps should be 

accounted for. 

For the energy use emissions, we divide the energy used for an irrigation scheme into pumping and 

conveyance (equation 4), and pressurising water for application to fields (equation 5). For both 

calculations we consider the two main types of engines used for water pumping in China: the 

proportion of engines used is set to 76% for electric and 24% for diesel, and pump engine efficiencies 

of electric and diesel driven systems are set to is set at 0.75 and 0.15, respectively (equation 6) (Wang 

et al 2012). 
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Table 3-1 Pressure ranges of irrigation systems. 

  

 kPa 
Head 

(m) 
Irrigation system 

Low pressure 0- 179.25 
0-17 most surface and some drip/micro 

systems 

Medium 

pressure 

179.26-

413.68 

18-41 some drip/micro and some sprinkler 

systems 

High pressure ≥413.69 ≥42 some sprinkler systems 

Source: USDA (2012) 

 

Pump head is the most crucial factor, noting that efficiency of the power generation and supply and 

the pump and pipeline system also influence energy use. To calculate the energy used in the pumping 

and conveyance of groundwater and surface water we use equation 4 (Rothausen and Conway 2011). 

Conveyance consumes energy in the case of low pressure pipes. Even so, results from a large-scale 

field survey (see Cremades et al 2015) show low pressure pipes are used in 91% of cases in areas 

irrigated exclusively with groundwater, while only a 2% of cases in areas irrigated exclusively with 

surface water and the remaining 7% in areas with a mix of both. We therefore assume that the 

expansion of low pressure pipelines will occur in areas irrigated exclusively with groundwater. Then, 

since the adoption of low pressure pipes implies lower extraction of groundwater, the final effect is 

less water pumped and less energy consumed, which is according to findings from Zou et al (2013b).  
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Where:  

EPC: emissions for pumping and conveyance, comprising emissions caused by energy-intensive water 

sources and decrease of emissions related to conveyance using low pressure pipes. 

K: set of energy intensive water sources, comprising pumping of groundwater and pumping of surface 

water. 

Pump head: vertical distance over which water is raised, or the combined effect on pressure of 

elevation and/or distance over which water is pumped prior to application; also referred as “lift”. 

Mass: weight of the water pumped. 

Pump Efficiency: performance of the pump in terms of conversion to mechanical energy, being m a 

set including diesel and electric engines. 

CF = conversion factor, as calculated in Equation (6) below. 

Aen(i): area with conveyance through low pressure pipes; the subset en(i) includes the elements of i 

that consume energy for conveyance, referring only to low pressure pipeline. 

LPR: reduction of emissions due to adoption of low pressure pipelines. According to a literature 

review by Zou et al (2013b) low pressure pipes reduce 177 kgCO2e per hectare of application. 

 

The energy used to pressurize water for its application in the field with sprinklers and micro-irrigation 

is calculated according to Equation 5. Based on information in table 1 we set the pressure of the pump 

head at 45 m for sprinklers and 20 m for drip. We apply standard flow rates for sprinkler and drip 

systems at 40 l/s and 20 l/s. respectively.  
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ቁ （5）  

 

Wherein: 

EA: emissions due to pressurizing water for its application in the fields, using the energy-intensive 

elements of the set j —sprinkler and micro-irrigation, that constitute the sub-set en(j)   
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In Equation 6 we use GHG conversion factors for diesel and electricity produced in China to derive 

the emissions for these two main types of energy use for water pumping in China (DEFRA and DECC 

2010). 

 

  CF௠ ቀ୩୥େ୓మୣ
୩୛୦

ቁ ൌ DEU௠ ൈ CONV௠ ቀ୩୥େ୓మୣ
୩୛୦

ቁ （6） 

 

Where: 

DEU: distribution of engines used. 76% for electric and 24% for diesel. 

CONV: conversion factors for diesel (0.32021kgCO2e/kWh) and electricity produced in China 

(0.94773kgCO2e/kWh). 

 

The nexus between water use and emissions is captured for pressurized application and for 

pressurized conveyance. First, the emissions caused by irrigation in areas adopting pressurized 

conveyance are represented in Equation 4; when these areas vary, the change is also reflected in 

Equations 2 and 1. Second, the emissions caused by irrigation in areas adopting pressurized 

application technologies are represented in Equation 5; when these areas change, it is also reflected in 

Equations 3 and 1. Therefore, our method captures the implications in terms of irrigation efficiency 

and in terms of emissions. 

Using this procedure, we calculate a baseline and simulate the water and energy use associated with 

increasing the area that adopts irrigation technology as described in the 12th 5YP targets. Then, by 

distributing the reductions of water applied from the estimated increases in irrigation efficiency, 

according to the supply sources in each province, we evaluate the potential GHG emission savings. 

Finally, we quantify the sensitivity of key parameters in the formulae above to understand their 

impact on irrigation efficiency and energy use. Figure 3-1 shows the main data sets used in the 

methodology. 

This approach is used to analyse the outcome of the 12th 5YP targets in four Chinese provinces: 

Hebei. Heilongjiang. Shandong and Xinjiang. The provinces are chosen because they had the highest 
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planned increases in area under irrigation technology according to the 12th 5YP and they present very 

different conditions of water supply sources and use of irrigation technology. The main characteristics 

of the four provinces are listed in the Supplementary Section 1 (table S1, Appendix A1). A full, 

detailed description of the data sources and additional methodological details can be found in the 

Supplementary Section 2 of Appendix A1. 

 
 
 
3.3 Results and discussion 

 

 Baseline situation 3.3.1

 

Overall. GHG emissions from China’s irrigation for a baseline scenario of 2010 are estimated to be 

46.11 MtCO2e (table 2). This result comprises energy use from groundwater pumping and pumped 

surface water, including conveyance and application in irrigation systems. This result is similar to 

previous findings by Zou et al (2013b), however, our estimate for groundwater pumping on its own 

(24.59 MtCO2e) is lower than previous estimates of 28.65MtCO2e by Zou et al (2013b), and of 33.1 

Mt CO2e by Wang et al (2012). The contrasting results are likely due to minor differences in methods 

between the studies and because we have used more recent data, made available from the Ministry of 

Water Resources in 2012.  

The irrigation efficiency value calculated for the baseline is 23.80% (table 2) lower than the FAO 

estimate for East Asia (33%; FAO 2002), and much lower than the Chinese official irrigation 

efficiency figure for 2010 (50%; MWR 2010). It should be noted that estimates of irrigation 

efficiency are notoriously uncertain at all scales and they are subject to strong debate. Differences in 

the definition and/or calculation method can strongly influence results. Our definition of irrigation 

efficiency is the fraction of water “pumped or diverted through the scheme inlet which is used 

effectively by the plants” (FAO 1989), while the Chinese government definition is the ratio between 

water available for crops and water extracted (MWR 2009; Han et al 2009). 
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Table 3-2 Estimates of irrigation efficiency and emissions from irrigation and their 
main parameters for the baseline scenario (values based on data for 2011). 

 
Units 

National Hebei Heilong-

jiang 

Shandong Xinjiang 

Agricultural Water       

Total agricultural water km3 383.16 15.43 25.65 22.19 50.49 

Groundwater % 17 77 52 29 16 

Surface Water % 83 23 48 71 84 

Pumped surface water % 13 2 16 9 1 

Average groundwater 

pump head 
m 

27.2 47.9 17.9 23.2 34.9 

Average surface water 

pump head 
m 32.2 43.8 14.6 30.5 50.0 

Irrigated Area       

Total irrigated area Mha 66.35 4.97 3.88 5.55 5.39 

Groundwater irrigated 

area 
Mha 17.81 3.79 1.81 2.37 0.76 

Irrigation technology 

area 
Mha 27.31 2.70 2.66 2.26 2.89 

Conveyance        

Surface water canal* Mha 48.09  2.69  3.75  3.82  4.15 

Canal lining Mha 11.58 0.28 0.12 0.57 1.17 

Low pressure pipes Mha 6.68 2.00 0.01 1.16 0.07 

Application       

Flood/Surface* Mha 57.29 4.51 1.34 5.01 3.64 

Sprinkler Mha 3.03 0.24 0.92 0.15 0.09 

Micro-irrigation Mha 2.12 0.03 0.13 0.06 1.60 

Other field measures Mha 3.91 0.19 1.49 0.33 0.06 

Irrigation Efficiency       

Conveyance % 44.40  58.69  31.56  48.21  40.61 

Application  % 53.60  52.21  64.95  52.30  62.51 

TOTAL % 23.80  30.65  20.50  25.21  25.39 
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Units 

National Hebei Heilong-

jiang 

Shandong Xinjiang 

Energy Emissions        

Groundwater pumping  MtCO2e
 24.59 6.16 3.99 2.15 3.37 

Surface Water pumping  MtCO2e 12.92 0.10 0.47 0.51 0.16 

Pressurising  water  for 

conveyance  (low 

pressure pipes) 

MtCO2e 

-1.18 -0.35 0.00 -0.21 -0.01 

Pressurising  water  for 

application  (micro‐

irrigation) 

MtCO2e 

2.32 0.02 0.16 0.05 2.84 

Pressurising  water  for 

application (sprinkler) 
MtCO2e 

7.46 0.32 2.59 0.26 0.36 

Total emissions MtCO2e 46.11 6.25 7.22 2.75 6.72

* Calculated. based on official data on areas adopting irrigation technology and groundwater irrigation  

 

The definition we use includes conveyance efficiency, which is absent in the official Chinese 

definition (i.e. we include water abstracted from source to crop. whereas the governmental definition 

only includes water from irrigation scheme source to crop). Hence, the two irrigation efficiencies are 

not directly comparable. 

The socio-ecological contexts of the four provinces are reflected in contrasting relative distributions 

of water supply sources and adoption levels of different irrigation technologies and therefore show 

considerable differences in both the overall efficiency and between conveyance and application types 

(table 2). Hebei has a very efficient conveyance system partly attributed to widespread use of low 

pressure pipelines but predominantly to the high proportion of groundwater use for irrigation (77%). 

CO2e emission rates show even larger differences as rates vary considerably between groundwater 

and surface water pumping, depending on the pump head. Hebei has high total emissions from 

irrigation because of its large proportion of groundwater use. The relatively extensive use of sprinkler 

systems in Heilongjiang leads to a much higher emissions than the other provinces, whereas the high 

pump head in Xinjiang is behind its high emissions.  
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 Scenario results 3.3.2

 

Table 3-3 lists the effect of expanding the area under irrigation technology according to the recent 

12th 5YP plan. The results show an increase in irrigation efficiency from 23.80 to 26.76% which 

seems consistent with the 3% increase targeted by the national 12th 5YP. Hebei and Heilongjiang 

show higher increases in irrigation efficiency than the increase targeted in the 12th 5YP (Hebei 3%. 

Heilongjiang 3%. Shandong 4%. Xinjiang 6%). Other things being equal, these changes would 

provide reductions of applied water of nearly 11 km3 that, if realised, could be used to intensify or 

expand irrigated cropping to help meet the 5YP target of increased grain production. However, the 

changes also lead to increases in GHG emissions of 10.35% (4.77 MtCO2e) due to the expansion of 

pressurised irrigation systems. The effects on emissions from energy use vary substantially among the 

provinces with Heilongjiang and Xinjiang experiencing increases of nearly 50%. Hebei and 

Shandong, on the other hand, show narrow decreases due to their adoption of low pressure pipes and 

proportionally lower increases in sprinkler and micro irrigation systems. We now consider the 

potential reductions in water application (table 3). The national average reduction in applied water is 

170.93 m3/ha and the provinces range from 139.40-502.09 m3/ha. Hebei, with the highest irrigation 

efficiency, has the lowest rate of reduction in water application (m3/ha), whereas Xinjiang, with an 

irrigation efficiency slightly above the national value, has the highest rate of reduction in water 

application. These differences highlight the importance of increasing efficiency in areas with high 

water use and low efficiency. Energy savings directly related to irrigation technology are primarily 

due to reductions in water use, hence energy is only saved if less water is pumped and/or pressurised.  

 

 

 

Table 3-3 Increase in the area adopting irrigation technology as targeted in the 12th 
5YP for 2015 and the effects on scheme irrigation efficiency and GHG emissions. 

Units National Hebei Heilongjiang Shandong Xinjiang 
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Targeted expansion of 
irrigation technology 

      

Sprinkler 1000 ha 2001  19 1115 33 90 

Microirrigation 1000 ha 2011  19 87 33 1297 

Low pressure pipes 1000 ha 2453  559 1 522 27 

Canal lining 1000 ha 3535  108 242 162 172 

Total  1000 ha 10000  705 1445 750 1586 

Irrigation Efficiency 
achieved with the 
targeted  areas under 
advanced irrigation 
technology 

      

Conveyance % 48.37 66.98 34.39 55.63 42.38 

Application  % 55.32 52.46 73.03 52.69 72.56 

TOTAL % 26.76 35.14 25.11 29.31 30.75

% total increase % 12.45  14.67  22.53  16.27  21.11 

Absolute figure of total 
increase 

% 2.96  4.49  4.62  4.10  5.36 

Energy Emission        

GW pumping MtCO2e 24.05 6.16 3.99 2.15 3.37 

SW pumping MtCO2e 12.63 0.10 0.47 0.51 0.16 

Pressurising  water  for 
conveyance  (low 
pressure pipes) 

MtCO2e 
-1.62 -0.45 0.00 -0.30 -0.02 

Pressurising  water  for 
application  (micro 
irrigation) 

MtCO2e 
4.23 0.03 0.27 0.07 5.14 

Pressurising  water  for 
application (sprinkler) 

MtCO2e 
11.59 0.34 5.74 0.31 0.72 

TOTAL MtCO2e 50.88 6.18 10.47 2.74 9.38

% total increase % 10.35 -1.00 45.06 -0.38 39.54 

Effects of irrigation 
technology, compared 
with baseline 
irrigation system 

      

Reduction in water 
application per area 

m3/ha 
170.93 139.40 305.42 163.93 502.09 

Emissions change MtCO2e 4.77 -0.06 3.25 -0.01 2.66 

Investment per area CNY/ha 7311.64 4284.29 9108.23 4612.30 12950.39 

Reduction in water 
application per unit of 
investment 

L/CNY 
23.38 32.54 33.53 35.54 38.77 

 

Therefore Hebei is the only province to show a (modest) co-benefit, with lower emissions compared 

to the baseline, which can be explained by the characteristics of its water supply system. A high 

proportion of groundwater and deep groundwater pump lift make Hebei’s water supply is highly 

energy intensive, so that reductions in applied water tend to reduce emissions. This finding is 

consistent with the potential for energy savings in Hebei presented by Q Zhang et al (2013). 
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Then in Shandong the increase in areas adopting low pressure pipes compensates the increase of 

emissions due to larger areas adopting micro-irrigation and sprinklers. Both Heilongjiang and 

Xinjiang exhibit increases in emissions. For instance, despite the relatively large reductions in water 

application in Xinjiang, emissions show a significant trade-off, increasing by 40%. Co-benefits are 

lacking as the main water supply in Xinjiang is gravity-fed surface water. The characteristics of the 

water supply systems strongly determine the potential for energy savings from reductions in water 

application. In terms of GHG emissions, pressurized irrigation technology such as sprinklers and 

micro-irrigation is best implemented in areas with energy-intensive water supply. Where this is not 

the case, it is important to recognize the energy trade-offs associated with implementing energy-

intensive irrigation technology, as seen in the case of Heilongjiang where emissions increase by 45%, 

despite reductions in water application. 

The economic dimension of the irrigation water-energy nexus is now considered. A review of the 

investment costs of different irrigation technologies in 13 Chinese studies (see supplementary table 

S6, Appendix A1) allows an estimate of average cost (CNY/ha) for each of the four irrigation 

technologies that can be used to calculate the reduction in water application per unit cost. Improving 

conveyance by canal lining costs roughly 4,300 CNY/ha, low pressure pipes cost roughly 3,750 

CNY/ha, sprinklers 9,700 and micro-irrigation is the most expensive at CNY 14,500 per ha. The 

results show that on a national level the average investment return is 23 litre of reduced water 

application per CNY (table 3) which is lower than any of the detailed provinces. The investment cost 

per area has no direct implications for the outcome, but both are related because the most expensive 

technologies listed above use more energy. Prioritizing low pressure pipes in contexts dominated by 

groundwater sources, like Hebei, is cheaper and leads to co-benefits. A similar result can be expected 

from canal lining; although it is not a technology strongly targeted in the analysed provinces, it could 

play a significant role. In contrast, prioritizing more expensive technologies like sprinklers and micro-

irrigation leads to costly trade-offs, due to increased energy consumption when using surface water 

and/or increasing the pressure for sprinkler devices. 
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 Sensitivity analysis 3.3.3
 

Finally we examine the sensitivity of some key parameters on the national scale. Increases in the area 

of low pressure pipelines for conveyance and micro-irrigation for application produce the highest 

proportional effect on raising irrigation efficiency (Figure 3-2).  

 

 

Figure 3-2 Sensitivity of irrigation efficiency to incremental per cent changes in the area using 
irrigation technology. 

 

Sensitivity analysis of emissions to irrigation technology and water and energy sources shows that 

expansion of sprinkler systems strongly increases the emission rates (Figure 3-3); this is not the case, 

however, in areas where the groundwater pump head is greater than the critical energy saving head 

(Zou et al 2012). Pumping water is clearly the most energy intensive process. With the current 

configuration, changing the distribution of energy sources towards more electric pumps has little 

impact on the emissions.  
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Figure 3-3 Sensitivity of energy use emissions to incremental per cent changes in key influencing 
factors. 

 

The predominant use of surface water and traditional unlined canals is the main reason for the 

relatively low irrigation efficiency in China. Consequently, improving conveyance efficiency through 

canal lining and pipelines may be the most effective way of achieving the co-benefit of reducing 

water application with a low carbon footprint. Only in groundwater fed areas is micro-irrigation a 

suitable irrigation technology for both improving irrigation efficiency and decreasing GHG emissions, 

in situations where the pumping head value allows it (Zou et al 2012). 

 

3.4 Conclusions and policy implications 

 

Quantifying the trade-offs and co-benefits is just part of the nexus story; to successfully manage the 

water-energy nexus in China, a critical set of socio-economic and policy issues also need to be 

addressed. These include; improving communication amongst ministries with responsibility for 

different aspects of the water-energy nexus, creating clear incentives to decrease water application 

and adopt irrigation technology, establishing reliable water rights, and improving groundwater 

governance and use (Shiferaw et al 2009; Yu 2011; J Wang et al 2009, J Zhang, 2007, L Zhang et al 
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2008; Calow et al 2009). This study enhances our understanding of co-benefits and trade-offs in the 

irrigation water-energy nexus, across a set of diverse provincial cases in China using targets defined 

in the 12th 5YP. The approach applies a suite of assumptions about water use efficiency for various 

stages and technologies in the process of irrigation. Whilst such aggregate estimates of efficiency are 

widely used, they are subject to high levels of uncertainty and site-specific factors will lead to 

considerable variability. 

We find that expansion of sprinklers and micro-irrigation as outlined in the 12th 5YP could increase 

GHG emissions from agricultural water use by roughly 45% at provincial level and 10% at national 

level. Where pressurized irrigation technology is used in surface water irrigated areas (Xinjiang) or 

where the energy consumption to pressurize water (Heilongjiang) is high, emissions increase 

dramatically. The results show that water supply configuration largely determines the potential energy 

savings from reductions in water application. An implication of this is that co-benefits of irrigation 

technology for energy saving only appear in areas irrigated with energy intensive supply (Hebei). 

Trade-offs appear in surface water irrigated areas (Xinjiang), where emissions due to expansion plans 

for pressurized irrigation technology could increase by one third. Taken together, these results suggest 

that in situations where policy makers seek to optimize both water and energy use they should 

encourage the adoption of low pressure conveyance pipes in groundwater irrigated areas, and canal 

lining in surface water areas, since these increase efficiency with lower emissions than other methods. 

Another important implication is that sprinklers and micro-irrigation appear as a suitable means to 

increase efficiency only in groundwater irrigated areas. Regarding the costs, the most expensive 

technologies appear linked to trade-offs, while co-benefits result from lower-priced technologies. 

These insights are relevant to make adaptation policies consistent with mitigation goals in the 

irrigation sector. 
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Chapter 4. Integrated Economic Assessment of “Stay-green” 

Technology in Sorghum under Current Climate Variability  

 

Abstract 

Sorghum is the 4th most important crop by cultivated area at the world level. In India, around 5 

million households plant it to support their dietary requirements. There sorghum is planted in drought-

prone conditions in the post-rainy season with frequent occurrence of crop failure. An emergent 

technology utilizing knowledge of "stay-green" phenotype in sorghum has been shown to increase the 

probability for obtaining higher production of grain for human food and stover for cattle feed in 

drought-prone areas. The purpose of this article is to conduct an integrated economic evaluation of the 

potential of the "stay-green" technology innovation. To do so, we have introduced methodological 

innovations to improve spatial and temporal resolutions in an Integrated Assessment Model. 

Our results estimate in which areas appear the desired effects, which are increase in mean 

production and decrease of standard deviation of grain and biomass yields, for a set of 

stochastic climatic scenarios. We show that new crop varieties, obtained with techniques such 

as accelerated breeding, significantly contribute to adaptation to climate variability, 

producing in many cases more food and also more biomass, which has implications for 

mitigation of climate change. We also show that, although a significant amount of welfare is 

added by these innovations to the agricultural sector, the provision of information has much 

larger welfare amounts to add. However, it remains unclear whether crop varieties alone can 

solve the expected pressures due to increased demand for a higher population in the mid XXI 

century. 
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4.1 Introduction 

 

Sorghum [Sorghum bicolor (L.) Moench] ranks 4th cereal globally and in India by cultivated area 

(Faostat, 2015; Yadav et al 2011); worldwide it covers roughly 250 Mha located mostly in the semi-

arid tropics. In India around 5 million small-holders plant sorghum in post-rainy season (rabi) to 

support their basic dietary requirements (Kholová et al., 2013). Post-rainy sorghum is planted in 6.2 

Mha in India mainly due to lack of better alternatives suitable to withstand the challenging 

environmental conditions, mainly drought. Sorghum yields in India are 4 times lower than in the 

developed countries using technologies of precision agriculture, such as United States or Australia 

(Faostat, 2015). In India sorghum is a staple crop, particularly in poorly resource-endowed areas with 

low soil fertility and a limited amount of soil water holding capacity. Increasingly, its fodder residues 

after harvest are used to feed cattle and the fodder value now reaches about half of the sorghum value 

chain. Despite sorghum is considered a drought adapted crop per se its production often fails to 

produce grain and in this case the crop value correspond to fodder production, which is also a desired 

product because during the post-rainy season there is not much of other alternatives to obtain fodder 

for livestock. The mentioned reasoning of the lack of better alternatives is supported by the fact that 

post-rainy sorghum production and area had not suffered the severe decrease that sorghum crop areas 

have shown the previous years during rainy season in favour of economically better cropping 

alternatives (Nagaraj et al. 2013). 

With this challenging socio-ecological context in mind, considerable progress in understanding the 

mechanistics of promising "stay-green" technology for sorghum has been made (Vadez et al. 2011, 

Kholova 2013, 2014, Borrell 2014, 2015). The "stay-green" phenotype has been shown to link to 

several key genetic parameters influencing plant water management, e.g. tillering; canopy 

development rate, limited transpiration under high vapor pressure deficit, improved water extraction 

and sensitivity of canopy expansion to soil water content. These genetic traits enable the conservation 

of soil water during vegetative growth phase and increases the proportion of water that is used during 

the reproduction phase, and this has been shown to be a feature of critical importance in the increase 
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of crop productivity under limited water. The genetic markers have been established to enable 

accelerated introgression of "stay-green" traits into desired genetic background. Overall, the "stay-

green" phenotype can be provided as a public good with the seed price in the range of other 

mainstream sorghum traditional planting varieties, so it emerges as a relevant management alternative 

due to the improved performance on the parameters described below. 

Although the effects on grain and stover yield of the different genetic trait that lead to "stay-green" 

have been tested in experimental fields and in-silico with a crop simulation model (Kholova et al., 

2014), this technology innovation has not been analysed from an economic perspective yet, so its 

contribution to the welfare of the agricultural sector of India is unknown. We aim to perform such 

analysis with an Integrated Assessment Model (IAM), and to the best of our knowledge there is no 

similar analysis published for such an innovation, possibly because the crop models used in the IAM 

arena lack the sensitiveness required to mechanistically capture such variation of phenotype. Others 

studied the farm scale returns of sorghum (Enciso et al., 2015) and evaluated its diverse economic 

potentials (Chagwiza, and Fraser, 2014). More to the point, Sassi (2013) have shown that the 

interaction of sorghum with climate variability has notable economic consequences for traditional 

varieties or sorghum.  

There are approaches to assess and understand the contribution of an agricultural management 

innovation under global change, mainly based in Agricultural Sector Models (McCarl and Schneider, 

2001; Schneider et al., 2011). In our case, we will significantly depart from these approaches on three 

points. First, we use a crucial stochastic feature for the decision variable depicting land use. Using a 

stochastic configuration, a single solution for the variable representing the land use captures the 

variation existing in the whole data input of states of nature representing climate variability, in this 

way the whole range of options is depicted and the results capture the impact of climate variability. 

The rest of the variables are configured to have one solution for each state of nature. Summarizing, a 

single solution will capture the inherent variability to which the socio-ecological context is subject. 

Second, we analyse crop land use at the districts level, a unit of resolution much lower than in other 

models. And third, we go into details also in temporal terms, modelling only the dry season. 
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The aim of this study is to understand the overall economic impact of the "stay-green" sorghum 

phenotype planted in the post-rainy season on the Indian agricultural sector. With this in mind, we 

will answer the following research questions:  

o How are the positive treats of "stay-green" Sorghum distributed in space? 

o Are there co-benefits between adaptation to climate variability and mitigation of emissions 

through biomass production for fodder? 

o What is the economic value of the “stay-green” sorghum variety? 

o How much can farmers adapt to climate variability adopting the cultivation of "stay-green" 

Sorghum? 

 

The paper is structured as follows: next section describes the data and methods used. Section 3 

presents and discusses the results, and finally, section 4 concludes with some policy 

recommendations. 

 

Figure 4-1 Modelling chain used to investigate the economics of Sorghum innovative varieties. 
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4.2 Materials and methods 

 

Overall our study follows the classic impact model chain (Figure 4-1), starting with climate variability 

data, following with an impact model for crops, and introducing the yields resulting from the crop 

model into an IAM.  

 

 

Figure 4-2 Comparison of weather generator models for wet day rainfall intensity in Pune in 
October. (Source: Suresh et al., unpublished). 

 

 Climate variability 4.2.1

 

Climate variability is modelled with MARKSIM, a stochastic weather generator arranged to 

reproduce the current climatic conditions. The observed weather data used comes from the Indian 

Meteorological Department, which gathers observations from weather stations spread out in the 

country. MARKSIM has been used all around the world for more than 30 years and has been 

identified as a reliable weather generator. Here it is being used to provide weather input to a crop 

simulation model (APSIM). In Figure 4-2 it is shown an example of how MARKSIM reproduced 

observed data better than other similar models (NASA, IMD). Several experiments have been 

conducted before for the same crop and trait. Overall, in these experiments the response to observed 
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weather and generated weather data with Marksim provided higher levels of agreement than other 

weather generator models. 

 

 

Figure 4-3 Simulated areas of crop modelling results, showing differences in mean grain yield 
from Sorghum (Stray-green minus Traditional) in India. 
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 Crop modelling 4.2.2

 

Amongst all possible options for assessing the potential of a "stay-green" phenotype, APSIM 

(Agricultural Production Systems sIMulator) has being selected due to its mechanistic nature. APSIM 

has been proven relevant to reproduce "stay-green" traits and its putative production benefits. In 

earlier studies, the APSIM model reproduced the variation of Sorghum yields across the study region 

with a reliable correlation value of 73% (cf. Kholova et al 2014). Climate data to feed the APSIM 

model is generated by MARKSIM, and soil data comes from FAO soil data base. 

 

 Stochastic Integrated Assessment Model of the Indian Agricultural 4.2.3

Sector (ASMIN) 

 

This section describes the IAM, which is a stochastic partial equilibrium optimization model of the 

agricultural sector of India (ASMIN) programmed in General Algebraic Modeling System (GAMS). 

ASMIN is an IAM that summarizes bio-physical and socio-economic information related to climate 

change to assess policy recommendations. Methodologically, in this exercise we innovate by going 

into the details of the temporal and geographical dimensions. Geographically, we take the Indian 

districts as the resolution of our crop variable, instead of the Indian states or the whole country, as it 

happens often in other similar models. Temporally, we model only the dry season, instead of packing 

both seasons and assuming they are only one, as it happens so far in other IAM. In our particular 

application, these methodological innovations have implications on further aspects of the model: India 

is only an exporter of sorghum, trade records show no imports in the last 10 years and previous 

amounts are not relevant, therefore traded quantities are related to the much more productive rainy 

season. For this reason we finally excluded trade of the model for this particular application.  

ASMIN mimics decision making of the Indian agriculture by portraying the agricultural sector of the 

74 Indian districts involved in Sorghum production, together with its impacts on the national market. 

Amongst other features, ASMIN can provide a measure of the welfare of the sector. ASMIN is an 

optimization mathematical program written in GAMS, with roughly 80,400 individual variables and 



Chapter 4 Integrated economic assessment of “stay-green” technology in sorghum under 
current climate variability 

 

67 

 

6,100 single equations, introduced as blocks via the use of indices in GAMS. ASMIN consists on an 

objective function that maximizes the welfare of the sector. The objective function is constrained by 

several equations. These constraints define the feasibility of the optimal level for the endogenous 

variables and the maximum welfare. The maximum welfare is calculated as the sum of producer’s 

surplus and consumer’s surplus, at this level of welfare the market finds the equilibrium in perfect 

competition, as described in McCarl and Spreen (1980). In this market equilibrium, the optimal levels 

of the variables are considered equilibrium levels for the agricultural sector. 

Before we start a detailed description of ASMIN’s equations, its variables and parameters will be 

depicted. The levels of economic activities are represented by endogenous variable blocks, written in 

capital letters in the equations below. Specifically, CROP stands for the amount of land (ha) allocated 

for different cropping activities, DEMD (Tones) represents demand of commodities, RESR (diverse 

units) symbolizes resources consumption and CMIX (ha) appears for historical crop mixes. The 

parameters given to the model as data input, namely coefficients of the variables and the right hand 

side values of the equations, appear in small letters. In particular, b stands for the available resources 

and h for the historical data on crop mixes. Similarly, ic represents variable undetermined costs 

coming from a calibration that depend upon the activity level. Then, yi represents the crop yields, that 

come from APSIM, an agricultural productivity biophysical model, and a represents production 

factors. Finally, prob is the probability of each of the involved states of nature representing climate 

variability. 

The equations described below actually depict blocks of equations that are reproduced through indices. 

The indices are indicated via subscripts: f stands for resources and production factors, c for crops, m 

for management technology option, w for climate variability states of nature, x for historical 

alternatives of crop land uses, y for commodities and r for regions. Equation block (1) express the 

supply-demand balance of commodities, which links production with markets.  

, , , , , , , ,y,
,

0 , , wr c m y w r c m w r w
c m

yi CROP DEMD r y         (1) 
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Equation (2) reproduces the constraint in natural resources, which is related to exogenous parameters 

in equation (3), in which the variable RESR is limited to the exogenous amount of available resources 

for every region. 

, , , , , , , , ,
c,

0 , ,r f w r c m f w r c m w
m

RESR a CROP r w f           (2) 

, , , , ,r f w r fRESR b r f w          (3)  

The crop mix is imitated from reality through equation block (4). This equation avoids extreme 

specialization in the model by reproducing historical crop mixes.  

, , , , , , , 0 , ,r c m w r c x r x w
m x

CROP h r c wCMIX           (4) 

Finally, equation block (5) represents the objective function, which contains an inverse demand 

function for commodities and an inverse supply function for resources.  

   

   

, ,y,
,

, , ,
,

, , , ,
,

( )

demd
r y r w

r y

resr
r f r f w w

w r f

r c r c m w
r c m

DEMD d

Max WELF RESR d prob

ic CROP





   
    

   
              
   
      

 

  

 

   (5) 

 

 

For the purpose of this article, ASMIN is run in a stochastic framework, over a discrete equally 

probable set of 50 possible states of nature. These states of nature depart from 50 different yield 

outcomes calculated with APSIM, using the corresponding 50 different sets of weather data 

stochastically generated with MARKSIM to reproduce current climate variability. A welfare value is 

obtained for each state of nature, however, the variable CROP is optimized in a single solution mode, 

that captures the best solution taking into account the variability of the current climate. 
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4.3 Results and Discussions 

 

We present the results of our IAM, starting with a comparison of the yields and risks for both varieties 

analysed and their products. It follows an overall view of the increased welfare due to the "stay-green" 

sorghum. Then we present the positive effects of adaptation and a comparison with improved climatic 

information. 

 

 Assessment of Agricultural Output: Quantity and Associated Risk 4.3.1

 

Next we consider changes in mean grain yield comparing traditional sorghum with “stay-green” 

sorghum, and account for decreased risk observing the decrease in the standard deviation of the grain 

and fodder yields across the 50 climate variability scenarios produced. First we will compare grain 

yields, then fodder yields, and finally both. Overall, with “stay-green” sorghum the mean grain yield 

increases in 60.14% of the productive areas (Figure 4-3), and the standard deviation decrease in 

60.81% of the productive areas (Figure 4-4). Seeking for both outcomes at the same time we find that 

in 42.57% of the productive areas the mean grain yield increases and the standard deviation decreases, 

and that only a 15.54% has the double negative outcome of decrease in mean grain yields and 

increased standard deviation and therefore increased risk. There is a 18.24% of the area in which 

lower grain yields are obtained with “stay-green” sorghum while the standard deviation is reduced, 

i.e. the production offers less risks; in these 18.24% of area there is a trade-off between grain yield 

and risk, meaning that the yield security improves, but yield is reduced in amount.  
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Figure 4-4 Simulated areas of crop modelling results, showing differences in standard deviation 
of grain yield from Sorghum (Stray-green minus Traditional) in India; please note that the 
desired effect is a decrease in yield variation. 

 

In general, the increase in grain yield seems to come with a cost in terms of fodder yield, because in 

63.51% of the productive areas the fodder mean decreases (Figure 4-5). While there is no striking 

effect in the changes in the standard deviation for fodder, still a 50% of the areas experiment a 
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decrease in the standard deviation of the fodder yield (Figure 4-6), therefore only in half of the cases 

fodder security is increased, while decreased in the other half.  

 

 

Figure 4-5 Simulated areas of crop modelling results, showing differences in mean biomass 
(fodder) yield from Sorghum (Stray-green minus Traditional) in India. 
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Figure 4-6 Simulated areas of crop modelling results, showing differences in standard deviation 
of biomass (fodder) from Sorghum (Stray-green minus Traditional) in India. 

 

Looking at conjoint effects, we see that only in 20.27% of the productive areas there is a positive 

combined effect of increased mean fodder production and decreased standard deviation and therefore 

risk, while in a 33.78% the opposite happens, decreased mean production and increased risk. 

When analyzing together grain and fodder yields, they both increase in 20.27% of the production 

areas, while in 35.14% of the areas grain yield increase and fodder decrease. The results shows a 
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considerable contribution of “stay-green” sorghum in terms of security and resilience under current 

climate variability, because in 40.54% of the cases the standard deviation decreases for both products, 

while in 31.08% of the productive areas there is an increase in risk both for fodder and grain.  

 

 Economic Impact of "Stay-Green" Sorghum Under Current Climate 4.3.2

Variability 

 

The results of our IAM reproduce the production baseline of grain (Figure 4-7) and biomass (Figure 

4-8) for fodder taking into account the 50 states of nature stochastically generated with MARKSIM 

and the derived Sorghum yields calculated with APSIM for both traditional Sorghum and "stay-green" 

Sorghum. 

 

 

Figure 4-7. Comparison of results with baseline for production of grain from post-rainy 
sorghum. 

 

Taking into account climate variability we calculate agricultural welfare for two scenarios: traditional 

sorghum and full adoption of "stay-green" sorghum. Due to the generally higher yields of "stay-

green" Sorghum under a variety of conditions, the full adoption of "stay-green"sorghum would have 
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an overall positive economic impact of roughly 55 M$ per year in the welfare of the Indian 

agricultural sector. 

 

 

 

 

Figure 4-8 Comparison of results with baseline for production of biomass (fodder) from post-
rainy sorghum. 

 

This value (54.98M$) can be considered the social value of the "stay-green" trait, since it is the 

contribution of "stay-green" Sorghum to the welfare of consumers and producers of Sorghum in India. 

This value represents a 0.016% of the contribution of the agricultural sector to the Indian Gross 

Domestic Product; it appears as a significant fraction for a single innovation. If we go beyond the 

difference value above and analyse the economic impact of all considered states of nature for both 

scenarios (Figure 4-9), "stay-green" Sorghum visibly contributes to the improvement of the welfare of 

the sector. We see its probability density function is drawn a bit more to the right side in the X axis, 

meaning it takes higher welfare values. Even if the values are higher, Figure 4-9 conveys another 

message, the probability density function of "stay-green" sorghum has a lower spike around its mean 

value, i.e. the centre of the bell, and there is smaller area below it, meaning there is less probability 

than the contribution of "stay-green" sorghum to the welfare of the agricultural sector is around its 



Chapter 4 Integrated economic assessment of “stay-green” technology in sorghum under 
current climate variability 

 

75 

 

mean. We interpret this as the effect of the increase of quantities produced on prices, which fall in 

some cases creating larger variations. 

 

Figure 4-9 Detail of the probability density function of the values of the Welfare (a variable with 
a value for each state of nature representing climate variability) contribution of post-rainy 
Sorghum to the Indian Agricultural Sector. 

 

 Adaptation Potential of "Stay-Green" Sorghum Under Current 4.3.3

Climate Variability 

 

Overall, above we have seen "stay-green" sorghum improves the resilience against climate variability 

in biophysical terms, since it decrease the variation of the grain yield in most of the productive areas. 

This increase in mean grain yield comes with a decrease in the standard deviation of the grain yield all 

across the states of weather generated stochastically to reproduce climate variability. After this 

introductory verification for the input of our economic model, we will account what is the 

contribution of "stay-green" sorghum from the solution of the model.  

At the quasi-local geographical scale of the Indian districts, our model provides a unique sorghum 

land use solution for all the states of nature. This solution, coherently to our preliminary analyses 
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presented above, shows an increase in production of grain, but partially counterfactual results for 

fodder biomass. Fully adopting "stay-green" Sorghum would contribute to an average yield increase 

of 4.76 tonnes on each Indian district. The full contribution of "stay-green" Sorghum in terms of 

quantity would be of 266.2 tonnes of grain per year for the whole geographical area covered, which 

represents an increase of grain production of 7.86%. Given the administrative difficulties and 

significant economic expenditures of the Indian government on maintaining the Public Distribution 

System (PDS) derived from the National Food Security Act (2013), we argue whether it would not be 

a better option to invest on the diffusion of "stay-green" Sorghum instead of including sorghum in the 

PDS, contrarily to the arguments of Bali and Rao (2012). 

 

 The Potential Value of Information, compared with the Impact of 4.3.4

New Cropping Varieties  

 

The weight and the relevance of the numbers can be better understood by comparison of measures. 

We next compare the results of comparing crop varieties with an additional related adaptation 

scenario in which the farmers are assumed to have perfect knowledge about the weather in the 

planting season. First we shall explore these scenarios and discuss the validity of the assumptions 

behind them. On the one hand, it is unlikely that "stay-green" Sorghum will be fully adopted. On the 

other hand, it is unlikely that climate information coming from current generation of General 

Circulation Models will perfectly reproduce the future climate system. Furthermore, considering the 

basic pillars of Information Theory (cf. Shannon and Weaver, 1949), it cannot be accepted that the 

information will be perfectly transmitted and understood, and many behavioural science insights 

provide grounds to doubt that information will be used for the absolute maximum economic 

convenience. For all these reasons we find appropriate to introduce the term of “Potential Value of 

Information”, and disregard other terms such as “Expected Value of Information” as termed possibly 

by Dantzig (1963) and “Value of Information” as used by Chen and McCarl (2000).  



Chapter 4 Integrated economic assessment of “stay-green” technology in sorghum under 
current climate variability 

 

77 

 

Despite the caution expressed, we find informative the comparison of both scenarios, on one hand 

with and without perfect information for Traditional sorghum, and in the other hand with and without 

full adoption of "stay-green" sorghum with no additional information, to see which is the greatest 

contribution to welfare in the sector. Our results show that, if there would be such thing like perfect 

information, its actually related Potential Value of Information, i.e. in our case the welfare added by 

the information into the agricultural sector of India, would be of the order of 14.5 times higher than 

the contribution of "stay-green" sorghum fully adopted. This shows the high potential of information 

for adaptation, but arguably there are many unrealistic matters involved that will act as a barrier when 

trying to achieve such value. 

 

 Concluding Remarks 4.3.5

 

The contribution to human food security is precious and we wonder whether improvements in food 

security with even more modest GDP contributions capture the total welfare or economic value from a 

broader valuation economic perspective, similarly as it occurs with the valuation of non-marketed 

services from ecosystems, it might be that there are many other societal non-marketed values that 

have a strong weight when discussing food security. There is an important open question left in this 

study: whether different crop and technology improvements can overcome the needs of the Indian 

population in the mid XXI century.  

It appears highly advisable for governments to invest in the development of more breeding 

technologies, for which I explored an example and provided estimations that show a substantial 

positive contribution to agricultural welfare, especially for those crops in the environmental 

productive frontier of the semi-arid areas of the tropics, even more when the involved populations 

might suffer of some degree of relative deprivation in some of the weather conditions that can be 

expected. 
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Chapter 5. Summary and Outlook 

 

In this thesis, I explored transdisciplinary issues on diverse interfaces between policy making, the 

adoption of technology related to adaptation to climate change, and their environmental and economic 

consequences. We offered an overview of the solutions to the challenges posed by global change in 

the Asian Monsoon region.  

 

5.1 Main Findings and Next Steps 

 

The first results presented in this thesis (Chapter 2. Policies, Economic Incentives and the Adoption of 

Modern Irrigation Technology in China) provide statistical evidence and estimations of the impact of 

policies and economic mechanisms on the adoption of agricultural innovations, chiefly irrigation 

related-measures, which decrease water losses during transportation, decrease water application 

and/or decrease water evaporation from the field. The overall message from our descriptive statistics 

and econometric models is that governmental support and economic incentives are highly relevant to 

promote the adoption of modern irrigation technology. Our novel contribution shows that water 

pricing has an impact on the adoption of irrigation technology in China. Panel data series spanning 

over different 5 year plans would give a much more comprehensive picture. Besides, integrating the 

analysis of our results, and other results of the same nature, into cellular automata mimicking the 

adoption behavior amongst farmers, and introducing the output of the cellular automata into larger 

scale Integrated Assessment Models could potentially be a way to overcome the barrier between 

scales of analysis and to improve the depiction of reality into Integrated Assessment Models.  

In the second set of results presented in this thesis (Chapter 3. Co-benefits and trade-offs in China’s 

irrigation water–energy nexus), we demonstrate the importance of understanding the full range of 

potential outcomes and implications of development policies related to technology adoption. Our 

linked resource analyses of water and energy estimated that an additional 10% of emissions would be 

produced just to reduce the application of water in the agricultural sector so that the current policy 
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targets are achieved. The most striking novelty shown was that co-benefits are normally the result of 

lower-priced technologies, while the most expensive technology normally appears related to trade-

offs. In the future, it would be beautiful to have detailed data of piezometric heads from all the areas 

using groundwater, and to know precisely where the technology investments where done, but this is 

currently impossible. Once we understood the water-energy nexus of irrigation, what can be done is a 

reformulation of the model mimicking the water energy nexus to calculate the cheapest and least 

environmentally damaging way of achieving the policy targets of the next (13th) 5 Year Plan of the 

Chinese Government. 

In the third set of results presented in this thesis (Chapter 4. Integrated economic assessment of “stay-

green” technology in sorghum under current climate variability), we have introduced methodological 

innovations related to spatial and temporal resolutions and we have shown that new crop varieties 

obtained with techniques such as accelerated breeding might contribute to adaptation to climate 

variability, producing more food and in many cases also more biomass, which has implications for 

mitigation of climate change. Our novel contribution is to show that although a significant amount of 

welfare is added by these innovations to the agricultural sector, the provision of information has much 

larger welfare amounts to add. However, it remains unclear whether crop varieties alone can solve the 

expected pressures due to increased demand for a higher population in the mid XXI century. It 

remains also the question whether these innovations extend the margin of human societies into 

challenging environmental conditions, and help humans overcome the limits to adaptation to global 

change. This question shall be tackled with a mix of qualitative and quantitative methods, 

complementing the numerical economic exercise with consistent narratives of the context as 

experienced by local farmers, which would imply combining field work interviews and observation 

with global change modelling. 

The geographical and methodological diversity approached in this thesis, together with the 

transdisciplinary approach, provides a set of conclusions that might help the reader to have an 

overview of the challenges and options needed to cope with the resource constraints under global 

change in the Asian Monsoon region. 
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5.2 Self-Reflection about the Thesis and the Future of Global Change 

Related Science 

 

The thought that an invention equivalent to infinitesimal calculus was going to make economics less 

ignorant than they still now are is attributed to John von Neumann. This can be interpreted in different 

ways, but in any case nowadays there is no consensus about how to go beyond equilibrium theory 

based approximations of the complex interactions between agents in the economic arena. Better 

approximations would reproduce how different emerging outcomes occur. These emerging outcomes 

are the complex systems science equivalent to the so called invisible hand proposed by Adam Smith 

to describe how the equilibrium between supply and demand was achieved. It seems quite fair to 

wonder why so many scholars still believe in such invisible construct proposed by Adam Smith 240 

years ago; this fact gives little trust to the economic profession. Studying the complex dynamics and 

reactions of multiple agents involved could enlighten science and society about unexpected responses 

and non-linearities in the human side of the Earth system. However speculative this might sound, 

recent results with side contributions from the author of the thesis show that the complex dynamics 

inherent in any society cannot be missed anymore in Integrated Assessment Models, because then 

relevant policy options are equally ignored (Hasselman et al., 2015). I believe complexity is the next 

way to go with the problems presented and partly solved here, but lack of data is a barrier that in most 

of the cases should be overcome first. 
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A. Appendix 

A.1. Supplementary Materials from Chapter 3 

 

Supplementary Section 1. Characterization of the Chinese provinces used as case studies. 

 

Supplementary Table S1. Summary characteristics of the four provinces detailed in the study. 

Diverse sources (see Supplementary Section 2). 

 Heilongjiang Shandong Hebei Xinjiang 

Location north latitude: 

43°25′-53°33′ 

east longitude: 

121°11′-135°05′ 

north latitude: 

34°25ˊ-38°23ˊ, 

east longitude: 

112°43ˊ-114°36ˊ 

north latitude: 

36°05ˊ-42°37ˊ, 

east longitude: 

113°11ˊ-119°45ˊ 

north latitude: 

32°22ˊ-49°33ˊ, 

east longitude: 

73°21ˊ-96°21ˊ 

Climate Continental 

monsoon climate 

Warm temperate 

continental 

monsoon climate 

Continental 

monsoon climate 

Temperate 

continental dry 

and half dry 

climate 

Acreage (sq km) 473,000 157,000 187,700 1,664,900 

Annual average 

temperatures (°C) 

from-5 to 3 from -14 to 11 From 5 to 13 10 to13 in 

southern region, 

below 10 in 

northern region 

Annual precipitation 

(mm) 

400 to 700 550 to 950 400 to 800 165.6 

Annual average 

water resources 

quantity (Gm3) 

77.58 33.5 23.69 88.28 

 Groundwater 26.93 26.4 16.7 79.3 

 Surface 

water 

64.7 15.42 14.58 57.95 

 Repeated 

amount 

14.05 8.32 7.59 48.97 

GDP (billion CNY) 1023.5 3941.62 2019.71 541.88 

 GDP 130.2 358.83 256.28 107.86 
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 Heilongjiang Shandong Hebei Xinjiang 

contributed 

by agriculture 

Sown area of crops 

(Mhm2) 

12.16 10.82 8.72 4.76 

 Sown area of 

food crop 

11.45 7.08 6.28 2.03 

Grain yield (Mt) 50.13 43.36 29.76 11.71 

 Rice 18.44 1.06 0.54 0.59 

  Maize 23.24 19.32 15.09 4.22 

 Wheat 0.92 20.59 12.31 6.24 

 Soybeans 5.85 0.41 0.34 0.28 

 

 

  



Appendix 
 

 

83 

 

Supplementary Table S2: Characteristics of the studied irrigation systems. Diverse sources (see 

Supplementary Section 2). 

 Heilongjiang Shandong Hebei Xinjiang 

Investment for 

irrigation (billion 

CNY) 

1.78 2.09 0.27 4.15 

Effective irrigated area 

(Mhm2) 

3.87 4.96 4.55 3.72 

Irrigation rate  31.82% 45.84% 52.18% 78.15% 

Water-saving irrigation 

area (Mhm2) 

2.66 2.26 2.7 2.98 

 Sprinkler  0.92 0.15 0.24 0.091 

 Micro-

irrigation 

0.13 0.06 0.03 1.6 

 Low pressure 

pipe 

0.01 1.16 1.95 0.066 

 Canal lining 0.12 0.57 0.28  

 Others 1.48 0.33 0.19 1.17 

Irrigated area by 

groundwater  (Mhm2) 

1.82 2.37 3.79 0.76 

Efficiency of irrigative 

water utilization 

0.52 0.59 0.71 0.47 

Total amount of water 

resources (Bm3) 

85.35 30.91 13.89 111.31 

Water use for irrigation 

(Bm3) 

25.65 22.19 15.43 50.49 

 Supplied by 

storage works 

3.14 2.01 1.39 9.03 

 Supplied by 

diversion 

facilities  

5.15 11.75 1.83 33.08 

 Supplied by 

pumping 

stations 

4.1 2.09 0.29 0.41 
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 Heilongjiang Shandong Hebei Xinjiang 

 Supplied by 

mechanical 

and electrical 

wells 

(groundwater) 

13.26 6.34 11.92 7.97 
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Supplementary Table S3. Targets related to irrigation and agriculture included in the 12th Five-Year 

provincial Development Plans. Source: Provincial level 12th Five-Year Development Plans. 

 Heilongjiang  Shandong Hebei Xinjiang 

Sown area of crops 

(Mhm2) 

12 7.3 6.42 5.12 

Grain yield (Mt) 55 50 n.a. n.a. 

Increase effective 

irrigation area (Mhm2) 

1.89 n.a. n.a. n.a. 

Increase water saving 

irrigation area (Mhm2) 

2.27 0.39 n.a. 1 

Efficiency of irrigative 

water utilization 

0.55 0.63 0.74 0.53 

Total investment for 

water resource 

development (billion 

CNY) 

150 n.a. n.a. n.a. 

Increased water saving 

irrigation area (Mhm2) 

1.45 0.75 0.71 1.2 

 sprinkler  1.12 0.03 0.019 0.073 

 Micro-

irrigation 

0.089 0.03 0.019 0.96 

 Low pressure 

pipe 

0.0013 0.52 0.56 0.027 

 Canal lining 0.24 0.16 0.11 0.15 
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Supplementary Section 2. Data and Methodology. 

 

The four selected Chinese provinces (Hebei, Heilongjiang, Shandong and Xinjiang) differ 

substantially in key parameters like agricultural water use, sources of water, irrigated area, use of 

irrigation technology, area under irrigation technology, and conveyance and/or application type. 

These differences in key variables lead to very different values of fundamental aspects of the water-

energy nexus such as energy emission rate, total emissions, irrigation efficiency, water savings and 

the costs of the related investments. 

The definition of irrigation scheme efficiency and the applied conveyance/application standards are 

both calculated according to guidelines by the Food and Agriculture Organization of the United 

Nations (FAO). We further calculate the energy use (electricity and diesel) for pumping of 

groundwater and surface water and pressurising water for application to fields. The UK Department of 

Environment, Food and Rural Affairs and Department of Energy and Climate Change greenhouse gas 

(GHG) conversion factors are applied to calculate the emissions.  

Data inputs and calculations are based on provincial and national level data: 

 Statistical Yearbook of China’s Water Resources (Ministry of Water Resources, 2010). 
 Groundwater Level Yearbook of China, GEO-Environmental Monitoring Institute (year 

2006). 
 Extensive survey data collected by the Center for Chinese Agricultural Policy (2004–2014). 
 Additional data from the Ministry of Water Resources. 
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Supplementary Section 3. Irrigation technology and the water-energy nexus in China. 

 

Supplementary Table S4. Review of water savings from water saving technologies in China. 

Author / Province Old system New irrigation 

technology 

Savings / Unit 

Yuan & Wang, 2008 

Shaanxi 

Flood irrigation 

8400 m3/ha 

Semi-fixed sprinkler 

Giant sprinkler 

Drip 

3900 

3150 

6150 

m3/ha 

m3/ha 

m3/ha 

Lin, 2003 

Xinjiang 

Furrow irrigation 

10500 m3/ha 

Drip  5376 m3/ha 

Guo et al, 2004 

Xinjiang 

Flood irrigation 

6699m3/ha 

Drip 

Buried drip  

Soft pipeline 

2940  

3870  

1500 

m3/ha 

m3/ha 

m3/ha 

Dang et al, 2006 

Liaoning  

Flood irrigation 

4431m3/ha 

 

Drip  

Micro irrigation 

Infiltrating  

Under-film  

3810 

1620 

1890 

1785 

m3/ha 

m3/ha 

m3/ha 

m3/ha 

Chai, 2000 

Gansu  

Flood irrigation 

2699 m3/ha 

Sprinkler 1161.5  m3/ha 

Liu L, 2006 

Gansu  

Canal  

6877 m3/ha 

Low pressure pipe  2352 m3/ha 

Guan, 2004 

Gansu 

Canal  

 

Low pressure pipe  2700 m3/ha 

Li et al, 2007 

Shandong 

Flood irrigation 

 

Pipe  750-1500 m3/ha 
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Supplementary Table S5. Review of energy savings of pressurised water saving technologies in 

China. 

Author / Province Old system New irrigation technology Savings / Unit 

Dang et al., 2006 

Liaoning  

Flood irrigation  Drip 

Subsurface drip 

Drip under plastic film 

mulching 

Micro sprinkler 

1530 

1035 

405 

1425 

kWh·hm-2 

kWh·hm-2 

kWh·hm-2 

kWh·hm-2 

Han et al, 1995 

Gansu province 

Flood irrigation Low pressure pipe 777 kWh·hm-2 

Guan, 2004 

Gansu province 

Flood irrigation 

1650 kWh·hm-2 

Drip 525 - 675 kWh·hm-2 

Guo, 1996 

Hebei province 

Flood irrigation Sprinkler 611 kWh·hm-2 

Yuan & Wang, 2008 

Shaanxi Province 

Flood irrigation 

1780 kWh·hm-2 

Semi-fixed sprinkler 

Drip 

115 

1300 

kWh·hm-2

kWh·hm-2 
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Supplementary Table S6. Review of investment costs per area of irrigation technologies in China. 

Technology Province  Investment  Unit  resource 

Canal lining  Shaanxi  3000 Yuan/ha Chen, 2008 

Inner Mongolia 4225 Yuan/ha Dong et al, 2000 

Gansu  3881-8525 Yuan/ha Li & Liu, 2008 

 5651 Yuan/ha  Ba et al, 2005 

Jiangsu   4050 Yuan/ha Wang & Wu, 

2002 

Liaoning  3000-4500 Yuan/ha Hai, 2006 

Shandong  2349 Yuan/ha Yan & Li, 2008 

Gansu 2827-7879 Yuan/ha Li & Liu, 2008 

Low pressure 

pipes 

Jiangsu   3860 Yuan/ha Wang & Wu, 

2002 

Liaoning  4500-6000 Yuan/ha Hai, 2006 

Gansu 3442 Yuan/ha Guan, 2004 

Shandong 2775-2812 Yuan/ha Yan & Li, 2008 

Beijing 3000-3750 Yuan/ha Li &Fu, 1998 

sprinkler Heilongjiang  1500-3000 Yuan/ha Li &Fu, 1998 

 4500-6500 Yuan/ha Li &Fu, 1998 

Gansu 7819-14074 Yuan/ha Li & Liu, 2008 

Jiangsu   19500 Yuan/ha Wang & Wu, 

2002 

Liaoning  13945 Yuan/ha Hai, 2006 

Shandong 12390 Yuan/ha Yan & Li, 2008 

Shaanxi  10000-14250 Yuan/ha Yi & Wang, 2008 

Beijing  3416 Yuan/ha Buck et al, 2005 
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Shandong  6350-7100 Yuan/ha Wang, 2006 

 7500-13500 Yuan/ha Li &Fu, 1998 

Micro-irrigation Xinjiang  6279-6690 Yuan/ha Zhang et al, 2004 

Inner Mongolia 8512.8 Yuan/ha Dong et al, 2000 

Gansu 14483-27447 Yuan/ha Li & Liu, 2008 

Jiangsu   16500 Yuan/ha Wang & Wu, 

2002 

Liaoning  14390-16140 Yuan/ha Hai, 2006 

Shandong 20640-20700 Yuan/ha Yan & Li, 2008 

Liaoning 11580-16680 Yuan/ha Dang et al., 2006 

Beijing 13583 Yuan/ha Buck et al, 2005 

    

o  
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References used in the Supplementary Information 

o Buck B., Zheng D.W., Song B.Y., et al., 2005, Technology and economic benefits analysis of 
water-saving irrigation. Water Saving Irrigation 2, 8-10. 

o Chen X.Q., 2008, The characteristics of U-typed channel and its application in water saving 
irrigation, Shanxi Architecture 34, 356-357. 

o Dang X.L., Huang Y., Yu N., et al., 2006, Status quo and existing problems of water saving 
irrigation in protected field of Liaoning province. Water Saving Irrigation5, 57-59. 

o Dong Z., Li H.L., Yao Y.F., 2000, The comprehensive benefit analysis of water-saving test of 
cotton field irrigation on Ejina Oasis. Journal of Arid Land Resources and Environment14, 
55-59. 

o Guan P., 2004, Analysis of the efficiency of water-saving irrigation and project benefit of the 
secondly irrigation district in Jingdian. Water Saving Irrigation 5, 68-71. 

o Hai D.X., 2006, The role of water-saving irrigation in economic restructuring in Fuxin City. 
Water Saving Irrigation 1, 51-52. 

o Li G., Fu G., 1998, Current water-saving irrigation patterns and economic benefits. 
Heilongjiang Science and Technology of Water Conservancy l, 15-17. 

o Li L., Liu J.L., 2008, The economic efficiency evaluation of water-saving irrigation 
demonstration project in Gansu province. Yellow River30, 62-63. 

o Wang Y., Wu Y.B., 2002, Economic analysis of several major water-saving irrigation 
technologies. Journal of Economics of Water Resources 20, 35-40. 

o Wang Y.M., 2006, The use and the development direction of spray irrigation technology. 
Estate and Science Tribune 7, 75-76. 

o Yan S.K., Li J.E., 2008,The study on Yellow River water-saving irrigation patterns in 
Liangshan County. Water Saving Irrigation03, 55-56. 

o Yi C., Wang Y.K., 2008, The analysis of economic benefits of different irrigation methods on 
sandy potato. Journal of Economics of Water Resources26, 60-64. 

o Zhang Y.L., Ma T.Y., Zhao Z.S., et al, 2004, The impact and benefit analysis of infiltrating 
irrigation technology on cotton growth. Xinjiang Farmland Reclamation Science & 
Technology 4, 51-53. 
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