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During the first decade of the 21st Century, the Earth’s surface warmed more 10 

slowly than climate models simulated1. This surface-warming hiatus is attributed 11 

by some studies to model errors in external forcing2–4, while others point to heat 12 

rearrangements in the ocean5–10 caused by internal variability, the timing of 13 

which cannot be predicted by the models1. However, observational analyses 14 

disagree about which ocean region is responsible11–16. Here we show that the 15 

hiatus could also have been caused by internal variability in the top-of-16 

atmosphere energy imbalance. Energy budgeting for the ocean surface layer 17 

over a 100-member historical ensemble reveals that hiatuses are caused by 18 

energy-flux deviations as small as 0.08 Wm-2, which can originate at the top of 19 

the atmosphere, in the ocean, or both. Budgeting with existing observations 20 

cannot constrain the origin of the recent hiatus, because the uncertainty in 21 

observations dwarfs the small flux deviations that could cause a hiatus. The 22 

sensitivity of these flux deviations to the observational dataset and to energy 23 

budget choices helps explain why previous studies conflict, and suggests that the 24 

origin of the recent hiatus may never be identified. 25 

The surface temperature of the Earth warmed more slowly over the period 1998–2012 26 

than could be expected by examining either most model projections or the long-term 27 

warming trend1. Even though some studies now attribute the deviation from the long-28 

term trend to observational biases17,18, the gap between observations and models 29 

persists. The observed trend deviated by as much as −0.17 ºC per decade from the 30 

CMIP5 (Coupled Model Intercomparison Project Phase 5; ref. 19) ensemble mean 31 

projection1 – a gap two to four times the observed trend. The hiatus therefore 32 

continues to challenge climate science. 33 
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Many studies propose that heat was drawn down from the surface into deeper ocean 34 

layers by quasi-random decadal fluctuations known as internal variability. The trouble 35 

with this proposition is that most major ocean regions – the Pacific12,14, the Indian 36 

Ocean15, the Atlantic10, the Atlantic and the Southern Ocean13, and other 37 

combinations of basins5–7,11,16  – have been named individually responsible for the 38 

heat uptake.  39 

Here we explain these conflicting results and point to alternative interpretations. We 40 

develop a surface energy budget, which we apply to hiatuses in a 100-member 41 

historical ensemble (‘the large ensemble’), generated with the coupled climate model 42 

MPI-ESM1.1 (Methods; ref. 20). Using the surface energy budget, we quantify how 43 

much deviation in energy flux occurs during a hiatus. For each hiatus in the ensemble, 44 

we then determine its origin by quantifying energy contributions to the surface from 45 

the ocean and from the top-of-atmosphere (TOA) radiative imbalance (Supplementary 46 

Fig. 1). Finally, we use the energy budget to compare interpretations of the recent 47 

hiatus in existing observations9,21–23.  48 

We define hiatuses in the large ensemble as any 15-year period where the GMST 49 

trend deviates by at least –0.17 ºC per decade from the ensemble mean. This 50 

definition is consistent with the gap between models and observations over the period 51 

1998–2012 (Fig. 1), as described in the Intergovernmental Panel on Climate Change 52 

Assessment Report 5 (ref. 1). Deviations in each ensemble member from the large-53 

ensemble mean represent internal variability, which can be cleanly separated from the 54 

forced component (the ensemble mean) due to the ensemble’s unprecedented size. 55 

There are hundreds of such hiatuses (364, or 2.4% of all 15,200 trends) – subject to 56 

historical forcing but due entirely to internal variability – distributed across all time 57 

periods in the ensemble (Fig. 1).  58 

The origin of each hiatus can be deduced from energy budgeting for the ocean’s 59 

surface layer (Supplementary Fig. 1), which dominates the thermal capacity of the 60 

Earth’s surface and therefore mediates the decadal GMST response to flux 61 

perturbations. We consider two main flux components acting on the ocean surface 62 

layer over decadal timescales: the TOA component from above and the ocean 63 

component from below (Fig. 2a). The TOA component is the top-of-atmosphere 64 

radiative flux imbalance minus atmospheric heat uptake. The ocean component is the 65 

total heat-content change below the ocean surface layer, defined at 100m depth. Both 66 
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components are converted to ensemble anomalies (to isolate the internal variability 67 

component) from values filtered over a 15-year sliding window (see Methods) and 68 

warm the surface layer when positive.  69 

The budget is constructed this way for two reasons. Firstly, the chosen boundary 70 

fluxes (Fig. 2a) close the surface energy budget: the sum of the TOA component and 71 

ocean component highly correlates with heat-content changes within the ocean 72 

surface layer (r2 = 0.97, slope=1.00; Supplementary Fig. 2). Other flux components 73 

(Fig. 2a) are excluded because they are small, are connected with known energy 74 

leakages, and because they do not improve budget closure (Methods; Supplementary 75 

Fig. 2b). The TOA imbalance and ocean heat uptake dominate decadal internal 76 

variability in the global energy budget of other CMIP5 models as well27. Secondly, 77 

the ocean surface layer is defined at 100m (as in refs. 24–26), because around this 78 

depth the flux-divergence anomaly for a hiatus reaches a maximum (Fig. 2b) and is 79 

therefore the most conservative choice for our analysis. Choosing a surface depth 80 

beyond 100m further exceeds the globally averaged mixed layer, and so the 81 

correlation between the energy budget and GMST trends sharply decays (Fig. 2b).  82 

The energy budget allows us to determine the magnitude of flux anomalies associated 83 

with each hiatus. From the slope of the regression between surface-layer flux-84 

divergence and GMST trends, we find that the expected flux-divergence anomaly for 85 

a hiatus (a −0.17 ºC per decade anomaly) is merely −0.082 Wm-2 (Methods). This 86 

corresponds to an average cooling over the ocean’s top 100m of only –0.10 ºC per 87 

decade (Methods) but the effects of that cooling are amplified at the land surface28. 88 

Hiatuses caused only by the ocean tend to cool the land surface more effectively, 89 

which means they generally require a lower flux-divergence anomaly than other 90 

hiatuses to achieve the same cooling. Variation in the ratio of land to ocean surface-91 

cooling leads to variation around the expected flux-divergence anomaly: an interval of 92 

–0.082 ±0.038 Wm-2 covers the 5–95% range for all hiatuses. These results suggest 93 

that the total combined anomaly in TOA fluxes and ocean heat uptake that caused the 94 

gap between observations and models during the hiatus could be on the order of 0.1 95 

Wm-2. Defining hiatuses as equal to the observed 1998–2012 anomaly from the long-96 

term observed trend (an anomaly of 0.04–0.07 ºC per decade) would reduce the 97 

threshold to just 0.02–0.03 Wm-2. 98 
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Across the large ensemble, the 0.082 Wm-2 threshold in energy flux is frequently 99 

exceeded by anomalous heat-content changes in all major ocean basins, especially in 100 

the Atlantic, Pacific and Southern Oceans (Fig. 3b). However, these heat-content 101 

changes are dominated by interbasin heat exchange, which does not contribute to the 102 

surface-layer flux-divergence. In each major basin, the variations in heat content 103 

below the surface layer cannot predict trends in GMST (Fig. 3a), and indeed would 104 

falsely predict many more hiatuses than actually occur. 105 

Even the global ocean heat uptake below 100m correlates poorly with GMST trends 106 

(Fig 3a). The TOA component tends to oppose the ocean component’s contribution to 107 

the energy budget, as demonstrated by the negative correlation in Figure 3c. The flux-108 

divergence anomaly, which has less than half the variability of either the TOA or 109 

ocean component alone (Fig. 3b), is the only reliable predictor of GMST trends (Fig. 110 

3a). 111 

The role of the TOA and the ocean in each hiatus can be determined by comparing 112 

their relative contributions to the flux-divergence anomaly. For hiatuses in the large 113 

historical ensemble, the negative (cooling) anomaly is caused entirely by the TOA in 114 

12% of cases and by the ocean in 24%. In the remainder (64%), the negative anomaly 115 

is caused by the TOA and ocean acting together (bottom left quadrant of Fig. 3c). 116 

TOA variability is therefore involved in 76% of all hiatuses.  117 

Applying a similar analysis to observations should reveal the energetic origin of the 118 

gap between models and observations during the recent hiatus (Supplementary Fig. 119 

1). We convert two observation-based estimates of fluxes over 2000–2010 to 120 

anomalies by subtracting the mean energy budget of the large ensemble for the same 121 

period (Methods). These anomalies include both the effect of internal variability and 122 

any potential effects of forcing differences between model and observations. 123 

Choosing 2000–2010 means that we do not cover the full hiatus period (1998–2012) 124 

and that the corresponding gap in GMST trend between models and observations is 125 

reduced, because the warming rate increased after 2000 (ref. 18). However, this 126 

choice allows us to construct temporally consistent energy budgets from multiple 127 

sources and to take advantage of the improved quality of observations after 2000. 128 

Although the budgets do not cover the full hiatus period, they do illustrate how 129 

observational uncertainty affects interpretations of the hiatus. The first budget uses 130 

WOA ocean observations22 and a recent estimate of TOA fluxes based on the CERES 131 
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satellite data product, Argo floats and AMIP simulations21. This first budget suggests 132 

that the hiatus was caused purely by the reduced influx of energy at the TOA (orange 133 

dot, Fig. 3c). The second budget, based on ocean reanalysis data from ORAS4 (refs. 134 

9,23), suggests the hiatus was caused purely by increased heat uptake in the ocean 135 

(green dot, Fig. 3c). The anomalies diagnosed from an ocean model forced with the 136 

exceptional Pacific trade winds observed during the hiatus12 likewise suggest an 137 

ocean origin (purple dot, Fig. 3c).  138 

From our analysis of observational estimates, we are unable to exclude the TOA 139 

anomaly as a possible cause of the recent hiatus. Referencing the observations to an 140 

alternative energy budget (rather than that of the large ensemble) could shift the 141 

absolute position of the green and orange crosses in Figure 3c. However, their relative 142 

distance from one another and the size of their error bars would not change.  143 

Interpretations of the hiatus are also sensitive to the energy budgeting method used, 144 

and this may reveal why the results of previous studies conflict. For example, the 145 

hiatus has been explained as the result of heat being transferred from the surface 146 

ocean to the layers immediately below it, in the upper 300–350m (ref. 14, 16). 147 

However, an energy budget that only accounts for heat exchange between the top 148 

100m and depths up to 300–350m correlates poorly with GMST trends in the large 149 

ensemble (r2=0.08, Supplementary Fig. 4). A poor correlation also results when we 150 

exclude heat-content changes below the upper 700m (r2=0.14, Supplementary Fig. 4; 151 

see ref. 15) and the upper 2000m of ocean (r2=0.36, Supplementary Fig. 4; see ref. 152 

13). Heat-content changes up to as much as 4000m may be important for decadal 153 

internal variability (Supplementary Fig. 4), despite claims to the contrary16. 154 

Furthermore, the pattern of surface-layer cooling overlying a warming trend may be 155 

common during ocean hiatuses, but it also occurs in around half of hiatuses caused 156 

purely by the TOA (Supplementary Fig. 5).  During these TOA hiatuses, the 157 

subsurface warming is caused by heat transfer from deeper layers. Energy budgets 158 

that do not consider uptake across the whole ocean depth may therefore misrepresent 159 

crucial energy fluxes and misdiagnose the hiatus. 160 

The hiatus may also be misdiagnosed by misrepresenting the surface layer in energy 161 

budgeting. For example, the surface layer has been defined at 300m ocean depth or 162 

more5,6,8–10,13. We perform energy budgeting in the large ensemble with a surface 163 
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layer that extends to 300m instead of 100m and find that the flux-divergence 164 

correlates comparatively poorly with GMST trends (r2=0.33 for 300m, Fig. 2b). 165 

We conclude that the TOA may have been a source of significant internal variability 166 

during the hiatus. Our conclusions are not an artefact of model-generated TOA 167 

variability29 – the large ensemble produces TOA variability that is similar to that in 168 

the observational record (Supplementary Fig. 6). Rather, our conclusions are based on 169 

a simple yet robust principle, namely that the Earth’s surface layer has a small heat 170 

capacity. The surface temperature can therefore be influenced by small variations in 171 

the large yet mutually compensating fluxes that make up this layer’s energy budget. 172 

Comparing the small variability in the TOA imbalance with the total TOA imbalance 173 

under global warming26,30 obscures the significance of these small variations for the 174 

hiatus.  175 

Other observational studies associate the hiatus with heat-flux anomalies that range 176 

from 0.21 Wm-2 (ref. 30) to 0.50 Wm-2 (ref. 11). But when we perform energy 177 

budgeting for the surface layer in the large ensemble, we find that anomalies closer to 178 

0.08 Wm-2 can account for hiatuses as large as 0.17 ºC per decade, and 0.02–0.03 179 

Wm-2 for a hiatus equal to the 1998–2012 anomaly from the observed long-term 180 

trend. Because the flux-divergence anomaly is so small, ascribing the origin of the 181 

recent hiatus to the TOA or ocean requires that each of their contributions to the 182 

anomaly are known with considerable accuracy. However, the uncertainty in TOA 183 

imbalance from satellite measurements is two orders of magnitude larger (~8 Wm-2; 184 

ref. 31) than the anomaly we calculate. Satellite data are commonly anchored with 185 

ocean heat-content measurements, but the uncertainty range in TOA imbalance during 186 

the 2000s still remains around 0.56 Wm-2 (ref. 21), and even for the most recent 187 

estimate based on improved ocean observations over 2005–2015, the range is 0.2 188 

Wm-2 (ref. 32).  189 

This is the true dilemma at the heart of the hiatus debate: the variability in ocean heat 190 

content alone has no power to explain the hiatus, and the measure that can – the 191 

surface-layer flux-divergence – is dwarfed by observational uncertainty. While there 192 

are attempts to fill the gaps in observations with ocean reanalyses like ORAS4 (refs. 193 

9, 23), the resulting data are of questionable integrity during the hiatus14,21 and, as we 194 

show, disagree with the budget based on CERES21 and WOA22. Even if these 195 

disagreements could be reconciled, the process of anchoring satellite observations 196 
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with ocean heat uptake makes the contributions from TOA and ocean difficult to 197 

disentangle, because their absolute difference is unknown. Therefore, unless the 198 

uncertainty of observational estimates can be considerably reduced, the true origin of 199 

the recent hiatus may never be determined.  200 
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 201 

Figures 202 

 203 
Figure 1 | Distribution of 15-year trends in global mean surface temperature (GMST) in the 100-204 
member ensemble. The coupled climate model MPI-ESM1.1 is forced with CMIP5-prescribed 205 
historical forcing from 1850 until 2005, and extended until 2015 with the RCP4.5 scenario (see 206 
Methods). When the red line lies above the grey line, at least one ensemble member is experiencing a 207 
hiatus, defined as a deviation of more than 0.17 ºC per decade below the ensemble mean. This 208 
deviation is the same as the gap between the CMIP5 ensemble mean (black cross) and the observed 209 
(yellow cross) GMST trends for the period 1998–2012. Contours represent the number of ensemble 210 
members in bins of 0.05 ºC per decade. 211 
 212 

 213 
Figure 2 | Surface energy budgets. a, The surface energy budget in the large ensemble. Red colouring 214 
indicates the global mean surface temperature (GMST) and the components included in the surface-215 
layer flux-divergence. The smaller flux components in black are excluded because they do not improve 216 
budget closure or the relationship with GMST trends. Numbers in brackets represent the variability of 217 
each heat flux (Wm-2), given as the root-mean-square of 15-year ensemble anomalies. b, Results from 218 
surface budgets determined by increasingly deeper definitions of the ocean surface layer. For each 219 
depth, a linear regression is performed for GMST trends against the surface-layer flux-divergence (both 220 
as 15-year ensemble anomalies). Shown in black (top axis) is the expected deviation in flux-divergence 221 
required to cause a hiatus, calculated from the regression slope. Shown in red (bottom axis) is the 222 
correlation (r2) of each regression. The correlation rapidly deteriorates for definitions of the surface 223 
layer below 100m. 224 
 225 
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 226 
Figure 3 | Hiatuses and their origins in models and observations. a, Correlation between global 227 
mean surface temperature (GMST) trends and heat fluxes in the large ensemble (as 15-year ensemble 228 
anomalies). b, Frequency with which each component exceeds the expected threshold for a hiatus (−229 
0.082 Wm-2). In a and b, grey bars represent changes in ocean heat content below the ocean surface 230 
layer (100m) by basin, blue bars represent the ocean and TOA components, and the red bar is the 231 
surface-layer flux-divergence (TOA + ocean components).  c, Contributions to hiatuses from TOA and 232 
ocean components. Positive values indicate fluxes that warm the surface. Small red dots represent 233 
hiatuses in the large ensemble and small grey dots represent all other trends; the red dotted line is a 234 
flux-divergence of −0.082 Wm-2. Observational estimates and their 1-sigma error bars are compiled 235 
from multiple sources that rely either on CERES21 and WOA data22 (large orange dot) or ORAS4 236 
data9,23 (large green dot), shown as anomalies from the large-ensemble mean over the 2000s (–0.66 237 
Wm-2 for the ocean and +0.77 Wm-2 for the TOA component). The large purple dot represents results 238 
from an ocean model forced with reanalysis-based winds as reported in ref. 12, converted to mean 239 
fluxes over 15 years. 240 
 241 
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Methods 338 

The large historical ensemble in this study was generated by the Max Planck Institute 339 

Earth System Model version 1.1 (MPI-ESM1.1), an incremental improvement of the 340 

coupled ocean-atmosphere general circulation model submitted to CMIP5 in the LR 341 

configuration20. The 100 ensemble members were generated under CMIP5 historical 342 

forcing from 1850 until 2005, with extensions to 2015 under the RCP4.5 scenario20. 343 

The ensemble’s internal variability of 15-year GMST trends (5–95% range of 0.30 ºC 344 

per decade) is slightly larger than an estimate for the CMIP5 ensemble (5–95% range 345 

of 0.26 ºC per decade; ref. 33).  346 

GMST trends are calculated from the slope of an ordinary least-squares linear 347 

regression over a 15-year sliding window, to be consistent with the hiatus as 348 

described in ref. 1. Ensemble anomalies are then calculated at each time step: 349 

𝑋!,!! = 𝑋!,! −
!
!""

𝑋!,!!""
!!!  , where t is the time-step and n is the ensemble member.  350 

The composition of the energy budget is chosen to maximise the correlation of the 351 

surface-layer flux-divergence with both GMST trends and changes in ocean surface-352 

layer heat content. 353 

For the comparison with GMST trends (Supplementary Fig. 2) and most of this study, 354 

any terms expressed as heat content (Joules) are converted to trend anomalies in the 355 

same way as GMST, and then converted to units of Wm-2 over the total surface area 356 

of the Earth. All energy fluxes that are output from the model as Wm-2 are first time-357 

integrated and then treated the same as heat content. This step ensures the same time-358 

filtering for all aspects of the energy budget, and thereby prevents the introduction of 359 

significant errors. In the case of the net TOA imbalance, an energy-leakage constant 360 

of 0.44 Wm-2 is first estimated from 2000 years of the control run and then removed. 361 

Leakage is energy destroyed by model errors; MPI-ESM1.1 has improved energy 362 

conservation compared to its predecessor, MPI-ESM, and both have relatively small 363 

leakage compared to models in the CMIP5 ensemble34. 364 

The comparison between flux-divergence and ocean surface-layer heat content 365 

(Supplementary Fig. 1) uses a slightly different approach. To test for exact changes in 366 

heat content over a 15-year period, only the start and end states are relevant. The 367 

least-squares method is however, influenced by the pathway from start- to end-states. 368 
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Instead, a difference filter is calculated from the start- and end-years in the 15-year 369 

sliding window, divided by the time difference of 14 years: ∆𝑋! =
!
!"
(𝑋!!!" −  𝑋!).  370 

The selected flux-divergence is the sum of two components: the TOA radiative 371 

imbalance minus atmospheric heat uptake (trends in vertically integrated moist static 372 

energy); and trends in ocean heat content below the ocean surface layer. This is the 373 

simplest flux combination that matches the expected one-to-one relationship between 374 

flux-divergence and change in surface-layer heat content (Supplementary Fig. 1). The 375 

salient characteristic of the ocean surface layer for this study is the relationship 376 

between heat-content changes within the layer and resulting changes in GMST.  The 377 

surface-layer depth of 100m is therefore chosen to maintain the high correlation 378 

between the flux-divergence and GMST trends (Fig. 2b), but remains a conservative 379 

choice for estimation of the flux-divergence threshold during hiatuses. Removing heat 380 

changes that are related to phase changes (land-ice and sea-ice changes) or including 381 

the heat flux from the soil does not improve the relationship with GMST trends 382 

(Supplementary Fig. 2).  383 

The expected surface-layer flux-divergence associated with a hiatus is calculated from 384 

the slope of the regression between flux-divergence and GMST trends. The value we 385 

calculate (−0.082 Wm-2) is less than the flux-divergence required by uniform cooling 386 

of −0.17 ºC per decade in the top 100m of ocean: −0.150 Wm-2. This is because the 387 

layer cools on average by only −0.10 ºC per decade during hiatuses, which matches 388 

the theoretically expected cooling if the total anomaly of −0.082 Wm-2 were focussed 389 

in the ocean surface layer. The error interval of ±0.038 Wm-2 is calculated from the 5-390 

95% range of all regression residuals of flux-divergence during hiatuses in the 391 

ensemble. There is no significant relationship between the origin of hiatuses and 392 

different periods in time (Supplementary Table 2). 393 

The heat-content changes for individual basins are calculated from linear trends in 394 

heat content below 100m. Basin boundaries are identical to those used in CMIP5 and 395 

can be downloaded from the quality-control data in ref. 35.  396 

Observational estimates in Figure 3c rely on a combination of data sources, which are 397 

summarised below and quantified in Supplementary Table 1. The CERES/WOA 398 

estimate for the 2000s is composed from the estimate of TOA fluxes in ref. 21, and an 399 

estimate of heat uptake using WOA data22, including pentadal heat-content values for 400 
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700m–2000m, yearly heat content values for the upper 700m, and a separate estimate 401 

for deep-ocean warming36. From the total heat uptake, we subtract the heat-content 402 

trend for the first 100m in the WOA objective analysis data22 (calculated from in-situ 403 

temperature with a constant density and specific heat of 4×10! Joules m-3 ºC-1).  404 

For this first budget, the 1-sigma error bars for the TOA estimate are taken from the 405 

same source as the estimate itself21. The error bars for the WOA ocean heat-content 406 

trend are calculated as plus or minus the standard error of the slope parameter, 407 

assuming that the errors in heat content are auto-correlated and behave like an AR(1) 408 

process37,38. The auto-correlation coefficient for the errors is estimated from residuals 409 

in heat-content data preceding the 2000s (1957-1999). A reduced degrees-of-freedom 410 

is calculated from the auto-correlation coefficient and scales the estimate of the 411 

standard error in heat content, which is calculated directly from the error estimates 412 

provided with the WOA data22 (not from the regression residuals).  413 

The ORAS4 ocean anomaly is calculated using an estimate for the total-depth heat 414 

uptake in the 2000s (ref. 9) minus the trend for the top 100m, which is calculated 415 

from the available ORAS4 potential temperature values with a constant density and 416 

specific heat of 4×10! Joules m-3 ºC-1. The 1-sigma error bars are taken directly from 417 

ref. 9. For this second budget, the corresponding TOA flux estimate and its error bars 418 

are taken from ref. 23.  419 

For both observation-based budgets, we remove the effect of ocean drift in the large 420 

ensemble. A quadratic function is first fitted to ocean heat content over the 2000-year 421 

control run39. Since each ensemble member starts from a different point in the control 422 

run, the drift is estimated from the rate-of-change in the quadratic that corresponds to 423 

each ensemble member’s midpoint. The resulting ensemble-mean drift of 0.01 Wm-2 424 

is removed from both the ocean component and the TOA component. 425 

In ref. 12, the budget is given as anomalies from the control experiment in total heat-426 

content change for the top 125m of ocean and the remaining ocean. We convert these 427 

values to 15-year fluxes over the total Earth surface. We assume that the anomaly 428 

below 125m represents the ocean component, and the sum of surface and deep-ocean 429 

components is equivalent to the TOA component. 430 

  431 
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Code availability. The MPI-ESM1.1 model version was used to generate the large 432 
ensemble and is available at http://www.mpimet.mpg.de/en/science/models/mpi-433 
esm.html. Computer code used in post-processing of raw data has been deposited with 434 
the Max Planck Society: 435 
http://pubman.mpdl.mpg.de/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:235436 
3695. 437 

Data availability. Raw data from the large ensemble were generated at the Swiss 438 
National Computing Centre (CSCS) and Deutsches Klimarechenzentrum (DKRZ) 439 
facilities. Derived data have been deposited with the Max Planck Society 440 
(http://pubman.mpdl.mpg.de/pubman/faces/viewItemFullPage.jsp?itemId=escidoc:23441 
53695). Supplementary Figure 6 uses TOA flux reconstructions provided by R 442 
Allan40 (http://www.met.reading.ac.uk/~sgs01cll/flux/) and satellite observations 443 
provided by the NASA CERES project31 (http://ceres.larc.nasa.gov). For 444 
observational estimates in Figure 3c, we make use of data provided by the NOAA 445 
World Ocean Atlas22 (https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/) and 446 
by the ECMWF Ocean Reanalysis System 4 (ref. 9; 447 
http://icdc.zmaw.de/projekte/easy-init/easy-init-ocean.html). 448 
 449 
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